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Abstract

I study repeated games with mediated communication and frequent actions. I

derive Folk Theorems with imperfect public and private monitoring under minimal

detectability assumptions. Even in the limit, when noise is driven by Brownian motion

and actions are arbitrarily frequent, as long as players are sufficiently patient they

can attain virtually efficient equilibrium outcomes, in two ways: secret monitoring

and infrequent coordination. Players follow private strategies over discrete blocks of

time. A mediator constructs latent Brownian motions to score players on the basis

of others’ secret monitoring, and gives incentives with these variables at the end of

each block to economize on the cost of providing incentives. This brings together

the work on repeated games in discrete and continuous time in that, despite actions

being continuous, strategic coordination is endogenously discrete. As an application,

I show how individual full rank is necessary and sufficient for the Folk Theorem in

the Prisoners’ Dilemma regardless of whether monitoring is public or private.
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1 Introduction

“¿Sabes en qué veo que las comiste de tres a tres? En que comı́a yo dos a dos y callabas.”

El Lazarillo de Tormes (Anonymous)

“Let there be spaces in your togetherness, And let the winds of the heavens dance between you. [. . . ]

And stand together, yet not too near together: For the pillars of the temple stand apart,

And the oak tree and the cypress grow not in each other’s shadow.”

On Marriage (Kahlil Gibran, The Prophet)

Firms, partners and household members reach complex, dynamic, often informal agree-

ments regarding behavior, coordination and incentives. A basic facet of these relationships

involves managing information amongst interested parties. For instance, firms sometimes

form trade associations, ostensibly to foment collaboration through regular meetings, as

well as standardization. In numerous occasions, these associations have also played the

role of information management institutions.1 This paper studies how such institutions

can facilitate mutual cooperation through two canonical channels: (i) they allow players to

secretly monitor each other, hence only occasionally, which can yield substantial reductions

in monitoring costs, and (ii) when incentives require efficiency losses beyond monitoring

itself, players can aggregate information better by coordinating infrequently.

There is ample empirical evidence for these channels. For instance, on secret monitoring,

according to Hexner (1943, p. 95), in a steel manufacturing cartel “[. . .] more often than one

might suppose, infringements of cartel regulations were reported by competing distributions

within a few hours [. . .].” On infrequent coordination, Marshall and Marx (2012, pp. 126-7)

reviewed the 22 major industrial-product cartel decisions of the EC from 2000 through

2005 and concluded that at least half of the cases involved trade associations or other

third-party facilitators. The EC Decision on Amino Acids (Commission, 2001) reports

that a typical cartel member (p. 35) “[. . .] reported its citric acid sales every month to a

trade association, and every year, Swiss accountants audited those figures” for the purpose

of sustaining collusion. Moreover (p. 37), a cartel member “[. . .] further proposed that

the producers attend trade association meetings quarterly to adjust their price and sales

volumes according to their agreements.”

Moreover, these channels may help to identify collusion. Apparent cheating behavior

amongst firms is not only observed in practice, but also often goes unpunished, seemingly

contradicting standard models of cartel behavior. Bernheim and Madsen (2013, p. 2) argue

that “[t]hese unresolved empirical puzzles have important practical implications, in that

attorneys for defendant companies often point to evidence of business stealing, and to a

purported lack of retaliation, as ‘proof’ that a cartel is ineffective.” The channels above

offer a solution to this puzzle: episodes of apparent cheating without punishment are not

just tolerable, but possibly essential for collusion to take place in equilibrium.

1A recent detailed empirical discussion can be found in Marshall and Marx (2012, Chapter 6).
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To this end, I study repeated games with mediated communication and frequent actions.

Players follow mediated strategies (Forges, 1986; Myerson, 1986)—a plausible generaliza-

tion of private strategies that accommodates arbitrary communication.2 By the revelation

principle, these can be represented by a mediator 3 who makes confidential, non-binding

behavioral recommendations to players. In communication equilibrium, everyone follows

the mediator’s recommendations. Actions are also frequent, where a player’s information

converges to Brownian motion, for two reasons. First, as Sannikov and Skrzypacz (2010,

p. 871) argued, abstracting from the friction of a fixed period length “uncover[s] fundamen-

tal principles of [. . .] repeated interactions.” It also disciplines significantly how information

can be reliably aggregated.4 Second, to underscore the value of communication, Sannikov

and Skrzypacz’s (2007; 2010) impossibility results are intuitively overturned.

There is growing interest in games with frequent actions (Sannikov, 2007; Sannikov and

Skrzypacz, 2007, 2010; Faingold and Sannikov, 2011; Fudenberg and Levine, 2007, 2009),

with a wide range of applications. A key result of this literature is that when information

is driven by Brownian motion, “value-burning,” or inefficient punishment, is not feasible—

this can collapse equilibrium outcomes to the repetition of static equilibria. Perhaps most

notably, Sannikov and Skrzypacz (2007) argued that as a result collusion is impossible in

a repeated Cournot oligopoly with flexible production.

These papers restrict attention to Nash equilibria in public strategies.5 Although there

is precedent for this solution concept,6 to classify channels (i) and (ii), in this paper I

broaden the notion of equilibrium towards dynamic mechanism design in two steps (see

Table 1 below): (i) from public Nash equilibrium to public communication equilibrium,

and (ii) from public communication equilibrium to private communication equilibrium. In

public Nash equilibrium, strategies only depend on public information. After a mixed

strategy, continuation play cannot vary with the mixture’s realization: incentives must

be independent of actual behavior. In public communication equilibrium, the mediator

can keep others’ recommendations secret for one period—however brief—and condition

2Communication is not new to repeated games (e.g., Compte, 1998; Kandori and Matsushima, 1998;

Kandori, 2003; Aoyagi, 2005; Obara, 2009; Tomala, 2009; Harrington and Skrzypacz, 2011), but none of

these papers can address frequent actions. Other papers study communication via actions (Ely et al., 2005;

Hörner and Olszewski, 2006; Kandori and Obara, 2006; Sugaya, 2010), but also fail with frequent actions.
3In principle, this disinterested party can be a machine, a not-necessarily-public randomization device.

To be clear, a mediator is a theoretical abstraction that encompasses any communication system. A trade

association cannot be interpreted literally as a mediator, but as part of a communication system.
4In a simpler context, Rahman (2013) shows that the information aggregation of Abreu et al.(1991) and

Compte (1998)—and to some extent Kandori and Matsushima (1998), too—fails with frequent actions.
5Recall that a strategy is public if it only depends on public histories, otherwise it is private.
6E.g., Abreu et al. (1990) equate their payoffs to those from pure strategy sequential equilibria.
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continuation play on these recommendations as well as any other relevant information. Now

incentives can depend on whether a player was secretly monitored. As a result, players can

be monitored only seldom, hence at lower monitoring costs. As Rahman (2012b) shows,

this restores full collusion in Sannikov and Skrzypacz’s (2007) model of oligopoly.

Nash Communication

Public Literature Lemma 1

Private Lemma 2

Table 1: Strategies and Equilibrium with Frequent Actions

In public communication equilibrium, coordination is so frequent that nobody’s private

information is useful for more than a period. This may be socially costly, especially in games

with frequent actions where a period can be as brief as a nanosecond. Although public

communication equilibrium helps to reduce monitoring costs, it can stop short of avoiding

the additional costs of value-burning: if, after a deviation, it is impossible to (statistically)

identify the culprit, discouraging it requires punishing everyone. With frequent actions and

Brownian information, a deviation’s noise-to-signal ratio explodes, rendering this punish-

ment infeasible. In private equilibrium, though, even if actions vary frequently, players can

temper the noise-to-signal ratio by aggregating private information and synchronizing their

histories infrequently, say once a week instead of every nanosecond.

The mediator can manage information as follows. First, he decides on the length of time

c during which players’ histories may diverge. Each period, he makes secret recommenda-

tions, records public signal realizations, and constructs a latent variable Yit for each player

i that follows an independent Brownian motion. The drift of Yi depends on the mediator’s

recommendations as well as the public signal. Players do not observe the mediator’s recom-

mendations to others except at the end of each block, when these are publicly announced

together with the latent variables, and another block of length c begins afresh.

I assume a form of identifiability of deviations to ensure that these latent variables can

be made driftless when players are obedient, but drift downwards when someone disobeys.

Everyone is subject to a cutoff that grows linearly in c (so longer blocks have less likely

cutoffs). If Yic is below the cutoff, player i is punished with a loss of continuation value.

(I also construct reward schemes with the opposite effect.) A simple cutoff is the lowest

possible drift arising from a deviation. This guarantees convexity of punishments in the

number of deviations and simplifies the analysis of incentives, although other cutoffs can

motivate cooperation. Punishments are (approximately) linear in players’ common discount

rate r > 0, so they satisfy local self-decomposability—this easily yields a Folk Theorem.

Applied to the Prisoners’ Dilemma, this result shows how it is always possible to mediate

cooperation, except when players cannot learn anything at all about others’ behavior.
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The main result of the paper is a “Nash-threats” Folk Theorem, which argues that

information management can sustain cooperation with frequent actions even with value-

burning, as players become unboundedly patient. To this end, I make mostly technical

assumptions to easily extend the algorithm of Fudenberg and Levine (1994) to “T -public”

communication equilibria. I prove a Folk Theorem conceptually comparable to Compte

(1998, Theorem 2) without pairwise identifiability, but with important departures. One

key difference is that the scoring rule of Abreu et al. (1991), on which he relies, fails with

frequent actions (see Rahman, 2013). I offer an alternative approach below. On the other

hand, I do without pairwise identifiability to make value-burning necessary for incentives.

To overturn the results of Sannikov and Skrzypacz (2010), I only consider incentives with

individual punishments and rewards, hence I only give incentives with value-burning.7

The paper considers both public and private monitoring. The most challenging case is

public monitoring, though. With private monitoring, the mediator sends recommendations

and also asks players to secretly report back their private signals. In this case, it is much

easier to keep a score secret from a given player by having it depend on others’ reports.

With private monitoring, a player does not observe other players’ signals, so a player’s

score is kept secret from that player inasmuch as it depends on others’ reported signals.

With public monitoring, however, this secrecy is not available. A key step in the paper is

to endogenously construct a secret yet informative score with the public signal—influenced

by actual behavior—and recommendations—unaffected by actual behavior within a block.

Therefore, the role of recommendations in a player’s score is precisely encryption, which is

particularly challenging with public monitoring.

This challenge is reflected in my demands on the information structure to establish the

Folk Theorems below. With public monitoring, I impose conditional identifiability, which

asks that for every public signal and deviation by a player, other players can generate

different statistical consequences. This condition is generic if every player has at most as

many actions as everyone else put together. With private monitoring (and a standard full

support assumption), my demands are much weaker: they are comparable with individual

full rank. This is precisely because the challenge of encrypting scoring rules is no longer

present with private monitoring—even if monitoring is not conditionally independent.

7These incentives are completely different from reputation motives as in Faingold and Sannikov (2011),

say. Indeed, take their leading example: a long-run firm with reputation for quality. (With more long-run

players, they assume that information has a “product structure,” which delivers pairwise identifiability, so

value-burning becomes unnecessary.) Myopic short-run players purchase high service levels if they think the

long-run player produces high quality. The long-run player does not face uncertainty—he chooses quality

over time to manage short-run players’ belief-driven service levels. In this paper, though, a long-run player

is crucially made uncertain about how he is being evaluated due to moral hazard.
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2 Prisoners’ Dilemma

Example 1. Two-player repeated Prisoners’ Dilemma with imperfect public monitoring.

C D C D

C 1, 1 −1, 2 C x2 x1

D 2,−1 0, 0 D x1 x0

Payoffs Drifts

The left bi-matrix shows flow payoffs as a function of players’ actions. The right matrix

shows the drift of a publicly observed Brownian motion X, with law dXt = x(at)dt+ dWt,

where at is the action profile at time t and W is Wiener process. Because volatility is

effectively observable, and in line with the literature, assume that actions do not affect the

volatility of X. For simplicity, assume that the drift of X only depends on the number of

cooperators, not on a cooperator’s identity (everything below follows through regardless).

Consider discrete-time approximations of this game, where the time between interactions is

∆t > 0, and players have a common discount factor δ = e−r∆t with r > 0. In each period,

players observe a random walk that converges to the Brownian motion above as ∆t→ 0:

Xt =

{
Xt−∆t +

√
∆t with probability p(at) = 1

2
[1 + x(at)

√
∆t],

Xt−∆t −
√

∆t with probability q(at) = 1− p(at).

The choice of a Binomial random walk is not for simplicity: binary per-period signals

make incentive provision more challenging in discrete time (Fudenberg et al., 1994) and

in the continuous-time limit (Fudenberg and Levine, 2009). Below, I estimate the set of

communication equilibrium payoffs of this game as ∆t → 0, and then as r → 0, with

the following necessary and sufficient condition for a Folk Theorem, meaning that every

non-negative payoff is virtually attainable in equilibrium.

Theorem 1. The Folk Theorem fails if and only if x0 = x1 = x2.

Theorem 1 gives very weak conditions for a Folk Theorem: as long as x0 6= x1 or x1 6= x2,

it is possible to motivate mutual cooperation as players become patient. Intuitively, this

condition says simply that for every unilateral deviation there exists an action profile that

makes it statistically detectable, even if the identity of the deviator is not. First of all,

necessity is immediate: if x0 = x1 = x2 then clearly there is no hope for cooperation, since

defecting is completely undetectable, no matter what anybody does. To argue sufficiency,

consider two parametric cases corresponding to channels (i) and (ii) above. First, assume

that the drift x is monotone in the number of cooperators, to obtain a Folk Theorem

in public communication equilibrium that underscores the gains from secret monitoring

(Lemma 1). Next, a Folk Theorem in private communication equilibrium is derived when

monotonicity fails that highlights the value of infrequent coordination (Lemma 2).
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2.1 Secret Monitoring

If x is increasing in the number of cooperators, the secret principal contract of Rahman and

Obara (2010) delivers a Folk Theorem with public communication equilibria, as follows.

