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1 Introduction

The superposition of Arima time series models forms the basis of two dominant approaches

to the classical decomposition of a univariate time series into trend, cyclical, seasonal and irreg-

ular components: the reduced form “model-based”decomposition analysed by Box, Hillmer and

Tiao (1978) and Pierce (1978) and further extended by Agustín Maravall and his co-authors,

and the so-called “structural time series”models studied by Nerlove (1967), Engle (1978) and

Nerlove, Grether and Carvalho (1979) and subsequently developed by Andrew Harvey and his

co-authors.

In both cases, the model parameters are estimated by maximising the Gaussian log-likelihood

function of the observed data, which can be readily obtained either as a by-product of the Kalman

filter prediction equations or from Whittle’s (1962) frequency domain asymptotic approxima-

tion. Once the parameters have been estimated, filtered values of the unobserved components

can be extracted by means of the Kalman smoother or its Wiener-Kolmogorov counterpart.

These estimation and filtering issues are well understood (see Harvey (1989) and Durbin and

Koopman (2012) for textbook treatments), and the same can be said of their effi cient numerical

implementation (see Commandeur, Koopman and Ooms (2011) and the references therein).

In contrast, specification tests for these models are far less known. While sophisticated users

will often look at several diagnostics, formal tests are hardly ever reported in empirical work.

One particularly relevant issue is the correct specification of the parametric Arima models for

the unobserved components, as the various outputs of the model could be misleading under

misspecified dynamics.

The objective of our paper is precisely to derive tests for neglected serial correlation in

the unobserved components. For computational reasons, we focus most of our discussion on

score tests, which only require estimation of the model under the null. As is well known,

though, in standard situations likelihood ratio (LR), Wald and Lagrange multiplier (LM) tests

are asymptotically equivalent under the null and sequences of local alternatives, and therefore

they share their optimality properties. Another important advantage of score tests is that they

often coincide with tests of easy to interpret moment conditions (see Newey (1985) and Tauchen

(1985)), which will continue to have non-trivial power even in situations for which they are not

optimal.

Earlier work on specification testing in unobserved component models include Engle and

Watson (1980), who explained how to apply the LM testing principle in the time domain for

dynamic factor models with static factor loadings, Harvey (1989), who provides a detailed dis-

cussion of time domain and frequency domain testing methods in the context of univariate
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“structural time series” models, and Fernández (1990), who applied the LM principle in the

frequency domain to a multivariate structural time series model. More recently, in a companion

paper (Fiorentini and Sentana (2013)) we have derived tests for neglected serial correlation in

the latent variables of dynamic factor models using frequency domain techniques.

In the context of univariate unobserved components (Ucarima) models, the contribution of

this paper is threefold.

First, we propose dynamic specification test which are very simple to implement, and even

simpler to interpret. Once an model has been specified and estimated, the tests that we propose

can be routinely computed from simple statistics of the smoothed values of the different compo-

nents. And even though our theoretical derivations make extensive use of spectral methods for

time series, we provide both time domain and frequency domain interpretations of the relevant

scores, so researchers who strongly prefer one method over the other could apply them without

abandoning their favourite estimation techniques.

Second, we provide a thorough discussion of some common situations in which the standard

form of LM tests cannot be computed because the information matrix is singular under the

null. In those irregular cases, we derive versions of the score tests that remain asymptotically

equivalent to the LR tests, which become one-sided, and explain how to compute asymptotically

reliable Wald tests. We also explicitly relate the incidence of those problems to the identification

conditions for Ucarima models, and highlight that they contradict the widely held view that

increases in theMa and Ar polynomials of the same order provide locally equivalent alternatives

in univariate tests for serial correlation (see e.g. Godfrey (1988)).

Third, we compare dynamic specification tests for the underlying components with tests

based on the reduced form prediction errors. In this regard, we study their relative power and

discuss some cases in which they are numerical equivalent.

The rest of the paper is organised as follows. In section 2, we review the properties of

Ucarima models, their estimators and filters. Then, we derive our tests in section 3, discuss

potential pitfalls in section 4 and compare them to reduced form tests in section 5. This is

followed by a Monte Carlo evaluation of their finite sample behaviour in section 6. Finally, our

conclusions can be found in section 7. Auxiliary results are gathered in appendices.
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2 Theoretical background

2.1 UCARIMA models

To keep the notation to a minimum throughout the paper we focus on models for a univariate

observed series, yt that can be defined in the time domain by the equations:

yt = µ+ xt + ut, (1)

αx(L)xt = βx(L)ft, (2)

αu(L)ut = βu(L)vt, (3) ft

vt

 |It−1;µ,θ ∼ N

 0

0

 ,

 σ2
f 0

0 σ2
v

 , (4)

where xt is the “signal” component, ut the orthogonal “non-signal” component, αx(L) and

αu(L) are one-sided polynomials of orders px and pu, respectively, while βx(L) and βu(L) are

one-sided polynomials of orders qx and qu coprime with αx(L) and αu(L), respectively, It−1 is

an information set that contains the values of yt and xt up to, and including time t− 1, µ is the

unconditional mean and θ refers to all the remaining model parameters.

Importantly, we maintain the assumption that the researcher makes sure that the parameters

θ are identified before estimating the model under the null.1 Hotta (1989) provides a systematic

way to check for identification (see Maravall (1979) for closely related results). Specifically, let c

denote the degree of the polynomial greatest common divisor of αx(L) and αu(L), so that they

share c common roots. Then, the Ucarima model above will be identified (except at a set of

parameter values of measure 0) when there are no restrictions on the Ar andMa polynomials if

and only if either px ≥ qx+c+1 or pu ≥ qu+c+1, so that at least one of the components must be

a “top-heavy”Arma process in the terminology of Burman (1980).2 Given the exchangeability

of signal and non-signal components in the formulation above, in what follows we assume without

loss of generality that this identification condition is satisfied by the signal component.

In this paper we are interested in hypothesis tests for px = p0
x vs px = p0

x + kx or pu = p0
u

vs pu = p0
u + ku, or the analogous hypotheses for qx and qui . For simplicity, we focus most of

the discussion in those cases in which kx and ku are in fact 1, which leads to the following four

hypothesis of interest:

1. Sar1: Arma(px + 1, qx)+Arma(pu, qu)
1But see section 7 for a brief discussion of models that are underidentified under the null but identified under

the alternative.
2Although strictly speaking Proposition 2 in Hotta (1989) applies to stationary models, the emphasis on

common roots is particularly important in the presence of integrated components, in which case px and pu would
represent the total number of Ar roots, including those on the unit circle (see Harvey (1989) for further details).
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2. Sma1: Arma(px, qx + 1)+Arma(pu, qu)

3. Nar1: Arma(px, qx)+Arma(pu + 1, qu)

4. Nma1: Arma(px, qx)+Arma(pu, qu + 1)

Extensions to higher kx and ku are briefly discussed in section 3.1 below, as well as in our

concluding remarks.

2.2 The reduced form model

Unobserved component models can readily handle integrated variables, but for simplicity of

exposition in what follows we maintain the assumption that yt is a covariance stationary process,

possibly after suitable differencing, as in appendix A.

Under stationarity, the spectral density of the observed variable is proportional to

gyy(λ) = gxx(λ) + guu(λ),

gxx(λ) = σ2
f

βx(e−iλt)βx(eiλt)

αx(e−iλt)αx(eiλt)
,

guu(λ) = σ2
v

βu(e−iλ)βu(eiλt)

αu(e−iλt)αu(eiλt)
.

Given that

gyy(λ) =
σ2
fβx(e−iλt)βx(eiλt)αu(e−iλt)αu(eiλt) + σ2

vβu(e−iλ)βu(eiλt)αx(e−iλt)αx(eiλt)

αx(e−iλt)αx(eiλt)αu(e−iλt)αu(eiλt)

= σ2
a

βy(e
−iλt)βy(e

iλt)

αy(e−iλt)αy(eiλt)
,

it follows that the reduced form model will be an Arma process with maximum orders py =

px + pu for the Ar polynomial αy(.) = αx(.)αu(.) and qy = max(px + qu, qx + pu) for the Ma

polynomial βy(.). Cancellation will trivially occur when αx(.) and αu(.) share c common roots,

but there could also be other cases (see Granger and Morris (1976) for further details). The

coeffi cients of βy(L), as well as σ2
a, which is the variance of the univariate Wold innovations, at,

are obtained by matching autocovariances (see Fiorentini and Planas (1998) for a comparison

of numerical methods). Assuming strict invertibility of the Ma part, we could then obtain the

reduced form innovations at from the observed process by means of the one-sided filter

αy(e
−iλt)/βy(e

−iλt).

But as is well known, these reduced form residuals can also be obtained from the prediction

equations of the Kalman filter without making use of the expressions for αy(.) or βy(.).
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2.3 Maximum likelihood estimation in the frequency domain

Let

Iyy(λ) =
1

2πT

T∑
t=1

T∑
s=1

(yt − µ)(ys − µ)′e−i(t−s)λ (5)

denote the periodogram of yt and λj = 2πj/T (j = 0, . . . T − 1) the usual Fourier frequencies.

If we assume that gyy(λ) is not zero at any frequency, the so-called Whittle (discrete) spectral

approximation to the log-likelihood function is3

−NT
2

ln(2π)− 1

2

T−1∑
j=0

ln |gyy(λj)| −
1

2

T−1∑
j=0

2πIyy(λj)

gyy(λj)
. (6)

The MLE of µ, which only enters through Iyy(λ), is the sample mean, so in what follows we

focus on demeaned variables. In turn, the score with respect to all the remaining parameters is

sθ(θ) =
1

2

T−1∑
j=0

∂gyy(λj)]

∂θ
M(λj)m(λj), (7)

m(λ) = 2πIyy(λ)− gyy(λ),

M(λ) = g−2
yy (λ).

The information matrix is block diagonal between µ and the elements of θ, with the (1,1)-

element being gyy(0) and the (2,2)-block

Q =
1

4π

∫ π

−π

∂gyy(λj)]

∂θ
M(λ)

{
∂gyy(λj)]

∂θ

}∗
dλ, (8)

where ∗ denotes the conjugate transpose of a matrix. A consistent estimator will be provided

either by the outer product of the score or by

Φ(θ) =
1

2

T−1∑
j=0

∂gyy(λj)]

∂θ
M(λj)

{
∂gyy(λj)]

∂θ

}∗
.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators under suitable regularity conditions have been provided by Dunsmuir and Hannan

(1976) and Dunsmuir (1979), who also show their asymptotic equivalence to the time domain

ML estimators.4

3There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
4This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see

Choudhuri, Ghosal and Roy (2004)).
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2.4 The (Kalman-)Wiener-Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed estimators of the latent

variables too. Specifically, let

yt − µ =

∫ π

−π
eiλtdZy(λ),

V [dZy(λ)] = gyy(λ)dλ

denote the spectral decomposition of the observed process. The Wiener-Kolmogorov two-sided

filter for the signal xt at each frequency is given by

gxx(λ)g−1
yy (λ)dZy(λ).

Hence, the spectral density of the smoother xKt|T as T →∞
5 will be

gxKxK (λ) =
g2
xx(λ)

gyy(λ)
=

gxx(λ)

gxx(λ) + guu(λ)
gxx(λ) = R2

xx(λ)gxx(λ), (9)

while the spectral density of the final estimation error xt − xKt|∞ will be given by

gxx(λ)− gxKxK (λ) = [1−R2
xx(λ)]gxx(λ) = ωxx(λ). (10)

It is easily seen that gxKxK (λ) will approach gxx(λ) at those frequencies for which gxx(λ) is large

relatively to guu(λ), i.e. frequencies with a high signal to noise ratio. In this regard, we can

view R2
xx(λ) as a frequency-by-frequency coeffi cient of determination.

Having smoothed yt to estimate xt, we can easily obtain the smoother for ft, fKt|∞, by applying

to xKt|∞ the one-sided filter

αx(e−iλ)/βx(e−iλ). (11)

Likewise, we can derive its spectral density, as well as the spectral density of its final estimation

error ft − fKt|∞.

Entirely analogous derivations apply to the non-signal component ut, with the peculiarity

that

xKt|∞ + uKt|∞ = yt

so that

R2
xx(λ) +R2

uu(λ) = 1 ∀λ.
5The main difference between the Wiener-Kolmogorov filtered values, xKt|∞, and the Kalman filter smoothed

values, xKt|T , results from the dependence of the former on a double infinite sequence of observations (but see
Levinson (1947)). As shown by Fiorentini (1995) and Gómez (1999), though, they can be made numerically
identical by replacing both pre- and post- sample observations by their least squares projections onto the linear
span of the sample observations.
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Finally, we can obtain the autocovariances of xKt|∞, f
K
t|∞, u

K
t|∞, v

K
t|∞ and their final estimation

errors by applying the usual inverse Fourier transformation

γzz(k) = cov(zt, zt−k) =

∫ π

−π
eiλkgzz(λ)dλ.

