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1 Introduction

Asset prices are generally non-stationarity, which explains why the majority of em-

pirical studies work with financial returns. Given that those returns can be both positive

and negative, researchers have mostly considered distributions with support on the entire

real line. However, there are other important financial applications where the original

data is always positive but stationary in levels. Interest rates and volatility measures are

perhaps the two most prominent examples. Still, an important feature of those financial

time series is a slow reversion to their long run mean. Many discrete and continuous

time models have been proposed to capture this strong persistence. An increasingly

popular example is the discrete-time Multiplicative Error Model (MEM) proposed by

Engle (2002), which has been applied not just to volatility modelling but also to trading

volumes and durations (see Brownlees, Cipollini, and Gallo, 2012, for a recent review).

In this model, a positive random variable is treated as the product of a time varying,

recursive mean times a positive random error with unit conditional mean. The MEM

literature has generally neglected the distribution of this multiplicative random error be-

cause its main goal has been prediction. In this regard, Engle and Gallo (2006) show on

the basis of earlier results by Gourieroux, Monfort, and Trognon (1984) that the mean

parameters can be consistently estimated assuming a Gamma distribution for the error

term even when the true distribution is not Gamma, as long as the conditional mean is

correctly specified. Unfortunately, this pseudo-likelihood approach is insufficient when

the interest goes beyond the first conditional moment.

In this paper, we study in detail one relevant example for which the entire conditional

distribution matters. The introduction of the new VIX index by the Chicago Board

Options Exchange (CBOE) in 2003 meant that volatility became widely regarded as an

asset class on its own. As is well known, VIX captures the volatility of the Standard &

Poor’s 500 (S&P500) over the next month implicit in stock index option prices, and for

that reason it has become a widely accepted measure of stock volatility and a market

fear gauge. In addition, since March 26, 2004 it is possible to directly invest in volatility

through futures contracts on the VIX negotiated at the CBOE Futures Exchange (CFE).

More recently, several volatility related Exchange Traded Notes (ETNs) have provided

investors with equity-like long and short exposure to constant maturity futures on the
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VIX, and even dynamic combinations of long-short exposures to different maturities

(see Rhoads, 2011). By 2013, there were already about 30 ETNs with a market cap of

around $3 billion and a trading volume on some of them of close to $5 billion per day

(see Alexander and Korovilas, 2013, for further details).

This surge in interest on volatility futures ETNs might seem surprising on the basis

of the evolution of the iPath S&P 500 VIX short term futures ETN (VXX), which,

introduced on January 29, 2009, was the first VIX related equity-like ETN. The VXX,

which is a 1-month constant-maturity VIX futures tracker, yielded an 8.6% profit during

its first month of existence, but from then on until January 2013 it experienced losses of

close to 100% due to the fall in volatility over this period. Its poor performance led some

commentators to question the potential benefits of VIX futures ETNs (see e.g. Dizard,

2012). However, a short position on a 1-month constant maturity VIX futures has been

available since December 2010 through the XIV ETN. Not surprisingly, by January 2013

this inverse ETN had yielded 95% accumulated profits, which confirms that ETNs might

give rise to significant but risky returns. The main problem, though, is how to choose

the most appropriate investment strategy using only the information available at each

point in time.

In assessing trading strategies involving those financial instruments, risk averse in-

vestors must take into account not only the expected value of the resulting payoffs,

which can be obtained from the mean forecasts generated by the MEM, but also some

suitable measures of the risks involved, which necessarily depend on other features of

the conditional distribution. In this sense, we develop a comprehensive dynamic asset

allocation framework to invest in VIX futures ETNs, which may avoid the losses asso-

ciated to existing ETNs. Specifically, we first model the mean-reverting features of the

VIX with a component MEM specification analogous to the Garch model proposed by

Engle and Lee (1999). As we will see, our slowly mean reverting, discrete time dynamic

specification captures the main features of the VIX observed by Menćıa and Sentana

(2013).

Then, we augment this conditional mean model with a flexible functional form for the

conditional distribution of the VIX given its past history in order to adequately capture

the risks involved. In particular, we make use of a semi-nonparametric expansion of the

Gamma density (Gamma SNP or GSNP for short). SNP expansions were introduced by
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Gallant and Nychka (1987) for nonparametric estimation purposes as a way to ensure by

construction the positivity of the resulting density (see also Fenton and Gallant, 1996;

Gallant and Tauchen, 1999). In our case, though, we follow León, Menćıa, and Sentana

(2009) in treating the SNP distribution parametrically as if it reflected the actual data

generating process instead of an approximating kernel. Interestingly, we can show that

the GSNP distribution not only adds flexibility to the Gamma distribution, but it also

retains its analytical tractability. In particular, we obtain closed-form expressions for

its moments and analyse its flexibility by studying the range of coefficients of variation,

skewness and kurtosis that it can generate. We also compare the GSNP expansion with

a direct Laguerre expansion, which only ensures the positivity of the resulting density

with complex parametric restrictions (see e.g. Amengual, Fiorentini, and Sentana, 2013).

Next, we employ derivative valuation methods to transform our time series model for

the VIX into a tractable structural model for the excess returns of the VIX futures ETNs.

In this regard, it is important to remember that since the VIX index is a risk neutral

volatility forecast, not a directly traded asset, there is no cost of carry relationship

between the price of the futures and the VIX (see Grünbichler and Longstaff, 1996,

for more details). There is no convenience yield either, as in the case of futures on

commodities. Therefore, absent any other market information, VIX derivatives must be

priced according to some model for the risk neutral evolution of the VIX. This situation

is similar, but not identical, to term structure models. For that reason, we specify a

stochastic discount factor (SDF) with which we derive an equivalent risk-neutral measure

that allows us to obtain closed-form expressions for the prices of VIX futures ETNs.

We use our theoretical framework in an empirical application that compares feasible

dynamic investment strategies involving short and mid-term VIX futures indices. In

particular, we develop an asset allocation strategy that maximises the conditional Sharpe

ratio of a portfolio of those two futures indices. We compare our strategy with buy and

hold positions on existing ETNs, some of which are already dynamic combinations of the

VIX futures indices, as well as other strategies that have been previously proposed in the

literature. Finally, we conduct robustness checks to assess the sensitivity of our results to

the evaluation criterion, and compare our model with two alternative approaches: (i) a

reduced form model and (ii) the autoregressive Gamma process proposed by Gourieroux

and Jasiak (2006).
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The rest of the paper is organised as follows. In the next section, we study the

statistical properties of the GSNP density and compare them with those of Laguerre

expansions. In Section 3, we describe our pricing framework, relate the real and risk-

neutral measures, and obtain futures prices. Section 4 presents the empirical application.