Lemma 1. The Folk Theorem holds in public communication equilibrium if x2 ≥ x1 > x0.8

Proof Sketch. A complete proof appears in Appendix A. Here, I argue that virtually

full cooperation is sustainable. Given µ ∈ (0, 1), with probability 1−µ a mediator secretly

recommends cooperation (and defection with probability µ) independently to each player.

Recommendations are publicly announced at the end of each period, after X is realized.

Current-period expected payoff is 1 − µ. By Theorem 4.1 of Fudenberg et al. (1994), it

suffices to show that this µ is enforceable with respect to tangent hyperplanes, i.e., there

exist budget-balanced transfers that make µ incentive compatible. Let continuation values

change depending on whether X jumps up (labeled +1) or down (labeled −1) as well as

the mediator’s recommendations as follows:

+1 C D −1 C D

C +w,−w C −w,+w
D −w,+w D +w,−w

Change in continuation values after +1 and −1

If the mediator asks a player to cooperate, incentive compatibility requires that

(1− δ)(1− 2µ) + δµw(p1 − q1) ≥ (1− δ)2(1− µ) + δµw(p0 − q0).

Rearranging and substituting for p and q yields, equivalently, δµw(x1 − x0)
√

∆t ≥ 1 − δ.
Since δ = e−r∆t and 1− δ ≤ r∆t, this follows from the following inequality:

δµw ≥ r
√

∆t

x1 − x0

. (1)

Similarly, for a player asked to defect, incentive compatibility requires that

(1− δ)2(1− µ) + δw(1− µ)(q1 − p1) ≥ (1− δ)(1− 2µ) + δw(1− µ)(q2 − p2),

which, rearranging as in the previous derivation, follows from w ≥ 0 and hence is implied

by (1). Intuitively, cooperating when asked to defect lowers utility this period and the

probability of a down jump next period, since x2 > x1. Choose w such that (1) holds with

equality, so w is increasing in both r and ∆t, (almost) linear in r, and the correlated strategy

8Contrast this with Sannikov and Skrzypacz (2010, Example 1), where (x0, x1, x2) = (1, 5, 8). There,

they show that welfare cannot exceed 1 in public Nash equilibrium when ∆t→ 0.

6



above is enforceable in the welfare direction (1, 1). Given a smooth set in the interior of

the feasible, individually rational payoffs, its boundary point with tangent vector (1, 1)

exhibits local self-decomposability (LSD) for some (r,∆t) by Theorem 4.1 of Fudenberg

et al. (1994). If w yields LSD at (r,∆) as above then so does w = w
√

∆t/∆ at (r,∆t)

for any ∆t < ∆. Finally, w → 0 at rate r as r → 0—the Folk Theorem only requires

convergence faster than
√
r. See Figure 1 below for geometric intuition. �

Current-­‐period	
  payoff	
  x	
  

Average	
  life6me	
  u6lity	
  x	
  

1−δ
δ

≈ rΔ

Smooth,	
  locally	
  	
  
self-­‐decomposable	
  	
  
set,	
  boundary	
  

x	
   x	
  x	
  x	
  

Cr Δ

w

w Δt /Δ

x	
  

Expected	
  next-­‐period	
  payoff	
  

∝ rΔt

Figure 1: Frequent-actions versus discrete-time Folk Theorem

In the proof of Lemma 1, x2 ≥ x1 > x0 is used to establish enforceability with respect

to every tangent hyperplane. Reversing the roles of up and down jumps, the same proof

follows verbatim if x0 > x1 ≥ x2. This monotonicity corresponds to first-order stochastic

dominance in the literature on oligopoly with noisy prices, from Green and Porter (1984)

and Abreu et al. (1986) to Sannikov and Skrzypacz (2007) and Harrington and Skrzypacz

(2011). Monotonicity permits identifying obedient agents (Rahman and Obara, 2010), and

assigning continuation values that avoid “value-burning” (Sannikov and Skrzypacz, 2010).

To see why, let x2 ≥ x1 6> x0 (but not x0 = x1 = x2) and consider the following profile of

deviations: a player asked to cooperate defects with probability α, whereas if asked to defect

he cooperates with probability β such that 0 ≤ α, β ≤ 1 and β/α = (p0−p1)/(p2−p1).9 For

any correlated strategy, it is impossible to identify the deviator after a unilateral deviation.10

As a result, Lemma 1 generally fails: since it could have been anyone, every player must

be punished on-path. This leads to inefficiency, even as players become patient. In other

words, value-burning is unavoidable without monotonicity.

9For instance, if x2 = x0 = 1 and x1 = 0, let α = 1 and β = 1: disobedience with probability one.
10Since deviations are identical, a deviator cannot be identified from (C,C) or (D,D). Given (C,D), if

player 1 defects then the distribution of signals changes by α[(p0, q0)− (p1, q1)], just as for player 2, since

β[(p1, q1)− (p2, q2)] = α[(p0, q0)− (p1, q1)]. By symmetry, the claim now follows.
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2.2 Infrequent Coordination

Such inefficiency will now be overcome by manipulating the arrival of recommendations,

yielding a Folk Theorem in private communication equilibrium assuming that x satisfies

x2 − x1 6= x1 − x0, or, equivalently, x0 + x2 6= 2x1. (2)

The only vectors x excluded by (2) exhibit x2 − x1 = x1 − x0. If x2 − x1 = x1 − x0 > 0

then x2 > x1 > x0, and by Lemma 1 a Folk Theorem obtains. Similarly, a Folk Theorem

holds if x2 − x1 = x1 − x0 < 0 by reversing the roles of up and down jumps. Hence, the

Folk Theorem fails only if x2 − x1 = x1 − x0 = 0, proving Theorem 1.

Let us construct T -period blocks such that T = bc/∆tc, where c is a constant representing

the length of calendar time of each block. To sustain a nearly efficient payoff, players face

a punishment scheme that depends on both the mediator’s secret recommendations over

the T -period block and the public signals. At the end of the T -period block all previous

recommendations are made public to solve for T -public communication equilibria. This

delays the arrival of inefficient punishments and increases the number of signals contingent

on which to trigger said punishments, which tempers the noise to signal ratio.

Lemma 2. The Folk Theorem also holds if x2 − x1 6= x1 − x0.

Proof Sketch. This result follows from Theorem 2 below, proved in Appendix A. Here I

argue that virtually full cooperation is sustainable. Without loss, let x0 + x2 > 2x1. The

case x0 + x2 < 2x1 is handled similarly by reversing the roles of up and down jumps. The

mediator generates a latent variable Yi for each player i that follows a random walk repre-

sentation of Brownian motion, with drift determined by the mediator’s recommendations

and the public signals. Players do not observe these latent variables except every c units

of time. The mediator secretly recommends cooperation to each player with probability

1 − µ and defection with probability µ, for some small µ > 0. Players observe only their

own recommendations. Recommendations are IID across players and time throughout each

block. At time t, the mediator makes a profile of recommendations at, each player takes a

possibly different action, and the publicly observed variable Xt realizes. Let ωt = +1 if Xt

jumps up and −1 if it jumps down. Take the first block of length c. The latent variable Yi

starts at Yi0 = 0. After (at, ωt) realizes, the mediator performs a secret Bernoulli trial with

failure probability ξi(at, ωt), for some scoring rule ξ that drives the law of motion of Yi:

Yit =

{
Yit−∆t +

√
∆t with probability ζi(at, ωt) = 1− ξi(at, ωt),

Yit−∆t −
√

∆t with probability ξi(at, ωt).

Assuming (2), there exists a scoring rule ξ such that deviations increase failure rates, even

after obedience failure is still possible, and ξ enforces the correlated strategy defined by µ.
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The following scoring rule works: ξi(a, ω) = 1
2

for all (i, a, ω) except

ξi(Ci, C−i,+1) = 1
2

[
1− µ

1− µ
p1

p2

]
and ξi(Ci, D−i,+1) = 1,

where µ > 0 and ∆t > 0 are small enough that ξi(a, ω) ∈ [0, 1] is a probability.

Observe that ξi(Ci, D−i,+1) > 1
2
> ξi(Ci, C−i,+1): an increase in Xt increases the failure

rate if i’s opponent was recommended to defect and lowers it otherwise. Notice that, on

the path of play, player i’s failure rate conditional on his information equals 1
2
, so the latent

variable Yi follows a random walk without drift. Indeed, after i was recommended Di or X

jumped down this is clear by construction of ξ. Moreover, the probability that Yi jumps

down given that X jumped up, i was recommended Ci and he obeyed equals

(1− µ)1
2

[
1− µ

1−µ
p1
p2

]
p2 + µp1

(1− µ)p2 + µp1

=
1
2
[(1− µ)p2 + µp1]

(1− µ)p2 + µp1

= 1
2
.

If player i defected when asked to cooperate, this conditional probability increases to

π∗∗ =
(1− µ)1

2

[
1− µ

1−µ
p1
p2

]
p1 + µp0

(1− µ)p1 + µp0

= 1
2

[
1 + µ

(p0p2 − p2
1)/p2

(1− µ)p1 + µp0

]
.

As ∆t → 0, since p2 ≈ (1 − µ)p1 + µp0 ≈ 1
2
, this conditional probability is close to

1
2
[1 + µ(x0 + x2 − 2x1)

√
∆t]. Hence, the largest possible conditional failure drift is

z∗∗ = µ(x0 + x2 − 2x1).

Unconditionally, that is, before the realization of X, the probability of failure equals

π∗ = (1− µ)1
2

([
1− µ

1− µ
p1

p2

]
p1 + q1

)
+ µ(p0 + 1

2
q0) = 1

2

[
1 + µ(p0p2 − p2

1)/p2

]
.

Hence, the unconditional, or prior, failure drift is similarly derived from π∗ to be

z∗ = 1
2
µ(x0 + x2 − 2x1).

At the end of the block, that is, at time c, the mediator publicly reveals the entire path of

recommendations as well as each Yi, and the next block begins afresh. If the value of Yi

is below some threshold Y ∗∗ < 0 at time c, then player i pays a penalty w of continuation

value. For fixed ∆t > 0, if Yi exhibited t∗∗ = b(1 − π∗∗)(T − 1)c successes or fewer along

the block then punishment ensues. The threshold Y ∗∗ is related to t∗∗ through the random

walk representation.11 As ∆t→ 0, the threshold is linear in the block length c:

Y ∗∗ → −z∗∗c as ∆t→ 0.
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Figure 2: Linear threshold (red) versus latent variable (blue) over time

In equilibrium, Yi is a driftless Brownian motion, so Yic − Yi0 = Yic ∼ N(0, c) and i is

punished with probability 1−Φ(z∗∗
√
c), where Φ is the standard normal CDF. Player i only

affects the drift of Yi by deviating, hence the mean of Yic. If player i is asked to cooperate in

the first period but defects instead, he is punished with probability 1−Φ((z∗∗c−z∗∆t)/
√
c).

To discourage this single deviation, punishment costs must outweigh deviation gains:

1− e−r∆t ≤ e−rcw[Φ(z∗∗
√
c)− Φ((z∗∗c− z∗∆t)/

√
c)]. (3)

Since 1−e−x ≤ x for x ≥ 0, the left-hand side is estimated by r∆t, and since Φ(z) is concave

for z ≥ 0, the right-hand side is estimated by e−rcwϕ(z∗∗
√
c)z∗∆t/

√
c. Substituting these

estimates, multiplying both sides by c/∆t and rearranging, (3) follows from

w ≥ rcerc

ϕ(z∗∗
√
c)z∗
√
c
.

If w makes this inequality bind then every deviation is discouraged. To see this, pick any

partial history of behavior and observations, hti. Relative to obedience, the mean of Yic may

have decreased by some amount, say θ. By construction of ξ, however, θ cannot exceed z∗∗c,

the latter being c times the largest possible conditional failure drift. With the same logic

as for (3), a single deviation after hti is discouraged if w ≥ rcerc/[ϕ((z∗∗c − θ)/
√
c)z∗
√
c].

This clearly holds since ϕ((z∗∗c− θ)/
√
c) ≤ ϕ(z∗∗

√
c) for all θ ∈ [0, z∗∗c], so at any partial

history, every one-step deviation is unprofitable. Hence, every deviation is discouraged.

Since w is approximately linear in r for every c, it diminishes faster than
√
r as r → 0, so

punishments are self-decomposable if players are patient. Each player’s lifetime expected

utility solves v = (1− e−rc)(1− µ) + e−rc[Φ(z∗∗
√
c)v + (1− Φ(z∗∗

√
c))(v − w)], so

v = 1− µ− rc

1− e−rc
1− Φ(z∗∗

√
c)

ϕ(z∗∗
√
c)z∗
√
c
.

Finally, as r → 0, this holds for every c, and rc/(1 − e−rc) → 1. As c → ∞, the normal

hazard rate explodes linearly, so v → 1− µ, and, since µ > 0 was arbitrary, v → 1. �

11Roughly, Yic equals Y ∗∗ after t∗∗ jumps up and T − t∗∗ jumps down, each jump having length
√

∆t.

Thus, Y ∗∗ ≈ t∗∗
√

∆t− (T − t∗∗)
√

∆t ≈ (1− 2π∗∗)T
√

∆t.
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Mutual cooperation requires so little in Theorem 1 because players just have two actions.

With more actions, more is required for a Folk Theorem, but the strategic flavor is similar.

On the other hand, with private monitoring (and full support) the requirements for a Folk

Theorem are much weaker, reducing to individual identifiability. See Section 7.

The threshold Y ∗∗ above is clearly not the only one that can induce mutual cooperation.

I chose it to yield a particularly transparent derivation of incentive compatibility. Finding

optimal thresholds and strategies is an interesting open question for further research.

The mediator may be dispensable. Instead of taking recommendations, players may

simply report their intended action before playing it. This is reminiscent of but not identical

to Kandori’s (2003) contracts. To reveal his intentions, a player must be indifferent over

all reports. Nevertheless, Section 7 shows that reporting intentions can sometimes—yet

decidedly not always—be a good substitute for a mediator. Finally, even if a mediator

cannot be dispensed with, it may be possible to decentralize it with plain conversation, as

argued by Forges (1986, 1990). She required four or more players, though.

