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1 Introduction

Nonlinear panel data models are central to applied research. However, despite some recent

progress, the literature is still short of answers for panel versions of many models commonly

used in empirical work (Arellano and Bonhomme, 2011). More broadly, to date no approach

is yet available to specify and estimate general panel data relationships in static or dynamic

settings.

In this paper we rely on quantile regression as a flexible estimation tool for nonlinear panel

models. Since Koenker and Bassett (1978), quantile regression techniques have proven useful

tools to document distributional effects in cross-sectional settings. Koenker (2005) provides

a thorough account of these methods. In this work we show that quantile regression can also

be successfully applied to panel data.

Quantile-based specifications have the ability to deal with complex interactions between

covariates and latent heterogeneity, and to provide a rich description of heterogeneous re-

sponses of outcomes to variations in covariates. In panel data, quantile methods are partic-

ularly well-suited as they allow to build flexible models for the dependence of unobserved

heterogeneity on exogenous covariates or initial conditions, and for the feedback processes

of covariates in models with general predetermined regressors.

We consider classes of panel data models with continuous outcomes that satisfy condi-

tional independence restrictions, but are otherwise nonparametric. In static settings, these

conditions restrict the time-series dependence of the time-varying disturbances. Imposing

some form of dynamic restrictions is necessary in order to separate out what part of the

overall time variation is due to unobserved heterogeneity (Evdokimov, 2010, Arellano and

Bonhomme, 2012). In dynamic settings, finite-order Markovian setups naturally imply con-

ditional independence restrictions. In both static and dynamic settings, results from the

literature on nonlinear measurement error models (Hu and Schennach, 2008, Hu and Shum,

2012) can then be used to provide sufficient conditions for nonparametric identification for

a fixed number of time periods.

The main goal of the paper is to develop a tractable estimation strategy for general

nonlinear panel models. For this purpose, we specify outcomes Yit as a function of covariates

Xit and latent heterogeneity ηi as:

Yit ≈
K1∑

k=1

θk(Uit)gk (Xit, ηi) , (1)
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and we similarly specify the dependence of ηi on covariates Xi = (X ′
i1, ..., X

′
iT )

′ as:

ηi ≈
K2∑

k=1

δk(Vi)hk (Xi) , (2)

where Ui1, ..., UiT , Vi are independent uniform random variables, and g’s and h’s belong to

some family of functions. Outcomes Yit and heterogeneity ηi are monotone in Uit and Vi,

respectively, so (1) and (2) are models of conditional quantile functions.

The g’s and h’s are anonymous functions without an economic interpretation. They are

just building blocks of flexible models. Objects of interest will be summary measures of

derivative effects constructed from the models.

The linear quantile specifications (1) and (2) allow for flexible patterns of interactions

between covariates and heterogeneity at various quantiles. In particular, (2) is a correlated

random-effects model that can become arbitrarily flexible as K2 increases. Moreover, while

(2) is stated for the static case and a scalar unobserved effect, we show how to extend the

framework to allow for dynamics and multi-dimensional latent components.

The main econometric challenge is that the researcher has no data on heterogeneity ηi.

If ηi were observed, one would simply run an ordinary quantile regression of Yit on the

gk(Xit, ηi). As ηi is not observed we need to construct some imputations, say M imputed

values η
(m)
i , m = 1, ...,M , for each individual in the panel. Having got those, we can get

estimates by solving a quantile regression averaged over imputed values.

For the imputed values to be valid they have to be draws from the distribution of ηi

conditioned on the data, which depends on the parameters to be estimated (θ’s and δ’s).

Our approach is thus iterative. We start by selecting initial values for a grid of conditional

quantiles of Yit and ηi, which then allows us to generate imputes of ηi, which we can use to

update the quantile parameter estimates, and so on.

A difficulty for applying this idea is that the unknown parameters θ’s and δ’s are functions,

hence infinite-dimensional. This is because we need to model the full conditional distribution

of outcomes and latent individual effects, as opposed to a single quantile as is typically the

case in applications of ordinary quantile regression. To deal with this issue we follow Wei

and Carroll (2009), and we use a finite-dimensional approximation to θ’s and δ’s based on

interpolating splines.

The resulting algorithm is a variant of the Expectation-Maximization algorithm of Demp-

ster, Laird and Rubin (1977), sometimes referred to as “stochastic EM”. The sequence of
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parameter estimates converges to an ergodic Markov Chain in the limit. Following Nielsen

(2000a, 2000b) we characterize the asymptotic distribution of our sequential method-of-

moments estimators based on M imputations. A difference with most applications of EM-

type algorithms is that we do not update parameters in each iteration using maximum

likelihood, but using quantile regressions.1 This is an important feature of our approach, as

the fact that quantile regression estimates can be computed in a quantile-by-quantile fashion,

and the convexity of the quantile regression objective, make each parameter update step fast

and reliable.

We apply our estimator to assess the effect of smoking during pregnancy on a child’s

birthweight. Following Abrevaya (2006), we allow for mother-specific fixed-effects in estima-

tion. Both nonlinearities and unobserved heterogeneity are thus allowed for by our panel

data quantile regression estimator. We find that, while allowing for time-invariant mother-

specific effects decreases the magnitude of the negative coefficient of smoking, the latter

remains sizable, especially at low birthweights, and exhibits substantial heterogeneity across

mothers.

Literature review and outline. Starting with Koenker (2004), most panel data ap-

proaches to date proceed in a quantile-by-quantile fashion, and include individual indicators

as additional covariates in the quantile regression. As shown by some recent work, however,

this “fixed-effects” approach faces special challenges when applied to quantile regression.

Galvao, Kato and Montes-Rojas (2012) and Arellano and Weidner (2015) study the large

N,T properties of the fixed-effects quantile regression estimator, and show that it may suffer

from large biases in short panels. Rosen (2010) shows that a fixed-effects model for a single

quantile may not be point-identified. Recent related contributions are Lamarche (2010),

Galvao (2011), and Canay (2011). In contrast, our approach relies on specifying a (flexible)

model for individual effects given covariates and initial conditions, as in (2). As a result, in

this paper the analysis is conducted for fixed T , as N tends to infinity.

Our approach is closer in spirit to other random-effects approaches in the literature. For

example, Abrevaya and Dahl (2008) consider a correlated random-effects model to study the

effects of smoking and prenatal care on birthweight. Their approach mimics control function

1Related sequential method-of-moments estimators are considered in Arcidiacono and Jones (2003), Ar-
cidiacono and Miller (2011), and Bonhomme and Robin (2009), among others. Elashoff and Ryan (2004)
present an algorithm for accommodating missing data in situations where a natural set of estimating equa-
tions exists for the complete data setting.
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approaches used in linear panel models. Geraci and Bottai (2007) consider a random-effects

approach for a single quantile assuming that the outcome variable is distributed as an asym-

metric Laplace distribution conditional on covariates and individual effects. Recent related

approaches to quantile panel data models include Chernozhukov et al. (2013, 2015) and

Graham et al. (2015). These approaches are non-nested with ours. In particular, they will

generally not recover the quantile effects we focus on in this paper. More broadly, compared

to existing work, our aim is to build a framework that can deal with general nonlinear and

dynamic relationships, thus providing an extension of standard linear panel data methods

to nonlinear settings.

The analysis also relates to method-of-moments estimators for models with latent vari-

ables. Compared to Schennach (2014), here we rely on conditional moment restrictions and

focus on cases where the entire model specification is point-identified. Finally, our analysis is

most closely related to seminal work by Wei and Carroll (2009), who proposed a consistent

estimation method for cross-sectional linear quantile regression subject to covariate mea-

surement error. A key difference with Wei and Carroll is that, in our setup, the conditional

distribution of individual effects is unknown, and needs to be estimated along with the other

parameters of the model.

The outline of the paper is as follows. In Section 2 we present static and dynamic models,

and discuss identification. In Section 3 we present our estimation method and study some

of its properties. In Section 4 we present the empirical illustration. Lastly, we conclude in

Section 5. Proofs and further discussion are contained in the Appendix.

2 Nonlinear quantile models for panel data

In this section we start by introducing a class of static and dynamic panel data models. At

the end of the section we provide conditions for nonparametric identification.

2.1 Static models

Outcome variables. Let Yi = (Yi1, ..., YiT )
′ denote a sequence of T scalar continuous

outcomes for individual i, and let Xi = (X ′
i1, ..., X

′
iT )

′ denote a sequence of strictly exogenous

regressors, which may contain a constant. Let ηi denote a q-dimensional vector of individual-

specific effects, and let Uit denote a scalar error term. We specify the conditional quantile
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response function of Yit given Xit and ηi as follows:

Yit = QY (Xit, ηi, Uit) , i = 1, ..., N, t = 1, ..., T. (3)

We make the following assumption.

Assumption 1. (outcomes)

(i) Uit follows a standard uniform distribution, independent of (Xi, ηi).

(ii) τ 7→ QY (x, η, τ) is strictly increasing on (0, 1), for almost all (x, η) in the support of

(Xit, ηi).

(iii) For all t 6= s, Uit is independent of Uis.

Assumption 1 (i) contains two parts. First, Uit is assumed independent of the full se-

quence Xi1, ..., XiT , and independent of individual effects. Strict exogeneity of X’s can be

relaxed to allow for predetermined covariates, see the next subsection. Second, the marginal

distribution of Uit is normalized to be uniform on the unit interval. Part (ii) guarantees that

outcomes have absolutely continuous distributions. Together, parts (i) and (ii) imply that,

for all τ ∈ (0, 1), QY (Xit, ηi, τ) is the τ -conditional quantile of Yit given (Xi, ηi).
2

Assumption 1 (iii) imposes independence restrictions on the process Ui1, ..., UiT . Restrict-

ing the dynamics of error variables Uit is needed when aiming at separating the time-varying

unobserved errors Uit from the time-invariant unobserved individual effects ηi. Part (iii)

defines the static version of the model, where Uit are assumed to be independent over time.

In the next subsection we develop various extensions of the model that allow for dynamic

effects. Finally, although we have assumed in (3) that QY does not depend on time, one

could easily allow QY = Qt
Y to depend on t, reflecting for example age or calendar time

effects depending on the application.

Unobserved heterogeneity. Next, we specify the conditional quantile response function

of ηi given Xi as follows:

ηi = Qη (Xi, Vi) , i = 1, ..., N. (4)

2Indeed we have, using Assumption 1 (i) and (ii):

Pr (Yit ≤ QY (Xit, ηi, τ) |Xi, ηi) = Pr (QY (Xit, ηi, Uit) ≤ QY (Xit, ηi, τ) |Xi, ηi)

= Pr (Uit ≤ τ |Xi, ηi) = τ .
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Provided ηi is continuously distributed given Xi and Assumption 2 below holds, equation (4)

is a representation that comes without loss of generality, corresponding to a fully unrestricted

correlated random-effects specification.

Assumption 2. (individual effects)

(i) Vi follows a standard uniform distribution, independent of Xi.

(ii) τ 7→ Qη (x, τ) is strictly increasing on (0, 1), for almost all x in the support of Xi.

Example 1: Location-scale. As a first special case of model (3), consider the following

panel generalization of the location-scale model (He, 1997):

Yit = X ′
itβ + ηi + (X ′

itγ + µηi) εit, (5)

where εit are i.i.d. across periods, and independent of all regressors and individual effects.3

Denoting Uit = F (εit), where F is the cdf of εit, the conditional quantiles of Yit are given

by:

QY (Xit, ηi, τ) = X ′
itβ + ηi + (X ′

itγ + µηi)F
−1 (τ) , τ ∈ (0, 1).

