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Abstract 
 
 
 
I adapt the Generalised Method of Moments to deal with nonlinear models in which a 
finite number of isolated parameter values satisfy the moment conditions. To do so, I 
initially study the closely related limiting class of first-order underidentified models, 
whose expected Jacobian is rank deficient but not necessarily 0. In both cases, the 
proposed procedures yield efficiency gains and underidentification tests within a 
standard asymptotic framework. I study models with and without separation of data and 
parameters. Finally, I illustrate the proposed inference procedures with a dynamic 
panel data model and a non-linear regression model for discrete data. 
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1 Introduction

Identi�cation has been a central issue for the theory and practice of econometrics since

at least the early analysis of simultaneous equations at the Cowles Comission (see e.g.

Koopmans and Hood (1953)). In the linear in parameters models of the form

E[	(x)�] = 0

considered by those authors, where x is a vector of observable random variables and 	(x)

contains p� (r+ 1) known functions of data, the observationally equivalent values of the

(r + 1) � 1 unknown parameter vector � lie on either a one-dimensional linear subspace

(the so-called point identi�ed case), which nevertheless requires some additional nor-

malisation to pin a unique direction down, or a higher-dimensional linear subspace (the

set identi�ed case).

However, in non-linear models de�ned by the unconditional moment conditions:

E [f (x; �)] = �f(�) = 0; (1)

where f(x; �) contains p in�uence functions and � is a vector of k � p unknown parameters

that lie on a subset P of Rk, other meaningful underidenti�ed situations may arise (see

e.g. Fisher (1966) and Rothenberg (1971)):

a. Uncountable underidenti�cation: There is a manifold of values of � that satisfy

the moment conditions (1).

b. Countably in�nite underidenti�cation: There is an in�nite but countable num-

ber of values of � that satisfy the moment conditions (1).

c. Finite underidenti�cation: There is a �nite number of values of � that satisfy

the moment conditions (1).

In addition, there exist other situations which share some underidenti�cation features

(see Sargan (1983a,b)):

1. First-order underidenti�cation: �0 is the unique solution to (1), at least in an

open neighbourhood of �0, and therefore locally and possibly globally identi�ed,
1
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and yet rank[ �D(�)] < k at � = �0 but not in its neighbourhood, where �D(�) =

E[@f(�)=@�0] is the expected Jacobian of the moment conditions.

2. Second-order underidenti�cation: �0 is the only solution to (1), but rank[ �D(�)]

< k and the rank of the expected Jacobian of the (vec) Jacobian is also de�cient.

These borderline identi�ed cases are closely related to the truly underidenti�ed ones in

a.-c. Speci�cally, if there is rank failure for all higher-order Jacobians, then we go back to

the uncountable underidenti�cation in a., while 1. often arises when two observationally

equivalent solutions in c. become arbitrarily close to each other.

The approach in this paper is closely related to Arellano, Hansen and Sentana (2012),

who focused on uncountably underidenti�ed models. They posed the problem as an esti-

mation one where researchers seek to estimate the set over which identi�cation is problem-

atic. Speci�cally, they considered an augmented structural model in which the moment

conditions are satis�ed by a curve instead of a point, as in Sargan (1959). They then

showed how to estimate e¢ ciently the identi�ed curve. As a by-product, they obtained

a test for underidenti�cation by suitably testing for overidenti�cation in the augmented

model. If it is possible to estimate a curve without statistically rejecting the overidentify-

ing restrictions of the augmented model, then researchers may conclude that the original

econometric relation is uncountably underidenti�ed. In contrast, rejections provide evi-

dence that the original model is indeed point identi�ed.

In this paper, I also impose an explicit structure on the lack of identi�cation, which

in turn leads to an alternative estimation problem and its associated underidenti�cation

test, but the di¤erence is that I focus on situations in which only a �nite number of locally

identi�ed isolated parameter values satisfy (1), as in c. For simplicity, I only consider

two-point sets, although the results could be extended to any �nite number of points.2

Before studying such �nite underidenti�ed models, though, I study the closely related

1Formally, �0 will be locally identi�able if and only if E[f(x;�j)] 6= 0 for any sequence f�jg such
that limj!1 �j = �0, while it will be globally identi�able if there is no observationally equivalent value
anywhere in the admissible parameter space P. The order condition p = dim (f) � dim (�) = k provides
a �rst-check of identi�cation, but this is only necessary. A complement is provided by the rank condition:
If �D(�) is continuous at �0, and rank[ �D(�0)] = k, then �0 is locally identi�ed. In contrast to the order
condition, this condition is only su¢ cient. But if rank[ �D(�)] is also constant in a neighborhood of �0,
then the above rank condition becomes necessary too.

2Extensions to countably in�nite underidenti�cation in b. are conceptually possible, but since to the
best of my knowledge there are no interesting applications, I will not pursue them.
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class of �rst-order underidenti�ed ones for several reasons. First, in a formal sense that I

will characterise below, �rst-order underidenti�cation can be regarded as the limiting case

of �nite underidenti�cation when the isolated solutions converge to each other. Second,

the methods I propose to deal with the former turn out to be very useful for the pur-

poses of dealing with the latter. Finally, the behaviour of Generalised Method of Moment

(GMM) estimators and hypothesis tests in �rst-order underidenti�ed models has become

the focus of increasing attention (see Kleibergen (2005) and Dovonon and Renault (2013)).

As mentioned before, in those situations the expected Jacobian of the moment conditions

is singular, but not necessarily 0, so that the usual asymptotic theory for standard GMM

estimation breaks down. In contrast, the procedures that I propose will restore conven-

tional GMM asymptotics, as the results in Lee and Liao (2014) con�rm for the special

case of a zero expected Jacobian.

The paper is also somewhat related to two di¤erent strands of the literature that have

gained prominence in the last two decades. One is the weak instruments literature (see

e.g. Stock, Wright and Yogo (2002) and Dufour (2003), or more recently Antoine and

Renault (2010)). Papers in this tradition often consider a reduced rank Jacobian �D(�)

at �0 as the limit of a sequence of data generating models indexed by the sample size for

the purposes of developing reliable standard errors and tests of hypothesis about �0. By

going to the limit and exploiting the additional moment conditions associated to a singular

Jacobian, I restore standard asymptotics and thus avoid the zero relative e¢ ciency of the

usual estimators. The other strand is the set estimation literature (see e.g. Chernozhukov,

Hong and Tamer (2007) or more recently Yildiz (2012)), whose objective is to consistently

estimate the set of values of � that satisfy (1). By making the additional assumption that

the identi�ed set is �nite and modifying the usual GMM objective accordingly, I once

again obtain e¢ ciency gains within a standard asymptotic framework.