Finally, we conclude in Section 5. Proofs and auxiliary results can be found in the

appendices.

2 Gamma density expansions

2.1 Density definition

Consider the Gamma distribution, whose probability density function (pdf) can be

expressed as

fG(x, ν, ψ) =
1

Γ(ν)ψν
xν−1 exp(−x/ψ), (1)

where Γ(·) denotes the Gamma function, ν are the degrees of freedom and ψ the scale

parameter. For the sake of brevity, we will denote this density as G(ν, ψ). Following

Gallant and Nychka (1987), we consider SNP expansions of this density (GSNP for

short):

fGSNP (x, ν, ψ, δ) = fG(x, ν, ψ)

[
m∑
j=0

δj

(
x

ψ

)j]2
1

d
, (2)

where δ = (δ0, δ1, · · · , δm)′, and d is a constant that ensures that the density integrates

to 1.

In order to interpret (2), it is convenient to expand the squared term. This yields

the following result.

Proposition 1 Let x be a GSNPm(ν, ψ, δ) variable with density fGSNP (x, ν, ψ, δ) given

by (2). Then

fGSNP (x, ν, ψ, δ) = fG(x, ν, ψ)
1

d

2m∑
j=0

γj(δ)

(
x

ψ

)j
, (3)

=
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
fG(x, ν + j, ψ), (4)

where

γj(δ) =

min{j,m}∑
k=max{j−m,0}

δjδj−k.
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Using Proposition 1, it is straightforward to show that the constant of integration

can be expressed as

d =
2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
.

But since (2) is homogeneous of degree zero in δ, there is a scale indeterminacy that

we must solve by imposing a single normalising restriction on these parameters, such

as δ0 = 1, or preferably δ′δ = 1, which we can ensure by working with hyperspherical

coordinates.1

2.2 Moments

From Proposition 1, we can interpret the GSNP distribution as a mixture of 2m+ 1

Gamma distributions.2 We can exploit the mixture interpretation together with the

results in Appendix A to write the moment generating function of a GSNP variable x as

E [exp(nx)] =
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
(1− ψn)−(ν+j).

Similarly, its characteristic function can be expressed as

ψGSNP (iτ) =
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
(1− iψn)−(ν+j),

where i is the usual imaginary unit. As a result, we can write the moments of x as

E(xn) =
ψn

d

2m∑
j=0

γj(δ)
Γ(ν + j + n)

Γ(ν)
.

Hence, it is straightforward to show that the condition

ψ = d

[
2m∑
j=0

γj(δ)
Γ(ν + j + 1)

Γ(ν)

]−1

(5)

ensures that E(x) = 1. Since we plan to use the GSNP distribution to model the residual

in MEM models, we assume in what follows that (5) holds to fix its scale.

1In particular, ν0 = cos θ1; νi = (
∏i

k=1 sin θk) cos θi+1 for 0 < i ≤ m − 1; and νm =
∏m

k=1 sin θk,
where θk ∈ [0, π), for 1 < k ≤ m− 1, and θm ∈ [0, 2π).

2This interpretation is consistent with Bowers (1966), who expands general density functions for
positive random variables using sums of Gamma densities. Interestingly, the mixing variable of the
equivalent mixture might have some negative weights, as in Steutel (1967) and Bartholomew (1969).
However, this causes no inconsistencies because by construction the GSNP density is positive for all
values of the parameters.
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2.3 Relationship with Laguerre expansions

The Gamma distribution can also be used in place of the normal distribution as the

parent distribution in a Gram Charlier expansion. In particular, if we consider a non-

negative random variable y, under certain assumptions its density function h(y) can be

expressed as the product of a Gamma density times an infinite series of polynomials,

h(y) = fG(y, ν, ψ̄)
∞∑
j=0

cjPj(y, ν, ψ̄), (6)

where Pj(y, ν, ψ̄) denotes the polynomial of order j that forms an orthonormal ba-

sis with respect to the Gamma distribution (see Johnson, Kotz, and Balakrishnan,

1994).3 Following Bontemps and Meddahi (2012), we can express those polynomials

as P0(y, ν, ψ̄) = 1,

P1(y, ν, ψ̄) =
ψ̄−1y − ν√

ν
,

P2(y, ν, ψ̄) =
[(ψ̄−1y)2 − 2(ν + 1)ψ̄−1y + ν(ν + 1)]√

2ν(ν + 1)
,

and in general

Pn(y, ν, ψ̄) =
(ψ̄−1y − ν − 2n− 2)Pn−1(y, ν, ψ̄)−

√
(n− 1)(ν + n− 2)Pn−2(y, ν, ψ̄)√

n(ν + n− 1)
.

Given that

Pn(y, ν, ψ̄) = (−1)nLn(ψ̄−1y, ν − 1)

√
Γ(ν)n!

Γ(ν + n)
, (7)

where Ln(·, ·) is the generalised Laguerre polynomial of order n, we will refer to (6) as the

Laguerre expansion of the density of y. The orthonormal properties of these polynomials

imply that we can obtain the coefficients of the expansion as

cn =

∫ ∞
0

Pn(y, ν, ψ̄)h(y)dy. (8)

Importantly, we can interpret the GSNP distribution as a finite order Laguerre expansion

by reordering the terms in (3) appropriately. We can formally express this relationship

as follows.

3Consider a random variable x ∼ G(ν, κ). Then, E[Pj(x, ν, κ)] = 0, V [Pj(x, ν, κ)] = 1 and
E[Pk(x, ν, κ)Pj(x, ν, κ)] = 0, for all j, k ≥ 0 and j 6= k.
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Proposition 2 Let x be a GSNPm(ν, ψ, δ) variable with density fGSNP (x, ν, ψ, δ) given

by (2). Then, this density can be expressed as a Laguerre expansion (6) of order 2m with

coefficients

cn =
(−1)n

d

√
Γ(ν)n!

Γ(ν + n)

n∑
i=0

2m∑
j=0

(−1)i

i!

(
n+ ν − 1

n− i

)
Γ(ν + i+ j)ψi

Γ(ν)ψ̄i
γj(δ)

for n = 0, · · · , 2m.

2.4 Comparison with other distributions

Given that the GSNP distribution is a finite order Laguerre expansion, it is natural

to consider a truncated Laguerre expansion by treating the c′js as free parameters,

h(x) = fG(x, ν, ν−1)

[
1 +

k∑
j=2

cjPj(x, ν, ν
−1)

]
, (9)

where we have imposed that c1 = 0 and ψ̄ = 1/ν so that this distribution has unit mean

too. Unfortunately, this approach does not ensure the non-negativity of the resulting

density function, a property that is satisfied by construction by the GSNP distribution.4

In this sense, Amengual, Fiorentini, and Sentana (2013) have studied the parametric

restrictions that the cj coefficients must satisfy to ensure positivity in second and third-

order Laguerre expansions.