Example 2: Panel quantile regression. Consider next the following linear quantile

specification with scalar ηi, which generalizes (5):

Yit = X ′
itβ (Uit) + ηiγ (Uit) . (6)

Given Assumption 1 (i) and (ii), the conditional quantiles of Yit are given by:

QY (Xit, ηi, τ) = X ′
itβ (τ) + ηiγ (τ) .

Model (6) is a panel data generalization of the classical linear quantile model of Koenker

and Bassett (1978). Were we to observe the individual effects ηi along with the covariates

Xit, it would be reasonable to postulate a model of this form. It is instructive to compare

model (6) with the following more general but different type of model:

Yit = X ′
itβ (Uit) + ηi (Uit) , (7)

3A generalization of (5) that allows for two-dimensional individual effects—as in Example 3 below—is:

Yit = X ′

itβ + ηi1 + (X ′

itγ + ηi2) εit.
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where ηi (τ) is an individual-specific nonparametric function of τ . Koenker (2004) and subse-

quent fixed-effects approaches considered this more general model. Unlike (6), the presence

of the process ηi (τ) in (7) introduces an element of nonparametric functional heterogeneity

in the conditional distribution of Yit.

In order to complete model (6) one may use another linear quantile specification for the

conditional distribution of individual effects:

ηi = X ′
iδ (Vi) . (8)

Given Assumption 2, the conditional quantiles of ηi are then given by:

Qη(Xi, τ) = X ′
iδ (τ) .

Model (8) corresponds to a correlated random-effects approach. However, it is more

flexible than alternative specifications in the literature. A commonly used specification is

(Chamberlain, 1984):

ηi = X ′
iµ+ σεi, εi|Xi ∼ N (0, 1) . (9)

For example, in contrast with (9), model (8) is fully nonparametric in the absence of co-

variates, i.e., when an independent random-effects specification is assumed. Model (8) and

its extensions based on series specifications may also be of interest in other nonlinear panel

data models, where the outcome equation does not follow a quantile model. We will return

to this point in the conclusion.

Example 3: Multi-dimensional heterogeneity. Model (6) may easily be modified to

allow for more general interactions between observables and unobservables, thus permitting

the effects of covariates to be heterogeneous at different quantiles. A random coefficients

generalization that allows for heterogeneous effects is:

QY (Xit, ηi, τ) = X ′
itβ(τ) + γ1(τ)ηi1 +X ′

itγ2(τ)ηi2, (10)

where ηi = (ηi1, ηi2)
′ is bivariate.

In order to extend (8) to the case with bivariate unobserved heterogeneity, it is convenient

to assume a triangular structure such as:

ηi1 = X ′
iδ11 (Vi1) ,

ηi2 = ηi1δ21 (Vi2) +X ′
iδ22 (Vi2) , (11)
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where Vi1 and Vi2 follow independent standard uniform distributions. Though not invariant

to permutation of (ηi1, ηi2), except if fully nonparametric, model (11) provides a flexible

specification for the bivariate conditional distribution of (ηi1, ηi2) given Xi.
4

Series and smooth coefficients approaches. In this paper, our approach to estima-

tion will be based on series specifications of the form (1) and (2), which will generalize

Examples 1-2-3. As the number of series terms increases these specifications provide flexible

approximations to the conditional quantile functions in (3) and (4).

A different approach would be to allow for smooth coefficients based on local polynomial

approximations, for example:5

Yit = X ′
itβ (Uit, ηi) + γ (Uit, ηi) , (12)

where, for any given point η∗:

β (τ , ηi) ≈
J∑

j=0

bτj (η
∗) (ηi − η∗)j , and γ (τ , ηi) ≈

J∑

j=0

cτj (η
∗) (ηi − η∗)j ,

with β (τ , η∗) = bτ0 (η
∗) and γ (τ , η∗) = cτ0 (η

∗). Although we will not analyze this setup

in detail, one could adapt our estimation approach by using locally weighted check function

(Chaudhuri, 1991, Cai and Xu, 2008).

2.2 Dynamic models

In a dynamic extension of the static model (3), we specify the conditional quantile function

of Yit given Yi,t−1, Xit and ηi as:

Yit = QY (Yi,t−1, Xit, ηi, Uit) , i = 1, ..., N, t = 2, ..., T. (13)

A simple extension is obtained by replacing Yi,t−1 by a vector containing various lags of the

outcome variable. As in the static case, QY could depend on t.

Linear versions of (13) are widely used in applications, including in the study of individual

earnings, firm-level investment, cross-country growth, or in the numerous applications of

panel VAR models. In these applications, interactions between heterogeneity and dynamics

4It is worth pointing out that quantiles appear not to generalize easily to the multivariate case. Multi-
variate quantile regression is still an open research area.

5See Belloni, Chernozhukov and Fernández-Val (2012) and Qu and Yoon (2011) for conditional quantile
estimation based on series expansions and nonparametric kernels, respectively.
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are often of great interest. A recent example is the analysis of institutions and economic

growth in Acemoglu et al. (2015).

The assumptions we impose in model (13), and the modelling of unobserved heterogeneity,

both depend on the nature of the covariates process. We consider two cases in turn: strictly

exogenous and predetermined covariates.

Autoregressive models. In the case where covariates are strictly exogenous, with some

abuse of notation we suppose that Assumption 1 holds with (Yi,t−1, X
′
it)

′ instead of Xit and

(Yi1, X
′
i1, ..., X

′
iT )

′ instead of Xi. Note that the latter contains both strictly exogenous covari-

ates and first-period outcomes. Individual effects can be written without loss of generality

as:

ηi = Qη (Yi1, Xi, Vi) , i = 1, ..., N, (14)

and we suppose that Assumption 2 holds with (Yi1, X
′
i)

′ instead of Xi.

Predetermined covariates. In dynamic models with predetermined regressors, current

values of Uit may affect future values of covariates Xis, s > t. Given the presence of latent

variables in our nonlinear setup, a model for the feedback process is needed. That is, we

need to specify the conditional distribution of Xit given (Y t−1
i , X t−1

i , ηi), where Y t−1
i =

(Yi,t−1, ..., Yi1)
′ and X t−1

i = (X ′
i,t−1, ..., X

′
i1)

′. We use additional quantile specifications for

this purpose.

In the case where Xit is scalar, and under a conditional first-order Markov assumption

for (Yit, Xit), t = 1, ..., T , given ηi, we specify, without further loss of generality:

Xit = QX (Yi,t−1, Xi,t−1, ηi, Ait) , i = 1, ..., N, t = 2, ..., T. (15)

We suppose that Assumptions 1 and 2 hold, with (Yi,t−1, X
′
it)

′ instead of Xit and (Yi1, X
′
i1)

′

instead of Xi, and:

ηi = Qη (Yi1, Xi1, Vi) , i = 1, ..., N. (16)

We then complete the model with the following assumption on the feedback process.

Assumption 3. (predetermined covariates)

(i) Ait follows a standard uniform distribution, independent of (Yi,t−1, Xi,t−1, ηi).

(ii) τ 7→ QX (y, x, η, τ) is strictly increasing on (0, 1), for almost all (y, x, η) in the support

of (Yi,t−1, Xi,t−1, ηi).
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(iii) For all t 6= s, Ait is independent of Ais.

Model (15) can be extended to multi-dimensional predetermined covariates using a tri-

angular approach in the spirit of the one introduced in Example 3. For example, with

two-dimensional Xit = (X1it, X2it)
′:

X1it = QX1
(Yi,t−1, X1i,t−1, X2i,t−1, ηi, A1it) ,

X2it = QX2
(Yi,t−1, X1it, X1i,t−1, X2i,t−1, ηi, A2it) , (17)

where ηi may be scalar or multi-dimensional as in Example 3.

Example 4: Panel quantile autoregression. A dynamic counterpart to Example 2 is

the following linear quantile regression model:

Yit = ρ (Uit)Yi,t−1 +X ′
itβ (Uit) + ηiγ (Uit) . (18)

Model (18) differs from the more general model studied in Galvao (2011):

Yit = ρ (Uit)Yi,t−1 +X ′
itβ (Uit) + ηi (Uit) . (19)

Similarly as in (7), and in contrast with the models introduced in this paper, the presence

of the functional heterogeneity term ηi (τ) makes fixed-T consistent estimation problematic

in (19).

An extension of (18) is:

Yit = h (Yi,t−1)
′ ρ (Uit) +X ′

itβ (Uit) + ηiγ (Uit) , t = 2, ..., T, (20)

where h is a univariate function. For example, when h(y) = |y| model (20) is a panel data

version of the CAViaR model of Engle and Manganelli (2004). Other choices will lead to

panel counterparts of various dynamic quantile models (e.g., Gouriéroux and Jasiak, 2008).

The approach developed in this paper allows for more general, nonlinear series specifications

of dynamic quantile functions in a panel data context.

Example 5: Quantile autoregression with predetermined covariates. Extending

Example 4 to allow for a scalar predetermined covariate Xit, we may augment (18) with the

following linear quantile specification for Xit:

Xit = µ (Ait)Yi,t−1 + ξ1 (Ait)Xi,t−1 + ξ0 (Ait) + ζ (Ait) ηi.
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This specification can be extended to allow for multi-dimensional predetermined regressors,

as in (17).

2.3 Quantile marginal effects

In nonlinear panel data models, it is often of interest to compute the effect of marginal

changes in covariates on the entire distribution of outcome variables. As an example, let us

consider the following average quantile marginal effect (QME hereafter) for continuous Xit:

M(τ) = E

[
∂QY (Xit, ηi, τ)

∂x

]
,

where ∂QY /∂x denotes the vector of partial derivatives ofQY with respect to its first dim(Xit)

arguments.

In the quantile regression model of Example 2, individual quantile marginal effects are

equal to ∂QY (Xit, ηi, τ)/∂x = β(τ), and M(τ) = β(τ). In Example 3, individual QME are

heterogeneous, equal to β(τ)+γ2(τ)ηi2, andM(τ) = β(τ)+γ2(τ)E [ηi2]. Series specifications

of the quantile function as in (1) can allow for rich heterogeneity in individual QME.

Dynamic models. Quantile marginal effects are also of interest in dynamic models. One

can define short-run average QME as:

Mt(τ) = E

[
∂QY (Yi,t−1, Xit, ηi, τ)

∂x

]
.

Moreover, when considering marginal changes in the lagged outcome Yi,t−1, the aver-

age QME, E [∂QY (Yi,t−1, Xit, ηi, τ)/∂y], can be interpreted as a nonlinear measure of state

dependence. In that case ∂QY /∂y denotes the derivative of QY with respect to its first

argument.

Dynamic models also provide the opportunity to document dynamic quantile marginal

effects, such as the following one-period-ahead average QME:

Mt+1/t(τ 1, τ 2) = E

[
∂QY (QY (Yi,t−1, Xit, ηi, τ 1), Xi,t+1, ηi, τ 2)

∂y
× ∂QY (Yi,t−1, Xit, ηi, τ 1)

∂x

]
.

Mt+1/t(τ 1, τ 2) measures the average effect of a marginal change in Xit when ηi is kept fixed,

and the innovations in periods t and t+ 1 have rank τ 1 and τ 2, respectively.
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Panel quantile treatment effects. When the covariate of interest is binary, as in our

empirical application in Section 4, one can define panel data versions of quantile treatment

effects. To see this, let Dit be the binary covariate of interest, and let Xit include all other

time-varying covariates. Consider the static model (3), the argument extending directly to

dynamic models. Potential outcomes are defined as:

Yit(d) = QY (d,Xit, ηi, Uit) , d ∈ {0, 1}.