The rest of the paper is organised as follows. In section 2, I review some known

situations in which there is either a �nite set of observationally equivalent solutions or

rank failure of the expected Jacobian in order to highlight the non-trivial features of the

more subtle situations I am interested in. Then I study linear in variables but non-linear in

parameter models in section 3 and fundamentally non-linear models in section 4. Finally,

I conclude in section 5. Some additional details can be found in the appendix.
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2 Some examples

There are well-known models which systematically give rise to two or more obser-

vationally equivalent solutions. The most obvious example is an Ma(1) process whose

parameters are estimated on the basis of �rst and second moments of the data. An-

other trivial example would be a non-linear regression model in which the conditional

mean function contains the hyperbolic cosine function exp(�x) + exp(��x). In both

those non-injective cases, one can suitably restrict the parameter space to achieve point

identi�cation. In addition, the two observationally equivalent solutions can be obtained

automatically on the basis of one another.

In other cases, there is generally a unique �rst-order identi�ed solution, but if the

unknown true parameter values satisfy certain restrictions, underidenti�cation issues will

arise.

An interesting example is the so-called Modi�ed Two-Part Model for count data. In

one of its simplest possible forms, this model parametrises the mean of the count variable

y conditional on two weakly exogenous variables x and z as follows:

E(yjx; z) = exp[(�+ 
)x+ 
z]

1 + exp(�x+ �z)
;

where �, � and 
 are the parameters of interest. This conditional mean speci�cation is

compatible with a zero in�ated Poisson model, a hurdle model, and a model with a latent

error term among others (see Papadopoulos and Santos Silva (2012) and the references

therein). Let a(x; z) denote a p� 1 vector of functions of x and z used to transform the

conditional moment speci�cation above into p unconditional orthogonality conditions in

the usual way. If p � 3, then we will be able to identify �, � and 
 provided the true

value of � is di¤erent from 0. In contrast, if �0 = 0 but �0 6= 0, then Papadopoulos

and Santos Silva (2012) point out that there will exist two observationally equivalent

solutions: (�; 0; 
) and (��; 0; 
 + �). Further, it is easy to prove that if �0 = �0 = 0,

then 
 becomes �rst-order underidenti�ed even though it is locally identi�ed. In this

model, though, those underidenti�cation situations will arise not only asymptotically but

also in any �nite sample.

Another relatively unknown case is an Ar(2) model cloaked in white noise, whose

parameters are estimated on the basis of �rst and second moments of the data. When
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the latent Ar(2) process is in fact an Ar(1), its second Ar root becomes �rst-order un-

deridenti�ed. Intuitively, the problem is that in a neighbourhood of the true value, the

Ar(2)+Wn model is �rst-order equivalent to an Arma(1,1)+Wn model, whose parame-

ters are only set identi�ed. In this case, though, a reparametrisation which relies on the

� square root of the second Ar root, as in Rotnitzky et al (2000)), restores standard
p
T

(half) Gaussian asymptotics (see Fiorentini and Sentana (2015)).

In this paper, in contrast, I am particularly interested in more subtle situations in

which underidenti�cation depends on parts of the data generating process (DGP) which

are not necessarily speci�ed by the moment conditions (1). In those cases, the relationship

between the two observationally equivalent solutions � and �� or the conditions that lead

to a singular expected Jacobian cannot simply be inferred from the true values of certain

model parameters.

As in Arellano, Hansen and Sentana (2012), it is convenient to study separately non-

linear in parameters but linear in variables models of the form f(x; �) = 	(x)�(�), where

�(�) is a non-linear continuously di¤erentiable function, and fundamentally non-linear

models, in which no such separation of data and parameters is possible.

I will illustrate my proposed inference procedures with an example for each class:

1. A dynamic panel data model,

2. A non-linear dynamic regression model for discrete data.

For computational reasons, I systematically employ the optimal Continuously Updated

GMM estimators (CUE) introduced by Hansen, Heaton and Yaron (1994). Thus, assum-

ing f(x; �) constitutes a martingale di¤erence sequence, I can compute the CU-GMM

criterion by regressing 1 on f(x; �) with an OLS routine which is robust to potential sin-

gularities in the covariance matrix of the in�uence functions, as in Peñaranda and Sentana

(2012). Although CUE is computationally more demanding, it is numerically invariant

to normalisations, reparametrisations and parameter-dependent linear transformations of

the moment conditions, which proves particularly useful in the context of underidenti-

fed models. In principle, though, other single-step GMM methods such as Empirical

Likelihood or Exponentially Tilted could also be entertained.
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3 Non-linear in parameter models

3.1 Theoretical discussion

As I mentioned in the previous section, these models are fully characterised by the

fact that the in�uence functions are

f(x; �) = 	(x)�(�);

where 	(x) contains p � (r + 1) jointly Borel measurable functions of the observations

and �(�) is a non-linear, continuously di¤erentiable function mapping � : P! Rr+1 such

that E[jf(x; �)j] < 1 for all � in the compact parameter space P � Rk. For simplicity

of exposition, I assume that the observed sample is drawn from a stationary and ergodic

stochastic process fxtg.3 In order for standard asymptotic results to apply, I also assume

that the following high level regularity conditions hold as the sample size T goes to

in�nity:4

Assumption 1

	T = T
�1
XT

t=1
	(xt)

a:s:! �	;

where �	 = E[	(x)] is a non-stochastic p� (r + 1) matrix, and
p
Tvec(	T � �	)! N(0; C);

where C is a non-stochastic p(r + 1)� p(r + 1) positive (semi)de�nite matrix.

In this context, identi�cation is only meaningful if �(:) is an injective (i.e. one-to-one)

function, for if there are two distinct parameter values � and �� for which �(�) = �(��),

then it is clear a priori that one cannot identify �.

If the interest centred on the unrestricted estimation of � = �(�) instead of the re-

stricted estimation of �, then the condition rank(�	) = r would be necessary and su¢ cient

to identify � = �(�) up to a proportionality factor. Hence, identi�cation problems may

only arise if rank(�	) < r. For obvious reasons, I rule out trivial problems by maintaining

the assumption that p � k, so that the order condition is satis�ed, but I also make the

following stronger assumption:

3As elsewhere in the econometrics literature, analogous results can be obtained using other data
generating processes. For cross-sectional and panel extensions of Hansen�s (1982) formulation see the
textbooks by Hayashi (2000) and Arellano (2003), respectively.