Since both the GSNP distribution and the truncated Laguerre expansion have unit

mean, one may ask which of them can generate a wider range of higher order moments.

We address this question by comparing the coefficients of variation, skewness and kurtosis

of the two distributions, which we will denote as τ , φ and λ, respectively. In particular,

we compare (9) for k = 3 with a GSNP distribution of order m = 2 since both have

the same number of free parameters. Figures 1a to 1c show the regions generated by

both distributions on the τ − φ, τ − λ and φ − λ spaces. We have computed these

regions using numerical methods.5 We also include as a reference the values generated

by the Gamma distribution, which are available in closed form,6 and the lower bounds

4The GSNP satisfies sufficient conditions for positivity. See Meddahi (2001) and León, Menćıa, and
Sentana (2009) for a discussion of necessary and sufficient conditions.

5For the GSNP, we simulate values for δ in the unit sphere for a dense grid of values for ν, and
compute the envelope of the coefficients on the τ − φ, τ − κ and φ − κ spaces. For the Laguerre
expansion we obtain the envelopes by combining a dense grid for ν with another dense grid for the
frontier, as parametrised by Amengual, Fiorentini, and Sentana (2013).

6We can use the results in Appendix A to show that in the case of the Gamma those coefficients are
τG =

√
1/ν, φG =

√
4/ν and κG = 3 + 6ν−1.
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that no properly-defined density can exceed (see Appendix B). As can be observed,

both distributions provide similar flexibility for coefficients of variation smaller than

0.5. For larger coefficients of variation, the GSNP turns out to be superior in terms

of feasible values of skewness and kurtosis. Interestingly, the flexibility of the Laguerre

distribution relative to the Gamma distribution decreases drastically for coefficients of

variation larger than around 1.8. In contrast, we do not observe this phenomenon in the

GSNP distribution. In terms of skewness and kurtosis, the Laguerre expansion remains

less flexible than the GSNP, but the differences are smaller.

Another way of adding flexibility would be to shift the expanded distribution by a

constant amount ∆. This shift would affect τ , but not φ or λ. We shall revisit this issue

in the empirical application.

3 Component MEM applied to the valuation of volatil-

ity futures

3.1 Real measure

Consider a non-traded volatility index whose value at time t is Vt > 0. We model

this variable using the Multiplicative Error Model (MEM) proposed by Engle (2002).

Specifically, we model the volatility index under the real measure P as

Vt = µt(θ)εt, µt(θ) = E(Vt|It−1), (10)

where It−1 denotes the information observed at t − 1, θ is a vector of parameters and

εt is a unit mean iid non-negative variable. Engle and Gallo (2006) show that we can

obtain a consistent estimator of θ using the Gamma distribution even though the true

distribution is not Gamma as long as µt(θ) is correctly specified. However, in our case we

are also interested in higher order moments because we want to study asset allocation

strategies. Therefore, we will assume that εt follows a GSNPm(ν, ψ, δ) as a natural

flexible generalisation of the Gamma distribution. As we mentioned before, we will use

the scale restriction (5) to ensure that εt has unit mean.

Figure 2a shows that historically the VIX has mean reverted, but experiencing highly

persistent swings. Figure 2b shows the more recent evolution of the VIX together with

that of the CBOE S&P500 3-month volatility index, or VXV for short. Both series dis-

play similar mean reverting features, which is natural given that they measure volatility
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on the same variable at different horizons, but they do not coincide. For example, the

VIX reached a maximum value of 80.86 on November 20, 2008, which was around 10

points higher than the VXV. As highlighted by Schwert (2011), this indicates that during

the financial crisis the market did not expect the volatility of the S&P500 to remain at

such high levels forever.

In an earlier paper (Menćıa and Sentana, 2013), we modelled the VIX index in a

continuous time framework, finding that it is crucial to allow for mean reversion to a

time-varying long run mean, which in turn mean reverts more slowly. In this paper,

though, we prefer to use a discrete time model because it allows us to uncouple the

specification of the mean process from the shape of the conditional distribution. Thus,

we are able to easily modify the distribution while keeping the autocorrelation structure

of the model fixed.

In order to incorporate the aforementioned mean-reverting features in a discrete

time setting, we use the MEM analogue to the component GARCH model proposed

by Engle and Lee (1999). In particular, we model the conditional mean as the sum of

two components µt(θ) = ςt(θ) + st(θ), where ςt(θ) captures the slowly moving long run

mean, while st(θ) captures short-run oscillations around it. We parametrise the long run

component as

ςt(θ) = ω + ρςt−1(θ) + ϕ(Vt−1 − µt−1(θ)),

while

st(θ) = (α + β)st−1(θ) + α(Vt−1 − µt−1(θ)).

Hence, the short run term mean reverts to zero, while the long run term mean reverts

to ω. The unconditional mean implied by this model is E[µt(θ)] = ω/(1− ρ). Using the

results in Engle and Lee (1999), we can show that the n-period ahead forecast can be

easily obtained in closed form as E(Vt+n|It) = ςt+n|t(θ) + st+n|t(θ), where

ςt+n|t(θ) = ω
1

1− ρ
+ ρn−1

[
ςt+1(θ)− ω

1− ρ

]
,

st+n|t(θ) = (α + β)n−1st+1(θ).

As expected, if ρ > α + β then ςt+n|t(θ) is more persistent than st+n|t(θ). In addition,

notice that the convergence of E(Vt+n|It) to its long-run value can be non-monotonic.
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3.2 Risk-neutral measure

We solve the problem of pricing derivatives on Vt by defining a stochastic discount

factor with an exponentially affine form

Mt−1,t ∝ exp(−αεt). (11)

Such a specification corresponds to the Esscher transform used in insurance (see Esscher,

1932). In option pricing applications, this approach was pioneered by Gerber and Shiu

(1994), and has also been followed by Buhlman, Delbaen, Embrechts, and Shyraev (1996,

1998), Gourieroux and Monfort (2006a,b) and Bertholon, Monfort, and Pegoraro (2003)

among others. On this basis, we can easily characterise the risk-neutral measure as

follows.

Proposition 3 Assume that the volatility index Vt follows the process given by (10)

under the real measure P, where the distribution of εt is a GSNPm(ν, ψ, δ) and (5)

holds. Then, if the stochastic discount factor is defined by (11), under the equivalent risk-

neutral measure Q we will have that Vt = µt(θ)εt, where εt ∼Q iid GSNPm(ν, ψQ, δQ),

with ψQ = ψ/(1 + αψ) and δQi = δi(1 + αψ)i for i = 0, · · · ,m.