3 Assumptions

3.1 Payoffs

Consider a repeated game with imperfect monitoring in discrete time. Each stage of the

game is indexed by τ ∈ {1, 2, . . .}, with ∆t > 0 the length of time between stages. The

calendar date of each stage is t ∈ {∆t, 2∆t, . . .}. The stage game is repeated every period;

it consists of a finite set I = {1, . . . , n} of players, a finite set Ai of actions for each player

i ∈ I, where A =
∏

iAi, and a function u : I ×A→ R, where ui(a) denotes the utility flow

to player i from action profile a. Players have a common discount factor δ = e−r∆t with

r∆t > 0. The utility to player i from a sequence of action profiles a∞ = (a1, a2, . . .) equals

(1− δ)
∞∑
τ=1

δτ−1ui(aτ ).

Let U = {u(µ) =
∑

a u(a)µ(a) : µ ∈ ∆(A)} be the convex hull of stage-game payoff

vectors. Given a correlated strategy µ ∈ ∆(A), let

ui(µ) = max
σi:Ai→∆(Ai)

∑
(a,bi)

ui(bi, a−i)µ(a)σi(bi|ai),

and write u(µ) = (u1(µ), . . . , un(µ)). Player i’s correlated minmax value is given by

ui = min
µ∈∆(A)

ui(µ).

Write u = (u1, . . . , un) for the vector of such values across all players. The set of feasible,

individually rational payoffs is denoted by U = {u ∈ U : u ≥ u}.
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Assumption 1 (Payoffs). (a) The set U has dimension n. (b) The stage game has a strictly

inefficient correlated equilibrium, with payoff profile u0. Let U0 = {u ∈ U : u ≥ u0}.

This is standard. Assumption 1(a) says that in principle players can be punished indi-

vidually and 1(b) that there is room for everyone’s improvement beyond static equilibrium.

3.2 Probabilities

Let Ω be a finite set of signals observed every period, and assume that |Ω| > 1. In case of

public monitoring, ω ∈ Ω is observed in every period by every player. In case of private

monitoring, Ω =
∏n

i=1 Ωi and each player i observes some ωi ∈ Ωi per period. Let Pr(ω|a)

be the probability that ω ∈ Ω realizes at the end of each period when a ∈ A was played in

that same period. In general, the matrix Pr also depends on ∆t, as is discussed later.

Assumption 2 (Full support). There exists π > 0 such that Pr(ω|a) ≥ π for all (a, ω,∆t).

This assumptions is standard. It is useful to distinguish public and private monitoring.

I now define my main notions of identifiability. The first applies to both public and private

monitoring, and is stronger than the second in case of private monitoring.

Definition 1. The matrix Pr exhibits conditional identifiability (CI) if

Pr(ω|ai, ·) 6∈ cone{Pr(ω|bi, ·) : bi 6= ai} ∀(i, ai, ω).

In case of private monitoring, Pr exhibits unconditional identifiability (UI) if

Pr(ωi, ·|ai, ·) 6∈ cone{Pr(ω′i, ·|a′i, ·) : (a′i, ω
′
i) 6= (ai, ωi)} ∀(i, ai, ωi).

Conditional identifiability is stronger than a conic version of individual full rank, which

requires only that Pr(·|ai, ·) 6∈ cone{Pr(·|bi, ·) : bi 6= ai} for all (i, ai).
12 Nevertheless, it is

equally silent about the identity of a deviator. It is consistent with some strongly symmetric

conditional distributions, unlike pairwise identifiability, for instance. On the other hand,

in case of private monitoring, unconditional identifiability is not stronger than the conic

version of individual full rank. In fact, the two notions coincide.

CI is generic if every player has at most as many actions as everyone else put together:

|Ai| ≤ |A−i| for all i, regardless of the (finite) number of signals. Moreover, UI is generic if

|Ωi| > 1 and |Ai × Ωi| ≤ |A−i × Ω−i| for all i. (See Proposition 9 for full characterization.)

Intuitively, this condition takes into account the fact that, with private monitoring, it must

be possible to detect not only when a player disobeys, but also when he misreports his

observations. Neither of these two genericity conditions seems unnatural or stringent.

12This is still significantly stronger than convex independence, rather than the conic version above.

Convex independence is necessary but not sufficient for the Folk Theorem below.
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Example 2. Recall the Prisoners’ Dilemma with public monitoring of Section 2. Let

q2 = Pr(−1|C,C), q1 = Pr(−1|C,D) = Pr(−1|D,C) and q0 = Pr(−1|D,D). Assume that

0 < q2 < q1 < 1. Conditional identifiability holds whenever q1 ≥ q0. Indeed, by definition

it fails if and only if either q2/q1 = q1/q0 or (1 − q2)/(1 − q1) = (1 − q1)/(1 − q0) or both,

which clearly requires that q1 < q0, since q2 < q1.

For interpretation, pick any player i, profile a ∈ A of mediator recommendations and

mixed strategy σi ∈ ∆(Ai) with σi(ai) < 1. The ratio σi(ai) Pr(ω|a)/Pr(ω|σi, a−i), where

Pr(ω|σi, a−i) =
∑

bi
σi(bi) Pr(ω|bi, a−i), equals the posterior probability that player i obeys

the mediator given the mediator’s information: his recommendations and the public signal.

Conditional identifiability holds if and only if for every signal ω there exist two profiles,

a−i and b−i, that give the mediator different posterior beliefs of whether or not i played ai,

that is, σi(ai) Pr(ω|a)
Pr(ω|σi,a−i) 6=

σi(ai) Pr(ω|ai,b−i)
Pr(ω|σi,b−i) . Otherwise, player i could infer the mediator’s beliefs.

Therefore, if player i does not observe whether a−i or b−i was recommended, the mediator

may sustain i’s belief that punishment is possible even when the mediator knows it is not.

With private monitoring, the same interpretation applies to unconditional identifiability

when a player i’s deviation σ̂i ∈ ∆(Ai×Ωi) now includes misreporting of privately observed

signals. Since we will be studying communication equilibria, in case of private monitoring

every player i will be assumed to report the realization ωi of her signal to a mediator. In

this case, let Pr(ω−i|σ̂i, a−i) =
∑

(a′i,ω
′
i)
σ̂i(a

′
i, ω
′
i) Pr(ω′i, ω−i|a−i, a′i).

To simplify notation, with public monitoring let Lr(ω|a, σi) = Pr(ω|a)/Pr(ω|σi, a−i) and

∆Lr(ω|ai, σi) = max
(a−i,b−i)

Lr(ω|a, σi)− Lr(ω|ai, b−i, σi).

With private monitoring, let Lr(ω|a, σ̂i) = Pr(ω|a)/Pr(ω−i|σ̂i, a−i) and write

∆Lr(ωi|ai, σ̂i) = max
(a−i,ω−i,a′−i,ω

′
−i)

Lr(ω|a, σ̂i)− Lr(ωi, ω
′
−i|ai, a′−i, σ̂i).

Lemma 3. CI fails if and only if there exists (i, ai, ω, σi) such that σi(ai) < 1 and

∆Lr(ω|ai, σi) = 0.With private monitoring, UI fails if and only if there exists (i, ai, ωi, σ̂i)

such that σ̂i(ai, ωi) < 1 and ∆Lr(ωi|ai, σ̂i) = 0.

3.3 Drifts

For a Folk Theorem with frequent actions, I require a “closed” version of identifiability as

∆t→ 0. In other words, I assume that deviations are detectable by at least order
√

∆t.

Definition 2. Pr exhibits closed conditional identifiability (CI) if

inf
∆t>0

∆Lr(ω|ai, σi)√
∆t

> 0 ∀(i, ai, ω, σi) s.t. σi(ai) < 1.
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With private monitoring, closed unconditional identifiability (UI) holds if

inf
∆t>0

∆Lr(ωi|ai, σ̂i)√
∆t

> 0 ∀(i, ai, ωi, σ̂i) s.t. σ̂i(ai, ωi) < 1.

These conditions restrict the set of stochastic processes for which I prove a Folk Theorem.

They are rather general, satisfied by a lot of processes. For instance, many random walks

that converge to Brownian motion satisfy these conditions. Other stochastic processes

satisfy these conditions, too, but arguably the prototypical example to be studied first is

Brownian motion. Closed identifiability simply asks that the extent to which the mediator

can separate an action from its deviation does not vanish as fast or faster than
√

∆t.

Example 3. To illustrate, the main example below is a natural extension of the discrete-

time model with imperfect public monitoring in Example 1—a Binomial random walk that

converges to Brownian motion as actions become arbitrarily frequent. Let Ω = {±1}.
Given an action profile a ∈ A, a function x : A→ R and ∆t > 0 sufficiently small, let

Pr(+1|a) = 1
2
[1 + x(a)

√
∆t] =: p(a) and

Pr(−1|a) = 1
2
[1− x(a)

√
∆t] =: q(a) = 1− p(a).

Consider the following Binomial random walk X starting at X0 = 0. For all t > 0, let

Xt = Xt−∆t + εt, where {εt} is a sequence of independent Bernoulli trials with success

probability p(at). Success means that εt =
√

∆t, so X jumps up, whereas failure implies

εt = −
√

∆t, so X jumps down. As ∆t→ 0, X converges to a Brownian motion with law

dXt = x(at)dt+ dWt,

where W corresponds to Wiener process. Thus, x describes the drift of X.

Since the probability matrix above depends on ∆t, it is convenient to find a condition

on the drift function x that guarantees conditional identifiability for small ∆t.

Definition 3. The drift function x exhibits conditional identifiability (CI-x) if

x(ai, ·) 6∈ conv{x(bi, ·) : bi 6= ai}+ L1 ∀(i, ai), (4)

where “conv” stands for convex hull and L1 = {α(1, . . . , 1) ∈ RA−i : α ∈ R}.

I will write conditional identifiability “in probabilities” versus “in drifts” when necessary.

Lemma 4. If x exhibits conditional identifiability then for some ∆ > 0 and all ∆t ∈ (0,∆),

the probability matrix that parametrizes X at ∆t exhibits conditional identifiability.
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Figure 3: Conditional identifiability in Example 1 when (x0, x1, x2) = (0,−1, 1)

Lemma 4 shows that conditional identifiability of the limiting stochastic process implies

conditional identifiability in probabilities of its random walk representation sufficiently close

to it. For intuition, recall the Prisoners’ Dilemma of Example 1. Figure 3 below shows

that (4) holds when (x0, x1, x2) = (0,−1, 1). However, (4) is sufficient but not necessary for

conditional identifiability in probabilities given all small ∆t, as the next example shows.

Example 4. With reference to Example 1, let x1 = 1
2
(x0 + x2) but x0 6= x2. Clearly,

(4) fails, yet conditional identifiability holds for all ∆t. Indeed, conditional identifiability

requires that both p2/p1 6= p1/p0 and q2/q1 6= q1/q0. This is easily seen to be equivalent to

|2x1 − (x0 + x2)| 6=
∣∣x2

1 − x0x2

∣∣√∆t.

By hypothesis, the left-hand side of this inequality equals zero and the right-hand side does

not, so conditional identifiability holds for all ∆t > 0 even though (4) fails. On the other

hand, the right-hand side tends to zero as ∆t→ 0, so conditional identifiability subsides.

Proposition 1. CI-x fails if and only if CI fails, that is, there exists some (i, ai, σi, ω)

such that σi(ai) < 1 and

∆Lr(ω|ai, σi)√
∆t

→ 0 as ∆t→ 0.

Intuitively, Proposition 1 says that CI-x fails whenever the mediator’s informational

advantage—in terms of having several possible posterior beliefs of whether player i obeyed

the mediator given the mediator’s information—deteriorates faster than
√

∆t. This is

important because, although by Lemma 4 conditional identifiability in drifts is not necessary

for conditional identifiability in probabilities for small ∆t, the Folk Theorem below relies

on the full strength of CI-x (or more generally CI) beyond CI for arbitrarily small ∆t.

Assumption 3 (Drifts). CI (UI) holds under public (private) monitoring.
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4 Communication Equilibrium

In communication equilibrium (Myerson, 1986; Forges, 1986), a disinterested mediator

sends non-binding messages to players, who use them to make inferences about others’

behavior and best-respond. With private monitoring, players also send messages to the

mediator after making their observations. Below, I formally define public and private com-

munication equilibrium. For simplicity, the first two sections assume public monitoring.

The last section shows how the construction of the first two sections applies to private mon-

itoring with arguably minor adjustments. I suggest skipping this section to those familiar

with public and communication equilibrium.

To classify equilibria, I decompose the mediator’s messages into private and public ones.

Let Ai be the set of private recommendations that the mediator can send to i and A the

finite set of possible public announcements. At the beginning of any period τ , the mediator

makes a private, non-binding recommendation to every i to play aiτ ∈ Ai. A public signal

ωτ ∈ Ω realizes depending on what players actually played. Finally, the mediator sends a

public announcement ατ ∈ A to everyone. Let Hτ
0 = (A× Ω×A)τ−1 be the set of partial

histories for the mediator (thus H1
0 = {∅}), consisting of recommendations, public signals

and announcements. The set of all such partial histories is H0 =
⋃
τ H

τ
0 .

Definition 4. A communication mechanism, or mediated strategy, is a pair µ̃ = (µ̃1, µ̃2),

where µ̃1(at|aτ−1, ωτ−1, ατ−1) is the conditional probability that the mediator privately

recommends aiτ to every player i given (aτ−1, ωτ−1, ατ−1), and µ̃2(ατ |aτ , ωτ , ατ−1) is the

conditional probability that the subsequent public announcement is ατ .

Notation. I will write µ̃ to describe mediated strategies of the repeated game, and write

µ ∈ ∆(A) for a correlated strategy of the stage game.

A mediated strategy µ̃ induces a probability distribution on each Hτ
0 as follows:

Pr(aτ , ωτ , ατ |µ̃) =
τ∏
s=1

µ̃1(as|as−1, ωs−1, αs−1)µ̃2(αs|as, ωs, αs−1) Pr(ωs|as).