4See Newey and McFadden (1994) for an extensive discussion of more primitive conditions.
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Assumption 2 For any two values of the parameter vector � 6= �� in P; �(�) 6= c�(��)
for some c 2 R.

Intuitively, this assumption requires an implicit or explicit normalisation of the non-linear

function �(�) to eliminate scale multiples from consideration.

Suppose that theoretical considerations or previous empirical studies lead one to sus-

pect that � may be �rst-order underidenti�ed. Following Sargan (1983a), I simplify the

presentation by assuming that the rank failure of �	 is of order one, although extensions

to situations in which its nullity is higher would be straightforward. For non-linear in

parameters models, this amounts to

E[	(x)]
@�(�)

@�0

 = 0; (2)

at � = �0, where 
 2 Rk e¤ectively determines the directional derivative along which the

expected Jacobian is 0. On this basis, I can optimally estimate � and 
 by combining (2)

with the original moment conditions (1) subject to a normalisation on 
 such as 
0
 = 1.

Thus, I can not only estimate the parameters of interest but also the �direction of weak

identi�cation�. In some examples, though, the �rst-order underidenti�cation problemmay

only a¤ect a speci�c parameter, so I could restrict 
 to be the corresponding canonical

vector. In other cases, there may be a priori arguments for considering other pre-speci�ed

directional derivatives.

Given that the expected Jacobian of the joint set of moment conditions (1) and (2) is� �	[@�(�)=@�0] 0
@
@�0vec

�
�	[@�(�)=@�0]


	
@
@
y0vec

�
�	[@�(�)=@�0]


	 � ; (3)

where 
y are the free elements of 
, this matrix must have full rank in a neighbourhood

of the true values when 
y is simultaneously estimated for standard GMM asymptotic

theory to work. Similarly, when 
 is �xed a priori, the �rst block of k columns of the

above matrix must have full rank. But those rank conditions are precisely the second-

order identi�cation conditions mentioned in the introduction. Although in principle I

could also consider second-order underidenti�ed models, etc., in many locally identi�ed

but �rst-order underidenti�ed examples the required rank condition on (3) holds.

After optimally estimating � and possibly 
y, I can use the overidenti�cation test of

the augmented system (1) and (2) as a �rst-order underidenti�cation test of the original
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moment conditions (1). The resulting test will have an asymptotic chi-square distribution

with 2(p� k) + 1 degrees of freedom when the only restriction on 
 a¤ects its scale. If on

the other hand 
 is �xed a priori, then the number of degrees of freedom will be 2p� k.

I refer to both those tests as �rst-order I tests, because they provide an indication of

the extent to which rank de�ciency of the Jacobian should be a concern.

Suppose instead the original moment conditions (1) hold for �0 and �
�
0 6= �0. Then

both �(�0) and �(�
�
0) must belong to the null space of the matrix �	, so that the system

of moment conditions

E[	(x)][�(�); �(��)] = [0; 0] (4)

evaluated at those two parameter values simultaneously holds. This system allows the

joint e¢ cient estimation of the two observationally equivalent solutions. In particular,

the optimal GMM estimators based on (4) will be asymptotically normal at the usual
p
T

rate subject to the �rst-order identi�ability of � and ��. Moreover, the joint estimator

of � so obtained will be more e¢ cient than a hypothetical GMM estimator based on the

original moment conditions (1) which would somehow manage to restrict � to lie on a

small neighbourhood of �0, and the same applies to �
� (see section 2 of Arellano, Hansen

and Sentana (2012) for a more formal argument).5 Finally, the usual overidenti�cation

test obtained after optimally estimating � and �� from (4) provides a test for the �nite

underidenti�cation of (1). The rationale is straightforward. If one can �nd �� 6= �

without statistical rejection, then the natural conclusion is that the identi�ed set does

indeed contain two points. But if the attempt fails statistically, then one may conclude

� is globally identi�ed. I refer to the resulting test as the �nite I test. Standard GMM

asymptotic theory implies that this I test will have an asymptotic chi-square distribution

with 2(p� k) degrees of freedom if both � and �� are �rst-order identi�ed.

From a practical point of view, though, the main di¢ culty is ensuring that � 6= ��,

so that the duplicated moment conditions (4) do not e¤ectively collapse to (1). Following

Arellano, Hansen and Sentana (2012), in these non-linear in parameters models I can

proceed as follows. I de�ne the parameter space

Q � f� : � = �(�) for some � 2 Pg;
5Given the block diagonality of the Jacobian matrix of (4), the hypothetical estimator based on (1)

would only be as e¢ cient as the joint estimator based on (4) in the highly unlikely situation in which the
sample averages of the duplicated in�uence functions were asymptotically independent.
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and write each set of moment conditions as E[	(x)]� = 0 for � 2 Q. By assumption 2,

the vectors �(�) and �(��) are not proportional. In addition, any linear combination of

�(�) and �(��) must also belong to the null space of the matrix �	.

I can then de�ne the extended �linear subspace�

Q� � f� : � = c1�1 + c2�2; �1; �2 2 Q; c1; c2 2 Rg:

By playing around with c1 and c2, I can guarantee that the dimension of Q� is always

two. I discuss more practical details in the panel data example in section 3.2.

Importantly, if I reparametrise the model in terms of


y = �=
p
�0�

and

� =
p
�0�;

where

� = �� � �;

then I can equivalently re-write the duplicated moment conditions as

E[	(x)]f�(�); ��1[�(� + �
y)� �(�)]g = (0; 0)

for � � �� > 0. By l�Hôpital�s rule, the limit as � ! 0+ of a CU-GMM criterion based

on these duplicated moment conditions will be the continuously updated GMM criterion

based on

E[	(x)]
�
�(�); [@�(�)=@�0]
y

	
= 0

when �� and � get closer and closer to each other in such a way that the dimension of

the null space of �	 remains two. Thus, �rst-order underidenti�ed models can be formally

interpreted as the limiting case of �nite underidenti�ed ones. The gain of one degree of

freedom in the overidentifying test statistic simply re�ects the fact that the CU-GMM

criterion of the latter system is numerically invariant to the value of �.