Under Assumption 1, (Yit(0), Yit(1)) is conditionally independent of Dit given (Xi, ηi).

This amounts to assuming selection on observables and unobservables, when unobserved

effects ηi are identified off the panel dimension.

The average conditional quantile treatment effect is then defined as:

E [QY (1, Xit, ηi, τ)−QY (0, Xit, ηi, τ)] .

In the linear quantile regression model of Example 2, this is simply the coefficient of the vector

β(τ) corresponding to Dit. In fact, the distribution of treatment effects will be identified for

this model. The key assumption is rank invariance of Uit given Xi and ηi.

It is also possible to define unconditional quantile treatment effects, as:

F−1
Yit(1)

(τ)− F−1
Yit(0)

(τ),

where the cdfs FYit(0) and FYit(1) are given by:6

FYit(d)(y) = E

[∫ 1

0

1 {QY (d,Xit, ηi, τ) ≤ y} dτ
]
, d ∈ {0, 1}. (21)

We next discuss conditions under which all these quantities are nonparametrically iden-

tified for a fixed number of time periods.

2.4 Nonparametric identification

The panel data models introduced above satisfy conditional independence restrictions. In

the class of static models of Subsection 2.1, period-specific outcomes Yi1, ..., YiT are mutually

independent conditional on exogenous covariates and individual heterogeneity Xi, ηi. The

dynamic models of Subsection 2.2 satisfy Markovian independence restrictions.

6Note that unconditional quantile treatment effects cannot be directly estimated as in Firpo (2007) in
this context, due to the presence of the unobserved ηi and the lack of fixed-T identification for fixed-effects
binary choice models.
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A body of work, initially developed in the context of nonlinear measurement error mod-

els, has established nonparametric identification results in related models under conditional

independence restrictions; see Hu (2015) for a recent survey. Here we show how the results

in Hu and Schennach (2008) and Hu and Shum (2012) can be used to show nonparametric

identification of the nonlinear panel data models that we consider in this paper.

Static setup. Consider model (3)-(4), with a scalar unobserved effect ηi. At least three

periods are needed for identification, and we set T = 3. In the case where ηi is multivariate,

identification requires using additional time periods, see below. Throughout we use fZ and

fZ|W as generic notation for the distribution function of a random vector Z and for the

conditional distribution of Z given W , respectively.

Under conditional independence over time (Assumption 1 (iii)) we have, for all y1, y2, y3,

x = (x′1, x
′
2, x

′
3)

′, and η:

fY1,Y2,Y3|η,X (y1, y2, y3 | η, x) = fY1|η,X (y1 | η, x) fY2|η,X (y2 | η, x) fY3|η,X (y3 | η, x) . (22)

Hence the data distribution function relates to the densities of interest as follows:

fY1,Y2,Y3|X (y1, y2, y3 | x) =∫
fY1|η,X (y1 | η, x) fY2|η,X (y2 | η, x) fY3|η,X (y3 | η, x) fη|X (η | x) dη. (23)

The goal is the identification of fY1|η,X , fY2|η,X , fY3|η,X and fη|X given knowledge of fY1,Y2,Y3|X .

The setting of equation (23) is formally equivalent (conditional on x) to the instrumental

variables setup of Hu and Schennach (2008) for nonclassical nonlinear errors-in-variables

models. Specifically, according to Hu and Schennach’s terminology Yi3 would be the outcome

variable, Yi2 would be the mismeasured regressor, Yi1 would be the instrumental variable,

and ηi would be the latent, error-free regressor. We closely rely on their analysis and make

the following assumption.

Assumption 4. (identification)

Almost surely in covariate values x:

(i) The joint density fY1,Y2,Y3,η|X=x is bounded, as well as all its joint and marginal den-

sities.

(ii) For all η1 6= η2: Pr
[
fY3|η,X(Yi3|η1, x) 6= fY3|η,X(Yi3|η2, x) |Xi = x

]
> 0.

(iii) There exists a known functional Γx such that Γx(fY2|η,X(·|η, x)) = η.
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(iv) The linear operators LY2|η,x and LY1|Y2,x, associated with the conditional densities

fY2|η,X=x and fY1|Y2,X=x, respectively, are injective.

Part (i) in Assumption 4 requires that all densities under consideration be bounded.

This imposes mild restrictions on the model’s parameters. Part (ii) requires that fY3|η,X

be non-identical at different values of η. This assumption will be satisfied if, for some τ

in small open neighborhood QY3
(x, η1, τ) 6= QY3

(x, η2, τ). In Example 2, part (i) requires

strict monotonicity of quantile functions; that is: x′∇β(τ) + η∇γ(τ) ≥ c > 0, where ∇ξ(τ)
denotes the first derivative of ξ(·) evaluated at τ , while part (ii) holds if γ(τ) 6= 0 for τ in

some open neighborhood.

Part (iii) imposes a centered measure of location on fY2|η,X=x. In order to apply the

identification theorem in Hu and Schennach (2008), it is not necessary that Γx be known. If

instead Γx is a known function of the data distribution, their argument goes through. For

example, in Example 2 one convenient normalization is obtained by noting that:

E (Yit | ηi, Xit) = X ′
it

[∫ 1

0

β (τ) dτ

]
+ ηi

[∫ 1

0

γ (τ) dτ

]
≡ X̃ ′

itβ1 + β0 + ηiγ,

where β0 =
∫ 1

0
β0(τ)dτ corresponds to the coefficient of the constant in Xit = (X̃ ′

it, 1)
′. Now,

if X̃it varies over time and a rank condition is satisfied, β1 is a known function of the data

distribution, simply given by the within-group estimand. In this case one may thus take:

Γx(g) =

∫
yg(y)dy − x̃′2β1,

and note that the following normalization implies Assumption 4 (iii):

β0 =

∫ 1

0

β0 (τ) dτ = 0, and γ =

∫ 1

0

γ (τ) dτ = 1. (24)

We will use (24) in our empirical implementation.7

In a fully nonparametric setting and arbitrary t, to ensure that Assumption 4 (iii) holds

for some period (t = 1, say) one can proceed as follows. First, let us define:

η̃i ≡ E (Yi1 | ηi, Xi1) .

7In fact, Assumption 4 (iii) is also implied by (β0, γ0) = (0, 1) in the following model with first-order
interactions, a version of which we estimate in the empirical application:

Yit = X ′

itβ (Uit) + ηiX
′

itγ (Uit) .
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Then, in every period t we have, provided η 7→ E (Yi1 | ηi = η,Xi1 = x1) is invertible for

almost all x1:

Yit = QY (Xit, ηi, Uit) ≡ Q̃Y (Xit, Xi1, η̃i, Uit) .

Estimating specifications of this form will deliver estimates of Q̃Y , from which average

marginal effects can be recovered as estimates of:

Mt(τ) = E

[
∂QY (Xit, ηi, τ)

∂xt

]
= E

[
∂Q̃Y (Xit, Xi1, η̃i, τ)

∂xt

]
,

where ∂Q̃Y /∂xt denotes the vector of partial derivatives of Q̃Y with respect to its first

dim(Xit) arguments.

Part (iv) in Assumption 4 is an injectivity condition. The operator LY2|η,x is defined as

[LY2|η,xh](y2) =
∫
fY2|η,X(y2|η, x)h(η)dη, for all bounded functions h. LY2|η,x is injective if

the only solution to LY2|η,xh = 0 is h = 0. As pointed out by Hu and Schennach (2008),

injectivity is closely related to completeness conditions commonly assumed in the literature

on nonparametric instrumental variable estimation. Similarly as completeness, injectivity is

a high-level condition; see for example Canay et al. (2012) for results on the testability of

completeness assumptions.

Several recent papers provide explicit conditions for completeness or injectivity in specific

models. Andrews (2011) constructs classes of distributions that are L2-complete and bound-

edly complete. D’Haultfoeuille (2011) provides primitive conditions for completeness in a

linear model with homoskedastic errors. Results by Hu and Shiu (2012) apply to the location-

scale quantile model of Example 1. In this case, conditions that guarantee that LY2|η,x is

injective involve the tail properties of the conditional density of Yi2 given ηi (and Xi) and its

characteristic function.8 Providing primitive conditions for injectivity/completeness in more

general models, such as the linear quantile regression model of Example 2, is an interesting

question but exceeds the scope of this paper.

We then have the following result, which is a direct application of the identification

theorem in Hu and Schennach (2008). A brief sketch of the identification argument is given

in Appendix D.

Proposition 1. (Hu and Schennach, 2008)

Let Assumptions 1, 2, and 4 hold. Then all conditional densities fY1|η,X=x, fY2|η,X=x,

fY3|η,X=x, and fη|X=x, are nonparametrically identified for almost all x.

8See Lemma 4 in Hu and Shiu (2012).
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This result places no restrictions on the form of fYt|η,X=x, thus allowing for general distribu-

tional time effects.

Models with multiple effects. The identification result extends to models with multiple,

q-dimensional individual effects ηi, by taking a larger T > 3. For example, with T = 5 it is

possible to apply Hu and Schennach (2008)’s identification theorem to a bivariate ηi using

(Yi1, Yi2) instead of Yi1, (Yi3, Yi4) instead of Yi2, and Yi5 instead of Yi3. Provided injectivity

conditions hold, nonparametric identification follows from similar arguments as in the scalar

case.

Markovian dynamics. In dynamic models nonparametric identification requires T ≥ 4.

Under Assumption 1, Uit is independent of Xis for all s and uniformly distributed, and

independent of Uis for all s 6= t. So taking T = 4 we have:

fY2,Y3,Y4|Y1,X (y2, y3, y4 | y1, x) =

∫
fY2|Y1,η,X (y2 | y1, η, x) fY3|Y2,η,X (y3 | y2, η, x)

×fY4|Y3,η,X (y4 | y3, η, x) fη|Y1,X (η | y1, x) dη,

(25)

where we have used that Yi4 is conditionally independent of (Yi2, Yi1) given (Yi3, Xi, ηi), and

that Yi3 is conditionally independent of Yi1 given (Yi2, Xi, ηi).

An extension of Hu and Schennach (2008)’s theorem, along the lines of Hu and Shum

(2012), then shows nonparametric identification of all conditional densities fY2|Y1,η,X , fY3|Y2,η,X ,

fY4|Y3,η,X , and fη|Y1,X , in the autoregressive model, under suitable assumptions. A brief sketch

of the identification argument is provided in Appendix D.9

Lastly, autoregressive models with predetermined covariates can be shown to be nonpara-

metrically identified using similar arguments, provided the feedback process is first-order

Markov.

9In the dynamic model (20), it follows from Hu and Shum (2012)’s analysis that one can rely on (24) as
in the static case, provided the averages across τ values of the coefficients of exogenous regressors and lagged
outcome are identified based on:

E
[
Yit − Yi,t−1 | Y t−2

i , Xi

]
= E

[
h (Yi,t−1)− h (Yi,t−2) | Y t−2

i , Xi

]′ ∫ 1

0

ρ(τ)dτ + (Xit −Xi,t−1)
′

∫ 1

0

β(τ)dτ .
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3 Quantile regression estimators

In this section we introduce our estimation strategy and discuss several of its statistical

properties. We first analyze a class of static quantile models in detail, and then show how

the methodology can be extended to dynamic settings.