The utility to player i from the mediated strategy µ̃ is therefore given by

Ui(µ̃) = (1− δ)
∑

(τ,aτ ,ωτ ,ατ )

δτ−1ui(aτ ) Pr(aτ , ωτ , ατ |µ̃).

Let Hτ
i = (Ai×Ai×Ω×A)τ−1 be the set of partial histories for player i, with typical element

hτi = (aτ−1
i , bτ−1

i , ωτ−1, ατ−1), where aτ−1
i is the vector of recommendations to player i from

periods 1 to τ − 1, bτ−1
i is the vector of actions taken by player i, ωτ−1 is the vector of

signal realizations and ατ−1 is the vector of public announcements by the mediator. Let

Hi =
⋃
tH

τ
i be the set of all partial histories for player i.
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For any player i, a unilateral deviation from µ̃ is a function σi : Hi → M(Ai), where

M(Ai) = {Ai → ∆(Ai)} is the set of recommendation-contingent mixed strategies and

σi(biτ |aiτ , hτi ) is interpreted as the probability that player i plays biτ if aiτ is recommended

in period τ when his private history is hτi . The induced probability that (aτ , ωτ , ατ , bτi )

occurs if everyone else is honest and obedient except for i, who deviates accord to σi, is

Pr(aτ , ωτ , ατ , bτi |µ̃, σi) = Pr(aτ , ωτ , ατ |µ̃)
τ∏
s=1

σi(bis|asi , bs−1
i , ωs−1, αs−1)

Pr(ωs|bis, a−is)
Pr(ωs|as)

.

Therefore, the utility to player i from a unilateral deviation σi can be written as

Ui(µ̃|σi) = (1− δ)
∑

(τ,aτ ,bτi ,ω
τ ,ατ )

δτ−1ui(biτ , a−iτ ) Pr(aτ , ωτ , ατ , bτi |µ̃, σi).

Definition 5. A mediated strategy µ̃ is called a communication equilibrium, or just an

equilibrium, if every unilateral deviation from µ̃ is unprofitable:

Ui(µ̃) ≥ Ui(µ̃|σi) ∀(i, σi).

4.1 Public versus Private Equilibrium

Definition 5 is close to Myerson’s definition, where the mediator uses a canonical com-

munication system consisting of secret recommendations of what actions to take, without

public announcements. I added public announcements to distinguish public and private

communication equilibria, as the former enjoy a tractable recursive structure. Myerson’s

definition is a special case of Definition 5 that I label “private.”

Formally, a mediated strategy µ̃ = (µ̃1, µ̃2) is private if A is a singleton or (µ̃1, µ̃2) is inde-

pendent of past realizations of α. A private mediated strategy that is also a communication

equilibrium is called a private communication equilibrium, or just a private equilibrium.

A mediated strategy µ̃ induces a private mediated strategy ν̃ by integrating out A:

ν̃(aτ+1|aτ , ωτ ) =

∑
ατ µ̃1(aτ+1|aτ , ωτ , ατ )

∏
s µ̃1(as|as−1, ωs−1, αs−1)µ̃2(αs|as, ωs, αs−1)∑

ατ

∏
s µ̃1(as|as−1, ωs−1, αs−1)µ̃2(αs|as, ωs, αs−1)

.

It follows that Pr(aτ , ωτ |ν̃) = Pr(aτ , ωτ |µ̃) for every (aτ , ωτ ), therefore Ui(ν̃) = Ui(µ̃).

Lemma 5. If µ̃ is an equilibrium then ν̃ is a private equilibrium.

Private equilibria are, in some sense, most general, as they enjoy the fewest incentive

constraints. However, they are difficult to analyze. This motivates the study of public

equilibria. Let Hp =
⋃
τ H

τ
p be the set of partial public histories, where Hτ

p = (Ω×A)τ−1

collects the public information available to players up to period τ . A public deviation from µ̃
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is a map σi : Hp →M(Ai). In words, a public deviation only depends on public information.

Specifically, a player’s mapping from current recommendations to mixed strategies only

depends on public information. Say that a mediated strategy µ̃ discourages public deviations

if every public deviation is unprofitable, i.e., Ui(µ̃) ≥ Ui(µ̃|σi) for all (i, σi).

Definition 6. A mediated strategy µ̃ = (µ̃1, µ̃2) is public if it publicly announces all

previous recommendations: A = A and µ̃2(aτ |aτ , ωτ , ατ−1) = 1 for all (τ, aτ , ωτ , ατ−1).

Therefore, without loss we will use µ̃ and µ̃1 interchangeably in this case. A public mediated

strategy that is also an equilibrium is a public equilibrium.13

Proposition 2. A public mediated strategy that discourages public deviations is an equi-

librium, hence a public equilibrium.

Proposition 2 allows us to establish that public equilibria enjoy a tractably recursive

structure, as usual. Intuitively, a player’s past deviations do not affect his beliefs about

opponents’ future behavior. Formally, if µ̃ is a public mediated strategy and hτp ∈ Hτ
p a

partial public history then we may rewrite a player i’s payoffs as follows:

vi(h
t
p) = (1− δ)

∑
aτ

ui(aτ )µ̃(aτ |hτp) + δ
∑

(aτ ,ωτ )

vi(aτ , ωτ , h
t
p) Pr(ωτ |aτ )µ̃(aτ |hτp).

The public mediated strategy µ̃ is therefore a public equilibrium if for every player i, public

history hτp and one-shot deviation σit ∈M(Ai),

vi(h
τ
p) ≥

∑
(aτ ,biτ ,ωτ )

[(1− δ)ui(biτ , a−iτ ) + δvi(aτ , ωτ , h
τ
p)] Pr(ωτ |biτ , a−iτ )σiτ (biτ |aiτ )µ̃(aτ |hτp).

4.2 T -Public Equilibrium

Let us now define T -public communication equilibrium. Given a block length T ∈ N, the

mediated strategy µ̃ = (µ̃1, µ̃2) is called T -public if A = AT ∪ {0} and

µ̃2(ατ |aτ , ωτ , ατ−1) = 1 if

{
ατ = 0 and τ 6= kT for some k ∈ N, and

ατ = aττ−T+1 and τ = kT for some k ∈ N,

where aττ−T+1 = (aτ−T+1, . . . , aτ ) lists the recommendation profiles in the most recent

T -period block. In words, a T -public mediated strategy publicly announces all of the

mediator’s recommendations every T periods. Again, to economize on notation, I identify

µ̃ with µ̃1 and understand µ̃2 implicitly as just defined.

13This notion of public equilibrium is comparable to the recursive communication equilibrium introduced

by Tomala (2009) and Rahman and Obara (2010) for games in discrete time.
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A T -public equilibrium is a T -public mediated strategy that is also an equilibrium. An

analogue of Proposition 2 applies to T -public equilibria as follows. The set of T -public

histories is denoted by HT
p =

⋃
τ H

T bτ/T c
p , where HTk

p = (ΩT × AT )k is the set of partial

public histories in any period τ such that k = bτ/T c. Let MT
i =

∏T
τ=1{Hτ

i → ∆(Ai)}
be the set of private-history-contingent mixed strategies within a T -period block. They

represent a player’s plan to privately deviate along a block. A T -public deviation from µ̃

is a map σi : HT
p →MT

i . Thus, σi describes how a player plans to privately deviate at the

beginning of each T -period block.

By Proposition 2 applied to T -period blocks, the T -public mediated strategy µ̃ is a T -

public equilibrium if it discourages T -public deviations, that is, for every player i, stage

k ∈ N, public kT -period public history hTkp ∈ HTk
p and T -public deviation σi,

vi(h
Tk
p ) ≥

∑
h
T (k+1)
iTk

[(1− δ)
T (k+1)∑
τ=Tk+1

δτ−1ui(biτ , a−iτ ) + δTvi(a
T , ωT , hTkp )]×

T (k+1)∏
τ=Tk+1

Pr(ωτ |biτ , a−iτ )σiτ (biτ |aiτ , hτiTk, hTkp )µ̃(aτ |hτp),

where hτiTk ∈ Hτ
i is a partial private history for player i in the kth T -period block.

4.3 Public versus Private Monitoring

The equilibrium concepts above apply equally to games with private monitoring modulo the

following minor changes. Let Ri = {ρi : Ωi → Ωi} be the set of reporting strategies, where

ρi(ωi) is player i’s report after observing ωi. Now, Hτ
i = (Ai×Ωi×Ai×Ωi×A)τ−1, which

includes private observations and reports, and a deviation is any σ̂i such that σ̂i(a
′
i, ρi|ai, hτi )

is the probability that i deviates to (a′i, ρi) when asked to play ai at private history hτi .

The probability of (aτ , ωτ , ατ , aτi
′, ωτi

′) if i plays σ̂i equals

Pr(aτ , ωτ , ατ , aτi
′, ωτi

′|µ̃, σ̂i) =

Pr(aτ , ωτ , ατ |µ̃)
τ∏
s=1

∑
{ρis:ρis(ω′is)=ωis}

σ̂i(a
′
is, ρis|asi , ωs−1

i
′, as−1

i
′, ωs−1, αs−1)

Pr(ω′is, ω−is|a′is, a−is)
Pr(ωs|as)

.

Therefore, the utility to player i from a unilateral deviation σ̂i can be written as

Ui(µ̃|σ̂i) = (1− δ)
∑

(τ,aτ ,aτi
′,ωτ ,ωτi

′,ατ )

δτ−1ui(a
′
iτ , a−iτ ) Pr(aτ , ωτ , ατ , aτi

′, ωτi
′|µ̃, σ̂i).

After amending a player’s private history, deviations, and their consequences, the definitions

of equilibrium as well as the propositions above—including the distinction between private,

public and T -public—can now be applied directly to the case of private monitoring.
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5 Folk Theorems

Below, I begin in Section 5.1 an introductory discussion of how the example of Section 2

applies to general repeated games, which motivates an additional restriction on payoffs. In

Section 5.2, I make such restriction, state the Folk Theorem and provide a brief outline of

the proof, which can be found in Appendix A. Then I offer an immediate extension. In

Section 5.3, I remove the additional restriction on payoffs but impose a slightly stronger

condition on drifts that permits joint punishments without forgoing the need to burn value.

In Section 7, I discuss other extensions of these results in several directions.

5.1 Summary and Intuition

Sometimes, as in Lemma 1, it is possible to give players of a game appropriate incentives

without the need to burn value, even if it requires some amount of sophistication in terms of

monitoring and communication. Other times, as in Lemma 2, value-burning simply cannot

be avoided. The main results of the paper show how value-burning can be accomplished

with frequent actions, in contrast with Sannikov and Skrzypacz (2010). The first result

relies on individual punishments and rewards, the second on joint punishments.

On the one hand, the noise-to signal ratio from Brownian information explodes over an

infinitesimal interval of time, so any value-burning becomes infeasible in public strategies.

However, by avoiding punishment during some periods, it is possible to temper the noise-

to-signal ratio and restore the feasibility of value-burning. Just when punishment is avoided

must be kept secret from players to maintain incentives. Eventually, though, evaluation of

punishments must arrive. For simplicity, I fix a length of calendar time c > 0 during which

punishment periods are kept secret, with evaluations at the end of every block of length

c. With respect to these c-length blocks of time, the game behaves similarly to a repeated

game with mediated communication in discrete time. As such, I extend and apply the

broad approach of Fudenberg et al. (1994) to this c-block repeated game. However, instead

of using efficient “budget-balanced” incentives, which avoid value-burning, I use individual

punishments and rewards to establish my first main result, Theorem 2.

Intuitively, the result is established as follows. Just as in Fudenberg et al.(1994), consider

a smooth set W of candidate equilibrium payoffs in the interior of the some subset (to be

explained later) of the feasible, individually rational set. I show that every payoff profile

in W is locally self-decomposable under conditional identifiability. To this end, for any

boundary point of W , player i is given incentives via individual punishments if λi ≥ 0

and individual rewards if λi < 0, where λ ∈ Rn \ {0} is an outward normal vector to the

boundary of W through the given point. Thus, λ ≥ 0 for an efficient point of W .
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Figure 4: Local self-decomposability in every direction

In order to be able to use individual punishments and rewards, I rely on conditional

(unconditional) identifiability for the case of public (private) monitoring. This is neither

enough to avoid value-burning, as in Lemma 2, nor to induce joint punishments (where

every player is punished simultaneously), as I discuss later. From Figure 4, it is clear

that some payoff profiles must necessarily be sustained with individual rewards. There

is an inherent difference between punishments and rewards, though. When incentives are

successfully provided with rewards, a profitable deviation must decrease the probability of

reward, so in equilibrium the reward must compensate a player from every deviation, since

he can always choose to deviate. As a result, any payoff sustained with rewards must be

exceed the payoff of the best deviation from an action profile sustaining it. Rewards are

used to sustain low payoffs of a player, so this implication delivers an additional restriction

on payoffs. If the payoff of a deviation from some action profile is too large then it may

not be possible to sustain even efficient outcomes. This point was made before by Compte

(1998, Theorem 2) in a different context. Similarly, I make and discuss a corresponding

restriction on the set of sustainable payoffs to establish Theorem 2.

The first extension of Theorem 2 does away with this additional restriction on payoffs

without avoiding value-burning, but makes an additional restriction on the information

structure to allow for joint punishments. In Theorem 2, identifiability is used to ensure that

for each player, a scoring rule can be constructed as in Lemma 2 to discourage deviations

and remain secret in equilibrium. The additional restriction consists of being able to

construct a single scoring rule with this property for every player. In terms of detecting

deviations, this amounts to there not being two players whose joint deviations exactly cancel

each others’—that is, their convolution is identical to no deviation at all. This assumption

still precludes the use of budget-balanced incentives, since it is still perfectly possible for

the identity of a unilateral deviator to be undetectable after a deviation. Hence, it is still

the case that value-burning cannot generally be avoided. Nevertheless, it is still possible

to temper the cost of punishments in equilibrium with infrequent coordination.
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All these results are established together for both public and private monitoring. As the

identifiability conditions of Section 3 for the cases of public and private monitoring suggest,

the informational demands in the case of private monitoring are substantially weaker than

those for public monitoring. This is because it is now easier to keep scoring rules secret.