Hence, if we model µt(θ) as a Component-MEM process under P, the process under

Q will be another Component-MEM. However, the residual εQt will no longer have unit

mean since

EQ[εt] = κ =
ψ

d(1 + αψ)

2m∑
j=0

γj(δ
Q)

Γ(ν + j + 1)

Γ(ν)
(12)

will be generally different from 1. We can exploit this feature to extract from VIX futures

prices relevant economic information about the risk premia implicit in the CBOE market.

In order to price futures defined on Vt it is important to keep in mind that since Vt

is not a directly traded asset, there is no cost of carry relationship between the price of

the futures and Vt (see Grünbichler and Longstaff, 1996, for more details). Therefore,

absent any other market information, the price at time t of a futures contract maturing

at t+ n must be priced according to its risk-neutral expectation, i.e.

Ft,t+n = EQ(Vt+n|It). (13)

On this basis, we can obtain the following analytical formula for (13).
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Proposition 4 The price at time t of a future written on the volatility index Vt+n under

the risk-neutral measure defined in Proposition 3 can be written as

Ft,t+n = κEQ[ςt+n(θ) + st+n(θ)|It],

where

EQ
[
ςt+n(θ)
st+n(θ)

∣∣∣∣ It] = (I2 −A1)−1
[
I2 −An−1

1

]
A0 + An−1

1

[
ςt+1(θ)
st+1(θ)

]
,

I2 is the identity matrix of order 2, A0 = ( ω 0 )′ and

A1 =

[
ρ+ ϕ(κ − 1) ϕ(κ − 1)
α(κ − 1) ακ + β

]
.

Hence, the futures price is an affine function of the short and long term components

of the MEM process, whose coefficients depend on the time to maturity. Proposition 4

also shows that the change of measure not only affects the mean of the residual, but also

the term structure of the forecasts of Vt+n for n > 1.

4 Empirical application

4.1 Estimation

As we mentioned in the introduction, nowadays volatility is widely regarded as an

asset class on its own. For that reason, we apply our methodology to a relevant and

realistic asset allocation context in which we compare static and dynamic strategies that

invest in exchange traded notes (ETNs) tracking the S&P500 VIX short and mid term

futures indices. The short term index measures the return from a daily rolling long

position in the first and second VIX futures contracts that replicates the evolution of a

one-month constant-maturity VIX futures. In turn, the mid term index takes long posi-

tions in the fourth, fifth, sixth and seventh month VIX futures contracts (see Standard &

Poor’s, 2012, for more details). Figure 3 shows the evolution of the short and mid-term

indices. Both indices experienced large gains from the beginning of their history until

the peak of the financial crisis in the Autumn of 2008. From then on, though, they have

lost most of their value due to the reversion of the VIX to lower volatility levels. In

the same figure we also display the contrarian strategies that would be obtained if it

were possible to short the S&P500 VIX futures indices. As expected, those contrarian

strategies would yield losses of value in the first half of the sample, and substantial gains
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after volatility started to decrease. In practice, it is actually possible to obtain direct

and inverse exposure to both futures indices since they are a popular reference on which

many ETNs are constructed. For instance, the goal of the VXX and VXZ ETNs is to

mirror the short and mid term indices, respectively, while the XIV and ZIV ETNs repli-

cate inverse positions on them. Given that a comparison of the original futures indices

with those ETNs shows that the counterparty risk implicit in them is negligible, in what

follows we will ignore such tracking errors and directly model the S&P500 VIX futures

indices.

We will also model the VIX directly, and infer the distribution of the futures index

returns conditional on the values of this volatility index. In this way, we can exploit the

much larger historical information available on the VIX7 (see Figure 2a). Specifically,

let yt denote the two dimensional vector which contains the VIX futures index returns

at time t. Using the results from Section 3.2, we assume the following pricing structure,

yt = EQ(yt|Vt, It−1) + εt, (14)

where EQ(yt|Vt, It−1) denotes the expected value of the index returns at time t given

Vt (the VIX) and the information available at time t − 1, and εt the corresponding

pricing errors, which simply reflect the fact that no model will be able to fit actual

market futures prices perfectly. In addition, given that Bates (2000) and Eraker (2004)

convincingly argue that if an asset is mispriced at time t, then it is likely to be mispriced

at t+ 1, we assume that εt ∼ iid N(ρfεt−1,Σf ).

We obtain the model prices by exploiting the fact that the two futures index returns

are portfolios of nf VIX futures contracts maturing at T1, T2, · · ·Tnf
. Hence, we can

express the price of the ith element in yt as

EQ(yit|Vt, It−1) =

nf∑
j=1

ζi,Tj−tFt,Tj(θ),

where Ft,Tj(θ) are the model-based futures prices and the loadings ζi,Tj−t deterministi-

cally depend on the time to maturity Tj − t (see Standard & Poor’s, 2012, for further

details).

Under this setting, we can decompose the joint log-likelihood as

l(yt, Vt|It−1) = l(yt|Vt, It−1) + l(Vt|It−1), (15)

7Another advantage is that we could value other indices different from the ones used in the estimation.
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where l(yt|Vt, It−1) denotes the (pseudo) log-likelihood of the two futures index re-

turns given the contemporaneous value of the VIX and It−1, while l(Vt|It−1) denotes

the marginal likelihood of the VIX given It−1. We model l(Vt|It−1) by assuming that

Vt−∆ follows a Component-MEM process with a GSNPm(ν, ψ, δ) conditional distribu-

tion given It−1. We introduce the constant shift ∆ because the VIX cannot take values

close to zero as they would imply constant equity prices over one month for all the

constituents of the S&P500.8 Thus, we can obtain large gains in fit by assigning zero

probability to those events in which Vt < ∆.

We use daily VIX index data from December 11, 1990, until February 28, 2014.

Our data on the S&P 500 VIX short and mid-term futures indices goes from December

20, 2005 until the same final date as the VIX data. Table 1 compares the estimates

that we obtain with the Gamma distribution and a symmetrically normalised GSNP(2)

density in which we fix the scale of δ using hyperspherical coordinates. The parameters

of the conditional mean are similar for both distributions. This is reasonable given

that the Gamma distribution yields consistent estimates of the conditional mean under

misspecification (once again, see Engle and Gallo, 2006). However, a likelihood ratio

test shows that the additional shape parameters of the GSNP density provide hugely

significant gains. For that reason, in what follows we will focus on the GSNP density.