2.5 Autocorrelation structure of the smoothed variables

As we have seen in the previous section, smoothed values of the latent variables are the result

of optimal symmetric two-sided filters. As a consequence, their serial correlation structure is

generally different from that of the unobserved state variables. To see the difference between

the spectra of the signal and its estimators, recall that (9) implies that gxKxK (λ) < gxx(λ) for

any λ ∈ (−π, π) for which guu(λ) > 0. Therefore, the variance of the optimal estimator will

underestimate the variance of the unobserved signal, as expected.

As discussed in Maravall (1999), the serial dependence structure of the estimators of the

unobserved components can be a useful tool for model diagnostic. Large discrepancies between

theoretical and empirical autocovariance functions of those estimators can be interpreted as

indication of model misspecification. As we shall in section 3.2, our LM tests carry out this

comparison in a very precise statistical sense.

Given (9), we can write the spectral density of xK as

gxKxK (λ) =
σ4
fβ

2
x(e−iλ)β2

x(eiλ)αu(e−iλt)αu(eiλt)

σ2
aαx(e−iλ)αx(eiλ)βy(e

−iλ)βy(e
iλ)

,

which corresponds to an Arma(px + qy, pu + 2qx) process in the absence of cancellation. Hence,

the spectral density of the final estimation error xt − xKt|∞ in (10) will be

ωxx(λ) =
σ2
fσ

2
vβx(e−iλ)βx(eiλ)βu(e−iλt)βu(eiλt)

σ2
aβy(e

−iλ)βy(e
iλ)

,

which shares the structure of an Arma(qy, qx + qu) under the same circumstances.

In turn, the application of (11) to xKt|∞ implies that the spectral density of fKt|∞ will be

gfKfK (λ) =
σ4
fβx(e−iλ)βx(eiλ)αu(e−iλt)αu(eiλt)

σ2
aβy(e

−iλ)βy(e
iλ)

,

which suggests an Arma(qy, pu + qx) process, while

ωff (λ) = σ2
f − gfKfK (λ) =

σ2
fσ

2
vβu(e−iλ)βu(eiλ)αx(e−iλt)αx(eiλt)

σ2
aβy(e

−iλ)βy(e
iλ)

points out instead to an Arma(qy, px + qu) for the final estimation error ft − fKt|∞.

There are special cases, however, in which the resulting models for the smoothed values of

the unobserved variables and their innovations are much simpler. For example, if the signal
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follows a purely autoregressive process and the non-signal component is white noise, so that

βx(L) = αu(L) = βu(L) = 1, then

gxKxK (λ) =
σ2
fσ

2
v

σ2
aαx(e−iλ)αx(eiλ)βy(e

−iλ)βy(e
iλ)
,

ωxx(λ) =
σ2
fσ

2
v

σ2
aβy(e

−iλ)βy(e
iλ)
,

gfKfK (λ) =
σ4
f

σ2
aβy(e

−iλ)βy(e
iλ)
,

and

ωff (λ) =
σ2
fσ

2
vαx(e−iλt)αx(eiλt)

σ2
aβy(e

−iλ)βy(e
iλ)

,

with py = qy = px.

Once again, entirely analogous derivations apply to the non-signal component uKt|∞.

3 Neglected serial correlation tests

3.1 Testing for serial correlation in univariate observable processes

For pedagogical purposes, let us initially assume that xt is an observable time series that has

been modelled as an Ar(2) process. A natural generalisation is

(1− ψx1L)(1− αx1L− αx2L
2)xt = ft,

so that the null becomes H0 : ψx = 0.6 Under the alternative, the spectral density of xt is

gxx(λ|σ2
f , αx1, αx2, ψx) =

1

1 + ψ2
x − 2ψx cosλ

· gxx(λ|σ2
f , αx1, αx2, 0),

where

gxx(λ|σ2
f , αx1, αx2, 0) =

σ2
f

1 + α2
x1 + α2

x2 − 2αx1(1− αx2) cosλ− 2αx2 cos 2λ
.

Hence, the derivative of gxx(λ) with respect to ψx under the null is

∂gxx(λ|σ2
f , αx1, αx2, 0)

∂ψx
= 2 cosλ · gxx(λ|σ2

f , αx1, αx2, 0). (12)

As a result, the spectral version of the score with respect to ψx under H0 is

T−1∑
j=0

cosλjg
−1
xx (λj)[2πIxx(λj)− gxx(λj)] =

T−1∑
j=0

cosλj [2πIff (λj)],

6This is a multiplicative alternative. Instead, we could test H0 : αx3 = 0 in the additive alternative

(1− αx1L− αx2L2 − αx3L3)xt = ft.

In that case, it would be more convenient to reparametrise the model in terms of partial autocorrelations (see
Barndorff-Nielsen and Schou (1973)).
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where we have exploited the fact that

T−1∑
j=0

∂gxx(λj)

∂ψx
g−1
xx (λj) =

T−1∑
j=0

cosλj = 0. (13)

Given that

Iff (λj) = γ̂ff (0) + 2
T−1∑
k=1

γ̂ff (k) cos(kλj),

the spectral version of the score becomes

T−1∑
j=0

cosλj [2πIff (λj)] = T [γ̂ff (1) + γ̂ff (T − 1)]. (14)

In turn, the time domain version of the score will be∑
t

(xt − αx1xt−1 − αx2xt−2)(xt−1 − αx1xt−2 − αx2xt−3) =
∑
t

ftft−1,

which is essentially identical because γ̂ff (T −1) = T−1fT f1 = op(1). Therefore, the spectral LM

test of Ar(2) versus Ar(3) is simply checking that the first sample (circulant) autocovariance of

ft, which are the innovations in the observed process, coincides with its theoretical value under

H0, exactly like the usual Breusch (1978) - Godfrey (1978a) serial correlation LM test in the

time domain (see also Breusch and Pagan (1980) or Godfrey (1988)).

Let us now consider the following alternative generalisation of an Ar(2)

(1− αx1L− αx2L
2)xt = (1− ψfL)ft.

In this case, the null is H0 : ψf = 0. In turn, the spectral density of xt under this alternative is

(1 + ψ2
f − 2ψf cosλ) · gxx(λ|σ2

f , αx1, αx2, 0),

whose derivative with respect to ψf under the null is

∂gxx(λ)

∂ψf
= −2 cosλ · gxx(λ). (15)

Therefore, the spectral LM test of Ar(2) versus Arma(2,1) will be numerically identical to the

corresponding test of Ar(2) versus Ar(3), which confirms that these two alternative hypotheses

are locally equivalent for observable time series (see e.g. Godfrey (1988)).

Generalisations to test Arma(p,q) vs Arma(p+k,q) for k>1 are straightforward, since they

only involve higher order (circulant) autocovariances of ft, as in Godfrey (1978b). Similarly, it is

easy to show that Arma(p+k,q) and Arma(p,q+k) multiplicative alternatives are also locally

equivalent7 Finally, we could also consider (multiplicative) seasonal alternatives.

7 It would also be possible to develop tests of Arma(p,q) against Arma(p+k,q+k) along the lines of Andrews
and Ploberger (1996). We leave those tests, which will also depend on the differences between sample and
population autocovariances of ft, for future research.
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3.2 Testing for neglected serial correlation in the unobserved components

Let us now consider unobserved components models, which is the objective of our study.

Initially, we assume that the model is identified under each of the four alternatives stated in

section 2.1, and therefore overidentified under the null, and postpone the discussion of the more

general case to section 4. In view of Hotta’s (1989) results, this requires that either px ≥ qx+c+2

or pu ≥ qu + c+ 2 when there are c common Ar roots.

Let us start by considering neglected serial correlation in the signal. Under alternative Sar1

the model will be
yt = µ+ xt + ut,

(1− ψxL)αx(L)xt = βx(L)ft,

αu(L)ut = βu(L)vt,

 (16)

so that the null hypothesis is H0 : ψx = 0, as in section 3.1. Given

∂gyy(λ)

∂ψx
=
∂gxx(λ)

∂ψx
(17)

and (12), after some straighforward manipulations we can prove that the score of the spectral

log-likelihood for the observed series yt under the null will be given by

2
∑T−1

j=0
cosλjgxx(λj)g

−2
yy (λj)[2πIyy(λj)− gyy(λj)].

= 2
∑T−1

j=0
cosλjg

−1
xx (λj)[2πIxKxK (λj)− gxKxK (λj)]

= 2
∑T−1

j=0
cosλj [2πIfKfK (λj)− gfKfK (λj)].

Once more, the time domain counterpart to the spectral score with respect to ψx is (asymp-

totically) proportional to the difference between the first sample autocovariance of fKt|∞ and its

theoretical counterpart under H0. Therefore, the only difference with the observable case is that

the autocovariance of fKt|∞, which is a forward filter of the Wold innovations of yt, is no longer

0 when ψx = 0, although it approaches 0 as the signal to noise ratio increases. In that case,

our proposed tests would converge to the usual Breusch-Godfrey LM tests for neglected serial

correlation discussed in section 3.1.8

Let us illustrate our test by means of a simple example. Imagine that xt follows an Ar(2)

process while ut is white noise. The results in section 2.5 imply that when ψx = 0 fKt|∞ will

follow an Ar(2) with an autoregressive polynomial βy(L) that satisfies the condition

σ2
aβy(L)βy(L

−1) = σ2
f + αx(L)αx(L−1)σ2

v,

8Given that σ2f = gfKfK (λ) + ωff (λ) for all λ, we can also write the score as 2
∑T−1

j=0 cosλj [2πIfKfK (λj) +
ωff (λj)] in view of (13). Therefore, the score with respect to ψx also has the interpretation of the expected value
of (14), which is score when xt is observed, conditional on the past, present and future values of yt (see Fiorentini,
Galesi and Sentana (2014) for further details).
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so that the smaller is σ2
v, the closer f

K
t|∞ will be to white noise. In any case, the LM test

of H0 : ψx = 0 will simply compare the first sample autocovariance of fKt|∞ with its theoretical

value. The advantage of our frequency domain approach is that we obtain those autocovariances

without explicitly computing σ2
a, βy(L) or indeed fKt|∞.

In turn, under alternative Sma1 the equation for the signal in (16) is replaced by

αx(L)xt = (1− ψfL)βx(L)ft,

so that the null hypothesis becomes H0 : ψf = 0. Then, it is straightforward to prove that this

test will numerically coincide with the test of H0 : ψx = 0 in view of (17), (12) and (15).

On the other hand, under alternative Nar1 the model will be

yt = µ+ xt + ut,

αx(L)xt = βx(L)ft,

(1− ψuL)αu(L)ut = βu(L)vt,

 , (18)

while the equation for the non-signal component in (18) will be replaced by

αu(L)ut = (1− ψvL)βu(L)vt

under alternative Nma1. The exchangeability of signal and non-signal implies that mutatis

mutandis exactly the same derivations apply to tests of neglected serial correlation in ut. Finally,

joint tests that simultaneously look for neglected serial correlation in the signal and non-signal

components can be easily obtained by combining the two scores involved.

3.3 Parameter uncertainty

So far we have implicitly assumed known model parameters. In practice, some of them will

have to be estimated under the null. Maximum likelihood estimation of the state space model

parameters can be done either in the time domain using the Kalman filter or in the frequency

domain.

As we mentioned before, the sampling uncertainty surrounding the sample mean µ is as-

ymptotically inconsequential because the information matrix is block diagonal. The sampling

uncertainty surrounding the other parameters, say ϑ, is not necessarily so.

The solution is the standard one: replace the inverse of Iψψ, which is the (ψ,ψ) block of

the information matrix by the (ψ,ψ) block of the inverse information matrix Iψψ = (Iψψ −

IψϑI−1
ϑϑIϑψ)−1 in the quadratic form that defines the LM test. As usual, this is equivalent

to orthogonalising the spectral log-likelihood scores corresponding to the parameters in ψ with

respect to the scores corresponding to the parameters ϑ estimated under the null.
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4 Potential pitfalls

As we mentioned in section 2.1, we maintain the innocuous assumption that px > qx (when

there are no common roots) so that the signal component is a “top-heavy”model. However,

by increasing the order of the Ma polynomial of the signal, as the Sma1 alternative hypothesis

does, the extended Ucarima model may become underidentified despite the original null model

being identified. Assuming no common roots, this will happen when px = qx+ 1 but pu < qu+ 1

so that the null model is just identified. An important example would be:

yt = xt + ut

(1− αL)xt = (1− ψfL)ft

 (19)

with ft and ut bivariate white noise orthogonal at all leads and lags. The null hypothesis of

interest is H0 : ψf = 0, so that the model under the null is a univariate Ar(1) + white noise

process, while the signal under the alternative is an Arma(1,1) instead with moving average

coeffi cient ψf . In this context, it is possible to formally prove that

Proposition 1 The score with respect to ψf of model (19) reparametrised in terms of γyy(0),
γyy(1), α and ψf is 0 when α 6= 0 regardless of the value of ψf .