To see this, notice that over the course of a block of time a player is uninformed of others’

actual private observations. As a result the mediator can use other players’ observations

to construct a secret scoring rule.

Generally, the requirement on signals imposed by identifiability becomes more stringent

with more signals that a player observes, but less stringent with more signals that the

player does not observe. In Section 7, I discuss this further and establish conditions for

identifiability to hold generically. With private monitoring, I also show in Section 7 that

UI is comparable to individual full rank, a condition that can be seen as approximately

necessary for a Folk Theorem.

5.2 Individual Punishments and Rewards

Given a correlated strategy µ ∈ ∆(A), recall that

udi (µ) = max
σi

∑
(a,bi)

ui(bi, a−i)µ(a)σi(bi|ai).

For any subset of players J and any ε1, ε2 > 0, let

V ε1,ε2
J = {v ∈ U : ∃µ ∈ ∆ε1(A) s.t. vi ≥ udi (µ) + ε2 ∀i 6∈ J, vi ≤ ui(µ)− ε2 ∀i ∈ J},

where ∆ε(A) = {µ ∈ ∆(A) : µ(a) ≥ ε ∀a}. Finally, let V ∗∗ = V∗ ∩ intU0, where

V ε1,ε2
∗ =

⋂
J⊂I

V ε1,ε2
J and V∗ =

⋃
ε1,ε2>0

V ε1,ε2
∗ .

The set V ∗∗ corresponds approximately to the set W ∗∗ of Compte (1998), but it is easy to

see that W ∗∗ ⊂ V ∗∗. This is because Compte (1998) only allows players outside of some set

J to deviate from pure strategy profiles, as opposed to the correlated strategies with full

support above. V ∗∗ is used for the Folk Theorem below. For example, it is easy to see that

V ∗∗ = intU0 in the Prisoners’ Dilemma. Basically, V ∗∗ is the set of payoff profiles such that

for every subset of players, there is a correlated strategy whose payoff exceeds the payoff

for the players in that subset and, for the complementary set of players, their deviation

payoff is exceeded by the payoffs in the set. According to Compte (1998, Proposition 3),

the requirement that V ∗∗ includes a sequence of payoff profiles that converge to the Pareto

efficient frontier is generic in the space of payoffs.
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Now we can state the paper’s main result, namely that an “equilibrium threats” Folk

Theorem holds as players become unboundedly patient, even with frequent actions. Two

properties of the result are worth emphasizing. First, players engage in mediated com-

munication. Although actions are arbitrarily frequent, their public communication rounds

occur in discrete time, thus, with respect to privacy of players’ strategies, time is endoge-

nously discrete. Secondly, asymptotic efficiency is achieved with value-burning. This is

possible, unlike in Sannikov and Skrzypacz (2010), because burning of value is delayed and

conditioned on richer information, which, intuitively, tempers the noise-to-signal ratio.

Theorem 2 (Individual Incentives). Under Assumptions 1, 2 and 3, for any payoff profile u

in the interior of V ∗∗, there exists (r,∆) such that for all (r,∆t) ≤ (r,∆), a communication

equilibrium of the repeated game with parameters (r,∆t) exists whose payoff profile is u.

By Theorem 2, any profile in intV ∗∗ is an equilibrium payoff if players are sufficiently

patient and interact frequently enough. Since c = T∆t, fixing ∆t but increasing T and

decreasing r substitutes for decreasing ∆t, which implies a Folk Theorem in discrete time.

The proof of Theorem 2 appears in Appendix A. I offer a brief outline below.

First, I establish that every smooth subset of V ∗∗ is locally self-decomposable with respect

to T -public equilibria of some appropriate calendar length of time c ≈ T∆t. I derive a

uniform bound on c to self-decompose W . Next, since I give players individual punishments

and rewards, local self-decomposability is straightforward for payoff vectors belonging to

the boundary of W whose outward normal vectors are regular, that is, not coordinate

vectors. This is because, for regular vectors, punishments and rewards from v lie inside

W for sufficiently patient players. On the other hand, for coordinate vectors there exist

players for whom individual punishments and rewards necessarily displace continuation

values outside of W , violating self-decomposability. To correct this issue, I shift players’

continuation payoffs inside of W by an amount proportional to r. Now, incentive-providing

payments are linear in r. However, W is smooth, so the scope of feasible continuation

payoffs is proportional to
√
r. Following Theorem 4.1 of Fudenberg et al. (1994), there

exists r > 0 sufficiently small that the incentives provided above lie inside W . Finally, I

show that these incentive schemes continue to work as ∆t and r are lowered, for fixed c.

Assumptions 1 and 2 are standard. Assumption 3 is used to construct scoring rules with

the following key properties, as in Lemma 2:

1. Belief stability: (a) in equilibrium, players learn nothing about their own score, and

(b) a deviation can only lower the drift in a player’s score.

2. Implementability: it is possible to discourage every one-step deviation.

Formally, a simple duality argument yields a scoring rule as follows.
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Lemma 6. CI implies that for every completely mixed correlated strategy µ and every

player i there exist ξi : A× Ω→ [0, 1] and γi > 0 such that

πi
∑
a−i

Pr(ω|a−i, bi)µ(a) ≤
∑
a−i

ξi(a, ω) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω),

where πi =
∑

(a,ω) ξi(a, ω) Pr(ω|a)µ(a) for every player i, and

γi
∑
a−i

∆ui(a, bi)µ(a) ≤
∑

(a−i,ω)

ξi(a, ω)∆ Pr(ω|a, bi)µ(a) ∀(i, ai, bi),

where ∆ui(a, bi) = ui(a−i, bi) − ui(a) and ∆ Pr(ω|a, bi) = Pr(ω|a−i, bi) − Pr(ω|a). Such a

function ξ will be called a proper scoring rule.

This result is the content of Proposition 3, and is proved there. The function ξi and

number γi are used to construct a scoring rule as in Lemma 2 (γi corresponds to 1/w in

the example) to give players incentives over a block of given length c. Appropriate cutoffs

are also calculated to discourage deviations by not punishing too seldom and so that the

cost of providing incentives can be made economical by not punishing too often.

The difference above between public and private monitoring is simply to do with the

fact that in the latter (i) players can misreport their observations and must be discouraged

from doing so, and (ii) they do not observe others’ observations so cannot condition their

behavior on them. With private monitoring, a scoring rule is constructed almost identically

to the lemma above except for these minor caveats, as follows.

Corollary 1. With private monitoring, UI implies that for some (ξ, γ),

πi
∑
a−i

Pr(ω′i, ω−i|a−i, a′i)µ(a) ≤
∑
a−i

ξi(a, ω) Pr(ω′i, ω−i|a−i, a′i, ρi)µ(a) ∀(i, ai, a′i, ωi, ω′i), (5)

where πi =
∑

(a,ω) ξi(a, ω) Pr(ω|a)µ(a) for every player i, and

γi
∑
a−i

∆ui(a, a
′
i)µ(a) ≤

∑
(a−i,ω)

ξi(a, ω)∆ Pr(ω|a, a′i, ρi)µ(a) ∀(i, ai, a′i, ρi), (6)

where ρi : Ωi → Ωi is a reporting strategy (that is, ρi(ωi) is reported if ωi is observed),

∆ Pr(ω|a, a′i, ρi) = Pr(ω|a−i, a′i, ρi)− Pr(ω|a) and

Pr(ω|a−i, a′i, ρi) =
∑

ω′i∈ρ
−1
i (ωi)

Pr(ω−i, ω
′
i|a−i, a′i)

is the probability that ω is reported when everyone is honest and plays their part of a except

for player i, who plays a′i instead and reports according to the reporting strategy ρi. Again,

such a function ξ is called a proper scoring rule.
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5.3 Joint Punishments

The previous restriction that payoffs lie inside V ∗∗ can be avoided altogether by slightly

strengthening the information structure to allow for joint punishments. In this case, players

are jointly punished with positive probability of static equilibrium henceforth.

Definition 7. Say that the matrix Pr exhibits joint conditional identifiability (JCI) if,

whenever yi ∈ RAi×Ai×Ω
+ for every player i,∑

(i,ai,bi,ω)

yi(ai, bi, ω) Pr(ω|a−i, bi) = Pr(ω|a) ∀(a, ω) ⇒ yi(ai, bi, ω) = 0 for all ai 6= bi,

and joint unconditional identifiability (JUI) if, whenever yi ∈ RAi×Ai×Ωi×Ωi
+ for every i,∑

(i,ai,ωi,a′i,ω
′
i)

yi(ai, ωi, a
′
i, ω
′
i) Pr(ω′i, ω−i|a−i, a′i) = Pr(ω|a) ∀(a, ω) ⇒

yi(ai, a
′
i, ωi, ω

′
i) = 0 for all (ai, ωi) 6= (a′i, ω

′
i).

The drift x exhibits joint conditional identifiability (JCI-x) if, when yi ∈ RAi×Ai
+ for all i,∑

(i,ai,bi)

yi(ai, bi)[x(a−i, bi)− x(a)] = 0 ∀a ∈ A ⇒ yi(ai, bi) = 0 for all ai 6= bi.

In contrast with the previous version of “individual” identifiability, joint identifiability

requires that the statistical consequences of every deviation profile are not diametrically

opposed for any two disjoint subsets of players. This way, when punishing everyone, these

two sets of players cannot deviate in a way that precludes joint punishment. This is not

inconsistent with obedient agents being unidentifiable after a deviation, see Example 5.

Example 5. Consider the repeated Cournot oligopoly with two firms. Each firm i can

produce any amount qi ∈ R, not necessarily positive. The market price at time t equals

pt = P (q1t + q2t) + εt, where P is an inverse demand curve such that P ′(q) < 0 for all q and

εt ∼ N(0, σ2/∆t) is a random shock. Any y such that y1(q1, q1 + h) = q2(q2, q2− h) > 0 for

some h 6= 0 (and 0 otherwise) satisfies the antecedent above, so joint identifiability fails.

It is easy to see, as in Lemma 6, that joint identifiability guarantees the existence of a

common scoring rule ξ : A×Ω→ R with which to incentivize every player simultaneously.

Closed joint identifiability ensures that such scoring rules converge meaningfully as ∆t→ 0,

which is necessary for the Folk Theorem below. To define it, given a profile σ = (σ1, . . . , σn)

such that σi : Ai → ∆(Ai) is a recommendation-contingent deviation plan for every i, let

Lr(ω|a, σ) = Pr(ω|a)/
∑

i Pr(ω|a−i, σi) and ∆Lr(ω|σ) = max(a,b) Lr(ω|a, σ) − Lr(ω|b, σ).

Say that Pr exhibits closed joint conditional identifiability (JCI) if for every deviation
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profile σ with σi(ai|ai) < 1 for some (i, ai), inf∆t>0 ∆Lr(ω|σ)/
√

∆t > 0.When monitoring

is private and σ̃ is a profile such that σ̃i : Ai×Ωi → ∆(Ai×Ωi) is a recommendation- and

signal-contingent deviation plan for each i, let Lr(ω|a, σ̃) = Pr(ω|a)/
∑

i Pr(ω−i|a−i, σ̃i)
and ∆Lr(ω|σ̃) = max(a,ω,a′,ω′) Lr(ω|a, σ̃) − Lr(ω′|a′, σ̃). Say that Pr exhibits closed joint

unconditional identifiability (JUI) if for every σ̃ with σ̃i(ai, ωi|ai, ωi) < 1 for some (i, ai, ωi),

it is the case that inf∆t>0 ∆Lr(ω|σ̃)/
√

∆t > 0.

Definition 8. Closed joint identifiability means JCI (JUI) if monitoring is public (private).

For Lemma 2, every player was given incentives with an independent, latent score. Joint

identifiability means that a single latent score can simultaneously provide incentives for

every player, as I show next. The proof is very close to that of Lemma 6, so omitted.

Lemma 7. If x exhibits joint conditional identifiability then for every completely mixed

correlated strategy µ there exist ξ : A× Ω→ [0, 1] and γ > 0 such that

π
∑
a−i

Pr(ω|a−i, bi)µ(a) ≤
∑
a−i

ξ(a, ω) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω),

where π =
∑

(i,a,ω) ξi(a, ω) Pr(ω|a)µ(a) and

γ
∑
a−i

∆ui(a, bi)µ(a) ≤
∑

(a−i,ω)

ξ(a, ω)ω∆x(a, bi)µ(a) ∀(i, ai, bi).

A Folk Theorem follows from Lemma 7: players are jointly threatened with positive

probability of a static equilibrium henceforth unless their joint score is sufficiently high.

Theorem 3 (Joint Punishments). Under Assumptions 1 and 2, closed joint identifiability

implies that for any payoff profile u in the interior of U0, there exists (r,∆) such that for all

(r,∆t) ≤ (r,∆), a communication equilibrium of the repeated game with parameters (r,∆t)

exists whose payoff profile is u.

To illustrate just how joint punishments might work, recall the Prisoners’ Dilemma of

Section 2. I will construct a joint scoring rule assuming x1 6= 1
2
(x0 + x2), as in Lemma 2.