Extensions to three or more isolated observationally equivalent solutions are straight-

forward. Moreover, second-order underidenti�cation situations could also be related to

the limit of �nite underidenti�cation situations with three points when those three points

become arbitrarily close, but I will not discuss those cases further in the interest of space.
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3.2 Dynamic panel data

Consider the following univariate Ar(2) model with individual speci�c intercepts

(Yit+2 � �i)� �1(Yit+1 � �i)� �2(Yit � �i) = vit+2; (5)

with

E(vit+2jYi1; :::; Yit+1; �i) = 0;

V (vit+2jYi1; :::; Yit+1; �i) = �2t+2; (6)

where the expectations are taken by averaging across individuals, and (Yi1; Yi2; �i) is a

cross-sectionally i:i:d: random vector with bounded second moments, but no restrictions

on the covariance between the unobserved e¤ect �i and the initial observations. I also

assume the availability of a random sample of size N on (Yi1; :::; YiT ), with N large and

T � 4 but negligible relative to N , leaving unspeci�ed the temporal evolution of �2t+2.6

The Arellano and Bond (1991) linear in�uence functions that eliminate the individual

e¤ects are

Yit�j(�Yit � �1�Yit�1 � �2�Yit�2) j � 2; t � 4: (7)

This gives rise to a system of T (T � 3)=2 moment conditions with two common coef-

�cients and an increasing sequence of instruments, whose reduced form is non-standard.

If there are 5 or more time series observations, underidentication arises if and only if

�1+�2 = 1, so that the Ar polynomial contains a unit root and �Yit follows an Ar(1).7

In that case, there will be an uncountable set of observationally equivalent solutions, all

lying on the straight line �2 = 
2 � 
�1, 
 2 R. Arellano, Hansen and Sentana (2012)

show that this identi�ed set can be e¢ ciently estimated by applying optimal GMM to the

Ar(1) moment conditions

E[Yit�j(�Yit � 
�Yit�1)] = 0 j � 1; t � 2 (8)

to infer 
. Moreover, the overidenti�cation test of this system provides a linear I test.

6As Álvarez and Arellano (2004) forcefully argue, the dispersion of the cross-sectional distribution of
errors at each period may change over time because of nonstationarity at the individual level or as a
result of aggregate e¤ects.

7When T = 4 identi�cation problems may also arise even though no unit root exists (see Arellano,
Hansen and Sentana (2012)).
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But the Arellano and Bond (1991) conditions do not exploit all of the model re-

strictions. For that reason, Ahn and Schmidt (1995) proposed to combine (7) with the

additional in�uence functions

(Yit+2 � �1Yit+1 � �2Yit)(�Yit+1 � �1�Yit � �2�Yit�1) (9)

to obtain more e¢ cient estimators of �1 and �2 when the roots of the characteristic

equations associated to (5) lie inside the unit circle. The question is whether these non-

linear in�uence functions can rescue point identi�cation in the unit root case. Given

that 
 will be uniquely identi�ed from the Arellano, Hansen and Sentana (2012) moment

conditions (8), it is convenient to express (9) in terms of �1 and 
 by replacing �2 by


(
 � �1) so as to focus on the identi�cation of �1. In this way, I can write

[Yit � �1(Yit�1 � 
Yit�2)� 
2Yit�2][�Yit�1 � �1(�Yit�2 � 
�Yit�3)� 
2�Yit�3]

= �21(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

��1[(Yit�1 � 
Yit�2)(�Yit�1 � 
2�Yit�3) + (Yit � 
2Yit�2)(�Yit�2 � 
�Yit�3)]

+(Yit � 
2Yit�2)(�Yit�1 � 
2�Yit�3) t � 5: (10)

It turns out that heteroskedasticity matters, even though (6) is an aspect of the DGP

deliberately left unspeci�ed. In particular, if the cross-sectional variance of the innovations

�2t varies freely over time, then the addition of the Ahn and Schmidt (1995) in�uence

functions (10) to the moment conditions (8) will render �1 �rst-order and therefore locally

identi�ed for T � 6. To understand why, it is convenient to compute the expected value

of (10), which is given by

�2t�2�
2
1 � [�2t�1 + (1 + 2
)�2t�2]�1 + [(1 + 
)�2t�1 + 
(1 + 
)�2t�2 = 0 (t = 5; : : : ; T );

where I have taken into account the unrestricted assumption about the initial conditions

of the stochastic process for Yit. This quadratic equation is clearly satis�ed by �1 = 1+ 


for all t. For any speci�c t, though, there is a second solution given by

��1;t =
�2t�1
�2t�2

+ 
:

However, when T � 6 this alternative solution is incompatible for di¤erent t0s unless

�2t�1
�2t�2

=
�2t�2
�2t�3

= ��1 � 
 (t = 6; :::; T ): (11)
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Therefore, if T = 5 or the cross-sectional variance of the innovations either grows or

decreases exponentially over time, then �1 will generally be �rst-order identi�ed, but not

globally identi�ed, because there is a second solution

��1 = �+ 
;

� =
�2t+1
�2t+2

;

which satis�es the same moment conditions.

Further, given that the partial derivative of (10) with respect to �1 will be8

2�1(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

�[(Yit�1 � 
Yit�2)(�Yit�1 � 
2�Yit�3) + (Yit � 
2Yit�2)(�Yit�2 � 
�Yit�3)]; (12)

the expected Jacobian with respect to �1 will be equal to 0 for

��1;t =
1

2

�
�2t�1
�2t�2

+ 1 + 2


�
under any form of time series heteroskedasticity, including (11), even though ��1 does not

generally set to 0 the expected value of the Ahn and Schmidt (1995) in�uence functions

(10). In fact, it is easy to see that ��1;t = :5(�1+�
�
1;t), so that in the �nite underidenti�ed

case the Jacobian rank de�ciency will occur at the mid point between the two solutions.

Importantly, both ��1;t and �
�
1;t will converge to �1 as �

2
t�1=�

2
t�2 ! 1, which means

that if there is time series homoskedasticity (i.e. �2t = �2 8t), then �1 will be globally

identi�ed as 1 + 
, but it will become �rst-order underidenti�ed.