3.1 Model specification and moment restrictions

We specify the conditional quantile function of Yit in (3) as:

QY (Xit, ηi, τ) = Wit (ηi)
′ θ (τ) . (26)

In (26) the vector Wit (ηi) contains a finite number of functions of Xit and ηi. One

possibility is to adopt a simple linear quantile specification as in Example 2, in which case

one takes Wit (ηi) = (X ′
it, ηi)

′. A more flexible approach is to use a series specification of the

quantile function as in (1), and to set Wit (ηi) = (g1(Xit, ηi), ..., gK1
(Xit, ηi))

′ for a set of K1

functions g1, ..., gK1
. In practice one may use orthogonal polynomials, wavelets or splines,

among other choices; see Chen (2007) for a comprehensive survey of sieve methods.

Similarly, we specify the conditional quantile function of ηi in (4) as:

Qη (Xi, τ) = Z ′
iδ (τ) . (27)

In (27) the vector Zi contains a finite number of functions of covariates Xi, such as Zi =

(h1(Xi), ..., hK2
(Xi)) for a set of K2 functions h1, ..., hK2

.

The posterior density of the individual effects fη|Y,X plays an important role in the anal-

ysis. It is given by:

fη|Y,X (η | y, x; θ (·) , δ (·)) =
∏T

t=1 fYt|Xt,η (yt | xt, η; θ (·)) fη|X (η | x; δ (·))∫ ∏T
t=1 fYt|Xt,η (yt | xt, η̃; θ (·)) fη|X (η̃ | x; δ (·)) dη̃

, (28)

where we have used conditional independence in Assumption 1 (iii), and we have explicitly

indicated the dependence of the various densities on model parameters.

Let ψτ (u) = τ − 1 {u < 0}. The function ψτ is the first derivative (outside the origin) of

the “check” function ρτ , which is familiar from the quantile regression literature (Koenker

and Basset, 1978):

ρτ (u) = (τ − 1 {u < 0}) u, ψτ (u) = ∇ρ(u).
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In order to derive the main moment restrictions, we start by noting that, for all τ ∈ (0, 1),

the following infeasible moment restrictions hold, as a direct implication of Assumptions 1

and 2:

E

[
T∑

t=1

Wit (ηi)ψτ

(
Yit −Wit (ηi)

′ θ (τ)
)
]

= 0, (29)

and:

E [Ziψτ (ηi − Z ′
iδ (τ))] = 0. (30)

Indeed, (29) is the first-order condition associated with the infeasible population quantile

regression of Yit on Wit (ηi). Similarly, (30) corresponds to the infeasible quantile regression

of ηi on Zi.

Applying the law of iterated expectations to (29) and (30), respectively, we obtain the

following integrated moment restrictions, for all τ ∈ (0, 1):

E

[∫ ( T∑

t=1

Wit (η)ψτ

(
Yit −Wit (η)

′ θ (τ)
)
)
f (η | Yi, Xi; θ (·) , δ (·)) dη

]
= 0, (31)

and:

E

[∫ (
Ziψτ (η − Z ′

iδ (τ))

)
f (η | Yi, Xi; θ (·) , δ (·)) dη

]
= 0, (32)

where, here and in the rest of the analysis, we use f as a shorthand for the posterior density

fη|Y,X .

It follows from (31)-(32) that, if the posterior density of the individual effects were known,

then estimating the model’s parameters could be done using two simple linear quantile

regressions, weighted by the posterior density. However, as the notation makes clear, the

posterior density in (28) depends on the entire processes θ (·) and δ (·). Specifically we have,

for absolutely continuous conditional densities of outcomes and individual effects:

fYt|Xt,η (yt | xt, η; θ (·)) = lim
ǫ→0

ǫ

wt (η)
′ [θ (ut + ǫ)− θ (ut)]

, (33)

and:

fη|X (η | x; δ (·)) = lim
ǫ→0

ǫ

z′ [δ (v + ǫ)− δ (v)]
, (34)

where ut and v are defined by:

wt (η)
′ θ (ut) = yt, and: z′δ (v) = η.
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Equations (33) and (34) come from the fact that the density of a random variable and the

derivative of its quantile function are the inverse of each other.

The dependence of the posterior density on the entire set of model parameters makes

it impossible to directly recover θ (τ) and δ (τ) in (31)-(32) in a τ -by-τ fashion. The main

idea of the algorithm that we present in the next subsection is to circumvent this difficulty

by iterating back-and-forth between computation of the posterior density, and computation

of the model’s parameters given the posterior density. The latter is easy to do as it is

based on weighted quantile regressions. Similar ideas have been used in the literature (e.g.,

Arcidiacono and Jones, 2003). However, an additional difficulty in our case is that the

posterior density depends on a continuum of parameters. In order to develop a practical

approach, we now introduce a finite-dimensional, tractable approximating model.

Parametric specification. Building on Wei and Carroll (2009), we approximate θ (·) and
δ (·) using splines, with L knots 0 < τ 1 < τ 2 < ... < τL < 1. A practical possibility is to use

piecewise-linear splines as in Wei and Carroll, but other choices are possible, such as cubic

splines or shape-preserving B-splines. When using interpolating splines, the approximation

argument requires suitable smoothness assumptions on θ (τ) and δ (τ) as functions of τ ∈
(0, 1). For fixed L, the spline specification may be seen as an approximation to the underlying

quantile functions.

Let us define ξ = (ξ′A, ξ
′
B)

′
, where:

ξA =
(
θ (τ 1)

′ , θ (τ 2)
′ , ..., θ (τL)

′)′ , and ξB =
(
δ (τ 1)

′ , δ (τ 2)
′ , ..., δ (τL)

′)′ .

The approximating model depends on the finite-dimensional parameter vector ξ that is

used to construct interpolating splines. The associated likelihood function and density of

individual effects are then denoted as fYt|Xt,η (yt | xt, η; ξA) and fη|X (η | x; ξB), respectively,
and the implied posterior density is:

f (η | y, x; ξ) =
∏T

t=1 fYt|Xt,η (yt | xt, η; ξA) fη|X (η | x; ξB)∫ ∏T
t=1 fYt|Xt,η (yt | xt, η̃; ξA) fη|X (η̃ | x; ξB) dη̃

. (35)

The approximating densities take particularly simple forms when using piecewise-linear

splines. Moreover, when implementing the algorithm in practice we augment the specifi-

cation with parametric models in the tail intervals of the coefficients of θ(τ) and δ(τ) corre-

sponding to the constant terms. In this case the estimation algorithm needs to be modified

slightly, see Section 4.1 below.
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Finally, the integrated moment restrictions of the approximating model are then, for all

ℓ = 1, ..., L:

E

[∫ ( T∑

t=1

Wit (η)ψτℓ

(
Yit −Wit (η)

′ θ (τ ℓ)
)
)
f (η | Yi, Xi; ξ) dη

]
= 0, (36)

and:

E

[∫ (
Ziψτℓ

(η − Z ′
iδ (τ ℓ))

)
f (η | Yi, Xi; ξ) dη

]
= 0. (37)

3.2 Estimation algorithm

Let (Yi, X
′
i), i = 1, ..., N , be an i.i.d. sample. Our estimator is the solution to the following

sample fixed-point problem, for ℓ = 1, ..., L:

θ̂ (τ ℓ) = argmin
θ

N∑

i=1

∫ ( T∑

t=1

ρτℓ
(
Yit −Wit (η)

′ θ
)
)
f
(
η | Yi, Xi; ξ̂

)
dη, (38)

δ̂ (τ ℓ) = argmin
δ

N∑

i=1

∫
ρτℓ (η − Z ′

iδ) f
(
η | Yi, Xi; ξ̂

)
dη, (39)

where ρτ (·) is the check function, and where f (η | Yi, Xi; ξ) is given by (35). Note that the

first-order conditions of (38)-(39) are the sample analogs of the moment restrictions (36)-(37)

of the approximating model.

To solve the fixed-point problem (38)-(39) we proceed in an iterative fashion. Starting

with initial parameter values ξ̂
(0)
, one possibility is to iterate the following two steps until

numerical convergence:

1. Compute the posterior density:

f̂
(s)
i (η) = f

(
η | Yi, Xi; ξ̂

(s)
)
. (40)

2. Solve, for ℓ = 1, ..., L:

θ̂ (τ ℓ)
(s+1) = argmin

θ

N∑

i=1

∫ ( T∑

t=1

ρτℓ
(
Yit −Wit (η)

′ θ
)
)
f̂
(s)
i (η)dη, (41)

δ̂ (τ ℓ)
(s+1) = argmin

δ

N∑

i=1

∫
ρτℓ (η − Z ′

iδ) f̂
(s)
i (η)dη. (42)
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This sequential method-of-moment method is related to, but different from, the standard

EM algorithm (Dempster et al., 1977). Similarly as in EM, the algorithm iterates back-

and-forth between computation of the posterior density of the individual effects (“E”-step)

and computation of the parameters given the posterior density (“M”-step). Unlike in EM,

however, in the “M”-step of our algorithm (that is, in equations (41)-(42)) estimation is not

based on a likelihood function, but on the check function of quantile regression.

Proceeding in this way has two major computational advantages compared to maximizing

the full likelihood of the approximating model. Firstly, as opposed to the likelihood function,

which is a complicated function of all quantile regression coefficients, the problem in (41)-

(42) nicely decomposes into L different τ ℓ-specific subproblems. Secondly, using the check

function yields a globally convex objective function in each “M”-step.

At the same time, two features of the standard EM algorithm differ in our sequential

method-of-moment method. First, as our algorithm is not likelihood-based, the resulting

estimator will not be efficient in general.10 Secondly, whereas conditions for numerical con-

vergence of ordinary EM are available in the literature (e.g., Wu, 1983), formal proofs of

convergence of sequential algorithms such as ours seem difficult to establish.11

Simulation-based algorithm. In practice we use a simulation-based approach in the

first step of the estimation algorithm. This allows us to replace the integrals in (41)-(42)

by sums. Starting with initial parameter values ξ̂
(0)

we iterate the following two steps until

convergence to a stationary distribution.

Algorithm. (Stochastic EM)

1. For all i = 1, ..., N , draw M values η
(1)
i ,...,η

(M)
i from the posterior density f̂

(s)
i given

by (40).

2. Solve, for ℓ = 1, ..., L:

θ̂ (τ ℓ)
(s+1) = argmin

θ

N∑

i=1

M∑

m=1

T∑

t=1

ρτℓ

(
Yit −Wit

(
η
(m)
i

)′
θ

)
,

δ̂ (τ ℓ)
(s+1) = argmin

δ

N∑

i=1

M∑

m=1

ρτℓ

(
η
(m)
i − Z ′

iδ
)
.

10This loss of efficiency relative to maximum likelihood is similar to the one documented in Arcidiacono
and Jones (2003), for example.

11Our algorithm belongs to the class of “EM algorithms for estimating equations” studied by Elashoff
and Ryan (2004). These authors provide conditions for numerical convergence, while acknowledging that
verifying these conditions in practice may be difficult.
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In step one (the “E” step) in this algorithm we draw M values for the individual effects

according to their posterior density f̂
(s)
i (η) = f

(
η | Yi, Xi; ξ̂

(s)
)
. We use a random-walk

Metropolis-Hastings sampler for this purpose, but other choices are possible (such as par-

ticle filter methods). Note that the posterior density is non-negative by construction. In

particular, drawing from f̂
(s)
i (η) automatically produces rearrangement of the various quan-

tile curves, as in Chernozhukov, Galichon and Fernandez-Val (2010). In Step 2 (the “M”

step) we run 2L ordinary quantile regressions, where the simulated values of the individual

effects are treated, in turn, as covariates and dependent variables.

An advantage of Metropolis-Hastings over grid approximations and importance sampling

weights is that the integral in the denominator of the posterior density of η is not needed.