Example 6. In the Prisoners’ Dilemma, assume that x0 + x2 < 2x1 and recall the setting

of Lemma 2. To construct a joint latent variable Yt, let Y0 = 0 and Yt = Yt−∆t±
√

∆t follow

a random walk with failure probability ξ(at, ωt), where at is the profile of recommendations

at time t and ωt the realized public signal. This failure probability is defined as follows:

ξ(a, ω) = 1
2

whenever ω = −1. For ω = +1, let ξ(DD,+1) = 1,

ξ(CC,+1) = 1
2

[
1 +

(
µ

1− µ

)2
p0

p2

]
and ξ(CD,+1) = ξ(DC,+1) = 1

2

[
1− µ

1− µ
p0

p1

]
.
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It can be verified easily that for any signal realization, the scoring rule has no drift in

equilibrium. For any deviation, however, the drift of Yt is lowered significantly. As in the

proof sketch of Lemma 2, the failure probability after defecting when asked to cooperate is

Pr(Ft|Ci, Di,+1) =
(1− µ)p1ξ(CC,+1) + µp0ξ(CD,+1)

(1− µ)p1 + µp0

= 1
2

[
1 +

µ2/(1− µ)

(1− µ)p1 + µp0

p0(p2
1 − p0p2)

p1p2

]
≈ 1

2

[
1 +

µ2

1− µ
(2x1 − (x0 + x2))

√
∆t

]
,

where Ft stands for Yt jumping down in period t. The failure drift associated with this

failure probability is clearly ẑ = µ2

1−µ(2x1− (x0 + x2)). In contrast with Lemma 2, we must

also check the failure drift from cooperating when asked to defect:

π∗∗ = Pr(Ft|Di, Ci,+1) =
(1− µ)p2ξ(CD,+1) + µp1ξ(DD,+1)

(1− µ)p2 + µp1

= 1
2

[
1 +

µ

(1− µ)p1 + µp0

p2
1 − p0p2

p1

]
≈ 1

2

[
1 + µ(2x1 − (x0 + x2))

√
∆t
]
,

Let z∗∗ = µ(2x1 − (x0 + x2)) be the failure drift associated with π∗∗. Assume that µ is

sufficiently small for z∗∗ to be the maximal failure drift, i.e., z∗∗ > ẑ. The prior failure

drift, as in Lemma 2, is z∗ = 1
2
µ(2x1 − (x0 + x2)).

Equilibrium is constructed as follows given Y . The mediator makes recommendations

and generates Y secretly for a length of calendar time c > 0. At the end of the block, if

Yc ≥ Y ∗∗ = −z∗∗c then everyone’s continuation values remain at the previous level v. If

Yc < Y ∗∗ then players resort to DD forever with some probability α such that αv = w

from the proof sketch of Lemma 2.

The only substantial difference comes in checking that incentive compatibility constraints

are satisfied. I go over these constraints next intuitively, since their logic follows that

of Lemma 2 relatively closely. If a player was asked to defect, cooperating raises the

probability of punishment and brings no current gain, so is unprofitable. If a player was

asked to cooperate in the very first period, the previous analysis produces a punishment w

that discourages defection. Finally, since z∗∗ was chosen instead of ẑ < z∗∗ to determine

the test for the scoring rule Y , there is no private history such that the density of the

score is any less than ϕ(z∗∗
√
c), so incentives are never exhausted. As a result, all incentive

constraints are satisfied by the same logic as in the proof sketch of Lemma 2.

Notice that this construction works for any initial lifetime equilibrium payoff profile

strictly above the payoff profile from the static equilibrium that was used to punish players

after a failed joint test. An equilibrium-threats Folk Theorem therefore emerges directly

from this observation, so after taking the limit ∆t→ 0, for every payoff profile v � 0 there

is a discount rate r > 0 at which v is an equilibrium payoff.
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6 Incentive Compatibility
To prove the Folk Theorems above, I now construct punishments and rewards for the

repeated game. For simplicity, I restrict this section to the Binomial model of Example 3,

but the appendix shows how all these results extend to the general case with both public

and private monitoring. From now on, fix a stage-game correlated strategy µ ∈ ∆(A).

6.1 Scoring Rules

Definition 9. A scoring rule is a pair of functions ξ, ζ : I × A× Ω→ [0, 1] of failure and

success probabilities, respectively, with ζ = 1− ξ. Call ξ and ζ proper 14 if

1. Belief stability : Failure is equally likely with obedience, more likely without it.∑
a−i

Pr(ω|a−i, bi)µ(a)πi ≤
∑
a−i

ξi(a, ω) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω), (7)

where πi =
∑

(a,ω) ξi(a, ω) Pr(ω|a)µ(a) for every player i.

2. Implementability : Some γi > 0 yields incentive compatibility for each player i.

γi
∑
a−i

∆ui(a, bi)µ(a) ≤
∑

(a−i,ω)

ξi(a, ω)ω∆x(a, bi)µ(a) ∀(i, ai, bi), (8)

where ∆ui(a, bi) = ui(a−i, bi)− ui(a) and ∆x(a, bi) = x(a−i, bi)− x(a).

A proper scoring rule consists of failure probabilities ξ (with punishment 1
2

√
∆t/γi) such

that (i) the probability of failure is at least as great after a deviation than after obeying

the mediator’s recommendations, and (ii) obedience can be incentive compatible. (With

private monitoring, (7) and (8) become (5) and (6).) By belief stability, whenever a player

obeys a recommendation, his posterior beliefs about the probability of failure conditional

on his recommendation and signal equal his prior πi, which can be chosen arbitrarily.

Lemma 8. (i) If ξ is a proper scoring rule then conditional failure probabilities are constant

and equal to π on the equilibrium path:∑
a−i

ξi(a, ω) Pr(ω|a)µ(a) = πi
∑
a−i

Pr(ω|a)µ(a) ∀(i, ai, ω).

(ii) If a proper scoring rule exists then for any vector α ∈ (0, 1)n there exists another proper

scoring rule with prior failure probability for player i equal to αi.

Proposition 3. If Pr exhibits conditional identifiability then the set of proper scoring rules

for µ is not empty as long as µ is a completely mixed correlated strategy.

14The label “proper” is borrowed from statistics (see, e.g., Gneiting and Raftery, 2007). Formally, belief

stability implies properness, as its constraints are ex post, so a better label might be “very proper.”
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Notation. If σi ∈ M(Ai) is a stage-game deviation and f : A → R depends on

actions, not recommendations, write f(a, σi) =
∑

bi
f(a−i, bi)σi(bi|ai) for the convolution

of f with σi, ∆f(a, σi) = f(a, σi) − f(a) for the effect of σi on f at a, and ∆f(µ, σi) =∑
a ∆f(a)µ(a), or simply ∆f(σi), for the a priori effect. (With private monitoring, given

σ̂i : Ai → ∆(Ai ×Ri), let f(a, ω, σ̂i) =
∑

(a′i,ρi,ω
′
i∈ρ
−1
i (ωi))

f(a′i, a−i, ω
′
i, ωi)σ̂i(a

′
i, ρi|ai), etc.)

Fix a proper scoring rule ξ. Let πi(σi) =
∑

(a,ω) ξi(a, ω) Pr(ω|a, σi)µ(a) be the prior

failure probability from σi and ∆πi(σi) = πi(σi) − πi. Let zi(σi) = ∆πi(σi)/(
1
2

√
∆t) be

the prior failure drift from σi. The incentive cost of σi from ξi at µ equals the ratio

Ci(σi) = ∆ui(σi)/zi(σi), where I assume that 0/0 = 0. Ci(σi) is the ratio of utility changes

to drift changes. The conditional failure probability from σi given (ai, ω) is written as

πi(σi|ai, ω) =

∑
a−i

ξi(a, ω) Pr(ω|a, σi)µ(a)∑
a−i

Pr(ω|a, σi)µ(a)
.

Similarly, ∆πi(σi|ai, ω) = πi(σi|ai, ω) − πi and zi(σi|ai, ω) = ∆πi(σi|ai, ω)/(1
2

√
∆t). With

private monitoring, πi(σ̂i|ai, ωi) and zi(σ̂i|ai, ωi) are defined similarly.

Definition 10. A cost-maximizing deviation for player i is any σ∗i ∈ arg maxσi Ci(σi). Let

∆u∗i = ∆ui(σ
∗
i ), z

∗
i = zi(σ

∗
i ) and C∗i = Ci(σ

∗
i ). A failure-maximizing conditional deviation

for player i given (ai, ω) is any σ∗∗i (ai, ω) ∈ arg maxσi πi(σi|ai, ω). Player i’s maximum

conditional failure probability equals π∗∗i = max(ai,ω) πi(σ
∗∗
i (ai, ω)|ai, ω), with conditional

failure drift z∗∗i = ∆π∗∗i /(
1
2

√
∆t), where ∆π∗∗i = π∗∗i − πi.

By implementability (8), 0 ≤ C∗i < ∞, so, since M(Ai) is compact, σ∗i and σ∗∗i exist.

If C∗i = 0 then i needs no incentives, so without loss C∗i > 0. Hence, π∗∗i > πi. By the

Maximum Theorem, arg maxCi and arg max zi have a continuous selection.

Lemma 9. Let ξ be a proper scoring rule and µ completely mixed. Without loss, σ∗i and

σ∗∗i are continuous with respect to ξ and µ. So are ∆u∗i , z
∗
i , C∗i , π∗∗i and z∗∗i .

Finally, consider convergence of scoring rules. If ξ → ξ for some scoring rule ξ, then,

by Lemma 9, σ∗i → σ∗i and σ∗∗i → σ∗∗i for some (σ∗i , σ
∗∗
i ). Hence, (∆u∗i , z

∗
i , C

∗
i ) converges

to some (∆u∗i , z
∗
i , C

∗
i ) and (π∗∗i , z

∗∗
i ) to some (π∗∗i , z

∗∗
i ). By Proposition 3, if Pr exhibits

conditional identifiability for all small ∆t > 0 then every completely mixed correlated

strategy has a proper scoring rule ξ such that C∗i < ∞. Since 0 ≤ ξ ≤ 1, without loss ξ

converges to some scoring rule ξ as ∆t→ 0.

Proposition 4. CI-x implies that there is a family of proper scoring rules ξ with ξ → ξ

as ∆t→ 0, where ξ is a proper scoring rule at ∆t = 0. Hence, πi ∈ (0, 1) and C
∗
i <∞.

With private monitoring, correspondingly similar definitions and results apply, although

conditional deviations and failure probabilities may now depend on (ai, ωi) instead of (ai, ω).
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6.2 Punishment Schemes

Definition 11. A punishment scheme is a triple (µ, ξ, w) with ξ a proper scoring rule for

µ ∈ ∆(A) and w ∈ Rn
+ a vector of punishments. It is implemented as follows.

1. Over a T -period block, the mediator secretly recommends players to play the ac-

tion profile aT = (a1, . . . , aT ) with probability
∏

τ µ(aτ ). Players only observe their

own recommendations throughout the T -period block and these recommendations

are independent and identically distributed, generated by µ.

2. Player i’s score for the block is determined by the following secret process.

(a) For any history (aT , ωT ), where aT is the vector of recommendations by the

mediator and ωT is the vector of realized public signals, the mediator performs

T independent Bernoulli trials, called scoring trials. The trial at time t has

failure probability ξi(at, ωt) if at was recommended and ωt realized.

(b) Finally, the score equals the number of successes in the T scoring trials.

3. Punishment for player i ensues if his score at the end of the block does not exceed

τ ∗∗i = b(1−π∗∗i )(T − 1)c, where σ∗∗i is a failure-maximizing conditional deviation and

π∗∗i is player i’s maximum conditional failure probability from Definition 10.

4. Punishment to player i entails subtracting wi from i’s continuation value. Otherwise,

“no punishment” entails no change to player i’s continuation value.

The probability that i is punished if everyone obeys the mediator is given by

Πi0 =

τ∗∗i∑
τ=0

(
T

τ

)
πT−τi (1− πi)τ ,

where πi =
∑

(a,bi,ω) ξi(a, ω) Pr(ω|a)µ(a) is the equilibrium prior failure probability. There-

fore, the average lifetime utility to player i is given by

vi = (1− δT )ui(µ) + δT [(1− Πi0)vi + Πi0(vi − wi)],

where ui(µ) =
∑

a ui(a)µ(a). Rearranging yields

vi = ui(µ)− δT

1− δT
Πi0wi.

Having defined a punishment scheme, let us argue its incentive compatibility. First, I

find minimal punishments that discourage player i from deviating in the first period of a

block. Then I show that this punishment discourages every deviation.
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If player i plans to only deviate in the first period by playing σi ∈ M(Ai) instead of

obeying the mediator’s recommendation, his utility gain is (1 − δ)∆ui(σi). On the other

hand, the additional cost from deviating is given by the present value punishment times

the change in punishment probability. Let Πi1(σi) be the punishment probability if player

i only disobeys in the first period, and does so according to σi. Discouraging σi requires

(1− δ)∆ui(σi) ≤ e−rcwi[Πi1(σi)− Πi0]. (9)

From period 2 onwards, player i will obey the mediator, so failure probability equals πi

then. Hence, if FiT (τ) stands for the CDF of a Binomial random variable with failure

probability πi and T trials then

Πi1(σi) = πi(σi)FiT−1(τ ∗∗i ) + (1− πi(σi))FiT−1(τ ∗∗i − 1).

Therefore, letting fiT (t) stand for the probability mass function obtained from Fi, it follows

that fiT−1(τ ∗∗i ) = FiT−1(τ ∗∗i )− FiT−1(τ ∗∗i − 1), so (9) can be rewritten as

(1− δ)∆ui(σi) ≤ e−rcwi∆πi(σi)fiT−1(τ ∗∗i ).

Lemma 10. The punishment scheme above discourages every first-period deviation if

rcerc
∆u∗i
∆π∗i

≤ wiT

(
T

τ ∗∗i

)
π
T−τ∗∗i
i (1− πi)τ

∗∗
i . (10)

I will now argue that every deviation is discouraged by a punishment scheme satisfying

(10). I will show that for any partial history of deviations and observations hτi , every one-

step deviation in period τ ≤ T followed by obedience henceforth on the part of player i is

unprofitable. This clearly renders every dynamic deviation unprofitable, since every such

dynamic deviation must have a history after which its last one-step deviation takes place.

Indeed, given hτi and a one-step deviation σi ∈ M(Ai) at time t, let FiT (τ ∗∗i |hτi , σi) be the

probability that player i is punished if he deviates according to σi and let FiT (τ ∗∗i |hτi ) be

the probability that he is punished if he chooses not to deviate after hτi .