In all cases, though, there is second-order identi�cation because the quadratic nature

of the �(:) mapping implies that the Jacobian of the Jacobian of (10) with respect to �1

will be proportional to

(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

for all �1, whose expected value equals 2�2t�2 when the process contains a unit root.
9

By combining the in�uence functions (10) and (12) with the moment conditions (8),

I can e¢ ciently estimate �1 and 
 (and therefore �2), and obtain a �rst-order I test.
8In e¤ect, this corresponds to a directional derivative along the line �2 = 
2 � 
�1 in the original

(�1; �2) space.
9Álvarez and Arellano (2004) state exactly the same underidenti�ability conditions in the Ar(1)

version of model (5), while Bun and Kleibergen (2013) study the asymptotic distribution of the Ahn and
Schmidt (1995) estimator in that case.
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To deal with the �nite underidenti�ed case, I start by duplicating the Ahn and Schmidt

(1995) in�uence function written in terms of �1 and 
, which I then evaluate at ��1. To

simplify the presentation, imagine 
 is known. I can write the resulting system as

E[	(x)][�(�1); �(�
�
1)] = [0; 0];

with

	0(x) =

24 (Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)
(Yit�1 � 
Yit�2)(�Yit�1 � 
2�Yit�3) + (Yit � 
2Yit�2)(�Yit�2 � 
�Yit�3)

(Yit � 
2Yit�2)(�Yit�1 � 
2�Yit�3)

35 ;
�0(�1) = (�21;��1; 1):

To keep the moments associated to �1 and ��1 apart, I generate the extended �linear

subspace�Q� by postmultiplying [�(�1); �(��1)] by a 2 � 2 matrix C(�1; ��1) in order to

ensure that the nullity of �	 is 2. In particular, if I choose c11 = c22 = 1, c12 = �1 and

c21 = ��1=��1 to avoid scale and rotation indeterminacies, I end up with

E[	(x)]

0@ �1(�1 � ��1) (��1 � �1)(�1 + ��1)
0 �1 � ��1

(��1 � �1)=��1 0

1A = 0:

Dividing the �rst column by (�1 � ��1)=��1 and the second column by (��1 � �1) in an

attempt to make sure �1 6= ��1, I end up with the transformed in�uence functions

�1�
�
1(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)� (Yit � 
2Yit�2)(�Yit�1 � 
2�Yit�3);

(�1 + �
�
1)(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

�[(Yit�1 � 
Yit�2)(�Yit�1 � 
2�Yit�3) + (Yit � 
2Yit�2)(�Yit�2 � 
�Yit�3)]; (13)

which depend on the sum and product of the two solutions. In this context, I could

estimate & = �1 + �
�
1 and � = �1�

�
1, and then solve a simple quadratic equation to

recover �1 and ��1. Then, I could use the overidenti�cation test of this system as a �nite

underidenti�cation test. Such a test will reject with power equal to size for T = 5 in the

presence of a unit root because the relevant moment conditions will be jointly satis�ed by

�1 = 1+ 
0 and �
�
1;5 = 
0+ �

2
4=�

2
3. Exactly the same will happen for T � 6 if in addition

(11) holds.

But this indirect procedure would occasionally lead to complex conjugate solutions for

�1 and ��1, in which case I should re-estimate subject to �1 = �
�
1. Although asymptotically
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this will happen with vanishing probability, in �nite samples there is likely to be a �pile-

up�problem, with a positive fraction of the samples yielding identical estimates for �1

and ��1. As a result, the �nite sample distribution of the �nite underidenti�cation test

may be somewhat distorted.

As expected from the discussion in section 3.1, I trivially recover from (13) the in�uence

functions (10) and (12) associated to the �rst-order underidenti�ed case when the two

separate solutions �1 and ��1 converge. The only di¤erence is that there is an extra degree

of freedom in the �rst-order underidenti�cation test because of the restriction �1 = ��1.

3.2.1 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,500 repli-

cations of a Gaussian version of the Ar(2) model with individual e¤ects in (5) for a short

panel of T = 5 time series observations and N = 5; 000 cross-sectional units. The true val-

ues of the autoregressive parameters �1 and �2 are :3 and :7, respectively, so that the true

value of 
 is �:7. As for (6), I considered two values for the time-series heteroskedasticity

�in�ation�parameter � = �2t+1=�
2
t+2:

1. � = 1 (time-series homoskedasticity)

2. � = 1:1 (time-series heteroskedasticity)

Importantly, I use the same underlying pseudo-random numbers in both designs to

minimise experimental error.

Starting with the homoskedastic case, the �rst thing to note is that the CU-GMM

versions of the Arellano and Bond (1991) estimator and overidentifying restrictions test

based on (7) are very unreliable in the presence of a unit root. Figure 1a displays the

scatter plot of the CUEs of �1 and �2, which tend to lie along the line �2 = :49 + :7�1

but with a huge range of variation due to the lack of identi�cation of the parameters (see

Hillier (1990) for a discussion of the behaviour of symmetrically normalised estimators

in underidenti�ed single equation linear instrumental variable models). In turn, the size

properties of the associated J test are summarised in Figure 1b using Davidson and

MacKinnon�s (1998) p-value discrepancy plot, which shows the di¤erence between actual

and nominal test sizes for every possible nominal size. In line with the theoretical results
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in Cragg and Donald (1993), underidenti�cation in a linear in parameter model leads to

substantial under-rejections for the overidentifying restriction test.

Figure 2a displays �bicorne� plots of the CUEs of �1 and �2 once I add the Ahn

and Schmidt (1995) moment conditions (9).10 As expected, the �rst-order underiden-

ti�cation of those parameters under time-series homoskedasticity leads to non-Gaussian

distributions, with clearly visible but lower additional modes. In this case, though, the

overidenti�cation test, whose p-value plot is displayed in Figure 2b, shows substantial

over-rejections, which is in line with the results in Dovonon and Renault (2013).

In contrast, Figure 3 clearly indicates that the size of the �rst-order I test based on

(8), (10) and (12) is very reliable.

Turning now to the design with time-series heteroskedasticity, Figure 4a con�rms that

the CUEs of �1 and ��1 based on (8) augmented with the in�uence functions (13) su¤er

from a pile-up problem, as there is a small fraction of them for which the two values

coincide. In turn, this problem leads to some �nite sample size distortions in the �nite

I test, as illustrated in Figure 4b. Those distortions disappear, though, as soon as I

estimate the model in terms of & = �1 + ��1 and � = �1�
�
1, as shown in Figure 4c.

11

4 Fundamental non-linearities

4.1 Theoretical discussion

Let f(x; �) contain p in�uence functions jointly Borel measurable and twice continu-

ously di¤erentiable in their second argument for each value of x such that E[jf(x; �)j] <1

for every � 2 P, where � is a vector of k � p unknown parameters that lie on the compact

parameter space P � Rk.