The output of this algorithm is a Markov chain. In practice, we stop the chain after a large

number of iterations and we report an average across the last S̃ values ξ̂ = 1

S̃

∑S
s=S−S̃+1 ξ̂

(s)
.

In each iteration of the algorithm, the draws η
(1)
i ,...,η

(M)
i are randomly re-drawn. This

approach, sometimes referred to as “stochastic EM”, thus differs from the simulated EM

algorithm of McFadden and Ruud (1994) where the same underlying uniform draws are used

in each iteration. Nielsen (2000a, 2000b) studies and compares various statistical properties

of simulated EM and stochastic EM in a likelihood context. In particular, he provides

conditions under which the Markov chain output of stochastic EM is ergodic. As M tends

to infinity the sum converges to the true integral. The problem is then smooth (because of

the integral with respect to η). Below, building on Nielsen’s work we analyze the statistical

properties of estimators based on fixed-M and large-M versions of the algorithm.

3.3 Estimation in dynamic models

The estimation algorithm of the previous section can be directly modified to deal with

autoregressive models with strictly exogenous covariates. Consider a linear specification of

the quantile functions (13) and (14), possibly based on series. Then the stochastic EM

algorithm essentially takes the same form as in the static case, except for the posterior

density of the individual effects which is now computed as:

f (η | y, x; ξ) =
∏T

t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η; ξA) fη|Y1,X (η | y1, x; ξB)∫ ∏T
t=1 fYt|Yt−1,Xt,η (yt | yt−1, xt, η̃; ξA) fη|Y1,X (η̃ | y1, x; ξB) dη̃

. (43)

General predetermined regressors. In models with predetermined covariates, the crit-

ical difference is in the nature of the posterior density of the individual effects. Letting
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Wit = (Yit, X
′
it)

′ and Wi = (W ′
i1, ...,W

′
iT )

′ we have:

f (η | y, x; ξ) = fW2,...,WT
(w2, ..., wT | w1, η) fη|W1

(η | w1)∫
fW2,...,WT

(w2, ..., wT | w1, η) fη|W1
(η | w1) dη

=
fη|W1

(η | w1; ξB)
∏T

t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η; ξA) fXt|W t−1,η (xt | wt−1, η; ξC)∫
fη|W1

(η̃ | w1; ξB)
∏T

t=2 fYt|Yt−1,Xt,η (yt | yt−1, xt, η̃; ξA) fXt|W t−1,η (xt | wt−1, η̃; ξC) dη̃
,

where now ξ = (ξ′A, ξ
′
B, ξ

′
C)

′
includes additional parameters that correspond to the model of

the feedback process from past values of Yit and Xit to future values of Xis, for s > t.

Under predeterminedness, the quantile model only specifies the partial likelihood:

∏T

t=2
fYt|Yt−1,Xt,η (yt | yt−1, xt, η; ξA) .

However, the posterior density of the individual effects also depends on the feedback process:

fXt|W t−1,η

(
xt | wt−1, η; ξC

)
,

in addition to the density of individual effects. Note that the feedback process could depend

on an additional vector of individual effects different from ηi.

In line with our approach, we also specify the quantile function of covariates in (15) using

linear (series) quantile regression models. Specifically, letting Xpit, p = 1, ..., P , denote the

various components of Xit, we specify the following triangular, recursive system that extends

Example 5 to multi-dimensional predetermined covariates:

X1it = W1it(ηi)µ1 (A1it) ,

· · · · · · · · ·

XPit = WPit(ηi)µP (APit) , (44)

where A1it, ..., APit follow independent standard uniform distributions, independent of all

other random variables in the model, W1it(ηi) contains functions of (Yi,t−1, Xi,t−1, ηi), and

Wpit(ηi) contains functions of (X1it, ...Xp−1,it, Yi,t−1, Xi,t−1, ηi) for p > 1. The parameter

vector ξC includes all µp(τ ℓ), for p = 1, ..., P and ℓ = 1, ..., L.

The model with predetermined regressors has thus three layers of quantile regressions:

the outcome model (13) specified as a linear quantile regression, the model of the feedback

process (44), and the model of individual effects (16), which here depends on first-period

outcomes and covariates. The estimation algorithm is similar to the one for static models,

with minor differences in both steps.
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Extension: autocorrelated disturbances. To allow for autocorrelated errors in model

(3)-(4) we replace Assumption 1 (iii) by:

Assumption 5. (autocorrelated errors)

(Ui1, ..., UiT ) is distributed as a copula C(u1, ..., uT ), independent of (Xi, ηi).

Nonparametric identification of the model (including the copula) can be shown under

Markovian assumptions, as in the autoregressive model. For estimation we let the copula

depend on a finite-dimensional parameter φ, which we estimate along with all quantile pa-

rameters. The iterative estimation algorithm is then easily modified by adding an update in

Step 2 (the “M”-step):

φ̂
(s+1)

= argmax
φ

N∑

i=1

M∑

m=1

ln
[
c
(
F
(
Yi1|Xi1, η

(m)
i ; ξ̂

(s+1)

A

)
, ..., F

(
YiT |XiT , η

(m)
i ; ξ̂

(s+1)

A

)
;φ
)]
,

(45)

where c(u1, ..., uT ) ≡ ∂TC(u1, ..., uT )/∂u1...∂uT is the copula density, and where, for any yt

such that wt (η)
′ θ (τ ℓ) < yt ≤ wt (η)

′ θ (τ ℓ+1):

F (yt|xt, η; ξA) = τ ℓ + (τ ℓ+1 − τ ℓ)
yt − wt (η)

′ θ (τ ℓ)

wt (η)
′ [θ (τ ℓ+1)− θ (τ ℓ)]

,

augmented with a specification outside the interval
(
wt (η)

′ θ (τ 1) , wt (η)
′ θ (τL)

)
. Here F is

a shorthand for FYt|Xt,η.

The posterior density is then given by:

f (η|y, x; ξ, φ) =
∏T

t=1 fYt|Xt,η (yt | xt, η; ξA) c [F (y1|x1, η; ξA) , ..., F (yT |xT , η; ξA) ;φ] f (η | x; ξB)∫ ∏T
t=1 fYt|Xt,η (yt | xt, η̃; ξA) c [F (y1|x1, η̃; ξA) , ..., F (yT |xT , η̃; ξA) ;φ] f (η̃ | x; ξB) dη̃

.

Lastly, note that the approach outlined here does not seem to easily generalize to allow

for autocorrelated disturbances in autoregressive models (that is, for ARMA-type quantile

regression models).

3.4 Asymptotic properties

We now discuss the asymptotic properties of the estimation algorithm. Throughout, T is

fixed while N tends to infinity. Although we focus on a static model for concreteness, similar

arguments apply to dynamic models with exogenous or predetermined covariates.
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Parametric inference. We start by discussing the asymptotic properties of the estimator

based on the stochastic EM algorithm, for fixed number of draws M , in the case where the

parametric model is assumed to be correctly specified. That is, K1, K2 (the number of series

terms) and L (the size of the grid on the unit interval) are held fixed as N tends to infinity.

In the next paragraph we will study consistency as K1, K2 and L tend to infinity with N , in

the large-M limit.

Nielsen (2000a) studies the statistical properties of the stochastic EM algorithm in a like-

lihood case. He provides conditions under which the Markov Chain ξ̂
(s)

is ergodic, for a fixed

sample size. In addition, he also characterizes the asymptotic distribution of
√
N
(
ξ̂
(s) − ξ

)

as N increases, where ξ denotes the population parameter vector.

In Appendix B we rely on Nielsen’s work to characterize the asymptotic distribution of

ξ̂
(s)

= ((θ̂
(s)
)′, (δ̂

(s)
)′)′ in our model, where the optimization step is not likelihood-based but

relies on quantile-based estimating equations. Specifically, if s corresponds to a draw from

the ergodic distribution of the Markov Chain, and M is the number of draws per iteration,

then:
√
N
(
ξ̂
(s) − ξ

)
d→ N (0,V + VM),

where the expressions of V and VM are given in Appendix B.

In addition, if ξ̂ is a parameter draw and M tends to infinity, or alternatively if ξ̂ is

computed as the average of ξ̂
(s)

over S̃ iterations with S̃ tending to infinity (as in our

implementation), then:
√
N
(
ξ̂ − ξ

)
d→ N (0,V),

V being the asymptotic variance of the method-of-moments estimator based on the integrated

moment restrictions (36)-(37).

Nonparametric consistency. In the asymptotic theory of the previous paragraph,K1, K2

and L are held fixed as N tends to infinity. It may be more appealing to see the parametric

specification based on series and splines as an approximation to the quantile functions, which

becomes more accurate as the dimensions K1, K2 and L increase. Here our aim is to provide

conditions under which the estimator is consistent as N , K1, K2, and L tend to infinity.

To proceed we consider the following assumption on the data generating process, as in

Belloni, Chernozhukov and Fernández-Val (2011):

Yit = Wit(ηi)
′θ(Uit) +RY (Xit, ηi, Uit),
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and, similarly:

ηi = Z ′
iδ(Vi) +Rη(Xi, Vi),

where sup(x,e,u) |RY (x, e, u)| = o(1) as K1 tends to infinity, and sup(x,v) |Rη(x, v)| = o(1) as

K2 tends to infinity.

Let ξ(τ) = (θ(τ)′, δ(τ)′)′ be a (K1 +K2)× 1 vector for all τ ∈ (0, 1), and let ξ : (0, 1) →
R

K1+K2 be the associated function. Let us consider the estimator ξ̂ = (θ̂
′
, δ̂

′
)′ based on

the static model and the integrated moment restrictions (36)-(37). Note that ξ̂ is a function

defined on the unit interval. In Appendix B we provide and discuss conditions that guarantee

that ξ̂ is uniformly consistent for ξ = (θ
′
, δ

′
)′, that is:

sup
τ∈(0,1)

∥∥∥ξ̂(τ)− ξ(τ)
∥∥∥ = op(1), (46)

where ‖·‖ denotes the Euclidean norm on R
K1+K2 .

Some of the conditions for consistency given in Appendix B are non-primitive. More gen-

erally, models with latent distributions such as the nonlinear panel data models we analyze

in this paper are subject to ill-posedness, making a complete characterization of asymptotic

distributions challenging.12 A practical possibility, for which we do not yet have a formal

justification, is to use empirical counterparts of the fixed-(K1, K2, L) asymptotic formulas

derived in the previous paragraph, or alternatively the bootstrap, to conduct inference. A

related question is that of the practical choice of K1, K2 and L. We leave a detailed study

of the asymptotic properties of our estimator as N , K1, K2, and L tend to infinity to future

work.

4 Empirical application

In this section we present an empirical illustration to the link between mother inputs such

as smoking and children’s birthweights. We start by discussing how we implement the

estimation algorithm in practice. In Appendix C we report the results of a small Monte

Carlo illustration.

12In particular, the class of models we consider nests nonparametric deconvolution models with repeated
measurements (Kotlarski, 1967, Horowitz and Markatou, 1996, Delaigle, Hall and Meister, 2008, Bonhomme
and Robin, 2010). In such settings, quantiles are generally not root-N estimable (Hall and Lahiri, 2008).
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4.1 Implementation

Piecewise-linear splines. We use piecewise-linear splines as an approximating model.