The utility gain from σi given hτi is (1−δ)∆ui(σi). On the other hand, the deviation costs

at least e−rcwi[FiT (τ ∗∗i |hτi , σi) − FiT (τ ∗∗i |hτi )]. Let FiT−1(·|hτi ) be the CDF of the number

of failures given hτi during all periods except τ , assuming a failure probability of πi for

all periods larger than τ . Letting fiT−1(·|hτi ) be the probability mass function induced

by FiT−1(·|hτi ), it easily follows—as for discouraging the first-period deviation just before

Lemma 10—that σi is discouraged if

(1− δ)∆ui(σi) ≤ e−rcwi∆πi(σi)fiT−1(τ ∗∗i |hτi ).
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By belief stability (7), no partial history of deviations and observations can decrease the

probability of failure below πi every period. Using this observation, the next result shows

that fiT−1(τ ∗∗i |hτi ) ≥ fiT−1(τ ∗∗i ), that is, the probability of τ ∗∗i successes is smaller whenever

player i obeyed the mediator’s recommendations. Together with Lemma 10, this implies

that discouraging every single one-step deviation discourages the last one-step deviation

associated with any arbitrarily complex dynamic deviation. Proceeding by induction, this

ultimately discourages every dynamic deviation.

Lemma 11. For every history hτi , it is the case that fiT−1(τ ∗∗i |hτi ) ≥ fiT−1(τ ∗∗i ), therefore

every dynamic deviation is unprofitable whenever wi satisfies (10).

This result is one of the key observations used to prove the Folk Theorem. It says that the

tightest incentive constraint is deviating in the first period only. The heart of the argument

involves showing that while the gain from deviating is bounded by a linear function of how

many times one deviates, the cost due to increased punishment is convex (see Figure 5).

This is not generally enough, though. For instance, the information-delay construction of

Abreu et al. (1991) is exponential, hence convex, but the probability of punishment is so

low that incentives completely break down as ∆t→ 0 for any fixed r > 0.

Let us now turn to convergence. I first take the limit as ∆t → 0 and then, afterwards,

the limit as r → 0. Consider a family ξ′ of proper scoring rules indexed by ∆t ≥ 0. By

Proposition 4, it is possible to construct such a family and satisfy ξ′ → ξ
′
as ∆t→ 0, where

ξ
′

is a proper scoring rule at ∆t = 0. Just to ease notation eventually, apply an affine

transformation (Lemma 8(ii)) to each scoring rule in the family to obtain a new family of

scoring rules ξ such that πi = 1
2

for every ∆t ≥ 0. I will fix this family ξ for the remaining

discussion of punishment schemes.

Proposition 5.

1. For every ε > 0 there exists ∆ > 0 such that if

wi ≥
rcerc∆u∗i

(1− ε)ϕ(z∗∗i
√
c)z∗i
√
c

(11)

then every deviation is unprofitable for all ∆t ∈ (0,∆).

2. If wi is chosen so that (11) holds with equality then lifetime utility satisfies

vi → ui(µ)− rc∆u∗i
1− e−rc

1− Φ(z∗∗i
√
c)

ϕ(z∗∗i
√
c)z∗i
√
c

as ∆t→ 0.

3. Finally, letting c→∞ but rc→ 0 as r → 0,

lim
r→0

lim
∆t→0

vi = ui(µ).
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6.3 Reward Schemes

Definition 12. A reward scheme is a triple (µ, ζ, w) such that ξ = 1−ζ is a proper scoring

rule for µ and w ∈ Rn
+ is a vector of rewards. It is implemented as follows.

1. Recommendations follow the same rule as for punishment schemes.

2. The score of the block is determined as follows.

(a) For any history (aT , ωT ), where aT is the vector of recommendations by the

mediator and ωT is the vector of realized public signals, the mediator performs

T independent Bernoulli trials, called scoring trials. The trial at time t has

success probability ζi(at, ωt) if at was recommended and ωt realized.

(b) Finally, player i’s score equals the number of failures in the T scoring trials.

3. Reward for i ensues if his score at the end of the block is less than or equal to

τi∗ = bπi(T − 1)c − 1, where πi = 1−
∑

(a,ω) ζi(a, ω) Pr(ω|a)µ(a).

4. Reward to player i entails adding wi to i’s continuation value.

Reward schemes are only slightly different from punishment schemes. Of course, reward

schemes involve the possibility of increasing continuation payoffs, rather than lowering

them. Since a player could deviate every period, the reward wi must compensate for at

least these deviation gains. Another notable difference is that the cut-off proportion of

successes that induces reward is roughly the prior reward probability assuming obedient

behavior. This is in stark contrast with punishment schemes, where the cut-off is the prior

punishment probability assuming disobedient behavior. This yields concave deviation costs,

so the most profitable way to deviate is to do so (almost) every period.

The lifetime utility of player i is given by

vi = ui(µ) +
δT

1− δT
Ri0wi,

where Ri0, the probability of reward given obedience, equals

Ri0 =

τi∗∑
τ=0

(
T

τ

)
πτi (1− πi)T−τ .

Let σTi be a dynamic deviation for a T -period block. Discouraging σTi entails

(1− δ)E
T∑
τ=1

δτ−1∆ui(σiτ ) ≤ δTwiE[Ri0 −RiT (σTi )],

where Ri0 and RiT (σTi ) are reward probabilities after obedience and σTi respectively, and

E, of course, computes expectations.
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Let us find a useful bound on the reward wi for incentive compatibility. For any terminal

history of the block, hTi , let RiT (σTi |hTi ) be the reward probability from playing σTi condi-

tional on hTi . By belief stability (7), the failure probability πiτ of each period’s scoring trial

must lie between πi and π∗∗i . Therefore, Hoeffding’s (1956) inequality implies that

RiT (σTi |hTi ) ≤
τi∗∑
τ=0

(
T

τ

)
π̂τi (1− π̂i)T−τ =: Ri(π̂i), (12)

where RiT (σTi |hTi ) is the probability of being rewarded given hTi and π̂i = 1
T

∑
τ πiτ .

Lemma 12. Ri(π̂i) is strictly decreasing and strictly convex on [πi, π
∗∗
i ].

Lemma 12 shows that—all else equal—player i prefers more variation in average failure

probabilities. It also shows how reward schemes contrast punishment schemes. In Lemma

11, the choice of cut-off helped to determine that discouraging one deviation discouraged

them all. Here, a different choice of cut-off yields the opposite conclusion: deviating only

once is suboptimal is worse than deviating more often. Figure 5 (see Rahman, 2013, for

details) illustrates this point as ∆t → 0. It shows how punishments are convex in the

number of deviations, whereas rewards are concave. Hence, it is no longer the case for

rewards that discouraging a first-period deviation discourages all deviations.
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Figure 5: Concavity and convexity of punishments and rewards

Now, to bound wi, let E[∆ûi(σ
T
i )] = 1

T

∑
τ max{E[∆ui(σiτ )], 0}. The next result follows

almost immediately from the incentive constraints above. A proof is therefore omitted.

Proposition 6. The reward scheme above discourages every deviation if

wi ≥ rcerc max
σTi

E[∆ûi(σ
T
i )]

E[Ri(πi)−Ri(π̂i)]
.
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Let us now turn to convergence for reward schemes. Just as with punishment schemes,

I first take the limit as ∆t → 0 and then the limit as r → 0. Let ξ′ be a family of proper

scoring rules indexed by ∆t ≥ 0. Again, ξ′ → ξ
′

as ∆t → 0, where ξ
′

is a proper scoring

rule at ∆t = 0. Finally, apply an affine transformation (Lemma 8(ii)) to each scoring rule

in the family to obtain a new family of scoring rules ξ such that πi = 1
2

for every ∆t ≥ 0.

Fix this family ξ for the rest of this section. Given c and T = bc/∆tc, let

Di = sup
T

max
σTi

E[∆ûi(σ
T
i )]

E[Ri(πi)−Ri(π̂i)]
.

Proposition 7.

1. A reward scheme with wi ≥ rcercDi discourages every deviation for all ∆t ∈ (0, c].

2. If wi = rcercDi then player i’s lifetime utility satisfies

vi → ui(µ) +
rc

1− e−rc
1
2
Di as ∆t→ 0.

3. Finally, Di <∞, and letting c→∞ but rc→ 0 as r → 0,

lim
r→0

lim
∆t→0

vi = ui(µ) + ∆udi ,

where ∆udi = maxσi ∆ui(σi).

This result explains how incentives are provided with reward schemes in the long run,

as players become patient. To allocate rewards more accurately, players can increase the

length of their block and receive more signals with which to aggregate information. In the

limit, reward schemes are efficient in the sense that players are compensated for their best

deviation gains (which I already argued was unavoidable) and no more.

6.4 Self-Generation

In the appendix, I show how the punishments and rewards derived above translate into

communication equilibria of the repeated game. Basically, I follow a T -augmentation of

the algorithm by Fudenberg et al. (1994). As illustrated in Figure 4, consider a smooth

subset of feasible payoff profiles W . Every payoff profile on the boundary is associated

with an outward normal direction λ that describes which player i is given incentives with

punishments (λi > 0) and which with rewards (λi < 0). Using as a stage game the

T -period repetition of the original stage game, I use these punishments and rewards to

show that every payoff profile in W can be decomposed into payoffs from some action

profile to be played currently and credible promises of future continuation payoffs which

are crucially also in W . I then show that, with T -public (mediated) strategies, W is locally

self-decomposable at some (r,∆) and remains so for all (r,∆t) ≤ (r,∆).
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7 Discussion

Next I discuss the model’s assumptions and possible extensions.

7.1 Social Incentives

Theorem 2 assumes that incentives can only be given individually. In fact, the detectability

assumptions there are the weakest sufficient conditions consistent with this restriction.

However, it is natural to ask when it is possible to give social incentives, with schemes that

correlate continuation payoffs across players. For instance, in Example 1, it was convenient

and intuitive to do so when x2 ≥ x1 > x0, even if sometimes conditional identifiability held.

At the same time, we obtained a Folk Theorem under weak conditions there. I address this

general problem below in the context of public monitoring, although the same logic applies

with private monitoring, as with the rest of the paper.

Definition 13. Given a vector of welfare weights λ, a proper λ-balanced scoring rule

consists of failure probabilities ξ and a payment scheme β : I × A× Ω→ R such that

1. Belief stability :

0 ≤
∑
a−i

(ξi(a, ω)− π) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω), (13)

where π =
∑

(i,a,ω) ξi(a, ω) Pr(ω|a)µ(a) for every player i.

2. Implementability : There exists γ ∈ R+ that yields incentive compatibility, i.e.,

γ
∑
a−i

∆ui(a, bi)µ(a) ≤
∑

(a−i,ω)

λi
|λi|ξi(a, ω) + βi(a, ω)ω∆x(a, bi)µ(a) ∀(i, ai, bi); 15 (14)

3. Budget balance: The payment scheme β is welfare neutral, i.e.,

n∑
i=1

λiβi(a, ω) = 0 ∀(a, ω).

A balanced scoring rule has two new properties: (i) it includes a payment scheme β,

where payments accrue each period with probability one but are only paid out at the end

of the block, and (ii) the scoring rule is oriented around given welfare weights: if λi > 0

then ξi defines a punishment scheme, whereas if λi < 0 then ξi defines a reward scheme.

If λi = 0 then player i is not given incentives with a scoring rule, only with payments βi.

Finally, the payment scheme β is budget-balanced around the vector of weights λ.

15I interpret λi

|λi| = 0 when λi = 0.
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A deviation σi ∈M(Ai) is conditionally irreversible if

Pr(ω|ai, ·) = yi(ai, σi, ω) Pr(ω|σi(ai), ·) +
∑
bi

yi(ai, bi, ω) Pr(ω|bi, ·)

for some y ≥ 0 and (i, ai, ω) implies that yi(ai, σi, ω) = 0. It is clear from the proof

of Proposition 3 that what is necessary for it to hold is that every profitable deviation is

conditionally irreversible with respect to Pr. Regarding drifts, we obtain a similar condition

for Proposition 4. For Proposition 7 we qualify utility gains to be non-negative.

We seek identifiability conditions that guarantee incentive compatibility. A profile of de-

viations σ is λ-unattributable (Rahman and Obara, 2010) if there is a vector η ∈ RA×Ω such

that ∆ Pr(ω|a, σi) = λiη(a, ω) for every player i. The profile σ is conditionally irreversible

with respect to λ if λi
|λi|σi is conditionally irreversible for each i. Finally, σ is profitable if

the sum of unilateral deviation gains across individuals is positive:

n∑
i=1

∆ui(σi, µ) > 0.

Proposition 8. Let µ be a completely mixed correlated strategy and λ a regular16 vector

of welfare weights. If every profitable, λ-unattributable deviation profile is conditionally

irreversible with respect to λ then a proper λ-balanced scoring rule exists.

If a profile of deviations is unattributable then—statistically speaking—as far as the

mediator knows anyone could have been the deviator. If η = 0 then the deviations are

undetectable and there is nothing that the mediator can do to prevent them, but if η 6= 0

then in order to provide incentives the mediator cannot punish some and reward others

simultaneously, which generally leads to value-burning. To apply the punishment and

reward schemes of Section 6, it is enough that (i) every individually profitable deviation

is detectable, and (ii) profitable, unattributable deviations are conditionally irreversible.

I should mention that Proposition 8 also applies in the limiting case with conditional

irreversibility in drifts rather than probabilities, as in Section 6, as the proof suggests.

From Proposition 8, a somewhat weaker Folk Theorem than Theorem 2 obtains. For

regular λ, punishment and reward schemes are designed as in Section 6, except that now,

at the end of a T -period block, if the mediator’s history was (aT , ωT ), then each player i

is pays the amount
∑

τ βi(aτ , ωτ ) in units of continuation value in period T . The utility to

player i over a T -period block includes the transfers βi:

(1− δT )U ′i(a
T , ωT ) = (1− δ)

T∑
τ=1

[δτ−1uiτ (aτ ) + δTβi(aτ , ωτ )],

16Regular means that at least two elements of λ are non-zero, thus λ is not a coordinate vector.
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where U ′i(a
T , ωT ) is player i’s utility net of payments βi. Now suppose that λ is a coordinate

vector. If λ = −1i then we can decompose a boundary payoff with a correlated equilibrium,

as usual, whereas if λ = 1i assume that there is an enforceable correlated strategy that

maximizes i’s expected payoff. In this case, i needs no incentives. If c is small relative to

1/r, players’ net utility gains from a deviation will be bounded, so the incentive schemes

of Section 6 apply and we can obtain a Folk Theorem in the same way as for Theorem 2,

except that the detectability assumptions are the weaker ones of Proposition 8.