Table 1 shows that we obtain a negative and significant risk premium parameter with

the GSNP density. To analyse its implications, we use the results from Proposition 4 to

plot in Figure 4 the coefficients of the affine prediction formulas of the VIX at different

horizons under both the real and risk-neutral measures. We can observe that the loadings

on the short term factor decrease very quickly, whereas the long run component has a

strong effect even at very long horizons. In other words, the VIX mean-reverts more

slowly towards a higher mean under Q than under P. Thus, we can conclude that

it incorporates investors’ risk-aversion by introducing more harmful prospects for the

evolution of the VIX. Our results are consistent with the parameter estimates of the

continuous time model in Menćıa and Sentana (2013), and therefore confirm earlier

findings by Andersen and Bondarenko (2007), among others, who show that the VIX

almost uniformly exceeds realised volatility because investors are on average willing to

pay a sizeable premium to acquire a positive exposure to future equity-index volatility.

8The minimum historical end-of-day value of the VIX has been 9.31 on December 22, 1993.
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4.2 Asset allocation

In this section we study asset allocation strategies for investors seeking exposure to

the two VIX futures indices. Consider an investor whose wealth at t − 1 is At−1, and

denote by wt the 2 × 1 vector of portfolio weights chosen with information known at

t − 1. Then, the investor’s wealth at t will be At = At−1(1 + w′tyt), where w′tyt is the

return of the portfolio. We set
∑nf

j=1 |wit| = 1 to fix the leverage of the portfolio, which

implies that the investor allocates all her initial wealth in the two assets. Importantly,

we consider the sum of the absolute value of the weights instead of the sum of the

signed values because a short position is in practice a long position on the inverse ETN.

Subject to this scaling restriction, we consider an investor who chooses wt−1 to maximise

the conditional Sharpe Ratio (SR):

SR =
E(w′tyt|It−1)√
V (w′tyt|It−1)

. (16)

Unfortunately, the conditional distribution of yt given It−1 alone that appears in

(16) is not directly available in our setting. In contrast, we know the distribution of

yt conditional on Vt and It−1. For that reason, we compute the moments of any given

function g(·) of w′tyt via the law of iterated expectations as follows

E[g(w′tyt)|It−1] =

∫ ∞
∆

E[g(w′tyt)|Vt, It−1]f(Vt|It−1)dVt, (17)

where we exploit that

w′tyt ∼ N [ρfw
′
tεt−1 + w′tE

Q(yt|Vt, It−1),w′tΣfwt]

conditional on Vt and It−1 to obtain the expectation in the integrand.9 Importantly, (17)

confirms that the SR depends on the entire conditional distribution of the VIX given its

past history even though it only involves the first two moments of yt.

The parameters reported in Table 1 have been obtained using the whole sample. To

avoid any look-ahead bias, we consider a feasible allocation procedure which re-estimates

the parameters of the Component MEM - GSNP(2) distribution at each day in the sample

using prior historical data only. Thus, we rebalance our investment strategies each day

using feasible parameter estimates. In order to have sufficient data at the beginning of

the sample, we only consider trading days from January 2, 2008, until the end of the

sample. Nevertheless, our sample includes the bulk of the financial crisis.

9In practice, we compute the required integrals with numerical quadrature procedures.
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Figure 5a shows the accumulated value of the SR maximising strategy (GSNP-SR for

short) assuming that the initial wealth on January 2, 2008, was $100. The gains from

this strategy are vastly superior to those obtained from just investing in either the direct

or inverse indices. As we mentioned before, the original short and mid indices performed

better until December 2008, mainly because the VIX consistently grew during 2008.

However, as the VIX started to reverse to lower levels in 2009, the short and mid-term

indices rapidly lost value. In contrast, our dynamic strategy automatically rebalances

the portfolio to deal with mean reversion.

In Figure 5b we consider the strategies of two different ETNs that combine long and

short positions on the indices: XVIX and XVZ. The XVIX, launched by UBS, follows a

long-short static strategy that allocates −0.5 to the short term VIX futures index and

1 to the mid term index. Barclays XVZ follows a more sophisticated dynamic strategy

that rebalances the investment weights on the short and mid-term indices depending

on whether the S&P500 volatility term structure is in contango or backwardation (see

Standard & Poor’s, 2011; UBS, 2012, for further details).10 In addition, we consider the

CVIX and CVZ strategies, which are two artificial indices proposed by Alexander and

Korovilas (2013). The CVIX allocates 75% of capital to the XVIX and 25% of capital

to the XVZ. Alexander and Korovilas (2013) choose these weights arguing that 75%

(25%) is the proportion of days that the S&P500 volatility term structure is in contango

(backwardation). The CVZ index follows a dynamic strategy which holds the XVIX

when the S&P500 volatility term structure is in contango, and the XVZ when it is in

backwardation. Figure 5b shows that these long-short strategies perform better than the

pure long strategies, at least until April 2012. Moreover, the accumulated gains from the

CVZ index were slightly superior to those of the GSNP-SR strategy until the summer of

2010. However, at this point the VIX, which had been growing steadily in response to

the European sovereign crisis, started a downward trend that lasted until the spring of

2012, when it stabilised. Interestingly, this change of trend deteriorated the performance

of the CVZ index without affecting the GSNP-SR strategy. As a result, the accumulated

gains at the end of the sample are more than twice as big for the GSNP-SR strategy

than for the CVZ index.

Figure 5 is useful to compare investments beginning on the first day of the sample.

10On a given day there is contango if the VIX (or one-month volatility) is below the VXV index.
Backwardation occurs when the VXV is higher than the VIX.
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However, it does not reliably rank investments initiated at other points in the sample

because accumulated gains are sensitive to the starting point. For that reason, we also

compare the realised daily returns, which do not suffer from this problem. Table 2

shows descriptive statistics of the different strategies over the whole sample. The first

column shows that in terms of annualised ex-post SR, the GSNP-SR strategy yields the

highest values, followed by the CVZ, which is another dynamic strategy. In turn, the

second column shows the low proportion of days with positive returns that would result

from directly investing in the futures indices. Finally, the last columns of Table 2 show

some quantiles of realised returns. The numbers indicate that the main benefit offered

by the GSNP-SR strategy is that it substantially reduces the left tail. Specifically, we

can see that the left-tail quantiles of the SR maximising strategy are higher than in the

competing models. Not surprisingly, though, this result is achieved at the cost of giving

away part of the benefits offered by some of the other strategies in the right tail.