Although other spline families could be used instead, computing the implied likelihood func-

tions would then require inverting quantile functions numerically. In contrast, for linear

splines we have, for all ℓ = 1, ..., L− 1:

θ (τ) = θ (τ ℓ) +
τ − τ ℓ
τ ℓ+1 − τ ℓ

[θ (τ ℓ+1)− θ (τ ℓ)] , τ ℓ < τ ≤ τ ℓ+1,

δ (τ) = δ (τ ℓ) +
τ − τ ℓ
τ ℓ+1 − τ ℓ

[δ (τ ℓ+1)− δ (τ ℓ)] , τ ℓ < τ ≤ τ ℓ+1,

and the implied approximating period-t density of outcomes and the implied approximating

density of individual effects take simple closed-form expressions:

fYt|Xt,η (yt | xt, η; ξA) =
τ ℓ+1 − τ ℓ

wt (η)
′ [θ (τ ℓ+1)− θ (τ ℓ)]

if wt (η)
′ θ (τ ℓ) < yt ≤ wt (η)

′ θ (τ ℓ+1) ,

(47)

fη|X (η | x; ξB) =
τ ℓ+1 − τ ℓ

z′ [δ (τ ℓ+1)− δ (τ ℓ)]
if z′δ (τ ℓ) < η ≤ z′δ (τ ℓ+1) , (48)

augmented with a specification in the tail intervals (0, τ 1) and (τL, 1).

Tail intervals. In order to model quantile functions in the intervals (0, τ 1) and (τL, 1)

one may assume, following Wei and Carroll (2009), that θ(·) and δ(·) are constant on these

intervals, so the implied distribution functions have mass points at the two ends of the

support. In Appendix A we outline a different, exponential-based modelling of the extreme

intervals, motivated by the desire to avoid that the support of the likelihood function depends

on the parameter value. We use this method in the empirical application.

4.2 Application: smoking and birthweight

Here we revisit the effect of maternal inputs of children’s birth outcomes. Specifically, we

study the effect of smoking during pregnancy on children’s birthweights. Abrevaya (2006)

uses a mother fixed-effects approach to address endogeneity of smoking. Here we use quan-

tile regression with mother-specific effects to allow for both unobserved heterogeneity and

nonlinearities in the relationship between smoking and weight at birth.

We focus on a balanced subsample from the US natality data used in Abrevaya (2006),

which comprises 12360 women with 3 children each. Our outcome is the log-birthweight.
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Figure 1: Quantile effects of smoking during pregnancy on log-birthweight (linear quantile
specification)
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Note: Data from Abrevaya (2006). Left graph: solid line is the pooled quantile regression
smoking coefficient; dashed line is the panel quantile regression smoking coefficient. Right
graph: solid line is the raw quantile treatment effect of smoking; dashed line is the quantile
treatment effect estimate based on panel quantile regression.

The main covariate is a binary smoking indicator. Age of the mother and gender of the child

are used as additional controls.

An OLS regression yields a significantly negative point estimate of the smoking coefficient:

−.095. The fixed-effects estimate is also negative, but it is twice as small: −.050, significant.
This suggests a negative endogeneity bias in OLS, and is consistent with the results in

Abrevaya (2006).

The solid line on the left graph of Figure 1 shows the smoking coefficient estimated from

pooled quantile regressions, on a fine grid of τ values. According to these estimates, the

effect of smoking is more negative at lower quantiles of birthweights.

The dashed line on the left graph of Figure 1 shows the quantile estimate of the smoking

effect. We use a linear quantile regression specification as in Example 2, augmented with

a parametric exponential model in the tail intervals. Estimates are computed using L =

21 knots. The stochastic EM algorithm is run for 100 iterations, with 100 random walk

Metropolis-hastings draws within each iteration.13 Parameter estimates are computed as

averages of the 50 last iterations of the algorithm.

We see on the left graph of Figure 1 that the smoking effect becomes less negative when

13The variance of the random walk proposal is set to achieve ≈ 30% acceptance rate.
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Figure 2: Quantile effects of smoking during pregnancy on log-birthweight (interacted quan-
tile specification)
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Note: Data from Abrevaya (2006). Left graph: lines represent the percentiles .05, .25, .50,
.75, and .95 of the heterogeneous smoking effect across mothers, at various percentiles τ .
Right graph: solid line is the raw quantile treatment effect of smoking; dashed line is the
quantile treatment effect estimate based on panel quantile regression with interactions.

correcting for time-invariant endogeneity through the introduction of mother-specific fixed-

effects. At the same time, the effect is still sizable, and it remains increasing along the

distribution.

As another exercise, on the right graph of Figure 1 we compute the unconditional quantile

treatment effect of smoking as the difference in log-birthweights between a sample of smok-

ing women, and a sample of non-smoking women, keeping all other characteristics (that

is, observed Xi and unobserved ηi) constant, as defined in Subsection 2.3. This calcula-

tion illustrates the usefulness of specifying and estimating a complete semiparametric model

of the joint distribution of outcomes and unobservables, in order to compute counterfac-

tual distributions that take into account the presence of unobserved heterogeneity. On the

graph, the solid line shows the empirical difference between unconditional quantiles, while

the dashed line shows the quantile treatment effect that accounts for both observables and

unobservables.

The results on the right graph of Figure 1 are broadly similar to the ones reported on

the left graph. An interesting finding is that in this case the endogeneity bias (that is, the

difference between the dashed and solid lines) is slightly larger, and that it tends to decrease

as one moves from lower to higher quantiles of birthweight.
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Lastly, on Figure 2 we report the results of an interacted quantile model, as in (1) and

(2), where the specification allows for all first-order interactions between covariates and the

unobserved mother-specific effect. In this model the quantile effect of smoking is mother-

specific. The results on the right graph show the unconditional quantile treatment effect

of smoking. Results are similar to the ones obtained for a simple linear specification (see

the right graph of Figure 1). However, on the left graph of Figure 2 we see substantial

mother-specific heterogeneity in the conditional quantile treatment effect of smoking, as for

some mothers smoking appears particularly detrimental to children’s birthweight, whereas

for other mothers the smoking effect, while consistently negative, is much smaller. This

evidence is in line with the results of a linear random coefficients model reported in Arellano

and Bonhomme (2012).

5 Conclusion

Quantile methods are flexible tools to model nonlinear panel data relationships. In this

work, quantile regression is used to model the dependence between outcomes, covariates and

individual heterogeneity, and between individual effects and exogenous regressors or initial

conditions. Quantile specifications also allow to flexibly model feedback processes in models

with predetermined covariates. The empirical application illustrates the benefits of having

a flexible approach to allow for heterogeneity and nonlinearity within the same model in a

panel data context.

Our approach leads to fixed-T identification of complete models. The estimation algo-

rithm exploits the computational advantages of linear quantile regression, within an iterative

scheme which allows to deal with the presence of unobserved individual effects. Beyond static

or dynamic quantile regression models with single or multiple individual effects, our approach

naturally extends to series specifications, thus allowing for rich interactions between covari-

ates and heterogeneity at various points of the distribution.

Our quantile-based modelling of the distribution of individual effects could be of interest

in other models as well. For example, one could consider semiparametric likelihood panel

data models, where the conditional likelihood of the outcome Yi given Xi and ηi depends on

a finite-dimensional parameter vector α, and the conditional distribution of ηi given Xi is

left unrestricted. The approach of this paper is easily adapted to this case, and delivers a
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semiparametric likelihood of the form:

fY |X(y|x;α, δ(·)) =
∫
fY |X,η(y|x, η;α)fη|X(η|x; δ(·))dη,

where δ(·) is a process of quantile coefficients.

Our framework also naturally extends to models with time-varying unobservables, such

as:

Yit = QY (Xit, ηit, Uit) ,

ηit = Qη

(
ηi,t−1, Vit

)
,

where Uit and Vit are i.i.d. and uniformly distributed. Arellano, Blundell and Bonhomme

(2014) use a quantile-based approach to document nonlinear relationships between earnings

shocks to households and their lifetime profiles of earnings and consumption. This applica-

tion illustrates the potential of our estimation approach in dynamic settings.

A relevant issue for empirical practice is measurement error. Our approach may be

extended to allow covariates to be measured with error, as the analysis in Wei and Carroll

(2009) illustrates. When a validation sample is available, our algorithm can also be modified

to allow for measurement error in outcome variables. In both cases, true variables are treated

similarly as latent individual effects in the above analysis, and they are repeatedly drawn

from their posterior densities in each iteration of the algorithm.

Lastly, this paper leaves a number of important questions unanswered. Statistical in-

ference in the nonparametric problem, where the complexity of the approximating model

increases together with the sample size, is one of them. Providing primitive conditions for

identification, and devising efficient computational routines, are other important questions

for future work.
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APPENDIX

A Exponential modelling of the tails

For implementation, we use the following modelling for the splines in the extreme intervals indexed
by λ1 > 0 and λL > 0:

θ (τ) = θ (τ1) +
ln (τ/τ1)

λ1
ιc, τ ≤ τ1,

θ (τ) = θ (τL)−
ln ((1− τ)/(1− τL))

λL
ιc, τ > τL,

where ιc is a vector of zeros, with a one at the position of the constant term in θ (τ). We adopt a
similar specification for δ (τ), with parameters λη1 > 0 and ληL > 0. Modelling the constant terms in
θ (τ) and δ (τ) as we do avoids the inconvenient that the support of the likelihood function depends
on the parameter value. Moreover, our specification boils down to the Laplace model of Geraci and
Bottai (2007) when L = 1, λ1 = 1− τ1, and λL = τL.

The implied approximating period-t outcome density is then:

fYt|Xt,η (yt | xt, η; ξA) =

L−1∑

ℓ=1

τ ℓ+1 − τ ℓ

wt (η)
′ [θ (τ ℓ+1)− θ (τ ℓ)]

1
{
wt (η)

′ θ (τ ℓ) < yt ≤ wt (η)
′ θ (τ ℓ+1)

}

+τ1λ1e
λ1(yt−wt(η)

′θ(τ1))1
{
yt ≤ wt (η)

′ θ (τ1)
}

+(1− τL)λLe
−λL(yt−wt(η)

′θ(τL))1
{
yt > wt (η)

′ θ (τL)
}
.

Similarly, the approximating density of individual effects is:

fη|X (η | x; ξB) =

L−1∑

ℓ=1

τ ℓ+1 − τ ℓ
z′ [δ (τ ℓ+1)− δ (τ ℓ)]

1
{
z′δ (τ ℓ) < η ≤ z′δ (τ ℓ+1)

}

+τ1λ
η
1e

λη
1
(η−z′δ(τ1))1

{
η ≤ z′δ (τ1)

}

+(1− τL)λ
η
Le

−λη
L
(η−z′δ(τL))1

{
η > z′δ (τL)

}
.