Intuitively, the problem is that ψf cannot be identified because the reduced form model for

the observed series is an Arma(1,1) fully characterised by its variance, its first autocovariance

and α under both the null and the alternative. As a result, the original and extended log-

likelihood functions would be identical at their respective optima, which in turn implies that

the LR and LM tests will be trivially 0.9

A more diffi cult to detect problem arises when the original model is identified under the

null hypothesis and the extended model is identified under the alternative but the information

matrix of the extended model is singular under the null. Following Sargan (1983), we shall refer

to this situation as a first-order underidentified case because in effect the additional parameter

is locally identified but the usual rank condition for identification breaks down.

Although this may seem as a curiosity, it turns out that this problem necessarily occurs with

the Sar1 alternative hypothesis whenever alternative Sma1 leads to an underidentified model.

9The only possible exception arises when the model is exactly on the boundary of the admissibility region
under the null but not under the alternative. However, such anomalies tend to be associated to uninteresting
cases. For example, in the Ar(1) plus noise model the null parameter configuration will be at the boundary of
the admissible parameter space if and only if the non-signal component is identically 0 (see Harvey (1989) and
Fiorentini and Planas (2001) for other examples of admissibility restrictions on the model parameters).
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Let us study in more detail the Ar(1) plus white noise example discussed in the previous

paragraphs, for which (16) reduces to

yt = xt + ut

(1− ψxL)(1− αL)xt = ft

 (20)

with ft and ut being bivariate white noise orthogonal at all leads and lags. The null hypothesis

of interest is H0 : ψx = 0, so that the model under the null is still an Ar(1) plus white noise,

while the signal under the alternative follows an Ar(2) process. We can then show that10

Proposition 2 The information matrix of model (20) is singular under the null hypothesis
H0 : ψx = 0.

As we saw in section 3.1, the intuition is that under the null the score of an additional Ar

root is the opposite of the score of an additional Ma root, but the latter is identically 0 at the

parameter values estimated for the original Ar(1) plus white noise model in view of Proposition

1. Therefore, a standard LM test is infeasible. In contrast, there is no linear combination of the

first three scores that is equal to 0 under H0 when α 6= 0, so we can consistently estimate α,

σ2
f and σ

2
u if we impose the null hypothesis when it is indeed true. Likewise, there is no linear

combination of the four scores that is equal to 0 when the true values of α and ψx are both

different from 0, so again we can consistently estimate σ2
f , σ

2
u, α and ψx in those circumstances,

unlike what happened with model (19). For those reasons, it seems intuitive to report instead

either a Wald test or a LR one. However, intuitions sometimes prove misleading.

It turns out that one has to be very careful in computing the significance level for the LR

test and especially the Wald test because, as we will discuss below, the asymptotic distribution

of the ML estimator of ψx will be highly unusual under the null. In contrast, there is a readily

available LM-type test along the lines of Lee and Chesher (1986). Specifically, these authors

propose to replace the usual score test by what they call an “extremum test”. Given that the

first-order conditions are identically 0, their suggestion is to study the restrictions that the null

imposes on higher order conditions. An equivalent procedure to deal with the singularity of

the information matrix is to choose a suitable reparametrisation. We follow this second route

because it will allow us to obtain asymptotically valid LR and Wald tests too.

Our approach is as follows. First, we replace σ2
f and σ

2
u by γyy(0) and γyy(1), as in Propo-

sition 1. As the following result shows, this change confines the singularity to the last element

of the score.

Proposition 3 The ψxψx element of the information matrix of model (20) reparametrised in
terms of γyy(0), γyy(1), α and ψx is zero under the null hypothesis H0 : ψx = 0.

10Harvey (1989) proved the same result in the special case of α = 1, which we discuss in detail in appendix A.
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Second, we replace ψx by either
√
ϕ (positive root) or −√ϕ (negative root) and retain the

value of ϕ and the sign of the transformation which leads to the largest likelihood function under

the alternative. Using the results of Rothitzky et al (2000), we can show that under the null

the asymptotic distribution of the ML estimator of ϕ will be that of a normal variable censored

from below at 0. In contrast, the asymptotic distribution of the corresponding estimator of ψx

will be non-standard, with a faster rate of convergence, half of its density at 0 and the other half

equally divided between the positive and negative sides. In this context, the LR test of the null

hypothesis H0 : ϕ = 0 will be a 50:50 mixture of a χ2
0, which is 0 with probability 1, and χ

2
1. As

for the Wald test, the square t-ratio associated to the ML estimator of ϕ will share the same

asymptotic distribution. In contrast, Wald tests based on ψx will have a rather non-standard

distribution which will render the t-ratio usually reported for this coeffi cient very misleading.

The following result explains how to conduct the score-type test

Proposition 4 The extremum test of the null hypothesis H0 : ψx = 0 is based on the influence
function

2[cos(2λ)− α cos(λ)]
(
1− α2

)
γyy(1)

α (1 + α2 − 2α cosλ) g2
yy(λ|γyy(0), γyy(1),α, 0)

[
Iyy(λ)− gyy(λ|γyy(0), γyy(1),α, 0)

]
, (21)

where

gyy(λ|γyy(0), γyy(1),α, 0) = γyy(0) +
2(cosλ− α)

(1 + α2 − 2α cosλ)
γyy(1).

Given the scores for γyy(0), γyy(1) and α under the null, this means that the extremum test

is effectively comparing the second sample autocovariance of fKt|∞ with its theoretical value after

taking into account the estimated nature of those model parameters. Nevertheless, the test must

be one-sided because (i) ϕ ≥ 0 under the alternative regardless of whether we reparametrise ψx

as ±√ϕ and (ii) the score under the null is the same in both cases, which implies that the

Kuhn-Tucker multiplier will also coincide.11

Finally, it is worth noting that although ψx is not first-order identified because the derivative

of the log-likelihood function with respect to this parameter is identically 0 and the expected

value of the second derivative under the null is also 0 from Proposition 4, it is locally identified

through higher order derivatives.12

A somewhat surprising implication of our previous results is that in this instance the usual

local equivalence between Ar(1) and Ma(1) alternatives hypotheses for the signal breaks down.

In contrast, there are other seemingly locally equivalent alternatives. Specifically, consider the

11When α = 0 the test statistic in Proposition 4 breaks down. As Fiorentini and Paruolo (2009) show for the
case of observable processes, the distribution of the residual serial correlation in an Ar(1) model becomes highly
non-standard when the first autocorrelation is in fact 0.
12See the proof of Proposition 4 for details.

14



following variation on model (20):

yt = xt + ut

(1− δxL2)(1− αL)xt = ft

 . (22)

In this case the null hypothesis of interest is H0 : δx = 0, so that the model under the null is still

an Ar(1) signal plus white noise, while the signal under the alternative is a “seasonal”Ar(3)

with restricted autoregressive polynomial 1−αL−δxL2 +αδxL
3. The “top-heavy”nature of the

signal together with the restrictions on the coeffi cients imply the model under the alternative

should be identified. We can then show that

Proposition 5 The LM test of the null hypothesis H0 : δx = 0 in model (22) will numerically
coincide with a two-sided version of the test discussed in Proposition 4 once we correct for the
sampling uncertainty in the estimation of the model parameters under the null.

Nevertheless, such a test is suboptimal for testing the null hypothesis H0 : ψx = 0 because

it ignores the effective one-sided nature of its alternative.

For reasons analogous to the ones explained in section (3.1), the test in Proposition 5 will

also coincide with the LM test of H0 : δf = 0 in the alternative “seasonal”model

yt = xt + ut

(1− αL)xt = (1− δfL2)ft

 , (23)

which will again be two sided. This equivalence is less obvious than it may seem because the

signal follows a “bottom-heavy”process under the alternative. Nevertheless, the fact that the

first Ma coeffi cient is 0 is suffi cient to guarantee identifiability in this case.

Another seemingly locally equivalent alternative to the neglected Ar(1) component in the

signal arises when we are interested in testing for first order serial correlation in the non-signal

component ut. In that case the model under the alternative becomes

yt = xt + ut

(1− αL)xt = ft

(1− ψuL)ut = vt

 (24)

with ft and vt orthogonal at all leads and lags. The null hypothesis of interest is H0 : ψu = 0. In

addition, we do not expect any singularity to be present under the alternative, on the grounds

that the contemporaneous aggregation of Ar(1)+Ar(1) is an Ar(2,1). We can then show that

Proposition 6 The LM test of the null hypothesis H0 : ψu = 0 in model (24) will numerically
coincide with a two-sided version of the test discussed in Proposition 4 once we correct for the
sampling uncertainty in the estimation of the model parameters under the null.
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As expected, the LM test of the null hypothesis H0 : ψv = 0 in the model

yt = xt + ut

(1− αL)xt = ft

ut = (1− ψvL)vt

 (25)

will also coincide because the derivatives of gyy(λ) with respect to ψv in model (25) and with

respect to ψu in model (24) only differ in their signs.

5 Comparison with tests based on the reduced form residuals

In the context of univariate time series models written in state space form, both Harvey

(1989) and Durbin and Koopman (2012) suggest the calculation of neglected serial correlations

tests for the reduced form residuals, at, which should be white noise under the null of correct

dynamic specification. For that reason, it is of some interest to compare such tests to the tests

that we have derived in the previous sections. To do so, let us introduce the following two

alternative hypothesis of interest:

5. Rar1: Arma(px + 1, qx)+Arma(pu + 1, qu) with a common Ar root.

6. Rma1: Arma(px, qx + 1)+Arma(pu, qu + 1) with a common Ma root.

In this context, we can prove the following result:

Proposition 7 Testing for Rar1 in the Ucarima model (1)-(4) is equivalent to testing for
Ar(1)-type neglected serial correlation in the reduced form innovations, while testing for Rma1
in the structural form is the same as testing for Ma(1)-type neglected serial correlation in at.

This means that when we test for first order neglected serial correlation in the reduced form

residuals the model under the alternative hypothesis is in effect:

yt = µ+ xt + ut,

αx(L)(1− ψaL)xt = βx(L)ft,

αu(L)(1− ψaL)ut = βu(L)vt,

 . (26)

In contrast, a test for neglected serial correlation in the signal makes use of the alternative model

(16), while a test for neglected serial correlation in the non-signal component relies on (18).

Thus, the relative power of those three tests will depend on the nature of the true model

under the alternative. Specifically, if we represent ψx on the horizontal axis and ψu on the

vertical axis, the reduced form test of the null hypothesis H0 : ψa = 0 will have maximum power

for alternatives along the 45◦ degree line ψu = ψx since it is locally the best test of neglected
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serial correlation in that direction in view of Proposition 7. In contrast, the structural form

tests of the null hypotheses H0 : ψx = 0 and H0 : ψu = 0 will have maximum power along their

respective axis (see Demos and Sentana (1998) for a related discussion in the context of Arch

tests). For the intermediate parameter combinations, we could use local power calculations along

the lines of appendix B in Fiorentini and Sentana (2014) to compare our LM tests, which are

based on the smoothed innovations of the state variables, to the LM tests based on the reduced

form innovations.13 Specifically, we could obtain two isopower lines, defined as the locus of

points in ψx, ψu space for which for which the non-centrality parameter of the reduced form test

is exactly the same as the non-centrality parameter of the structural tests for H0 : ψx = 0 and

H0 : ψu = 0.

In principle, we could consider the joint test of the compound null hypothesis H0 : ψx =

ψu = 0 mentioned at the end of section 3.2, which will generally have two degrees of freedom

instead. For comparing the joint test against the simple tests, though, we would have to equate

their local power directly since the number of degrees of freedom would be different.

In view of the discussion in section 4, though, in those situations in which the Ucarima

model becomes underidentified under alternative Sma1, the reduced form test and the two sided

versions of the structural tests will be identical.

6 Monte Carlo simulation

6.1 A regular case

We first report the results of some simulation experiments based on a special case of the

example discussed at the end of section 3.2, in which the autoregressive polynomial of the signal

contains a unit root. In this way, we can assess the finite sample reliability of the size of our

proposed tests and their power relative to the reduced form test in a realistic situation in which

the model remains identified under each of the four alternatives stated in section 2.1.
13Unlike in Fiorentini and Sentana (2014), though, the scores with respect to ψx and ψu will not be orthogonal

to the scores with respect to the remaining structural parameters, ϑ. For that reason, we should conduct the
local power calculations with the orthogonalised scores, which are the residuals in the regression of the scores
for ψx and ψu on the scores that define the estimated parameters, with the covariance matrices computed under
the null. This procedure would not only reflect the fact that the quadratic form that defines the non-centrality
parameter requires the relevant block of the inverse, as opposed to the inverse of the relevant block, but it would
also take into account that the expected Jacobian of the other scores with respect to ψx and ψu will not be 0.
Exploiting the information matrix equality, this effectively implies that the non-centrality parameter will be a
quadratic form in the direction of departure from the null with a weighting matrix equal to Iψψ −IψϑI−1ϑϑIϑψ.
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6.1.1 Size experiment

To evaluate possible finite sample size distorsions, we generate 10,000 samples of length 200

(equivalent to 50 years of quarterly data) of the following model

yt = µ+ xt + ut,

(1− L)(1− αL)xt = ft,

 (27)

with ft and ut being contemporaneously uncorrelated bivariate Gaussian white noise. Thus, the

signal component follows an Ari(1,1) under the null, while the non-signal component is white

noise. Given that µ is inconsequential, we fix its true value to 0. We also fix the variance of ut

to 1 without loss of generality. As for the remaining parameters, we choose σ2
f = 1 and α = .7

to clearly differentiate this design from the model in section 6.2.