Figure 6 and 7 show the sample SR and the proportion of positive returns over one-

year rolling moving windows. Those figures confirm that the aggregate results observed

in Table 2 for the whole sample are relatively stable across different subperiods. For

example, Figure 6 shows that the GSNP-SR strategy is consistently among the strategies

with highest SR’s. The specific values, though, experience substantial swings over the

sample, which partly reflect the difficulties in precisely estimating Sharpe ratios with

such short sample spans. The rolling SR from the GSNP-SR strategy reached peak

levels during the second halves of 2010 and 2013. In contrast, Figure 6a shows that

although going short on the original indices was a good strategy during the last year of

the sample, such a strategy performed very poorly in 2010 and 2011. Similarly, CVZ

yields high SR’s in 2010, but negative values afterwards (Figure 6b). Finally, Figure

7a once again shows that long positions on the indices yield too many negative returns,

with only a high proportion of days with positive returns at the very beginning of the

sample, when the VIX was still at its highest historical values. The long-short static and

dynamic strategies shown in Figure 7b perform better, but they still suffer very large

swings over the sample.
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4.3 Robustness checks

In this subsection, we consider three alternative modifications of our asset allocation

procedure. In the first one, we maintain the GSNP distributional assumption, but change

the investor’s preferences for an alternative profitability measure known as the Upside

Potential Ratio (UPR). For a given return threshold r, the GSNP-UPR approach involves

choosing the portfolio weights that maximise the conditional UPR, defined as

UPR(r) =
E[max(0,w′tyt − r)|It−1]√
E[min(0,w′tyt − r)2|It−1]

. (18)

Intuitively, the preferences implied by (18) penalise more heavily than the SR the un-

certainty coming from the left tail.

The second robustness check that we consider consists of maximising the conditional

SR, but based on a reduced form model that disregards the risk neutral valuation ap-

proach developed in Section 3.2. In particular, we directly estimate a bivariate Gaussian

ARMA(2,1)-GARCH(1,1) with constant conditional correlation on the short and mid

VIX futures return indices.

Lastly, we consider an alternative maximisation of the SR using another model not

based on the MEM structure. In particular, we model Vt − ∆ using a first order Au-

toregressive Gamma process (ARG). This discrete time process, which was originally

proposed by Gourieroux and Jasiak (2006), can be interpreted as the discrete time coun-

terpart to the popular square root process (see Cox, Ingersoll, and Ross, 1985). Specif-

ically, in this model the conditional distribution of the VIX is a non-central chi-square.

We show in Appendix C that we can easily price futures on the VIX in this setting using

another Esscher transform.

Table 3 compares the performance of the realised returns of these three alternative

approaches with those of the GSNP-SR strategy. We can observe that the GSNP-UPR

strategy is able to yield a higher realised SR and UPR, and a very similar proportion

of days with positive returns. In contrast, the strategy based on the bivariate ARMA-

GARCH model yields much smaller values for the SR and UPR, although the proportion

of days with positive returns is slightly higher in this case. Finally, the ARG process,

estimated with the pricing error structure in (14), yields a slightly higher SR and UPR

than the ARMA-GARCH model, but they are still noticeably smaller than those obtained

with the GSNP framework.
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Figure 8a shows that investing $100 on January 2, 2008, would have yielded similar

gains at the end of the sample under both the GSNP-SR and GSNP-UPR strategies.

However, the ARMA-GARCH bivariate model and the ARG process would have yielded

much smaller gains. In the ARMA-GARCH case, it is mainly due to its bad performance

in 2008. In the ARG case, the restrictive AR(1) time series structure does not seem to

adapt well to the decreasing futures prices over the last year of the sample. Figure 8b

and 8c show the evolution of the realised SR and UPR, respectively, computed over one-

year moving windows. We can observe that the GSNP-SR and GSNP-UPR strategies

are very similar in terms of the SR, while the GSNP-UPR strategy is slightly superior

in terms of the UPR. Once again, the strategy based on the bivariate ARMA-GARCH

model clearly underperforms in 2008, while the ARG framework performs poorly in 2013.

The ARMA-GARCH model works better over the following years, but it systematically

yields lower performance statistics than the strategies based on the GSNP distribution.

5 Conclusions

In this paper we develop a flexible distributional framework to model positive but

stationary discrete time processes. We begin by proposing SNP expansions of the Gamma

density to obtain a flexible family of GSNP distributions. We also compare our proposed

distributions, which are positive by construction, to Laguerre expansions, for which it is

difficult to ensure positivity. For the same number of parameters, our distribution turns

out to be much more flexible in terms of the range of feasible coefficients of variation,

skewness and kurtosis that it can achieve.

Since positive but stationary financial time series are typically highly persistent and

mean-reverting, we consider the Multiplicative Error Model (MEM) of Engle (2002)

which we combine with a unit-mean GSNP residual. In particular, we specify a com-

ponent version of the MEM to describe the conditional mean of the VIX index as the

sum of a short run component that mean-reverts to zero and a long run component,

which mean-reverts more slowly towards a long run mean. In addition, we define an

exponentially affine stochastic discount factor that allows us to price futures on the VIX

index in closed form.

We use this framework to study asset allocation strategies in ETNs tracking the

VIX futures short and mid-term indices. ETNs on VIX futures have attracted a lot
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of attention over the last few years, although the poor performance of some of them

during decreasing volatility periods have raised some concerns about their risks. We

show that the GSNP expansion yields significant likelihood gains with respect to the

original Gamma distribution. For that reason, we consider an investment strategy that

each day maximises the conditional Sharpe Ratio (SR), which depends on the GSNP

expansion through a convolution formula.

We compare this strategy with the original ETNs, short positions on them, as well

as long-short static and dynamic strategies. Our results show that having a flexible

distribution is very relevant in practice because the GSNP strategy yields realised returns

with the highest ex-post SRs over the whole sample. In effect, our strategy manages to

increase the left tail quantiles of the return distribution, at the cost of having a somewhat

thinner right tail than other strategies. We also observe that we generally obtain a

superior performance with our GSNP strategy when we assess performance over rolling

one-year sample sub-periods.

Finally, we investigate the extent to which our results are related to our choice of

performance measure and modelling approach. To do so, we consider the Upside Po-

tential Ratio (UPR) as an alternative performance measure, maintaining the GSNP

distributional assumption. In addition, we check the impact of the GSNP distribu-

tion by keeping the SR preferences but considering either a bivariate ARMA-GARCH

model that we directly estimate on the VIX futures index returns, or an Autoregressive

Gamma process. We find that the alternative preferences yield minor improvements in

performance, but the elimination of our flexible distributional assumption clearly leads

to underperformance relative to GSNP-based strategies.