The same basic approach I described in the previous section for non-linear in para-

meter but linear in variables models applies to fundamentally non-linear ones too. In the

�rst-order underidenti�ed case, inference will be based on the augmented set of moment

10These plots, which were introduced by Peñaranda and Sentana (2015) to characterise potentially
asymmetric distributions with extreme tails, combine a doubly truncated non-parametric density estimate
on top of a box plot. Therefore, the vertical lines describe the median and the �rst and third quartiles,
while the length of the tails is one interquartile range.
11All these Monte Carlo results may well extend to the ML estimators of panel data models in Álvarez

and Arellano (2004), as well as to alternative GMM estimators which add the cross-sectional variances
as additional exactly identi�ed parameters. Validating such conjectures is left for further research.
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conditions:

E

�
f(x; �)
g(x; �; 
y)

�
= 0; (14)

where

g(x; �; 
y) = D(x; �)
(
y) =
@f(x; �)

@�0

(
y);

and the free parameters that must be estimated are � and the �direction of weak iden-

ti�cation� 
y, which corresponds to a basis of the null space of the expected Jacobian

subject to some normalisation such as 
0(
y)
(
y) = 1.12

If I assume that

Assumption 3 � �fT (�0)

�gT (�0; 

y
0)

�
= T�1

XT

t=1

�
f(xt; �0)

g(x; �0; 

�y
0 )

�
a:s:!
�
0
0

�
;

T�1
XT

t=1

�
@f(x; ��j)=@�

0 0

@g(x; ��j ; 

y
j)=@�

0 @g(x; ��j ; 

y
j)=@


y0

�
a:s:! J0

= E

�
@f(x; �0)=@�

0 0

@g(x; �0; 

y
0)=@�

0 @g(x; �0; 

y
0)=@


y0

�
for any sequence such that (��j ; 


y
j)� (��0; 


y
0) = op(1),

rank

�
E

�
@f(x; �)=@�0 0
@g(x; �; 
y)=@�0 @g(x; �; 
y)=@
y0

��
= 2k � 1

in an open neighbourhood of �0 and 

y
0, and

p
T

�
�fT (�0)

�gT (�0; 
0)

�
! N(0; I0);

where I0 is a non-stochastic (p+ r)� (p+ r) positive de�nite matrix.

then the optimal GMM estimators of based on � and 
y will be consistently and asymp-

totically normal at the usual
p
T rate.13

Similarly, in the �nite underidenti�ed case, inference will be based on the duplicated

set of moment conditions
E[f(x; �)] = 0;
E[f(x; ��)] = 0:

(15)

In this second instance, though, the main practical di¢ culty will be once more to keep

� and �� apart so that the duplicated moment conditions (15) do not collapse to (1). My

proposed solution is as follows:
12Once more, in some examples it may make sense to pre-specify the singularity direction 
.
13Similar assumptions are made by Kleibergen (2005), as well as by Dovonon and Gonçalves (2014)

and Lee and Liao (2014) for the special case in which the expected Jacobian is equal to 0.

16



1. Reparametrise the model in terms of �, 
y and �, where

� =
p
�0�;

� = �� � �

and


y = �=�:

2. Replace the second in�uence function in (15) by

��1[f(x; � + �
y)� f(x; �)]:

3. Minimise a CU-GMM criterion function with respect to those new parameters sub-

ject to the restrictions � � 0 and 
0(
y)
(
y) = 1.

4. If at any point during the minimisation algorithm � becomes smaller than some

appropriately chosen threshold value ��, then replace the second estimating function

by its �rst order approximation

g(x; �; 
y) =
@f(x; �)

@�0

(
y):

In practice, one should choose �� so that the two CU-GMM criterion functions are

numerically very close at ��.

If the model is �rst-order identi�ed at �, then the sample average of @f (x; �) =@�0 �


(
y) will tend to be numerically large. As a result, the GMM criterion function will be

large, and the optimisation routine will tend to move away from the manifold � = ��.

If, on the other hand, the model were �rst-order underidenti�ed at �, then the crite-

rion will converge to the GMM criterion for the original moment conditions augmented

with their �rst derivatives. As in section 3.1, we can thus con�rm that �rst-order under-

identi�ed models are the limiting case of �nite underidenti�ed ones.

Once again, though, the �rst-order underidenti�cation test will have one degree of

freedom more than its �nite underidenti�cation counterpart because it sets � to 0 by

construction.
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4.2 A non-linear dynamic regression model for discrete data

Consider a Markov chain taking three di¤erent values: xl, xm and xh. Suppose those

values are of interest on their own. For example, xt could be the dose of a drug taken

by an addict at t. A researcher interested in predicting future drug consumption speci�es

the following fundamentally non-linear model

E(x�t jxt�1) = � + �xt�1; (16)

where � and � have the usual interpretation of intercept and slope of an autoregressive

model, but they predict instead some power � of the observed variable.

For estimation purposes, the unconditional moment restrictions

E

8<:(x�t � � � �xt�1)
24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A ; (17)

where 1(:) is the usual indicator function, e¤ectively contain the same information as the

conditional moment restriction (17) because of the discrete, �rst-order Markovian nature

of xt.

In general, one would expect � to be point identi�ed from those moment conditions.

Nevertheless, as explained in the appendix, it is easy to tweak the transition matrix, which

is not an explicit part of model (16), so that these conditional moment restrictions, and

therefore the unconditional moment restrictions (17), be satis�ed by both � and �� 6= �.

But even when there is a unique value of � that satis�es the original conditional

moment restrictions (16), it is just as easy to come up with transition matrices for which

�0 also satis�es

E(x�t lnxtjxt�1) = 0; (18)

which is the (conditional) expected value of the derivative of (16) with respect to �, so

that the non-linearity parameter is �rst-order underidenti�ed even though it is locally

identi�ed. In fact, those transition matrices naturally arise in the limiting case of �� = �,

exactly as in the dynamic panel data model (see again the appendix for details).

The unconditional moment counterpart to (18) are

E

8<:x�t lnxt
24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A : (19)
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These moment conditions correspond to the ones Wright (2003) suggested to test for

underidenti�cation at a given point. Importantly, though, they must be combined with

(17) to avoid estimating uninteresting values of � for which (19) holds but (17) does not

(see Kleibergen (2005) for a related discussion in the case of LM tests). Speci�cally, it

is easy to show that as in the panel data example, the expected Jacobian will become 0

at some intermediate point between � and �� in �nite underidenti�ed cases, but those

intermediate values will nevertheless fail to satisfy the original moment condition (16).

As previously explained, to keep � and �� apart it is convenient to combine the original

unconditional moment conditions (17) with

E

8<:
 
x�+�t � x�t

�

!24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A ; (20)

which can be interpreted as the expected value of the relative (discrete) increment of

x�t � �� �xt�1 when one moves from � to �� = � + �. The advantage of CUE is that the

criterion function is the same whether one uses these moments or the original ones (20)

evaluated at ��. When � � ��, where �� is a carefully chosen small but positive threshold

value, one can safely replace (20) by (19), which are the moment conditions associated to

the Jacobian. Therefore, as expected from the theoretical discussion in section 4.1, one

set of moment conditions is the limiting case of the other.