For each simulated sample, we use the first differences of the data to compute the following

LM tests:

1. first-order neglected serial correlation in the signal (χ2
1)

2. first-order neglected serial correlation in the non-signal (χ2
1)

3. first-order neglected serial correlation in the reduced form residuals (χ2
1)

4. Joint test of 1. and 2. (χ2
2)

The finite sample sizes for the four tests are displayed in the first panel of Table 1. As can be

seen, the actual rejection rates at the 10, 5 and 1% of all four tests fall within the corresponding

asymptotic confidence intervals of (9.41,10.59), (4.57,5.43) and (.80,1.20), so one can reliably

use them.

6.1.2 Power experiments

Next, we simulate and estimate 5,000 samples of length 200 of DGPs in which either the signal

or the noise may have an additional autoregressive root, with everything else being unchanged.

In particular, we consider the following four alternatives:

a. neglected serial correlation in the signal (ψx = .5;ψu = 0), for which the LM test in 1.

should be optimal

b. neglected serial correlation in the noise (ψx = 0;ψu = .5), for which the LM test in 2.

should be optimal

18



c. symmetric neglected serial correlation in signal and noise (ψx = .5;ψu = .5), for which the

residual LM test in 3. should be optimal

d. asymmetric neglected serial correlation in signal and noise (ψx = .6;ψu = .3) for which the

joint LM test in 4. should be optimal.

The raw rejection rates are reported in the last four panels of Table 1. For alternative a.,

the ranking of the tests is as expected. However, for alternative b. the LM test for signal is

able to match the power of the LM test for noise, closely followed by the residual and joint LM

tests. Therefore, misspecification in the serial correlation of the non-signal component seems to

substantially alter the serial correlation pattern of the filtered values of the correctly specified

signal component because the parameter estimators at which the filter is evaluated are biased

and the filter weights would be the wrong ones even if we knew the true values of the estimated

parameters.

The most surprising result corresponds to alternative c., in that the joint LM test has more

power than the asymptotically optimal reduced form test. In contrast, the rejection rates for

alternative d. conform to the theoretical predictions.

In summary, our results show that the tests that look for neglected serial correlation in

the signal and the noise, either separately or jointly, tend to dominate in terms of power the

traditional tests based on the reduced form innovations.

6.2 Local level model

Next we analyze the local level model in appendix A, which is a rather important practical

example of the situation discussed in section 4.

6.2.1 Size experiment

To evaluate possible finite sample size distorsions, we generate 10,000 samples of length 200

of the following model

yt = µ+ xt + ut,

(1− L)xt = ft,


with ft and ut being contemporaneously uncorrelated bivariate Gaussian white noise. As before,

we fix the true value of µ to 0 and the variance of ut to 1 without loss of generality. Therefore,

the design depends on a single parameter: the noise to signal ratio σ2
f , which we choose to be

1. This choice implies a Mean Square Error of the final estimation error of ft relative to σ2
f of

55.28% according to expression (A4), which is neither too low nor too high.

19



For each simulated sample, we use the first differences of the data to compute the following

statistics:

1. one-sided versions of the extremum test for first-order neglected serial correlation in the

signal

2. two-sided version of the same test

3. likelihood ratio version

4. Wald test based on ϕ

5. Wald test based on ψx

6. second-order neglected serial correlation in the signal

7. first-order neglected serial correlation in the non-signal

8. first-order neglected serial correlation in the reduced form residuals

As expected from the theoretical results in section 4, the test statistics for 2., 6., 7. and 8.

are numerically identical, so we only report one of them under the label LM2S.

It is also important to emphasise that the statistics 3., 4. and 5. require the estimation of

model (27). For the reasons described in section 4, this is a non-trivial numerical task because

when its true value is 0 (i) approximately half of the ML estimators of ψx are identically 0; (ii)

the log-likelihood function is extremely flat in a neighbourhood of 0, especially if we parametrise

it in terms of ψx; and (iii) when the maximum is not 0 it tends to have two commensurate

maxima for positive and negative values of ψx. To make sure we have obtained the proper

ML estimate, we maximise the spectral log-likelihood of model (27) four times: for positive

and negative values of ψx and with this parameter replaced by ±
√
ϕ, retaining the maximum

maximorum. A kernel density estimate of the mixed-type discrete-continuous distribution of the

ML estimators is displayed in Figure 1, with its continuous part scaled so that it integrates to

.48, which is the fraction of non-zero estimates of ψx. In addition to bimodality, the sampling

distribution shows positive skewness, which nevertheless tends to disappear in non-reported

experiments with T = 10, 000. The remaining 52% of the estimates of ψx are 0, in which case

the test statistics 1., 3., 4. and 5. will all be 0 too.

The rejection rates under the null for the tests at the 10, 5 and 1% are displayed in Table 2.

The only procedure which seems to have a reliable size is the two-sided LM test. In contrast,

its one-sided version is somewhat conservative, while the LR and especially the two Wald tests
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are liberal. Reassuringly, though, the size distortions of the one-sided LM test disappear fairly

quickly in non-reported experiments with larger sample sizes, while the distortions of the LR

and Wald tests for ϕ go down more slowly and are still noticeable even in samples as big as

T = 50, 000 despite the fact that the fraction of 0 estimates converges very quickly to 1/2. As

expected, though, the distortions of the Wald test based on ψx persist no matter how big the

sample size is because the information matrix for this parametrisation is singular.

6.2.2 Power experiments

Next, we simulate and estimate 5,000 samples of length 200 of four alternative DGPs analo-

gous to the ones described in a.-d. of the previous section. However, since our focus is on tests

of the null hypothesis H0 : ψx = 0, we only estimate the model under the null and under the a.

alternative. In this regard, an additional issue that we encounter in some desgins is that from

time to time the estimated value of σ2
u is 0. In those “pile-up”cases we compute the LM and

Wald tests excluding the corresponding row and column of the information matrix.

In view of the substantial size distortions under the null, we report not only raw rejection

rates based on asymptotic critical values in Table 3a but also size-adjusted ones in Table 3b,

which exploit the Monte Carlo critical values obtained in the simuation described in the previous

subsection. If we focus on this second table, we can conclude that the tests that explicitly

acknowledge the implicit one-sided nature of the alternative to H0 : ψx = 0 dominate the

two-sided test, except when ψx = 0 but ψu =.5, when they tend to be equally powerful. In

particular, the one-sided tests for H0 : ψx = 0 dominate the residual correlation tests even when

ψx = ψu = .5.

We can also conclude that the relative ranking of the extremum test, the likelihood ratio

test and the Wald test for H0 : ϕ = 0 depends on the DGP, although when it coincides with

the alternative for which they are asymptotically optimal, the extremum test dominates the LR

test, which in turn dominates the Wald test.

7 Conclusions and extensions

We have derived computationally simple and intuitive expressions for score tests of neglected

serial correlation in unobserved component univariate models using frequency domain methods.

Our tests can focus on the state variables individually or jointly. The implicit orthogonality

conditions are analogous to the conditions obtained by treating the Wiener-Kolmogorov-Kalman

smoothed estimators of the innovations in the latent variables as if they were observed, but they

account for their final estimation errors.
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In some common situations in which the information matrix is singular under the null we show

that contrary to popular belief it is possible to derive extremum tests that are asymptotically

equivalent to likelihood ratio tests, which become one-sided. We also explain how to compute

asymptotically reliable Wald tests. As a result, from now on empirical researchers would be

able to report test statistics in those irregular situations too. Further, we explicitly relate the

incidence of those problems to the model identification conditions and compare our tests with

tests based on the reduced form prediction errors.

We conduct Monte Carlo exercises to study the finite sample reliability and power of our

proposed tests. In the regular case of a latent Ari(1,1) process cloaked in white noise, our results

show that the finite sample size of the different tests is reliable. They also imply that the tests

that look for neglected serial correlation in the signal and the noise, either separately or jointly,

dominate in terms of power the traditional tests based on the reduced form innovations.

When we look at neglected serial correlation tests in the irregular local level model, our sim-

ulation results confirm that the finite sample distribution of the ML estimator of the additional

autoregressive root in the signal is highly unusual under the null of correct specification, with

almost half its mass at 0 and two modes, one positive and one negative. Not suprisingly, a Wald

test based on this parameter is highly unreliable, even asymptotically. We also find some size

distortions for the asymptotically valid one-sided tests of H0 : ψx = 0 (but not for the two-

sided LM test), which nevertheless progressively disappear as the sample size increases. After

correcting for those distortions, though, we find that the one-sided tests dominate the residual

correlation tests even when ψx = ψu = .5, but the relative ranking of the extremum test, the

likelihood ratio test and the Wald test depends on the DGP under the alternative.

Although we have considered reasonable Monte Carlo designs, a more throrough analysis

of the determinants of the size and power properties of the different tests would constitute a

valuable addition.

The testing procedures we have developed can be extended in several interesting directions.

First, it would be tedious but straightforward to consider models with more than two compo-

nents. More interestingly, we could also consider models with purely seasonal components (see

Harvey (1989) for some examples). Tests of higher order serial correlation also deserve further

consideration since they might involve singularity problems too. For example, the Ari(1,1)

plus white noise process discussed in section 6.1, which yields standard test statistics for ne-

glected first order serial correlation, gives rise to a singular information matrix when we consider

tests against first and second order serial correlation simultaneously because those tests are nu-

merically equivalent to tests against the underidentified alternative of Arima(1,1,2) plus white
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noise.

Second, we have assumed throughtout the paper that the model estimated under the null

is parametrically identified. Nevertheless, Harvey (1989) discusses some examples in which

an Ucarima model is underidentified under the null but identified under the alternative. He

formally tackles the problem by using the procedure proposed by Aitchinson and Silvey (1960),

which effectively adds a matrix to the information matrix to make sure that it has full rank (see

also Breusch (1986)).

We have also maintained the assumption of normality. To understand its implications, let

µt|t−1 and σ
2
t|t−1 denote the conditional mean and variance of yt given its past alone, which can

be obtained from the prediction equations of the Kalman filter. Given that the serial correlation

parameters effectively enter through µt|t−1 only, the information matrix equality should continue

to hold for their scores.

Although we have only considered unobserved components with rational spectral densities,

in principle our methods could be applied to long memory processes too. In this regard, it

would be worth exploring the fractionally integrated alternatives considered by Robinson (1994).

More generally, it would also be interesting to consider non-parametric alternatives such as the

ones studied by Hong (1996), in which the lag length is implicitly determined by the choice

of bandwidth parameter in a kernel-based estimator of a spectral density matrix. Another

potential extension would directly deal with non-stationary models without transforming the

observed variables to achieve stationarity. All these topics constitute fruitful avenues for future

research.
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Appendices

A Local level model

A.1 Testing for neglected serial correlation in the trend

A.1.1 Against AR(1) alternatives

Consider the following modified version of model (20)

yt = xt + ut

(1− ψxL)(1− L)xt = ft

 , (A1)

with ft and ut orthogonal at all leads and lags. The main difference is that we have replaced

the covariance stationarity hypotheis for the signal xt by a unit root one. As before, the null

hypothesis of interest remains H0 : ψx = 0, so that the model under the null is simply a

random walk signal plus white noise, while the signal under the alternative is an Ari(1,1) with

autoregressive coeffi cient ψx.

In order to use spectral methods we need to take first differences of the observed variable to

make it stationary, which yields

∆yt =
1

1− ψxL
ft + (1− L)ut.

Hence, it is easy to see that

V (∆yt) = γ∆y∆y(0) =
σ2
f

1− ψ2
x

+ 2σ2
u, (A2)

cov(∆yt,∆yt−1) = γ∆y∆y(1) = ψx
σ2
f

1− ψ2
x

− σ2
u, (A3)

cov(∆yt,∆yt−j) = γ∆y∆y(j) = ψjx
σ2
f

1− ψ2
x

j ≥ 2.

Similarly, the spectral density of ∆yt will be

g∆y∆y(λ) =
σ2
f

(1− ψxe−iλ) (1− ψxeiλ)
+ (1− e−iλ)(1− eiλ)σ2

u

=
σ2
f

1 + ψ2
x − 2ψx cosλ

+ 2(1− cosλ)σ2
u.

The reduced form of ∆yt is an Ima(1,1) process with Ma coeffi cient βy given by

βy =
1

2

(√
q2 + 4q − 2− q

)
,

where q = σ2
f/σ

2
u denotes the signal to noise ratio, and residual variance

σ2
a = −σ2

u/βy.