Update rules for exponential parameters. We adopt a likelihood approach to update the
parameters λ1, λL, λ

η
1, λ

η
L. This yields the following moment restrictions:

λ
η
1 =

−E
[∫

1
{
η ≤ Z ′

iδ(τ1)
}
f(η|Yi, Xi; ξ)dη

]

E
[∫ (

η − Z ′
iδ(τ1)

)
1
{
η ≤ Z ′

iδ(τ1)
}
f(η|Yi, Xi; ξ)dη

] ,

and:

λ
η
L =

E
[∫

1
{
η > Z ′

iδ(τL)
}
f(η|Yi, Xi; ξ)dη

]

E
[∫ (

η − Z ′
iδ(τL)

)
1
{
η > Z ′

iδ(τL)
}
f(η|Yi, Xi; ξ)dη

] ,

with similar equations for λ1, λL.
Hence the update rules in Step 2 of the algorithm (the “M”-step):

λ̂
η,(s+1)

1 =
−∑N

i=1

∑M
m=1 1

{
η
(m)
i ≤ Z ′

iδ̂(τ1)
(s)
}

∑N
i=1

∑M
m=1

(
η
(m)
i − Z ′

iδ̂(τ1)
(s)
)
1
{
η
(m)
i ≤ Z ′

iδ̂(τ1)
(s)
} ,

and:

λ̂
η,(s+1)

L =

∑N
i=1

∑M
m=1 1

{
η
(m)
i > Z ′

iδ̂(τL)
(s)
}

∑N
i=1

∑M
m=1

(
η
(m)
i − Z ′

iδ̂(τL)
(s)
)
1
{
η
(m)
i > Z ′

iδ̂(τL)
(s)
} .
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B Asymptotic results

B.1 Parametric inference

Here we rely on Nielsen’s work to characterize the asymptotic distribution of ξ̂
(s)

in our model,
where the optimization step is not likelihood-based but relies on different estimating equations. To
do so, let us rewrite the moment restrictions in a compact notation:

E[Ψi(ηi; ξ)] = 0,

where ξ (with true value ξ) is a finite-dimensional parameter vector of the same dimension as Ψ.
Equivalently, we have

E

[∫
Ψi(η; ξ)f(η|Wi; ξ)dη

]
= 0,

where Wi = (Yi, X
′
i)
′.

The stochastic EM algorithm for this problem works as follows, based on an i.i.d. sample

(W1, ...,WN ). Iteratively, one draws ξ̂
(s+1)

given ξ̂
(s)

in two steps:

1. For i = 1, ..., N , draw η
(1,s)
i , ..., η

(M,s)
i from the posterior distribution f(ηi|Wi; ξ̂

(s)
).14

2. Solve for ξ̂
(s+1)

in:
N∑

i=1

M∑

m=1

Ψi(η
(m,s)
i ; ξ̂

(s+1)
) = 0.

This results in a Markov Chain (ξ̂
(0)
, ξ̂

(1)
, ...), which is ergodic under suitable conditions. More-

over, under conditions given in Nielsen (2000a), asymptotically as N tends to infinity the pro-

cess
√
N(ξ̂

(s) − ξ̂) converges to a Gaussian autoregressive process conditional on almost every
W -sequence, where ξ̂ solves the integrated moment restrictions:

N∑

i=1

∫
Ψi(η; ξ̂)f(η|Wi; ξ̂)dη = 0. (B1)

In the rest of this section we characterize the unconditional asymptotic distribution of
√
N(ξ̂

(s) −
ξ). The derivations in this section are heuristic, and throughout we assume sufficient regularity
conditions to justify all the steps.15

Using a conditional quantile representation we can write:

η
(m,s)
i = Qη|W

(
Wi, V

(m,s)
i ; ξ̂

(s)
)
,

where V
(m,s)
i are standard uniform draws, independent of each other and independent of Wi.

We thus have:
N∑

i=1

M∑

m=1

Ψi

(
Qη|W

(
Wi, V

(m,s)
i ; ξ̂

(s)
)
; ξ̂

(s+1)
)
= 0.

14For simplicity we consider the case where η
(1,s)
i , ..., η

(M,s)
i are independent draws.

15Note that in our quantile model some of the moment restrictions involve derivatives of “check” functions,
which are not smooth. This is however not central to the discussion that follows, as it does not affect the
form of the asymptotic variance.
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Expanding around ξ̂, we obtain:

A
(
ξ̂
(s+1) − ξ̂

)
+B

(
ξ̂
(s) − ξ̂

)
+ ε(s) = op

(
N− 1

2

)
, (B2)

where:

A ≡ ∂

∂ξ′

∣∣∣∣∣
ξ

E
[
Ψi

(
Qη|W

(
Wi, Vi; ξ

)
; ξ
)]

=
∂

∂ξ′

∣∣∣∣∣
ξ

E [Ψi (ηi; ξ)] ,

B ≡ ∂

∂ξ′

∣∣∣∣∣
ξ

E
[
Ψi

(
Qη|W (Wi, Vi; ξ) ; ξ

)]
=

∂

∂ξ′

∣∣∣∣∣
ξ

E

[∫
Ψi

(
η; ξ
)
f (η|Wi; ξ) dη

]
,

and:

ε(s) ≡ 1

NM

N∑

i=1

M∑

m=1

Ψi

(
Qη|W

(
Wi, V

(m,s)
i ; ξ

)
; ξ
)
.

Note that:

A+B =
∂

∂ξ′

∣∣∣∣∣
ξ

E

[∫
Ψi(η; ξ)f(η|Wi; ξ)dη

]
.

The identification condition for the method-of-moments problem thus requires A + B < 0, so

(−A)−1B < I. This implies that the autoregressive process
√
N
(
ξ̂
(s) − ξ̂

)
is asymptotically stable.

Conditionally on almost every W -sequence,
√
N
(
ξ̂
(s) − ξ̂

)
is a stable Gaussian AR(1) process. We

thus have:
√
N
(
ξ̂
(s) − ξ̂

)
=

∞∑

k=0

(
−A−1B

)k (−A−1
)√

Nε(s−1−k) + op(1). (B3)

Moreover,
√
Nε(s) are asymptotically i.i.d. normal with zero mean and variance Σ/M , where:

Σ = E

[
Ψi

(
ηi; ξ

)
Ψi

(
ηi; ξ

)′]
.

Hence, conditionally on almost every W -sequence:

√
N
(
ξ̂
(s) − ξ̂

)
d→ N (0,VM ) ,

where:

VM =
∞∑

k=0

(
−A−1B

)k (−A−1
) Σ

M

(
−A−1

)′ ((−A−1B
)k)′

.

Note that VM can be recovered from the following matrix equation:

A−1BVMB
′(A−1)′ = VM −A−1 Σ

M
(A−1)′,

which can be easily solved in vector form.
Finally, unconditionally we have by asymptotic independence:

√
N
(
ξ̂
(s) − ξ

)
=

√
N
(
ξ̂
(s) − ξ̂

)
+
√
N
(
ξ̂ − ξ

)
d→ N (0,V + VM ) ,

where V is the asymptotic variance of
√
N
(
ξ̂ − ξ

)
; that is:

V = (A+B)−1Ω((A+B)−1)′,

where Ω = E

[(∫
Ψi(η; ξ)f(η|Wi; ξ)dη

) (∫
Ψi(η; ξ)f(η|Wi; ξ)dη

)′]
.
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B.2 Nonparametric consistency

Let ξ(τ) =
(
θ(τ)′, δ(τ)′

)′
, and let ϕi (ξ(·), τ) be the (K1 +K2)× 1 moment vector that corresponds

to the integrated moment restrictions (31)-(32). Let ‖·‖ denote the Euclidean norm on R
K1+K2 ,

and let ‖ξ(·)‖∞ = supτ∈(0,1) ‖ξ(τ)‖ denote the associated uniform norm.
Let K = K1 + K2. The space HK of functions ξ(·) contains differentiable functions whose

first derivatives (component-wise) are bounded and Lipschitz on (0, 1). Moreover, there exists
a c such that, for all τ1 < τ2 and with probability one, Wit(ηi)

′ (θ(τ2)− θ(τ1)) ≥ c(τ2 − τ1) and
Z ′
i(δ(τ2)−δ(τ1)) ≥ c(τ2−τ1). This last requirement imposes strict monotonicity of the conditional

quantile functions. These assumptions guarantee that the implied likelihood functions and posterior
density of the individual effects are bounded from above and away from zero. Finally, all functions
ξ(·) ∈ HK satisfy a location restriction as in Assumption 4 (iii).

To every function ξ(·) ∈ HK we associate an interpolating spline πLξ(·) ∈ HKL. We use
piecewise-linear splines on (τ1, ..., τL), as in Subsection 4.1. To simplify the analysis, we consider
the case where quantile functions are constant on the tail intervals, so πLξ(τ) = ξ(τ1) for τ ∈ (0, τ1),
and πLξ(τ) = ξ(τL) for τ ∈ (τL, 1). Moreover, the minimum and maximum of L|τ ℓ+1 − τ ℓ| are
asymptotically bounded away from zero and infinity. As a result, ‖ξ(·)− πLξ(·)‖∞ = O(

√
K/L),

which we assume to tend to zero asymptotically.
Let us define:

QK (ξ(·)) =
∫ 1

0
‖E [ϕi (ξ(·), τ)]‖2 dτ,

and

Q̂KL (ξ(·)) = 1

L

L∑

ℓ=1

∥∥∥∥∥
1

N

N∑

i=1

ϕi (πLξ(·), τ ℓ)
∥∥∥∥∥

2

.

We make the following high-level assumptions, which we will discuss below.

Assumption B1.

(i) (identification) For all ǫ > 0 there is a c > 0 such that, for all K1,K2, L:

infξ(·)∈HK ,‖ξ(·)−ξ(·)‖
∞
>ǫQK (ξ(·)) > QK

(
ξ(·)
)
+ c.

(ii) (uniform convergence) As N,K1,K2, L tend to infinity:

supξ(·)∈HK

∣∣∣Q̂KL (ξ(·))−QK (ξ(·))
∣∣∣ = op(1).

Proposition B1. (nonparametric consistency)
Under Assumption B1, ξ̂(·) is uniformly consistent for ξ(·) in the sense that (46) holds.

Proof. Let ξ̃(·) ∈ HK such that ξ̂(·) = πLξ̃(·). We have
∥∥∥ξ̃(·)− ξ̂(·)

∥∥∥
∞

= op(1).

By definition of ξ̂ we have: Q̂KL

(
ξ̂(·)
)
≤ Q̂KL

(
ξ(·)
)
. Let ǫ > 0. By Assumption B1 (ii):

QK

(
ξ̃(·)
)
≤ QK

(
ξ(·)
)
+ op(1),

so, by Assumption B1 (i),
∥∥∥ξ̃(·)− ξ(·)

∥∥∥
∞

≤ ǫ with probability approaching one. This shows (46).
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Discussion of Assumption B1 (i). To provide intuition on the identification condition in
Assumption B1 (i), consider the case where the posterior density f(η|Yi, Xi) is known. Consider the
last K2 elements of ϕi, the argument for the first K1 elements being similar. Showing Assumption
B1 (i) requires bounding from below:

∆ ≡
∫ 1

0

∥∥E
[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]∥∥2 −
∥∥E
[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]∥∥2 dτ.

Expanding yields:

E
[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]
= E

[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]

−E
[
ZiZ

′
if (Ai(τ ; δ)|Yi, Xi)

] (
δ(τ)− δ(τ)

)
,

where Ai(τ ; δ) lies between Z
′
iδ(τ) and Z

′
iδ(τ). Now, E

[
Zi

(
τ − F

(
Z ′
iδ(τ)|Yi, Xi

))]
= o(1), provided

the remainder Rη tends to zero sufficiently fast as K2 increases. Moreover, if f(η|Yi, Xi) is bounded
away from zero (as well as from above), and if the eigenvalues of the Gram matrix E [ZiZ

′
i] are

bounded away from zero (as well as from above), then there exists a constant µ > 0 such that:

∥∥E
[
ZiZ

′
if (Ai(τ ; δ)|Yi, Xi)

] (
δ(τ)− δ(τ)

)∥∥2 ≥ µ
∥∥δ(τ)− δ(τ)

∥∥2 .

Finally, suppose
∥∥δ(·)− δ(·)

∥∥
∞
> ǫ. Then by continuity of δ(·) − δ(·) there exists a non-empty

interval (τ1, τ2) such that
∥∥δ(τ)− δ(τ)

∥∥ > ǫ for τ ∈ (τ1, τ2). Hence ∆ > µǫ2|τ2 − τ1|+ o(1).
In the panel quantile model considered in this paper f(η|Yi, Xi; ξ(·)) depends on the unknown

function ξ(·) = (θ(·)′, δ(·)′)′. As we pointed out in Subsection 2.4, identification then depends on
high-level conditions such as operator injectivity. Here we do not provide primitive conditions for
Assumption B1 (i) to hold in this case.