4.2.1 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,500 repli-

cations of the discrete Markov chain model described in the appendix for T = 10; 000.

To concentrate on the non-linear component of the model, which is characterised by the

exponent parameter �, I keep � and � �xed at their true values of .75 and .1, respectively.

I considered two designs compatible with (16):

1. � = 1 and �� = 1:5 (Finite underidenti�cation)

2. � = ��1 = 1:5 but with a 0 expected Jacobian (First-order underidenti�cation)

Once again, I use the same underlying pseudo-random numbers in both designs to

minimise experimental error.
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Starting with the �nite underidenti�ed design, the �rst thing to note is that the �nite

sample distribution of the CU-GMM estimator of � obtained from (17) seems to be a

mixture of two Gaussian distributions, with two modes approximately equal to the values

of � and �� (see Figure 5a). By increasing the sample size to T = 100; 000, as in Figure

5b, the separation of the sampling distribution into two Gaussian components becomes

far more evident.

Somewhat surprisingly, though, the corresponding J test shows hardly any size dis-

tortion, as illustrated by Figure 5c. Intuitively, the reason is that a standard chi-square

asymptotic distribution for Hansen�s (1982) overidentifying restriction test requires that

the criterion function is well behaved in the vicinity of a solution to the moment condi-

tions. Given that in this design both � and �� are �rst-order identi�ed, J tests computed

around each of those values will share exactly the same chi-square distribution, and the

same is obviously true of their mixture regardless of the mixing proportion.

The CUEs of � and � displayed in Figure 6a, obtained by combining the moment

conditions (17) and (20), are also well behaved, although there is again some evidence of

a pile-up problem, which in this case manifests itself by a non-negligible fraction of zero

� estimates. In addition, there is a strong negative correlation between the estimates of

� and �, as illustrated by the scatter plot in Figure 6b. To a large extent, this negative

correlation re�ects the rather elongated shape of the contours of the CU-GMM criterion

function around its minimum, which are shown for a particular simulation in Figure 6c.

Finally, it is worth mentioning that the estimate of � that exclusively relies on the

moment conditions (19), and therefore ignores the original moment conditions (17), turns

out to be centred around a pseudo-true value which roughly lies half way between 1 and

1.5, as shown in Figure 7.

Turning now to the �rst-order underidenti�ed design, Figure 8a con�rms that the

�nite sample distribution of the CU-GMM estimator of � obtained from (17) is clearly

non-normal, with a distinctive but lower second mode. Similarly, Figure 8b indicates that

the associated overidenti�cation test shows substantial over-rejections, which is once again

in line with the results in Dovonon and Renault (2013). In contrast, Figure 9 suggests

that the �nite sample distribution of the CUE of � obtained by combining the moment

conditions (17) and (19) is nicely behaved around the true value of 1.5.
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5 Conclusions

In linear econometric models parameters are either point identi�ed, or set identi�ed,

but in the latter case the set of observationally equivalent structures is necessarily un-

countable. In non-linear models, in contrast, it is possible that only a �nite number of

distinct parameter values satisfy the original moment conditions. Further, another possi-

bility is that the parameters are globally identi�ed but the expected Jacobian is of reduced

rank.

In this paper, I consider the e¢ cient estimation of observationally equivalent para-

meters in the �nite underidenti�ed case. To do so, I map this situation into a standard

GMM problem by duplicating the original moment conditions and evaluating them at two

di¤erent values of �. Given that the Jacobian is block diagonal, I can rely on standard

asymptotic theory for GMM under the maintained assumption that each of those two

points is �rst-order identi�ed. The main di¢ culty consists in keeping the solutions apart.

The approach simpli�es considerably for non-linear in parameters models, in which the set

of observationally equivalent structures must belong to some restricted �linear�subspace.

But in general, I achieve separation by working with discrete counterparts to directional

derivatives.

I also discuss the e¢ cient estimation of the locally identi�ed parameters in the �rst-

order underidenti�ed case. The e¢ ciency gains arise by combining the original moment

conditions with the moment conditions associated to the rank failure of the Jacobian. I

consider two di¤erent possibilities of practical interest, depending on whether a basis of

the null space of the expected Jacobian is known.

Associated with the e¢ cient estimators that I propose, the usual GMM overidenti�ca-

tion restriction statistic of the augmented moment conditions provides a natural test for

�nite underidenti�cation in one case or �rst-order underidenti�cation in the other. Those

tests provide an indication of the extent to which either the existence of multiple solutions

to the original moment conditions or rank de�ciency of the Jacobian should be a concern.

Importantly, I explicitly relate the �nite and �rst-order underidenti�ed cases by show-

ing that as the solutions of the original moments converge to each other, the duplicated

in�uence functions become equivalent to an extended system which combines the original

moment conditions with their directional Jacobian.
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I illustrate the proposed procedures with two examples. The �rst one is the linear in

variables but non-linear in parameters autoregressive dynamic panel data model studied

by Arellano and Bond (1991), Ahn and Schmidt (1995) and many others. As shown by

Arellano, Hansen and Sentana (2012), linear GMM estimators of this model can only

estimate an uncountable set of observationally equivalent parameter con�gurations when

the autoregressive polynomial contains a unit root. The inclusion of non-linear moment

conditions dramatically changes the nature of the underidenti�cation problem in those

circumstances, rendering the model parameters either �rst-order underidenti�ed, locally

but not globally identi�ed, or fully identi�ed, depending on the temporal evolution of the

cross-sectional variance of the innovations, which is not an explicit part of the model.

The second example is a non-linear dynamic regression model for discrete data in

which there is no separation between variables and parameters. Again, depending on

the properties of the transition matrix, which is not explicitly modelled, the regression

parameters can be �rst-order underidenti�ed, locally but not globally identi�ed or fully

identi�ed.

In both cases, the simulation results share the following features:

1) There is a pile-up problem in �nite unidenti�ed models, whereby a positive fraction

of the estimates end up collapsing to a single solution.

2) The sampling distribution of the estimators of �rst-order underidenti�ed models is

not unimodal, with additional lesser modes around alternative �false�parameter values.

This blended behaviour re�ects the fact that the criterion function used to deal with

the �rst-order underidenti�ed case is the limit of the criterion function used to deal with

the �nite underidenti�ed one. Therefore, one could argue that �rst-order underidenti-

�cation is not just a situation in which a standard regularity condition fails, but more

fundamentally, one in which identi�cation is dubious.