27



As is well known (see e.g. Priestley (1981, section 10.3), the variance of the final estimation

error of ft will be given by

1

2π

π∫
−π

(
gff (λ)−

∣∣gf∆y(λ)
∣∣2

g∆y∆y(λ)

)
dλ =

1

2π
σ2
f

π∫
−π

(
1− q

q + 2(1− cosλ)

)
dλ = σ2

f

(
1− q√

q2 + 4q

)
(A4)

because ∫
q

q + 2(1− cosλ)
dλ =

2
√
q√

q + 4
arctan

(√
q + 4
√
q

tan

(
λ

2

))
and

lim
λ→(π/2)−

arctan

(√
q + 4
√
q

tan

(
λ

2

))
− lim
λ→(−π/2)+

arctan

(√
q + 4
√
q

tan

(
λ

2

))
= π

Interestingly, we would obtain exactly the same expression by working with pseudo-spectral

densities in levels because

1

2π

π∫
−π

(
gxx(λ)−

∣∣gx∆y(λ)
∣∣2

gyy(λ)

)
dλ =

1

2π

π∫
−π

 σ2
f

2(1− cosλ)
−

(
σ2f

2(1−cosλ)

)2

σ2f
2(1−cosλ) + σ2

u

 dλ

=
1

2π

π∫
−π

 σ2fσ
2
u

2(1−cosλ)

σ2f
2(1−cosλ) + σ2

u

 dλ =
1

2π
σ2
f

π∫
−π

(
1− q

q + 2(1− cosλ)

)
dλ = σ2

f

(
1− q√

q2 + 4q

)
.

The partial derivatives of this spectral density are

∂g∆y∆y(λ)

∂σ2
f

=
1

1 + ψ2
x − 2ψx cosλ

,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂ψx
=

2σ2
f (cosλ− ψx)

(1 + ψ2
x − 2ψx cosλ)2

.

Under the the null of H0 : ψx = 0 those derivatives become

∂g∆y∆y(λ)

∂σ2
f

= 1,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂ψx
= 2σ2

f cosλ,

which implies that

σ2
f

[
∂g∆y∆y(λ)

∂σ2
u

− 2
∂g∆y∆y(λ)

∂σ2
f

]
+
∂g∆y∆y(λ)

∂ψx
= 0 (A5)
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for all λ. Obviously, exactly the same linear combination of the elements of g−1
yy (λ)∂gyy(λ)/∂θ

will be singular too. Therefore, the information matrix of the model, which is given by∫ π

−π

∂gyy(λ)

∂θ

1

gyy(λ)

1

gyy(λ)

∂gyy(λ)

∂θ′
dλ,

will only have rank 3 under the null. In view of this result, Harvey (1989) rightly concludes that

a standard LM test is infeasible.

In contrast, there is no linear combination of the first two derivatives that is equal to 0 under

H0, so we can consistently estimate σ2
f and σ

2
u if we impose the null hypothesis when it is indeed

true. Likewise, there is no linear combination of the three derivatives that is equal to 0 under the

alternative either, so again we can consistently estimate σ2
f , σ

2
u and ψx in those circumstances.

For that reason, Harvey (1989) recommends reporting either a Wald test or a LR one, which for

reasons explained in section 4 turns out not to be sound advice.

Nevertheless, an LM-type test is readily available once more along the same lines as in section

4. Specifically, we can tackle the problem created by (A5) by reparametrisation. First, we are

going to replace σ2
f and σ

2
u by γ∆y∆y(0) and γ∆y∆y(1). Thus, it is easy to see from (A2) and

(A3) that

σ2
u =

1

2ψx + 1

[
ψxγ∆y∆y(0)− γ∆y∆y(1)

]
,

σ2
f =

1− ψ2
x

2ψx + 1

[
γ∆y∆y(0) + 2γ∆y∆y(1)

]
,

which are well defined as long as ψx 6= −1
2 (or if γ∆y∆y(0) + 2γ∆y∆y(1) = 0 when ψx 6= −1

2).

With this notation, the spectral density becomes

g∆y∆y(λ) =
1

1 + ψ2
x − 2ψx cosλ

1− ψ2
x

2ψx + 1

[
γ∆y∆y(0) + 2γ∆y∆y(1)

]
+2(1− cosλ)

1

2ψx + 1

[
ψxγ∆y∆y(0)− γ∆y∆y(1)

]
.

The derivatives with respect to these new parameters are

∂g∆y∆y(λ)

∂γ∆y∆y(0)
=

1

1 + ψ2
x − 2ψx cosλ

1− ψ2
x

2ψx + 1
+ 2(1− cosλ)

ψx
2ψx + 1

∂g∆y∆y(λ)

∂γ∆y∆y(1)
=

2

1 + ψ2
x − 2ψx cosλ

1− ψ2
x

2ψx + 1
− 2(1− cosλ)

1

2ψx + 1

∂g∆y∆y(λ)

∂ψx
= −2ψx

[
γ∆y∆y(0) + 2γ∆y∆y(1)

]
(2ψx + 1)2 (1 + ψ2

x − 2ψx cosλ
)2

×

 (cosλ− 2)ψ3
x +

(
4 cosλ− 4 cos2 λ

)
ψ2
x

+
(
4 cos3 λ− 4 cos2 λ+ cosλ+ 2

)
ψx +

(
2− 4 cos2 λ

)
 .
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Under the null of H0 : ψx = 0, these scores reduce to

∂g∆y∆y(λ)

∂γ∆y∆y(0)
= 1

∂g∆y∆y(λ)

∂γ∆y∆y(1)
= 2 cosλ

∂g∆y∆y(λ)

∂ψx
= 0.

Although we have not yet eliminated the singularity, we have at least confined it to the last

element of the score. If we further reparametrise ψx as ±
√
ϕ, the spectral density becomes

g∆y∆y(λ) =
1

1 + ϕ− 2
√
ϕ cosλ

1− ϕ
2
√
ϕ+ 1

[
γ∆y∆y(0) + 2γ∆y∆y(1)

]
+2(1− cosλ)

1

2
√
ϕ+ 1

[√
ϕγ∆y∆y(0)− γ∆y∆y(1)

]
.

Tedious algebra shows that the ∂g∆y∆y(λ)/∂ϕ evaluated at ϕ = 0 will be equal to

2σ2
f cos 2λ,

where we have used the fact that

γ∆y∆y(0) + 2γ∆y∆y(1) = σ2
f

under the null. Hence, the extremum test for ψx, which coincides with the LM test for ϕ, is

going to be based on the second autocovariance of the smoothed estimates of ft. Importantly,

Lee and Chesher (1986) show that the one-sided version of this extremum test continues to be

asymptotically equivalent to both the LR and a one-sided version of the Wald test for ϕ.

A.1.2 Against MA(1) alternatives

Consider now the following variation on model (A1):

yt = xt + ut

(1− L)xt = (1− ψf )ft

 , (A6)

with ft and ut orthogonal at all leads and lags. The null hypothesis of interest is H0 : ψf = 0,

so that the model under the null is still a random walk signal plus white noise, while the signal

under the alternative is an Ima(1,1) with moving average coeffi cient ψf .

In this case, the stationary model is

∆yt = (1− ψfL)wt + (1− L)ut.
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Hence, it is easy to see that

V (∆yt) = γ∆y∆y(0) = (1 + ψ2
f )σ2

f + 2σ2
u, (A7)

cov(∆yt,∆yt−1) = γ∆y∆y(1) = −ψfσ2
f − σ2

u, (A8)

cov(∆yt,∆yt−j) = γ∆y∆y(j) = 0 j ≥ 2.

Similarly, the spectral density of ∆yt will be

g∆y∆y(λ) =
(

1− ψfe−iλ
)(

1− ψfeiλ
)
σ2
f + (1− e−iλ)(1− eiλ)σ2

u

= (1 + ψ2
f − 2ψf cosλ)σ2

f + 2(1− cosλ)σ2
u.

The partial derivatives of this spectral density are

∂g∆y∆y(λ)

∂σ2
f

= 1 + ψ2
f − 2ψf cosλ,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂ψf
= 2σ2

f (cosλ− ψf ).

Under the the null of H0 : ψf = 0 those derivatives become

∂g∆y∆y(λ)

∂σ2
f

= 1,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂ψf
= 2σ2

f cosλ,

which confirms that (A5) also holds for this model.

Let us now try and isolate the singularity in a single parameter by using the same procedure

as in the previous section. First, we replace σ2
f and σ

2
u by γ∆y∆y(0) and γ∆y∆y(1). Thus, it is

easy to see from (A7) and (A8) that

σ2
u =

1

(1− ψf )2

[
−ψfγ∆y∆y(0)− (1 + ψ2

f )γ∆y∆y(1)
]
,

σ2
f =

1

(1− ψf )2

[
γ∆y∆y(0) + 2γ∆y∆y(1)

]
,

which are well defined as long as ψf 6= 1.

With this notation, the spectral density becomes

g∆y∆y(λ) =
(1 + ψ2

f − 2ψf cosλ)

(1− ψf )2

[
γ∆y∆y(0) + 2γ∆y∆y(1)

]
+2(1− cosλ)

1

(1− ψf )2

[
−ψfγ∆y∆y(0)− (1 + ψ2

f )γ∆y∆y(1)
]
.
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The derivatives with respect to these new parameters are

∂g∆y∆y(λ)

∂γ∆y∆y(0)
=

(1 + ψ2
f − 2ψf cosλ)

(1 + ψf )2
− 2(1− cosλ)

ψf
(1− ψf )2

∂g∆y∆y(λ)

∂γ∆y∆y(1)
=

2(1 + ψ2
f − 2ψf cosλ)

(1 + ψf )2
− 2(1− cosλ)

(1 + ψ2
f )

(1− ψf )2

∂g∆y∆y(λ)

∂ψf
= 0.

Since this last derivative is 0 not only under the null but also under the alternative, ψf cannot

be identified. Intuitively, the reason is that the process for ∆yt is an unrestricted Ma(1) under

the alternative, which is fully characterised by γ∆y∆y(0) and γ∆y∆y(1).

Thus, the usual local equivalence between Ar(1) and Ma(1) alternatives hypothesis for the

signal breaks down once again.

A.1.3 Against restricted MA(2) alternatives

Consider this alternative variation on model (A1):

yt = xt + ut

(1− L)xt = (1− δfL2)ft

 , (A9)

with ut and wt orthogonal at all leads and lags. The null hypothesis of interest is H0 : δf = 0,

so that the model under the null is still a random walk signal plus white noise, while the signal

under the alternative is an Ima(1,2) with second moving average coeffi cient δf .

Therefore, the stationary model will be

∆yt = (1− δfL2)wt + (1− L)ut,

whose spectral density is

g∆y∆y(λ) =
(

1− δfe−i2λ
)(

1− δfei2λ
)
σ2
f + (1− e−iλ)(1− eiλ)σ2

u

= (1 + δ2
f − 2δf cos 2λ)σ2

f + 2(1− cosλ)σ2
u.

The partial derivatives of this spectral density are

∂g∆y∆y(λ)

∂σ2
f

= 1 + δ2
f − 2δf cos 2λ,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂δf
= 2σ2

f (cos 2λ− δf ).
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Under the the null of H0 : δf = 0 those derivatives become

∂g∆y∆y(λ)

∂σ2
f

= 1,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂δf
= 2σ2

f cos 2λ.

Given that the linear span of ∂g∆y∆y(λ)/∂σ2
f and ∂g∆y∆y(λ)/∂σ2

u is the same as the linear

span of ∂g∆y∆y(λ)/∂γ∆y∆y(0) and ∂g∆y∆y(λ)/∂γ∆y∆y(1), this test is going to coincide with the

two-sided version of the extremum test against an Ar(1) alternative.

A.1.4 Against restricted AR(2) alternatives

Consider yet another variation on model (A1):

yt = xt + ut

(1− δxL2)(1− L)xt = ft

 , (A10)

with ft and ut orthogonal at all leads and lags. The null hypothesis of interest is H0 : δx = 0,

so that the model under the null is still a random walk signal plus white noise, while the signal

under the alternative is an Ari(2,1) with second autoregressive coeffi cient δx.

In this case, the spectral density of ∆yt will be

g∆y∆y(λ) =
σ2
f

(1− δxe−i2λ) (1− δxei2λ)
+ (1− e−iλ)(1− eiλ)σ2

u

=
σ2
f

1 + δ2
x − 2δx cos 2λ

+ 2(1− cosλ)σ2
u.

The partial derivatives of this spectral density are

∂g∆y∆y(λ)

∂σ2
f

=
1

1 + δ2
x − 2δx cos 2λ

,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂δx
=

2σ2
f (cos 2λ− δx)

(1 + δ2
x − 2δx cos 2λ)2

,

which under the the null of H0 : δx = 0 become

∂g∆y∆y(λ)

∂σ2
f

= 1,

∂g∆y∆y(λ)

∂σ2
u

= 2(1− cosλ),

∂g∆y∆y(λ)

∂δx
= 2σ2

f cos 2λ.