Discussion of Assumption B1 (ii). The uniform convergence condition in Assumption B1
(ii) will hold if:

A ≡ supξ(·)∈HK

∣∣∣∣∣∣
1

L

L∑

ℓ=1

∥∥∥∥∥
1

N

N∑

i=1

ϕi (πLξ(·), τ ℓ)
∥∥∥∥∥

2

− 1

L

L∑

ℓ=1

‖E [ϕi (πLξ(·), τ ℓ)]‖2
∣∣∣∣∣∣
= op(1),

B ≡ supξ(·)∈HK

∣∣∣∣∣
1

L

L∑

ℓ=1

‖E [ϕi (πLξ(·), τ ℓ)]‖2 −
1

L

L∑

ℓ=1

‖E [ϕi (ξ(·), τ ℓ)]‖2
∣∣∣∣∣ = o(1),

C ≡ supξ(·)∈HK

∣∣∣∣∣
1

L

L∑

ℓ=1

‖E [ϕi (ξ(·), τ ℓ)]‖2 −
∫ 1

0
‖E [ϕi (ξ(·), τ)]‖2 dτ

∣∣∣∣∣ = o(1).

The A quantity involves the difference between the empirical and population objective functions
of the approximating parametric model. In the second term in B, the posterior density of individual
effects depends on the entire function ξ(·), as opposed to its spline approximation πLξ(·). Lastly,
the second term in C involves an integral on the unit interval, which needs to be compared to an
average on the grid of τ ℓ’s.

A,B,C can be bounded by first establishing that ϕi is Lipschitz. Specifically, that there exist
constants C1 > 0, C2 > 0, ν > 0 such that, for all ξ1(·), ξ2(·) in HKL and τ1, τ2 in (0, 1):

‖ϕi (ξ2(·), τ2)− ϕi (ξ1(·), τ1)‖ ≤ C1

√
K ‖ξ2(·)− ξ1(·)‖ν∞ + C2

√
K|τ2 − τ1|. (B4)

Consider the first K1 elements of ϕi (the last K2 elements having a similar structure):

∫ T∑

t=1

Wit(η)ψτ (Yit −Wit(η)
′θ(τ))f(η|Yi, Xi;πLξ(·))dη.
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One possibility to establish (B4) is to assume that η 7→ Wit(η)
′θ(τ) is invertible almost surely16

and that its inverse is Lipschitz in θ(τ), and then to use the expression of f(η|Yi, Xi;πLξ(·)), which
involves the piecewise-linear expressions (47) and (48).

The πLξ(·) belong to a compact KL-dimensional space. Using (B4), it can be shown that
A = op(1) provided K/Lν tends to zero and KL/N tends to zero. The latter condition arises
as πLξ(·) is finite-dimensional, with dimension KL. Wei and Carroll (2009) establish this result
formally for a related model, in a case where K = O(1).

Next, extending (B4) to hold for ξ1(·) and ξ2(·) in HK , and using that ‖ξ(·)− πLξ(·)‖∞ = o(1),
yields B = o(1) provided K/L tends to zero sufficiently fast. Lastly, again using (B4) but now for
ξ1(·) = ξ2(·), and using that K/L2 = o(1), yields C = o(1).

C Monte Carlo illustration

The simulated model is as follows:

Yit = β0 (Uit) + β1 (Uit)X1it + β2 (Uit)X2it + γ (Uit) ηi,

where X1it and X2it follow independent χ2
1 distributions, and where Uit are i.i.d., uniform on the

unit interval. Individual effects are generated as

ηi = δ0 (Vi) + δ1 (Vi)X1i + δ2 (Vi)X2i,

where Vi is i.i.d. uniform on (0, 1), independent of everything else, and where X1i and X2i denote
individual averages. Lastly, βj (τ) and δj (τ) are defined on a set of L = 11 knots; see top row of
Table D1. Here, as in the empirical analysis, we use linear splines to construct the approximating
model. We also use the exponential modelling described in Appendix A for the extreme intervals.
Lastly, we use the correct number of knots (L = 11).17

The top panel in Table D1 shows the estimates of β0(τ ℓ), β1(τ ℓ), β2(τ ℓ), and γ(τ ℓ), across
100 simulated datasets with N = 1000 and T = 3. We report the population values of the
parameters, and means and standard deviations across simulations. The results show moderate
finite-sample biases, and relatively precise estimates, even at the extreme knots. We also observe
larger biases for γ(·) and the constant coefficient. The bottom panel in Table D1 shows the estimates
of δ0(τ ℓ), δ1(τ ℓ), and δ2(τ ℓ). In this case we observe somewhat larger standard errors in the tails.
Nevertheless, biases throughout the distribution are moderate. Together, these results suggest
reasonable finite-sample performance of our estimator.

D Nonparametric identification: informal sketch of the

arguments

We consider two setups in turn: the static model of Subsection 2.1, and the autoregressive first-
order Markov model with exogenous regressors of Subsection 2.2. In both cases we provide a brief
informal sketch of the identification argument.

16Such a condition requires that the conditional quantile function of outcomes be monotone in ηi.
17There are two small differences with the algorithm used in the empirical application in Section 4. Here

we set λ1 = λη1 = 1− τ1 and λL = ληL = τL, and we do not estimate these parameters. In addition, we use a
different, independent Metropolis-Hastings method to generate the η draws in the stochastic EM algorithm.
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Static model. Consider the static model of Subsection 2.1. For simplicity we leave the con-
ditioning on covariates Xi implicit. Following Hu and Schennach (2008), we define several linear
operators, which act on spaces of bounded functions. Let y2 be one element in the support of Yi2.
To a function h : y1 7→ h(y1) we associate:

LY1,ηh : η 7→
∫
fY1,η(y1, η)h(y1)dy1,

and:

LY1,(y2),Y3
h : y3 7→

∫
fY1,Y2,Y3

(y1, y2, y3)h(y1)dy1.

To a function g : η 7→ g(η) we associate:

∆(y2)|ηg : η 7→ fY2|η(y2|η)g(η),

and:

LY3|ηg : y3 7→
∫
fY3|η(y3|η)g(η)dη.

We have, for all functions h : y1 7→ h(y1), and provided integrals can be switched:

[LY1,(y2),Y3
h](y3) =

∫
fY1,Y2,Y3

(y1, y2, y3)h(y1)dy1

=

∫ [∫
fY3|η(y3|η)fY2|η(y2|η)fY1,η(y1, η)dη

]
h(y1)dy1

=

∫
fY3|η(y3|η)fY2|η(y2|η)

[∫
fY1,η(y1, η)h(y1)dy1

]
dη

= [LY3|η∆(y2)|ηLY1,ηh](y3).

We thus have:
LY1,(y2),Y3

= LY3|η∆(y2)|ηLY1,η, y2 − a.e. (D5)

This yields a joint diagonalization system of operators, because, under suitable invertibility (i.e.,
injectivity) conditions, (D5) implies:

LY1,(y2),Y3
L−1
Y1,(ỹ2),Y3

= LY3|η∆(y2)|η∆
−1
(ỹ2)|η

L−1
Y3|η

, (y2, ỹ2)− a.e. (D6)

The conditions of Hu and Schennach (2008)’s theorem then guarantee uniqueness of the solutions
to (D6).

Dynamic autoregressive model. Let us now consider the dynamic autoregressive model of
Subsection 2.2. As in Hu and Shum (2012) we define several operators. Let (y2, y3) be an element
in the support of (Yi2, Yi3). To a function h : y1 7→ h(y1) we associate:

LY1,(y2),ηh : η 7→
∫
fY1,Y2,η(y1, y2, η)h(y1)dy1,

and

LY1,(y2),(y3),Y4
h : y4 7→

∫
fY1,Y2,Y3,Y4

(y1, y2, y3, y4)h(y1)dy1.

To a function g : η 7→ g(η) we associate:

∆(y3)|(y2),ηg : η 7→ fY3|Y2,η(y3|y2, η)g(η),
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and

LY4|(y3),ηg : y4 7→
∫
fY4|(y3),η(y4|y3, η)g(η)dη.

As above we verify that:

LY1,(y2),(y3),Y4
= LY4|(y3),η∆(y3)|(y2),ηLY1,(y2),η, (y2, y3)− a.e. (D7)

Hence, under suitable invertibility conditions:

LY1,(y2),(y3),Y4
L−1
Y1,(ỹ2),(ỹ3),Y4

= LY4|(y3),η∆(y3)|(y2),η∆
−1
(ỹ3)|(ỹ2),η

L−1
Y4|(ỹ3),η

, (y2, ỹ2, y3, ỹ3)− a.e. (D8)

Hu and Shum (2012), in particular in their Lemma 3, provide conditions for uniqueness of the
solutions to (D8). Their conditions are closely related to the ones in Hu and Schennach (2008); see
Assumption 4 in Subsection 2.4.
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Table D1: Monte Carlo results

τ 1
12

2
12

3
12

4
12

5
12

6
12

7
12

8
12

9
12

10
12

11
12

Quantile parameters: outcomes

Population values
Cst -.719 -.483 -.330 -.208 -.101 .000 .101 .208 .330 .483 .719
X1 .281 .517 .670 .792 .899 1.00 1.10 1.21 1.33 1.48 1.72
X2 .281 .517 .670 .792 .899 1.00 1.10 1.21 1.33 1.48 1.72
η .640 .759 .835 .896 .950 1.00 1.05 1.10 1.16 1.24 1.36

Monte Carlo means
Cst -.993 -.592 -.398 -.253 -.126 -.009 .120 .264 .412 .604 .970
X1 .300 .507 .673 .795 .902 1.01 1.12 1.22 1.36 1.52 1.70
X2 .294 .497 .680 .793 .893 1.00 1.11 1.22 1.35 1.52 1.71
η .727 .792 .857 .912 .959 1.00 1.04 1.08 1.13 1.21 1.29

Monte Carlo standard deviations
Cst .216 .171 .154 .135 .117 .106 .098 .104 .143 .211 .319
X1 .081 .100 .086 .078 .075 .068 .075 .089 .099 .103 .086
X2 .075 .106 .075 .083 .086 .077 .073 .069 .084 .090 .088
η .073 .054 .047 .040 .036 .031 .030 .036 .045 .061 .091

Quantile parameters: individual effects

Population values
Cst 2.14 2.26 2.34 2.40 2.44 2.50 2.55 2.60 2.66 2.74 2.86
X1 .140 .259 .335 .396 .450 .500 .551 .604 .665 .741 .860
X2 .140 .259 .335 .396 .450 .500 .551 .604 .665 .741 .860

Monte Carlo means
Cst 1.94 2.21 2.32 2.39 2.44 2.49 2.53 2.59 2.66 2.78 3.06
X1 .162 .259 .336 .394 .447 .495 .538 .586 .644 .724 .837
X2 .137 .240 .324 .394 .453 .508 .562 .617 .682 .767 .877

Monte Carlo standard deviations
Cst .240 .155 .137 .134 .131 .127 .123 .124 .141 .178 .261
X1 .160 .123 .112 .109 .109 .111 .116 .112 .121 .140 .189
X2 .200 .151 .123 .110 .109 .113 .115 .116 .123 .143 .195

Notes: N = 1000, T = 3, 100 simulations (100 iterations of the sequential algorithm, 50 draws per

individual in each simulation.)
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