An important topic for future research would be to explore other empirically relevant

models for which �nite underidenti�cation and its limiting case of �rst-order underiden-

ti�cation represent important concerns in practice. It would also be interesting to derive

�nite sample results that con�rm the close relationship between �nite and �rst-order

identi�cation.
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Appendix

Discrete Markov chain

As is well known, the transition matrix

xt�xt�1 xl xm xh
xl �l(xl) �l(xm) �l(xh)
xm 1� �l(xl)� �h(xl) 1� �l(xm)� �h(xm) 1� �l(xh)� �h(xm)
xh �h(xl) �h(xm) �h(xh)

fully characterises the (serial) dependence of the xt process assuming strict stationar-

ity for the chain. Further, the unconditional probabilities (�l; �m; �h) coincide with the

eigenvector associated to the unit eigenvalue normalised so that its coe¢ cients add up to

1.

In order for two di¤erent sets of parameter values to satisfy the conditional moment

restrictions (16), it must be the case that:

E(x�t jxt�1 = xl) = E(x�
�

t jxt�1 = xl);

E(x�t jxt�1 = xm) = E(x�
�

t jxt�1 = xm);

E(x�t jxt�1 = xh) = E(x�
�

t jxt�1 = xh):

Assuming for scaling purposes that xm = 1, these equalities are equivalent to

1� �l(xl)� �h(xl) + x�l �l(xl) + x
�
h�h(xl)

= 1� �l(xl)� �l(xl) + x�
�

l �l(xl) + x
��

h �h(xl);

1� �l(xm)� �h(xm) + x�l �l(xm) + x
�
h�h(xm)

= 1� �l(xm)� �l(xm) + x�
�

l �l(xm) + x
��

h �h(xm);

1� �l(xh)� �h(xh) + x�l �l(xh) + x
�
h�h(xh)

= 1� �l(xh)� �l(xh) + x�
�

l �l(xh) + x
��

h �h(xh):

Straightforward algebra shows that these conditions will be simultaneously satis�ed

when
�h(xl)

�l(xl)
=
�h(xm)

�l(xm)
=
�h(xh)

�l(xh)
= s(xl; xh; �; �

�) � 0: (1)

With this restriction, it is easy to see that the conditions

0 � �l(xl); �l(xm); �l(xm) �
1

1 + s(xl; xh; �; �
�)
� 1 (2)
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guarantee the admissibility of the conditional probabilities of xt = xm because in that

case

�m(xt�1) = 1� �h(xt�1)� �l(xt�1) = 1� [1 + s(xl; xh; �; ��)]�l(xt�1)

will be between 0 and 1 for all three values of xt�1.

The last restriction to impose is precisely the conditional moment restriction (16).

Given that (1) implies that

E(x�t jxt�1) = 1 + [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]�l(xt�1); (3)

by assuming that �l(xt�1) = a+ bxt�1 for values of a and b that satisfy (2), then it is easy

to check that (16) will hold with

� = 1 + [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]a = 1 + [�1 + x�
�

l + (x
��

h � 1)s(xl; xh; �; �
�)]a

and

� = [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]b = [�1 + x�
�

l + (x
��

h � 1)s(xl; xh; �; �
�)]b;

which remain point identi�ed.

In the �rst-order underidenti�ed case, in contrast, it must be the case that:

E(x�t lnxtjxt�1 = xl) = 0;

E(x�t lnxtjxt�1 = xm) = 0;

E(x�t lnxtjxt�1 = xh) = 0;

which is equivalent to

x�l ln(xl)�l(xl) + x
�
h ln(xh)�h(xl) = 0;

x�l ln(xl)�l(xm) + x
�
h ln(xh)�m(xm) = 0;

x�l ln(xl)�l(xh) + x
�
h ln(xh)�h(xh) = 0:

But these conditions will also be simultaneously satis�ed when (1) holds with �� = �.

Therefore, the �rst-order underidenti�ed case can once again be understood as the limiting

case of the �nite underidenti�ed case as �� ! �.
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Figure 1: The e¤ects of underidenti�cation on Arellano and Bond (1991)

a: Scatter plot of CUEs
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Notes: CUEs of �1 and �2 and associated J test based on the moment conditions (7) for
N = 5; 000 and T = 5 under time-series homoskedasticity (see section 3.2.1 for details).
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Figure 2: The e¤ects of �rst-order underidenti�cation on Ahn and Schmidt (1995)

a: Sampling distributions of CUEs
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Notes: CUEs of �1 and �2 and associated J test based on the moment conditions (7) and (9)
for N = 5; 000 and T = 5 under time-series homoskedasticity (see section 3.2.1 for details).
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Figure 3: p-value plot for the �rst-order I test
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Notes: J test associated to the moment conditions (8), (10) and (12) for N = 5; 000 and T = 5
under time-series homoskedasticity (see section 3.2.1 for details).
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Figure 4: Pile-up problem with �nite underidenti�cation

a: Scatter plot of the CUEs of �1 and ��1
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Notes: CUEs of � and �� based on the moment conditions (8) and (13) for N = 5; 000 and
T = 5 under time-series heteroskedasticity (see section 3.2.1 for details).
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Figure 5: The e¤ects of �nite underidenti�cation on Hansen (1982)

Sampling distributions of CUEs

a: T = 10; 000 b: T = 100; 000

c: p-value plot for J test

T = 10; 000

Notes: CUE of � and associated J test based on the moment conditions (17) under �nite
underidenti�cation (see section 4.2.1 for details).
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Figure 6: Finite set estimators

a: Sampling distributions of CUEs
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b: scatter plot c: objective function
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Notes: CUEs of � and � based on the moment conditions (17) and (20) for T = 10; 000 under
�nite underidenti�cation (see section 4.2.1 for details).
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Figure 7: CUE based on expected Jacobian moments

Notes: CUE of � based on the moment conditions (19) only for T = 10; 000 under �nite
underidenti�cation (see section 4.2.1 for details).
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Figure 8: E¤ects of �rst-order identi�cation on Hansen (1982)

a: Sampling distribution
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Notes: CUE of � and associated J test based on the original moment conditions (17) for T =
10; 000 under �rst-order underidenti�cation (see section 4.2.1 for details).
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Figure 9: E¢ cient estimation under �rst-order identi�cation

Notes: CUE of � based on the moment conditions (17) and (19) for T = 10; 000 under �rst-order
underidenti�cation (see section 4.2.1 for details).
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