As expected, this test is locally equivalent to a test against a restricted Ma(2), which is also

locally equivalent to the two-sided version of the test against an unrestricted Ar(1).
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A.2 Testing for neglected serial correlation in the noise

Let us know see what happens if we are interested in testing for first order serial correlation

in ut. The model under the alternative becomes

yt = xt + ut

(1− L)xt = ft

(1− ψuL)ut = vt


with ut and ft orthogonal at all leads and lags. The null hypothesis of interest is H0 : ψu = 0.

Taking first differences of the observed variables to make them stationary yields

∆yt = ft +
1− L

1− ψuL
vt.

Using the expressions for the autocovariances of an Arma(1,1) with a unit root in the Ma

part, it is easy to see that

V (∆ut) = γ∆u∆u(0) =
2

1 + ψu
σ2
v

cov(∆ut,∆ut−1) = γ∆u∆u(1) = −(1− ψu)

1 + ψu
σ2
v

cov(∆ut,∆ut−j) = γ∆u∆u(j) = ψuγ∆u∆u(j − 1) j ≥ 2,

As a result,

V (∆yt) = γ∆y∆y(0) = σ2
f +

2

1 + ψu
σ2
v,

cov(∆yt,∆yt−1) = γ∆y∆y(1) = −(1− ψu)

1 + ψu
σ2
v,

cov(∆yt,∆yt−j) = γ∆y∆y(j) = ψuγ∆y∆y(j − 1) j ≥ 2.

Similarly, the spectral density of ∆yt will be

g∆y∆y(λ) = σ2
f +

(1− e−iλ)(1− eiλ)

(1− ψue−iλ) (1− ψueiλ)
σ2
v

= σ2
f +

2(1− cosλ)

1 + ψ2
u − 2ψu cosλ

σ2
v,

and its partial derivatives

∂g∆y∆y(λ)

∂σ2
f

= 1

∂g∆y∆y(λ)

∂σ2
v

=
2(1− cosλ)

1 + ψ2
u − 2ψu cosλ

∂g∆y∆y(λ)

∂φ
=

4σ2
f (cosλ− ψu)(1− cosλ)

(1 + ψ2
u − 2ψu cosλ)2
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Under the the null of H0 : ψu = 0 those derivatives become

∂g∆y∆y(λ)

∂σ2
f

= 1

∂g∆y∆y(λ)

∂σ2
v

= 2(1− cosλ)

∂g∆y∆y(λ)

∂φ
= 4σ2

f cosλ (1− cosλ)

Given that the spectral density under the null is

σ2
f + 2(1− cosλ)σ2

v,

we can compute the information matrix by integrating the outerproduct of the following vector:

∂g∆y∆y(λ)

∂σ2
f

1

g∆y∆y(λ)
=

1

σ2
f + 2(1− cosλ)σ2

v

,

∂g∆y∆y(λ)

∂σ2
v

1

g∆y∆y(λ)
=

2(1− cosλ)

σ2
f + 2(1− cosλ)σ2

v

,

∂g∆y∆y(λ)

∂ψu

1

g∆y∆y(λ)
=

4σ2
f cosλ (1− cosλ)

σ2
f + 2(1− cosλ)σ2

v

.

Unlike what happens in the test for ψx = 0, the information matrix will be regular when

ψu = 0. Given that the score with respect to ψu involves a square cosine, which can always be

expanded in terms of cos 2λ by using the trigronometric identity

cos 2λ = 2 cos2 λ− 1, (A11)

the test for neglected serial correlation in the noise will also coincide with the two-sided version

of the extremum test.

Finally, it is easy to see that apart from a sign change, one would get the same derivative

under the null if we were considering an Ma(1) alternative for ut.

B Proofs of propositions

Proposition 1

Given that ψf 6= α−1 if we choose an invertible Ma polynomial, Lemma 1 allows us to

replace σ2
f and σ

2
u by the theoretical variance and first autocovariance of the observed series as

follows:

σ2
f =

(
1− α2

)
(1− αψf )(α− ψf )

γyy(1),

σ2
u = γyy(0)−

(1 + ψ2
f − 2αψf )

(1− αψf )(α− ψf )
γyy(1)
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under the assumption that ψf 6= α, which is valid in a neighbourhood of ψf = 0 since we

maintain the assumption that the true value of α is different from 0.

In this notation we can write the spectral density (C1) as

gyy(λ) =
1 + ψ2

f − 2ψf cosλ

1 + α2 − 2α cosλ

(
1− α2

)
(1− αψf )(α− ψf )

γyy(1) + γyy(0)−
(1 + ψ2

f − 2αψf )

(1− αψf )(α− ψf )
γyy(1)

= γyy(0) +
2(cosλ− α)

1 + α2 − 2α cosλ
γyy(1),

which does not depend on ψf . �

Proposition 2

The partial derivatives of the spectral density (C5) are:

∂gyy(λ|σ2
f , σ

2
u, α, ψx)

∂σ2
f

=
1(

1 + ψ2
x − 2ψx cosλ

)
(1 + α2 − 2α cosλ)

,

∂gyy(λ|σ2
f , σ

2
u, α, ψx)

∂σ2
u

= 1,

∂gyy(λ|σ2
f , σ

2
u, α, ψx)

∂α
=

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)2 (1 + ψ2
x − 2ψx cosλ

) ,
∂gyy(λ|σ2

f , σ
2
u, α, ψx)

∂ψx
=

2σ2
f (cosλ− ψx)

(1 + ψ2
x − 2ψx cosλ)2 (1 + α2 − 2α cosλ)

.

When ψx = 0, these derivatives reduce to

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

=
1

(1 + α2 − 2α cosλ)
,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
u

= 1,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂α
=

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)2 ,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂ψx
=

2σ2
f cosλ

(1 + α2 − 2α cosλ)
.

Given that the spectral density under the the null is

gyy(λ|σ2
f , σ

2
u, α, 0) =

σ2
f

(1 + α2 − 2α cosλ)
+ σ2

u,

and its reciprocal

g−1
yy (λ|σ2

f , σ
2
u, α, 0) =

(
1 + α2 − 2α cosλ

)
σ2
u (1 + α2 − 2α cosλ) + σ2

f

,
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we will have that for ψx = 0

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

1

gyy(λ|σ2
f , σ

2
u, α, 0)

=
1

σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
u

1

gyy(λ|σ2
f , σ

2
u, α, 0)

=

(
1 + α2 − 2α cosλ

)
σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂α

1

gyy(λ|σ2
f , σ

2
u, α, 0)

=
2σ2

f (cosλ− α)

(1 + α2 − 2α cosλ)

1

σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂ψx

1

gyy(λ|σ2
f , σ

2
u, α, 0)

=
2σ2

f cosλ

σ2
u (1 + α2 − 2α cosλ) + σ2

f

.

It is then easy to see that

σ2
f

[
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
u

1

gyy(λ|σ2
f , σ

2
u, α, 0)

− (1 + α2)
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
f

1

gyy(λ|σ2
f , σ

2
u, α, 0)

]

+α
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂ψx

1

gyy(λ|σ2
f , σ

2
u, α, 0)

=

(
1 + α2 − 2α cosλ

)
σ2
f

σ2
u (1 + α2 − 2α cosλ) + σ2

f

−
(1 + α2)σ2

f

σ2
u (1 + α2 − 2α cosλ) + σ2

f

+
2σ2

fα cosλ

σ2
u (1 + α2 − 2α cosλ) + σ2

f

= 0.

Given (8), this result implies that the information matrix of model (20) will only have rank 3

under the null when the true value of α is not zero. �

Proposition 3

Let us replace σ2
f and σ

2
u by the variance and the first autocovariance of the observed series.

Asuming that α + ψx 6= 0, which is valid in a neighbourhood of ψx = 0 when the true value of

α is different from 0, the solution will be

σ2
f =

(
1− α2

) (
1− ψ2

x

)
(1− αψx)

α+ ψx
γyy(1),

σ2
u = γyy(0)− (1 + αψx)

α+ ψx
γyy(1).

so that

∂σ2
f

∂γyy(0)
= 0,

∂σ2
f

∂γyy(1)
=

(
1− α2

) (
1− ψ2

x

)
(1− αψx)

α+ ψx
,

∂σ2
f

∂α
=

(
1− ψ2

x

)
(α+ ψx)2

[
2α3ψx + α2(3ψ2

x − 1)− 2αψx − (1 + ψ2
x)
]
γyy(1),

∂σ2
f

∂ψx
=

(
1− α2

)
(α+ ψx)2

[
2ψ3

xα+ ψ2
x(3α2 − 1)− 2αψx − (1 + α2)

]
γyy(1),
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and

∂σ2
u

∂γyy(0)
= 1,

∂σ2
u

∂γyy(1)
= −(1 + αψx)

α+ ψx
,

∂σ2
u

∂α
=

1− ψ2
x

(α+ ψx)2γyy(1),

∂σ2
u

∂ψx
=

1− α2

(α+ ψx)2γyy(1).

Under the null of ψx = 0 these derivatives simplify to

∂σ2
f

∂γyy(0)
= 0,

∂σ2
f

∂γyy(1)
=

1− α2

α
,

∂σ2
f

∂α
= −1 + α2

α2
γyy(1) = −1 + α2

α

σ2
f

1− α2
,

∂σ2
f

∂ψx
= −(1− α2)(1 + α2)

α2
γyy(1) = −(1 + α2)

α
σ2
f ,

and

∂σ2
u

∂γyy(0)
= 1,

∂σ2
u

∂γyy(1)
= − 1

α
,

∂σ2
u

∂α
=

1

α2
γyy(1) =

1

α

σ2
f

1− α2
,

∂σ2
u

∂ψx
=

1− α2

α2
γyy(1) =

1

α
σ2
f ,

where we have used the fact that when ψx = 0

γyy(0) = σ2
u +

σ2
f

1− α2
,

γyy(1) = α
σ2
f

1− α2
.

If we apply the chain rule to this reparametrisation, the new derivative wrt ψx evaluated at
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ψx = 0 will be

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

1

gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

∂ψx
+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
u

1

gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
u

∂ψx

+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂ψx

1

gyy(λ|σ2
f , σ

2
u, α, 0)

= −(1 + α2)

α
σ2
f

1

σ2
u (1 + α2 − 2α cosλ) + σ2

f

+
1

α
σ2
f

(
1 + α2 − 2α cosλ

)
σ2
u (1 + α2 − 2α cosλ) + σ2

f

+
2σ2

f cosλ

σ2
u (1 + α2 − 2α cosλ) + σ2

f

=
σ2
f

σ2
u (1 + α2 − 2α cosλ) + σ2

f

(
−(1 + α2)

α
+

1

α

(
1 + α2 − 2α cosλ

)
+ 2 cosλ

)
= 0,

as desired. Obviously, we would obtain exactly the same result had we expressed the spectral

density of yt in terms of γyy(0), γyy(1), α and ψx as

gyy(λ|γyy(0), γyy(1),α, ψx) = γyy(0)

+

(
1− α2

) (
1− ψ2

x

)
(1− αψx)− (1 + αψx)

(
1 + α2 − 2α cosλ

) (
1 + ψ2

x − 2ψx cosλ
)

(α+ ψx) (1 + α2 − 2α cosλ)
(
1 + ψ2

x − 2ψx cosλ
) γyy(1),

(B1)

derived this expression with respect to ψx obtaining

∂gyy(λ|γyy(0), γyy(1),α, ψx)

∂ψx
= −

2
(
α2 − 1

)
ψxγyy(1)

(α+ ψx)2 (1 + α2 − 2α cos(λ))
(
1 + ψ2

x − 2ψx cosλ
)2

×

 ψx
(
α2
(
ψ2
x + 4

)
+ 4αψx + ψ2

x

)
− (2α+ ψx)

(
2αψ2

x + α+ 2ψx
)

cos(λ)

+(α(ψx(α+ 2ψx) + 2) + ψx) cos(2λ)− αψx cos(3λ)


and evaluated this derivative at ψx = 0. �

Proposition 4

If we choose ψx = +
√
ϕ, the spectral density of yt written in this form will be

g+
yy(λ|γyy(0), γyy(1),α, ϕ) = γyy(0)

+

(
1− α2

)
(1− ϕ)

(
1− α√ϕ

)
−
(
1 + α

√
ϕ
) (

1 + α2 − 2α cosλ
) (

1 + ϕ− 2
√
ϕ cosλ

)(
α+
√
φ
)

(1 + α2 − 2α cosλ)
(
1 + ϕ− 2

√
ϕ cosλ

) γyy(1)

while if we choose ψx = −√ϕ it becomes

g−yy(λ|γyy(0), γyy(1),α, ϕ) = γyy(0)

+

(
1− α2

)
(1− ϕ)

(
1 + α

√
ϕ
)
−
(
1− α√ϕ

) (
1 + α2 − 2α cosλ

) (
1 + ϕ+ 2

√
ϕ cosλ

)(
α−
√
φ
)

(1 + α2 − 2α cosλ)
(
1 + ϕ− 2

√
ϕ cosλ

)
.