A fruitful avenue for future research would be to consider multivariate expansions,

which could be used to invest simultaneously in ETNs on different volatility indices. It

would also be interesting to explore time varying specifications of the shape parameters.
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A Properties of the Gamma distribution

Assume that x is a Gamma random variable whose pdf is given by (1). We sum-

marise here the main properties of this distribution, as described in Johnson, Kotz, and

Balakrishnan (1994). Its moment generating function is

E [exp(nx)] = (1− ψn)−ν ,

for n < ψ−1, while its characteristic function is ψG(iτ) = (1− iψn)−ν . Similarly, we can

express the moments of x as

E(xn) = ψn
Γ(ν + n)

Γ(ν)
. (A1)

B Feasible moments of distributions

Stuart and Ord (1977) explain that regardless of the shape of the distribution, the

skewness-kurtosis relationship

κ ≥ 1 + φ2 (B2)

must hold. In a similar spirit, we can apply the Cauchy-Schwarz inequality to show that

for a positive random variable x:

[E(x3/2x1/2)]2 ≤ E(x3)E(x),

so that µ′22 ≤ µ′1µ
′
3. If we introduce in this expression the relationships between the

central and non-central moments, µ′2 = µ2 + µ′21 and µ′3 = µ3 + 3µ′1µ2 + µ′31 , we can show

that

φ ≥ τ − τ−1. (B3)

Finally, if we combine (B3) with (B2), we can show that κ ≥ 1 + [max{τ − τ−1, 0}]2.

C Futures pricing based on the ARG process

Let Vt follow an Autoregressive Gamma process of order 1 under the real measure,

or ARG(1) for short. Then, it can be shown that the distribution of 2Vt/c conditional

on It−1 is a non-central chi-square with noncentrality parameter 2βVt−1 and degrees of

freedom 2δ. If we consider the exponentially affine stochastic discount factor

Mt−1,t = exp(−αVt),
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then it can be easily shown that 2(1 + 2α)Vt/c will be, under the risk-neutral mea-

sure, a non-central chi-square with degrees of freedom 2δ and non-centrality parameter

2βVt−1/(1 + 2α). In practice, this process can be reinterpreted as an ARG(1) process

with parameters δQ = δ,

cQ =
c

1 + 2α
, βQ =

β

1 + 2α
.

Hence, the futures price can be written as

Ft,t+n = EQ[Vt+n|It] = cQ,nδ + cQ,nβQ,nVt,

where

cQ,n =
1− cnQβnQ
1− cQβQ

cQ, βQ,n =
cn−1
Q βnQ(1− cQβQ)

1− cnQβnQ
.

D Proofs of propositions

D.1 Proposition 1

We can show through tedious but straightforward algebra that[
m∑
j=0

δj

(
x

ψ

)j]2

=
2m∑
j=0

γj(δ)

(
x

ψ

)j
.

Then, we can use (1) to show that(
x

ψ

)j
fG(x, ν, ψ) =

1

Γ(ν)ψν+j
xν+j−1 exp(−x/ψ)

=
Γ(ν + j)

Γ(ν)
fG(x, ν + j, ψ).

D.2 Proposition 2

Introducing (4) in (8), we can express the coefficients of the Laguerre expansion as

cn =
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)

∫ ∞
0

Pn(y, ν, ψ̄)fG(y, ν + j, ψ)dy. (D4)

If we write Pn(y, ν, ψ̄) in terms of the n-order Laguerre polynomial, as in (7), we obtain

cn = (−1)n

√
Γ(ν)n!

Γ(ν + n)

1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)

∫ ∞
0

Ln(ψ̄−1y, ν − 1)fG(y, ν + j, ψ)dy.

Then, if we use the following property

Ln(ψ̄−1y, ν − 1) =
n∑
i=0

(−1)i

i!

(
n+ ν − 1

n− i

)
(ψ̄−1y)i.
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from Abramowitz and Stegun (1965) (page 775), then we obtain∫ ∞
0

Ln(ψ̄−1y, ν−1)fG(y, ν+j, ψ)dy =
n∑
i=0

(−1)i

i!

(
n+ ν − 1

n− i

)
ψ̄−i

∫ ∞
0

yifG(y, ν+j, ψ)dy,

(D5)

where ∫ ∞
0

yifG(y, ν + j, ψ)dy = ψi
Γ(ν + i+ j)

Γ(ν + j)
(D6)

from (A1). Introducing (D5) and (D6) in (D4), we obtain the final result.

D.3 Proposition 3

The risk-neutral density of εt will be proportional to

fGSNP (εt, ν, ψ, δ) exp(−αεt),

= fG(εt, ν, ψ) exp(−αεt)

[
m∑
j=0

δj

(
εt
ψ

)j]2

It can be easily shown that fG(εt, ν, ψ) exp(−αε) ∝ εν−1 exp
(
−ε/ψQ

)
, where ψQ =

ψ/(1 + αψ). Similarly, we can write
m∑
j=0

δj

(
εt
ψ

)j
=

m∑
j=0

δj(1 + αψ)j
(
εt
ψQ

)j
.

Hence, we can always define δQj = δj(1 + αψ)j. This proves that the resulting density is

a GSNPm(ν, ψQ, δQ).

D.4 Proposition 4

If we use (12), we can show that

Ft,t+n = EQ[Vt+n|I(t)] = κEQ[ςt+n(θ) + st+n(θ)|It]

and

EQ[ςt+n(θ)|It+n−2] = ω + [ρ+ ϕ(κ − 1)]ςt+n−1(θ) + ϕ(κ − 1)st+n−1(θ).

Similarly, we can obtain

EQ[st+n(θ)|It+n−2] = α(κ − 1)ςt+n−1(θ) + [ακ + β]st+n−1(θ).

Hence, we have

EQ
[
ςt+n(θ)
st+n(θ)

∣∣∣∣ It+n−2

]
= A0 + A1

[
ςt+n−1(θ)
st+n−1(θ)

]
.

By applying the law of iterated expectations recursively to condition on It+n−3, It+n−4, · · · , It,

we can obtain the final result after some straightforward algebraic manipulations.
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Table 1

Maximum likelihood estimates of Component-MEM models

Gamma GSNP(2)
s.e. s.e.