γyy(1)
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Next we must obtain the derivative under the alternative, and then evaluate it under the

null. In this way we obtain

∂g+
yy(λ|γyy(0), γyy(1),α, ϕ)

∂ϕ
=

(
α2 − 1

)
γyy(1)(

α+
√
ϕ
)2

(1 + α2 − 2α cos(λ))
(
1 + ϕ− 2

√
ϕ cosλ

)2
×

 − ((α2 + 1
)√

ϕ+ 2αϕ+ 2α
)

cos(2λ)−√ϕ
(
α2(ϕ+ 4)− α cos(3λ) + 4α

√
ϕ+ ϕ

)
+
(
2α+

√
ϕ
) (

2αϕ+ α+ 2
√
ϕ
)

cosλ


so that

∂g+
yy(λ|γyy(0), γyy(1),α, 0)

∂ϕ
=

2
(
1− α2

)
(cos(2λ)− α cosλ)

α (1 + α2 − 2α cos(λ))
γyy(1). (B2)

Similarly,

∂g−yy(λ|γyy(0), γyy(1),α, ϕ)

∂ϕ
=

(
α2 − 1

)
γyy(1)(

α−√ϕ
)2

(1 + α2 − 2α cos(λ))
(
1 + ϕ+ 2

√
ϕ cosλ

)2
×

 ((
α2 + 1

)√
ϕ− 2αϕ− 2α

)
cos(2λ) +

√
ϕ
(
α2(ϕ+ 4)− α cos(3λ)− 4α

√
ϕ+ ϕ

)
+
(
2α−√ϕ

) (
2αϕ+ α− 2

√
ϕ
)

cos(λ)


so that

∂g−yy(λ|γyy(0), γyy(1),α, 0)

∂ϕ
=

2
(
1− α2

)
(cos(2λ)− α cos(λ))

α (1 + α2 − 2α cos(λ))
γyy(1),

which coincides with (B2). Hence, the score test for the null hypothesis H0 : ϕ : 0 will indeed

be based on the “influence function”(21).

We can also try the alternative route proposed by Lee and Chesher (1986). Given that

∂2gyy(λ|γyy(0), γyy(1),α, ψx)

∂ψx∂ψx
= −

4
(
α2 − 1

)
γyy(1)

(α+ ψx)3 (1 + α2 − 2α cos(λ))
(
1 + ψ2

x − 2φ cosλ
)3

×



(
−3
(
α2 + 1

)
ψ4
x + α

(
α2 − 10

)
ψ3
x − 3α2ψ2

x + α2 − 3αφ5
)

cos(2λ)

+
(
−α3

(
3φ2 + 1

)
+ α2

(
6φ4 + 8φ2 − 3

)
ψx + 2α

(
ψ2
x + 6

)
ψ4
x + 3φ5

)
cos(λ)

−ψx
(
−3α3 + α2

(
ψ4
x + 9φ2 − 3

)
ψx + 6αφ4 + ψ5

x

)
− αφ3 cos(4λ)

+ψ2
x(α(ψx(α+ 3φ) + 3) + ψx) cos(3λ)


so that

∂2gyy(λ|γyy(0), γyy(1),α, 0)

∂ψx∂ψx
=

4
(
1− α2

)
(cos(2λ)− α cos(λ))

α (1 + α2 − 2α cos(λ))
γyy(1).

Having obtained the derivative of the original spectral density, we can obtain the second

derivative of the spectral log-likelihood function with respect ψx by taking first derivatives of

the score (7). But since we have seen that

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂ψx
= 0,

the second derivative of the log-likelihood function will be

T−1∑
j=0

γyy(1)
4
(
1− α2

)
(cos(2λj)− α cos(λj))

α (1 + α2 − 2α cos(λj))

[
Iyy(λj)− gyy(λj |γyy(0), γyy(1),α, 0)

]
g2
yy(λj |γyy(0), γyy(1),α, 0)
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so that the tests will be indeed identical.

Finally, we can tediously show that

∂3gyy(λ|γyy(0), γyy(1),α, ψx)

(∂ψx)3
=

12
(
α2 − 1

)
γyy(1)

(α+ ψx)4 (α2 − 2α cos(λ) + 1)
(
−2ψx cos(λ) + ψ2

x + 1
)4

×



(
−α3

(
ψ4
x + 1

)
+ 4α2

(
ψ4
x + ψ2

x − 1
)
ψx + α

(
6ψ2

x + 17
)
ψ4
x + 4ψ5

x

)
cos(3λ)

+

 α4
(
ψ4
x + 1

)
+ 4α3

(
ψ4
x + ψ2

x + 2
)
ψx + α2

(
−6ψ6

x − 15ψ4
x + 16ψ2

x + 1
)

−4α
(
ψ2
x + 7

)
ψ5
x − 6ψ6

x

 cos(2λ)

−

 4α4
(
ψ3
x + ψx

)
+ α3

(
17ψ4

x + 28ψ2
x + 1

)
+ 4α2

(
−2ψ6

x − 5ψ4
x + 7ψ2

x + 1
)
ψx

−2α
(
ψ2
x + 11

)
ψ6
x − 4ψ7

x

 cos(λ)

+ψx
(
6α4ψx + 4α3

(
7ψ2

x + 1
)
− α2

(
ψ6
x + 16ψ4

x − 16ψ2
x − 6

)
ψx − 8αψ6

x − ψ7
x

)
+ αψ4

x cos(5λ)

−ψ3
x(α(ψx(α+ 4ψx) + 4) + ψx) cos(4λ)


,

so that
∂3gyy(λ|γyy(0), γyy(1),α, 0)

(∂ψx)3
=

12
(
α2 − 1

)
cos(2λ)

α2
γyy(1),

which in turn implies the local identifiability of ψx under the null. �

Proposition 5

The derivatives of the spectral density will be

∂gyy(λ|σ2
f , σ

2
u, α, δx)

∂σ2
f

=
1

(1 + α2 − 2α cosλ)
(
1 + δ2

x − 2δx cos(2λ)
) ,

∂gyy(λ|σ2
f , σ

2
u, α, δx)

∂σ2
u

= 1,

∂gyy(λ|σ2
f , σ

2
u, α, δx)

∂α
=

2(cosλ− α)

(1 + α2 − 2α cosλ)2 (1 + δ2
x − 2δx cos(2λ)

)σ2
f ,

∂gyy(λ|σ2
f , σ

2
u, α, δx)

∂δx
=

2(cos(2λ)− α)

(1 + α2 − 2α cosλ)
(
1 + δ2

x − 2δx cos(2λ)
)2σ2

f ,

which under the null reduce to

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

=
1

(1 + α2 − 2α cosλ)
,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
u

= 1,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂α
=

2(cosλ− α)

(1 + α2 − 2α cosλ)2σ
2
f ,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂δx
=

2 cos(2λ)

(1 + α2 − 2α cosλ)
σ2
f .

Given that the spectral density under the the null is

gyy(λ|σ2
f , σ

2
u, α, 0) =

σ2
f

(1 + α2 − 2α cosλ)
+ σ2

u,
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and its reciprocal

g−1
yy (λ|σ2

f , σ
2
u, α, 0) =

(
1 + α2 − 2α cosλ

)
σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

we will have that the contribution of frequency λ to the log-likelihood scores evaluated at δx = 0

will be

sσ2f
(λ|σ2

f , σ
2
u, α, 0) =

(
1 + α2 − 2α cosλ

)(
σ2
u (1 + α2 − 2α cosλ) + σ2

f

)2

[
2πIyy(λ)− gyy(λ|σ2

f , σ
2
u, α, 0)

]
,

sσ2u(λ|σ2
f , σ

2
u, α, 0) =

(
1 + α2 − 2α cosλ

)2(
σ2
u (1 + α2 − 2α cosλ) + σ2

f

)2

[
2πIyy(λ)− gyy(λ|σ2

f , σ
2
u, α, 0)

]
,

sα(λ|σ2
f , σ

2
u, α, 0) =

2(cosλ− α)σ2
f(

σ2
u (1 + α2 − 2α cosλ) + σ2

f

)2

[
2πIyy(λ)− gyy(λ|σ2

f , σ
2
u, α, 0)

]
,

sδx(λ|σ2
f , σ

2
u, α, 0) =

2 cos(2λ)
(
1 + α2 − 2α cosλ

)
σ2
f(

σ2
u (1 + α2 − 2α cosλ) + σ2

f

)2

[
2πIyy(λ)− gyy(λ|σ2

f , σ
2
u, α, 0)

]
.

Given that these scores are not orthogonal under the null, we will have to orthogonalise

the last one with respect to the first three using the information matrix under the null, which

will be given by (8), with the spectral derivatives obtained above. But given that the linear

span of ∂gyy(λ|σ2
f , σ

2
u, α, 0)/∂σ2

f and ∂gyy(λ|σ2
f , σ

2
u, α, 0)/∂σ2

u is the same as the linear span of

∂gyy(λ|γyy(0), γyy(1), α, 0)/∂γyy(0) and ∂gyy(λ|γyy(0), γyy(1), α, 0)/∂γyy(1) when they are both

evaluated under the null, the adjusted test is going to coincide with a two-sided version of the

extremum test against an Ar(1) alternative in Proposition 4. �

Proposition 6

As usual, it is convenient to reparametrise the model by replacing σ2
f and σ

2
u by γyy(0) and

γyy(1) from (C10) as follows

σ2
f =

(1− α2)(γyy(1)− ψuγyy(0))

α− ψu
(B3)

σ2
u =

(1− ψ2
u)(γyy(1)− αγyy(0))

ψu − α
(B4)

under the maintained assumption that α 6= ψu. The spectral density then becomes

gyy(λ|γyy(0), γyy(1),α, ψu) =
(1− α2)(γyy(1)− ψuγyy(0))

(α− ψu) (1 + α2 − 2α cosλ)
+

(1− ψ2
u)(γyy(1)− αγyy(0))

(ψu − α)
(
1 + ψ2

u − 2ψu cosλ
)

=

(
(1− ψ2

u)α

1 + ψ2
u − 2ψu cosλ

− (1− α2)ψu
1 + α2 − 2α cosλ

)
γyy(0)

α− ψu

+

(
(1− ψ2

u)(
1 + ψ2

u − 2ψu cosλ
) − (1− α2)

(1 + α2 − 2α cosλ)

)
γyy(1)

ψu − α
.
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Hence, the derivatives will be

∂gyy(λ|γyy(0), γyy(1),α, ψu)

∂γyy(0)
=

(
(1− ψ2

u)α

1 + ψ2
u − 2ψu cosλ

− (1− α2)ψu
1 + α2 − 2α cosλ

)
1

α− ψu
,

∂gyy(λ|γyy(0), γyy(1),α, ψu)

∂γyy(1)
=

(
(1− ψ2

u)(
1 + ψ2

u − 2ψu cosλ
) − (1− α2)

(1 + α2 − 2α cosλ)

)
1

ψu − α
,

∂gyy(λ|γyy(0), γyy(1),α, ψu)

∂α
=

(
(α4 − 1− 4α(α− ψu))− 2((1 + α2)ψu − 2α) cosλ

(1 + α2 − 2α cosλ)2

+
1− ψ2

u

1 + ψ2
u − 2ψu cosλ

)
(γyy(1)− ψuγyy(0))

(ψu − α)2

∂gyy(λ|γyy(0), γyy(1),α, ψu)

∂ψu
=

(
(ψ4

u − 1− 4ψu(ψu − α))− 2((1 + ψ2
u)α− 2ψu) cosλ(

1 + ψ2
u − 2ψu cosλ

)2
+

1− α2

1 + α2 − 2α cosλ

)
(γyy(1)− αγyy(0))

(ψu − α)2

Under the null hypothesis of H0 : ψu = 0 the derivatives become

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂γyy(0)
= 1,

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂γyy(1)
=

2(cosλ− α)

1 + α2 − 2α cosλ
,

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂α
= 2

(
2 cos2 λ− 2α cosλ+ α2 − 1

)
(1 + α2 − 2α cosλ)2 γyy(1),

and
∂gyy(λ|γyy(0), γyy(1),α, 0)

∂ψu
= 2

(
2 cos2 λ− α cosλ− 1

)
1 + α2 − 2α cosλ

(γyy(1)− αγyy(0))

Let us double check these expressions using the chain rule. The partial derivatives of the

spectral density (C9) with respect to the original parameters are:

∂gyy(λ|σ2
f , σ

2
u, α, ψu)

∂σ2
f

=
1

(1 + α2 − 2α cosλ)
,

∂gyy(λ|σ2
f , σ

2
u, α, ψu)

∂σ2
u

=
1(

1 + ψ2
u − 2ψu cosλ

) ,
∂gyy(λ|σ2

f , σ
2
u, α, ψu)

∂α
=

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)2 ,

∂gyy(λ|σ2
f , σ

2
u, α, ψu)

∂ψx
=

2σ2
u(cosλ− ψx)

(1 + ψ2
x − 2ψx cosλ)2

.
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When ψu = 0, these derivatives reduce to

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

=
1

(1 + α2 − 2α cosλ)
,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
u

= 1,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂α
=

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)2 ,

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂ψu
= 2σ2

u cosλ.