α 0.662 0.010 0.666 0.010
β 0.286 0.011 0.282 0.011
ω 0.025 0.002 0.025 0.002
ρ 0.998 0.000 0.998 0.000
φ 0.221 0.009 0.224 0.009
∆ 5.179 0.134 5.386 0.160
ν 139.903 4.113 115.187 4.556
θ1 0.019 0.001
θ1 3.137 0.000
Risk premium -0.387 0.159 -0.248 0.113
σshort 0.019 0.000 0.019 0.000
σmid 0.012 0.000 0.012 0.000
ρshort,mid 0.689 0.009 0.689 0.009
ρf 0.990 0.002 0.990 0.002

Likelihood 3183.954 3465.495
LR test 563.083 (p− value = 0.000)

Notes: The estimation uses VIX data from December 11, 1990, until February 28, 2014, as well as data

on the S&P 500 VIX short and mid-term futures indices from December 20, 2005 until the same final

date. “Gamma” denotes a Component-MEM model whose conditional distribution given the information

known at t− 1 is Gamma, while in “GSNP(2)” the conditional distribution is a SNP expansion of order

2 of the Gamma distribution. Standard errors have been computed from the outer product of the

analytical score.
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Table 3

Profitability measures of the realised returns of alternative dynamic asset allocation

strategies.

SR Ret>0(%) UPR

GSNP-SR 1.868 57.7 9.027
GSNP-UPR 1.917 57.2 9.582
ARMA-GARCH 0.781 58.5 7.288
ARG-SR 1.063 56.0 8.235

Notes: The sample used is 1-Jan-2008 to 27-Feb-2014. SR denotes the Sharpe Ratio, while UPR

denotes the Upside Potential Ratio with zero as the return threshold. Both the SR and UPR are

expressed in annualised terms. The column labelled “Ret> 0 (%) indicates the proportion of days with

positive returns. GSNP-SR (GSNP-UPR) denotes the returns obtained by maximising the conditional

SR (UPR), based on the parameters obtained from a Component MEM for the VIX with a GSNP(2)

expansion of the Gamma distribution. ARMA-GARCH denotes the returns obtained by maximising

the conditional SR, based on the parameters obtained from a bivariate ARMA(2,1)-GARCH(1,1) with

constant conditional correlation, estimated on the short and mid VIX future index returns. ARG-SR

denotes the returns obtained by maximising the conditional SR, based on the parameters obtained

from a first order Autoregressive Gamma process. The parameters are estimated each day using the

information available at that point.
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Figure 1: Regions of the coefficients of variation, skewness and kurtosis credit institutions

(a) Variation vs. Skewness
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(b) Variation vs. Kurtosis
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(c) Skewness vs. Kurtosis
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Notes: τ, φ and κ denote the coefficients of variation, skewness and kurtosis, respectively. The lines

labelled “Frontier” denote the limits that no density can surpass. “Laguerre” denotes a truncated

third order Laguerre expansion of the Gamma distribution, while “GSNP2” denotes a second order

SNP expansion of the Gamma distribution.



Figure 2: Historical evolution of the VIX index

(a) Dec 1990- Jan 2013
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Figure 3: Historical evolution of S&P 500 VIX futures indices

(a) Short term index
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(b) Mid-term index
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Note: The black lines show the evolution of the original S&P 500 VIX futures indices,

while the red lines show the evolution of indices with exactly the opposite returns from

the original ones.



Figure 4: Coefficients of the affine prediction formulas of the VIX at different horizons
under the real and risk-neutral densities

(a) Intercept
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(b) Coefficients on the short and long-run components
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Figure 5: Evolution of investment strategies accumulated gains

(a) GSNP vs. buy and hold strategies
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(b) GSNP vs. long-short static and dynamic strategies
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Note: All the strategies start from an initial investment of $100. “Short” and “Mid”

denote the S&P 500 VIX short and mid futures indices. “-1×” denote short sales on those

indices. XVIX is a UBS ETN following a long-short static strategy on the VIX futures

indices, while XVZ is a Barclays ETN following a dynamic strategy. CVIX and CVZ are

investment strategies proposed by Alexander and Korovilas (2013). GSNP-SR denotes the

returns obtained by maximising the conditional Sharpe Ratio, based on the parameters

obtained from a Component MEM for the VIX with a GSNP(2) expansion of the Gamma

distribution. The parameters are estimated each day using the information available at

each day.



Figure 6: Sharpe Ratio of realised returns over a one-year moving window

(a) GSNP vs. buy and hold strategies
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(b) GSNP vs. long-short static and dynamic strategies
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Note: “Short” and “Mid” denote the S&P 500 VIX short and mid futures indices. “-1×”

denote short sales on those indices. XVIX is a UBS ETN following a long-short static

strategy on the VIX futures indices, while XVZ is a Barclays ETN following a dynamic

strategy. CVIX and CVZ are investment strategies proposed by Alexander and Korovilas

(2013). GSNP-SR denotes the returns obtained by maximising the conditional Sharpe

Ratio, based on the parameters obtained from a Component MEM for the VIX with a

GSNP(2) expansion of the Gamma distribution. The parameters are estimated each day

using the information available at each day.



Figure 7: Proportion of days with positive realised returns over a one-year moving
window (%)

(a) GSNP vs. buy and hold strategies

Jul09 Jan10 Aug10 Feb11 Sep11 Apr12 Oct12 May13 Nov13
30

35

40

45

50

55

60

65

70

 

 

Short
Mid
−1xShort
−1xMid
GSNP−SR

(b) GSNP vs. long-short static and dynamic strategies
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Note: “Short” and “Mid” denote the S&P 500 VIX short and mid futures indices. “-1×”

denote short sales on those indices. XVIX is a UBS ETN following a long-short static

strategy on the VIX futures indices, while XVZ is a Barclays ETN following a dynamic

strategy. CVIX and CVZ are investment strategies proposed by Alexander and Korovilas

(2013). GSNP-SR denotes the returns obtained by maximising the conditional Sharpe

Ratio, based on the parameters obtained from a Component MEM for the VIX with a

GSNP(2) expansion of the Gamma distribution. The parameters are estimated each day

using the information available at each day.



Figure 8: Profitability measures of the realised returns of alternative dynamic asset
allocation strategies.

(a) Accumulated gains since Jan-2008
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(b) Realised Sharpe Ratio over one-year moving windows
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(c) Realised Upside Potential Ratio over one-year moving windows
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Note: Both the Sharpe Ratio (SR) and Upside Potential Ratio (UPR) are expressed in

annualised terms. GSNP-SR (GSNP-UPR) denotes the returns obtained by maximising

the conditional SR (UPR), based on the parameters obtained from a Component MEM

for the VIX with a GSNP(2) expansion of the Gamma distribution. ARMA-GARCH

denotes the returns obtained by maximising the conditional SR, based on the parameters

obtained from a bivariate ARMA(2,1)-GARCH(1,1) with constant conditional correlation,

estimated on the short and mid VIX future index returns. ARG-SR denotes the returns

obtained by maximising the conditional SR, based on the parameters obtained from a first

order Autoregressive Gamma process. The parameters are estimated each day using the

information available at each day.
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