In view of (B3) and (B4), the elements of the Jacobian matrix of the original parameters in

terms of the new parameters will be

∂σ2
f

∂γyy(0)
=

(1− α2)ψu
ψu − α

∂σ2
f

∂γyy(1)
=

1− α2

α− ψu
∂σ2

f

∂α
=

2αψu − 1− α2

(α− ψ)2
(γyy(1)− ψuγyy(0))

∂σ2
f

∂ψu
=

(1− α2)

(α− ψu)2
(γyy(1)− αγyy(0))

and

∂σ2
u

∂γyy(0)
=

(1− ψ2
u)α

α− ψu
∂σ2

u

∂γyy(1)
=

1− ψ2
u

ψu − α
∂σ2

u

∂α
=

(1− ψ2
u)

(α− ψu)2

(
γyy(1)− ψuγyy(0)

)
∂σ2

u

∂ψu
=

2αψu − 1− ψ2
u

(α− ψ)2
(γyy(1)− αγyy(0))

which under the null become

∂σ2
f

∂γyy(0)
= 0

∂σ2
f

∂γyy(1)
=

1− α2

α

∂σ2
f

∂α
= −1 + α2

α2
γyy(1)

∂σ2
f

∂ψu
=

(1− α2)

α2
(γyy(1)− αγyy(0))
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and

∂σ2
u

∂γyy(0)
= 1

∂σ2
u

∂γyy(1)
= − 1

α

∂σ2
u

∂α
=

1

α2
γyy(1)

∂σ2
u

∂ψu
= − 1

α2
(γyy(1)− αγyy(0))

The chain rule for derivatives then implies that

∂gyy(λ)

∂σ2
f

=
1

(1 + α2 − 2α cosλ)
,

∂gyy(λ)

∂σ2
u

= 1,

∂gyy(λ)

∂α
=

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)2 ,

∂gyy(λ)

∂ψu
= 2σ2

u cosλ.

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂γyy(0)
=

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

∂σ2
f

∂γyy(0)
+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
u

∂σ2
u

∂γyy(0)
= 1,

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂γyy(1)
=

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

∂σ2
f

∂γyy(1)
+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
u

∂σ2
u

∂γyy(1)

=
2(cosλ− α)

1 + α2 − 2α cosλ
,

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂α
=

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

∂σ2
f

∂α
+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
u

∂σ2
u

∂α

+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂α
= 2

(
2 cos2 λ− 2α cosλ+ α2 − 1

)
(1 + α2 − 2α cosλ)2 γyy(1),

and

∂gyy(λ|γyy(0), γyy(1),α, 0)

∂ψu
=

∂gyy(λ|σ2
f , σ

2
u, α, 0)

∂σ2
f

∂σ2
f

∂ψu
+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂σ2
u

∂σ2
u

∂ψu

+
∂gyy(λ|σ2

f , σ
2
u, α, 0)

∂ψu
= 2

(
2 cos2 λ− α cosλ− 1

)
1 + α2 − 2α cosλ

(γyy(1)− αγyy(0)),

where we have used the fact that

σ2
f =

(1− α2)γyy(1)

α
,

σ2
u = −

(γyy(1)− αγyy(0))

α

under the null. Obviously, the first three derivatives are the same for all the models which reduce

to an Ar(1) plus white noise under the corresponding null.
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If we now scale them by the inverse spectral density under the null, we get

∂gyy(λ)

∂σ2
v

g−1
yy (λ) =

1

σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

∂gyy(λ)

∂σ2
ε

g−1
yy (λ) =

(
1 + α2 − 2α cosλ

)
σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

∂gyy(λ)

∂α
g−1
yy (λ) =

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)

1

σ2
u (1 + α2 − 2α cosλ) + σ2

f

,

∂gyy(λ)

∂ψx
g−1
yy (λ) = 2σ2

f cosλ

(
1 + α2 − 2α cosλ

)
σ2
u (1 + α2 − 2α cosλ) + σ2

f

.

If we take the factor [σ2
u

(
1 + α2 − 2α cosλ

)
+ σ2

f ]−1 out, we are left with

[σ2
u

(
1 + α2 − 2α cosλ

)
+ σ2

f ]
∂gyy(λ)

∂σ2
v

g−1
yy (λ) = 1,

[σ2
u

(
1 + α2 − 2α cosλ

)
+ σ2

f ]
∂gyy(λ)

∂σ2
ε

g−1
yy (λ) =

(
1 + α2 − 2α cosλ

)
,

[σ2
u

(
1 + α2 − 2α cosλ

)
+ σ2

f ]
∂gyy(λ)

∂α
g−1
yy (λ) =

2σ2
f (cosλ− α)

(1 + α2 − 2α cosλ)
,

[σ2
u

(
1 + α2 − 2α cosλ

)
+ σ2

f ]
∂gyy(λ)

∂ψx
g−1
yy (λ) = 2σ2

f cosλ
(
1 + α2 − 2α cosλ

)
.

At first sight, it may seem that we no longer have an equivalent test. However, if we make

use of the trigonometric identity (A11), we can write the last derivative as

2σ2
f

(
1 + α2) cosλ− α(1 + cos 2λ

)
.

�

Proposition 7

Consider model (26). The spectral score with respect to ψa will be given by the sum of the

spectral scores with respect to ψx and ψu evaluated at ψx = ψu. More specifically, given that

∂gyy(λ)

∂ψx
=
∂gxx(λ)

∂ψx
,

∂gyy(λ)

∂ψu
=
∂guu(λ)

∂ψu

and that
∂gxx(λ)

∂ψx
= 2 cosλgxx(λ),

∂guu(λ)

∂ψu
= 2 cosλguu(λ)

under the null of H0 : ψx = ψu = 0, the score of the spectral log-likelihood for the observed

series yt will be given by

2
∑T−1

j=0
cosλj [gxx(λj) + guu(λj)]g

−2
yy (λj)[2πIyy(λj)− gyy(λj)] = 2

∑T−1

j=0
cosλj2πIaa(λj),

which involves the first circulant autocorrelation of the reduced form residuals at. An analogous

proof applies to the Ma tests. �
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C Auxiliary results

Lemma 1 The spectral density of the observed process generated according to (19) will be

gyy(λ) =
1 + ψ2

f − 2ψf cosλ

1 + α2 − 2α cosλ
σ2
f + σ2

u (C1)

and its autocovariances

γyy(0) =
(1 + ψ2

f − 2αψf )

(1− α2)
σ2
f + σ2

u, (C2)

γyy(1) =
(1− αψf )(α− ψf )

(1− α2)
σ2
f , (C3)

γyy(j) = αγxx(j − 1), j ≥ 2. (C4)

Proof. Since ft and ut are orthogonal at all leads and lags, the expression for the spectral

density follows directly from the expressions for the spectral density of an Arma(1,1) process.

The same is true for the autocovariances, where we simply have to add σ2
u up to the zero order

term. �

Lemma 2 The spectral density of the observed process generated according to (20) will be

gyy(λ) =
σ2
f(

1 + ψ2
x − 2ψx cosλ

)
(1 + α2 − 2α cosλ)

+ σ2
u (C5)

and its autocovariances

γyy(0) =
(αψx + 1)σ2

f

(1− α2)
(
1− ψ2

x

)
(1− αψx)

+ σ2
u, (C6)

γyy(1) =
(α+ ψx)σ2

f

(1− α2)
(
1− ψ2

x

)
(1− αψx)

, (C7)

γyy(2) = (α+ ψx)γxx(j − 1)− αψxγxx(j − 2), j ≥ 2. (C8)

Proof. Given that the autoregressive polynomial is 1− (α+ ψx)L+ αψxL
2, the first autocor-

relation of the signal can be obtained from the Yule-Walker equation

ρxx(1) = (α+ ψx)− αψxρxx(1),

which yields

ρxx(1) =
α+ ψx
αψx + 1

,

while the remaining ones can be obtained from the recursion

ρxx(j) = (α+ ψx)ρxx(j − 1)− αψxρxx(j − 2), j ≥ 1.

As for the unconditional variance, we can use the fact that

γxx(0)[1− (α+ ψx)ρxx(1) + αψxρxx(2)] = σ2
f ,
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with

[1− (α+ ψx)ρxx(1) + αψxρxx(2) =
(
1− α2

) (
1− ψ2

x

) 1− αψx
αψx + 1

to obtain

γxx(0) =
(αψx + 1)σ2

f

(1− α2)
(
1− ψ2

x

)
(1− αψx)

.

Similarly, the spectral density will be

gxx(λ) =
σ2
f(

1 + ψ2
x − 2ψx cosλ

)
(1 + α2 − 2α cosλ)

.

Since xt and ut are orthogonal at all leads and lags, the result follows. �

Lemma 3 The spectral density of the observed process generated according to (22) will be

gyy(λ) =
σ2
f

(1 + α2 − 2α cosλ)
(
1 + ψ2

x − 2ψx cos 2λ
) + σ2

u.

Proof. The proof is entirely analogue to the proof of Lemma 1. �

Lemma 4 The spectral density of the observed process generated according to (24) will be

gyy(λ) =
σ2
f

(1 + α2 − 2α cosλ)
+

σ2
u(

1 + ψ2
u − 2ψu cosλ

) , (C9)

while the autocovariances become

γyy(j) =
αj

1− α2
σ2
f +

ψju
1− ψ2

u

σ2
u, j ≥ 2. (C10)

Proof. The autocovariances of the signal are

γxx(j) = αj
σ2
f

1− α2
, j ≥ 0

while its spectral density is

gxx(λ) =
σ2
f

(1 + α2 − 2α cosλ)
.

Similarly, the autocovariances of the noise are

γuu(j) = ψju
σ2
v

1− ψ2
u

, j ≥ 0

while its spectral density

guu(λ) =
σ2
v(

1 + ψ2
u − 2ψu cosλ

) .
Since we are assuming that ft and vt are uncorrelated at all leads and lags, the autocovari-

ances and the spectral density of yt will be the sum of those of their underlying components.

�
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Lemma 5 The spectral density of the observed process generated according to (25) will be

gyy(λ) =
σ2
f

(1 + α2 − 2α cosλ)
+
(
1 + ψ2

u − 2ψu cosλ
)
σ2
v,

while the autocovariances become

γyy(0) =
1

1− α2
σ2
f + (1 + ψ2

u)σ2
u

γyy(1) =
α

1− α2
σ2
f − ψuσ2

u

γyy(j) =
αj

1− α2
σ2
f , j ≥ 2.

Proof. The proof is entirely analogue to the proof of Lemma 4. �
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Table 1

Monte Carlo rejection rates (%) of LM tests at 10%, 5%, 1% significance levels

ψx ψu LM signal LM noise joint LM LM resid

10.30 9.99 10.26 9.78

0 0 5.04 4.94 5.07 4.87

0.90 0.83 0.86 0.81

32.54 24.22 28.28 17.90

.5 0 22.22 14.80 17.72 10.44

7.56 4.46 5.38 2.88

13.44 13.44 12.58 12.50

0 .5 7.24 7.10 6.58 7.16

1.48 1.56 1.42 1.64

11.42 9.50 13.14 12.18

.5 .5 6.08 4.70 7.22 6.86

1.42 0.86 1.64 1.64

19.62 12.38 22.98 15.92

.6 .3 12.06 6.62 14.48 9.42

3.36 1.48 4.04 2.32
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Table 2

Monte Carlo rejection rates (%) of tests at 10%, 5%, 1% significance levels

ψx ψu LM2S LM1S LR W Wnc % zeros

10.37 8.63 14.33 21.77 35.54

0 0 4.93 4.28 7.17 14.81 31.37 52.00

0.99 0.71 1.40 6.52 23.97
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Table 3a

Monte Carlo rejection rates (%) of tests at 10%, 5%, 1% significance levels

ψx ψu LM2S LM1S LR W % zeros

41.20 55.12 62.96 58.20

.5 0 29.28 41.08 48.70 43.72 8.22

12.34 17.78 24.08 22.52

9.42 8.38 14.52 24.52

0 .5 4.80 4.00 7.00 19.16 53.60

1.14 0.82 1.38 10.40

19.54 29.60 41.62 50.00

.5 .5 11.94 18.72 28.14 39.66 22.16

3.66 5.76 9.10 23.00

49.42 64.00 76.14 77.02

.6 .3 37.14 49.32 63.68 64.78 5.54

17.76 24.28 37.24 41.54

Table 3b

Size-adjusted Monte Carlo rejection rates (%) of tests at 10%, 5%, 1%

ψx ψu LM2S LM1S LR W

40.38 58.32 54.82 31.32

.5 0 29.42 44.28 41.06 17.38

12.66 20.72 20.16 4.56

9.02 9.58 10.22 14.06

0 .5 4.90 4.80 4.72 8.36

1.16 1.04 0.90 3.12

18.92 32.52 34.08 30.64

.5 .5 12.00 20.84 21.70 18.02

3.72 7.14 6.84 4.94

48.56 66.52 69.74 52.16

.6 .3 37.40 52.92 55.40 34.32

18.10 27.54 32.54 13.48
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