The detectability condition of Proposition 8 reconciles the characterization of a Folk

Theorem in the Prisoners’ Dilemma of Example 1. There, it was necessary and sufficient

that every profitable deviation was detectable. Indeed, since players only have two actions,

a profitable deviation simply cannot be reversed, hence the result for two-by-two games.

7.2 Identifiability is Generic

In case of public monitoring conditional identifiability may seem stringent, especially as the

number of signals increases. Yet I show below that CI and CI-x are both generic if every

player has at most as many actions as everyone else put together: |Ai| ≤ |A−i| for all i. This

means that, in the Binomial model, the Folk Theorem above can be applied to a generic

family of drifts. One justification for the Binomial model is that—as shown by Fudenberg

and Levine (2007, 2009)—the kind of information structure used to reach the continuous

time limit can have crucial consequences. In the Binomial model, it is impossible to obtain

positive results (i.e., overcome the impossibility of value-burning) with their approach.

With more signals per period, it can be shown that in the prototypical case of normally

distributed signals, CI-x also suffices for existence of a proper scoring rule. For more general

signal structures, it may be more difficult to satisfy conditional identifiability.

Intuitively, the notion behind conditional identifiability seems stronger than individual

full rank—a leading notion of detectability for unilateral deviations in the literature on

repeated games. With public monitoring, individual full rank (IFR) is usually defined as

Pr(·|ai, ·) /∈ span{Pr(·|bi, ·) : bi 6= ai} for every (i, ai), although it has been relaxed to the

convex hull rather than the linear hull in some papers. Intuitively, IFR states that every

unilateral deviation is statistically detectable. CI requires that a deviation be detectable

conditional on each public signal, whereas IFR makes this requirement unconditionally.

With private monitoring, unconditional identifiability is comparable to IFR, which can be

thought of as Pr(ωi, ·|ai, ·) /∈ span{Pr(ω′i, ·|a′i, ·) : (a′i, ω
′
i) 6= (ai, ωi)} for every (i, ai, ωi).

This is obviously close to UI and generic if |Ωi| > 1 and |Ai × Ωi| ≤ |A−i × Ω−i| for all i.

Proposition 9. CI is generic if |Ai| ≤ |A−i| for all i. In case of private monitoring, UI

is also generic if (a) |Ai × Ωi| ≤ |A−i × Ω−i| when |Ωi| > 1 and |Ω−i| > 1, (b) |Ai| − 1 ≤
|A−i| (|Ω−i| − 1) when |Ωi| = 1, and (c) |Ai| (|Ωi| − 1) ≤ |A−i| − 1 when |Ω−i| = 1.
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7.3 Dispensing with the Mediator

To some extent, the mediator can be dispensed with easily. This requires resorting to mixed

strategy profiles rather than correlated strategies. Also, instead of taking recommendations,

players may report their intended action before actually playing it.17 The scoring rules

derived above for recommendations ensure that players follow through on any intentions

they report. One way to induce the right intentions is to solicit them at the beginning

of every period, charge players in units of continuation value for their reports in order

to keep them indifferent over reports, and subject them to punishments and rewards as

defined above so that actual behavior agrees with the profile of reported intentions. To

illustrate, assume that every player will be given incentives via punishments. Let µi be a

mixed strategy for player i and µ−i =
∏

j 6=i µj the product of others’ mixed strategies. Let

ui∗ = minai
∑

a−i
ui(a)µ−i(a−i) and ui∗(ai) =

∑
a−i

ui(a)µ−i(a−i) − ui∗. Given an initial

block of length c, if player i reports the intention to play ait at date t ∈ [0, c], he will

be charged wit(ait) = (1− e−r∆t)e−rtui∗(ait) units of continuation value during subsequent

blocks. In addition, player i will face a punishment scheme as defined in Section 6.2, where

the mediator’s recommendations are replaced with players’ intentions. Given any intended

action, a punishment scheme that satisfies incentive compatibility as described in Section

6.2 immediately satisfies incentive compatibility in this setting. Given that every player

follows their reported intentions, the probability of ultimate punishment is independent

of the actual reported intentions. Therefore, if a player abides by his intentions, different

reported intentions only affect a player’s payoff through the direct charge wit(ait). But this

is constructed to keep a player indifferent over possible reports in this case. Hence:

Proposition 10. An incentive compatible punishment or reward scheme remains incentive

compatible when recommendations are replaced with intentions as described above.

However, intentions are subject to Bhaskar’s (2000) critique. For a player to reveal his

intentions, he must be indifferent over reports and, playing mixed strategies, must also be

indifferent over the pure actions in their support, too. With a mediator, these ties can

be broken easily and robustly. Moreover, for some games detectability requires perfectly

correlated behavior by some players, but crucially kept secret from others. In such games,

it is unlikely that a mediator can be dispensed with. See Rahman (2012a) for details.

Even if a mediator cannot be dispensed with, it may be possible to decentralize it with

plain conversation, as argued by Forges (1990, 1986); she required 4 or more players, though.

If players communicated through actions instead of reporting intentions as above, any

information communicated by players may be subject to additional incentive constraints.

17Relatedly, Kandori (2003) suggested that players report what they played to each other. Rahman

(2012a) shows that, generally, it is better for players to report intentions than actual behavior.
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8 Conclusion

This paper studies repeated games with frequent actions, secret monitoring and infrequent

coordination, showing how to sustain dynamic equilibria with imperfect monitoring that

converges to Brownian motion. The approach developed above relies on the use of mediated

strategies, a plausible generalization of private strategies, which simplify the delay and

dissemination of the arrival of endogenous strategic information. These mediated strategies

may be thought of as dynamic information management institutions. These institutions

form latent variables for each player that are revealed at regular intervals. The incentive

schemes in this paper rely on empirical likelihood tests of obedience that not only apply to

discrete-time problems, but also to continuous-time problems. The results and techniques

seem general enough to apply generally, including environments with persistent as well as

private payoff-relevant information. Continuous-time games can be useful for analyzing

strategic outcomes with fixed discount rates. It would be interesting in the future to use

them to understand the best forms of dynamic incentives for such fixed discount rates.
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A Proofs
Proof of Lemma 1. A correlated strategy µ is enforceable with respect to W ⊂ R2 and δ if there

exists a vector v and a function w : A× Ω→W such that

vi = (1− δ)ui(µ) + δ
∑
(a,ω)

Pr(ω|a)wi(a, ω)µ(a) ∀i, and

(1− δ)
∑
a−i

∆ui(a, bi)µ(a) + δ
∑

(a−i,ω)

∆ Pr(ω|a, bi)wi(a, ω)µ(a) ≤ 0 ∀(i, ai, bi).

The first family of equations above describes value recursion. The second family describes incen-

tive compatibility: discouraging recommendation-contingent deviations.

Following Fudenberg et al. (1994), if µ is enforceable with respect to W and δ with the pair

(v, w), we will say that w enforces µ with respect to v and δ, and that v is decomposable with

respect to µ, W and δ. If µ is enforceable with respect to some W and δ, call it simply enforceable.

Let B(W, r,∆t) be the set of all decomposable payoff vectors as we vary µ with respect to fixed

W , r and ∆t. W is self-decomposable if W ⊂ B(W, r,∆t) for some r.

A smooth18 subset W ⊂ U is decomposable on tangent hyperplanes if for every point v on

the boundary of W there exists a correlated strategy µ with finite support such that (i) u(µ) is

separated from W by the (unique) hyperplane Pv that is tangent to W at u, and (ii) there exists

a continuation payoff function w : A× Ω→ Pv that enforces µ.

I will now argue decomposability on tangent hyperplanes, for the following reason.

Lemma 13 (Fudenberg et al., 1994, Theorem 4.1). If a smooth set W ⊂ U+ is decomposable on

tangent hyperplanes then r > 0 exists with W ⊂ E(r,∆t) for all r < r, where, E(r,∆t) is the set

of public communication equilibrium payoffs.

Let W be a smooth subset of the interior of the feasible, individually rational set U . Let λ be

the outward unit normal vector to W at v. For decomposability on tangent hyperplanes, I must

show that given λ there is a correlated strategy µ such that (i)
∑

i λivi <
∑

i λiui(µ), and (ii) there

exist continuation values w that enforce µ with
∑

i λiwi(a, ω) = 0 for all (a, ω). To decompose

v, let w+
i (a) be the payment to player i after an up jump if the mediator recommended a, and

similarly write w−i (a) after a down jump. For simplicity, I assume that w+
i (a) + w−i (a) = 0 for

all a, and write wi(a) = 2w+
i (a) = −2w−i (a). Let wi(Di, D−i) = 0 and write wi(Ci, C−i) = wi2,

wi(Ci, D−i) = −wi(Di, C−i) = wi1.

If λ ≤ 0, this is easy: v is decomposable into the pure strategy profile (D1, D2) and w ≡ 0.

If λi = 0 and λj > 0, decompose v into the pure strategy profile (Ci, Dj) and continuation

values w as follows. First, player j needs no incentives to defect, so let wj ≡ 0. On the other

hand, enforceability for player i requires that 1 − δ ≤ δwi1(p1 − p0). Since 1 − δ ≤ r∆t and

p1 − p0 = 1
2(x1 − x0)

√
∆t, it follows that δwi1 ≥ 2r

√
∆t/(x1 − x0) implies enforceability.

18Smooth means (i) closed and convex, (ii) with nonempty interior, and (iii) with a boundary that is a

C2-submanifold (Fudenberg et al., 1994, Definition 4.3).
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For the remaining cases of λ, choose µ as follows:

C D

C µ0 µ2

D µ1

Let µ0 + µ1 + µ2 = 1 and every entry in the table above be strictly positive. Since W is

closed and in the interior of U , there exists ε > 0 such that for every vector λ 6≤ 0 there exists

µ = (µ0, µ1, µ2) ≥ ε such that
∑

i λiui(µ) >
∑

i λivi. Indeed, if λi > 0 ≥ λj choose µ0 = µj = ε

and µi = 1− 2ε, whereas if λ� 0 choose µ0 = 1− 2ε and µ1 = µ2 = ε.

With this notation, recommending cooperation is incentive compatible if

(1− δ)(µ0 + µj) ≤ δ[µ0(p2 − p1)wi2 + µj(p1 − p0)wi1].

Similarly, recommending defection requires the inequality

−(1− δ) ≤ δ(p2 − p1)wi1.

If λi > 0 > λj and x2 > x1 then let wi1 = wj1 = 0, δw2 = 2r
√

∆t/[ε(x2 − x1)] and δwi2 =

δw2/ |λi|. Since |λi| < 1, incentive compatibility follows. Moreover, by construction λiwi2 +

λjwj2 = 0, too. If x2 = x1, let wi2 = 0 for all i, choose δw1 = 2r
√

∆t/[ε(x1 − x0)] and let

δwi1 = δw1/λi. Incentive compatibility and budget balance again follow. Notice that these

continuation values also yield incentive compatibility and budget balance if λ� 0. Therefore, W

is decomposable on tangent hyperplanes, as claimed. It remains to show that for ∆ > 0 sufficiently

small, if W ⊂ E(r,∆) then W ⊂ E(r,∆t) for ∆t < ∆. Following Fudenberg et al. (1994, proof

of Theorem 4.1, p. 1035), choose any v ∈ W . Let µ and w decompose v as above. Change the

coordinate system so that v is the origin, the first axis is the line connecting v to u(µ) and the

remaining axes lie in Pv. For any vector x, write x = (x0, x1), where x0 is the component on the

first axis and x1 is the component in Pv. Since W is smooth, by Taylor’s Theorem there exists

δ∗ < 1, a constant Ĉ > 0 and a neighborhood O of the origin such that, for all δ > δ∗, if x ∈ O
then

∥∥x1
∥∥ < Ĉ

√
(1− δ)/δ and x0 ≤ −‖u(µ)‖ (1 − δ)/δ imply that x belongs to the interior of

W . By decomposability on tangent hyperplanes, there exists (i) r > 0 such that e−r∆ > δ∗, and

(ii) w ∈ O (after the coordinate change) that enforces µ with ‖w‖ < 1
2 Ĉ
√

(1− δ)/δ. Think of the

vector w, belonging to Pv, as x1 above, and x0 = −‖u(µ)‖ (1− δ)/δ, therefore (x0, w) belongs to

the interior of W . Now consider any ∆t < ∆. Define w = w
√

∆t/∆ to be continuation values

for (r,∆t), and let x0 = −‖u(µ)‖ (1− δ)/δ with δ = e−r∆t. The scaled vector (x0, w) enforces µ

at (r,∆t) and remains in the interior of W if r > 0 is small. That w enforces µ follows from the

derivation of decomposability on tangent hyperplanes above. That (x0, w) belongs to the interior

of W for small ∆ follows because

w = w

√
∆t

∆
< 1

2 Ĉ

√
r∆t

r∆

√
1− e−r∆
e−r∆

≤ 1
2 Ĉ

√
1

r∆

√
1− e−r∆
e−r∆

√
1− e−r∆t
e−r∆t

< Ĉ

√
1− e−r∆t
e−r∆t

,

since (1− e−r∆)/e−r∆ < 4r∆ for small enough r > 0. Therefore, w belongs to the interior of W

for all ∆t < ∆. This completes the proof of Lemma 1. �
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Proof of Lemma 3. CI fails if and only if for some (i, ai, ω) there is a vector yi ≥ 0 such that

Pr(ω|a) =
∑

bi 6=ai yi(bi) Pr(ω|bi, a−i) for all a−i. Let σ′i = yi/
∑

bi
yi(bi), and for any π ∈ (0, 1),

let σi(ai) = 1− π and σi(bi) = πσ′i(bi) for bi 6= ai. Write Pr(ω|σi, a−i) =
∑

bi
σi(bi) Pr(ω|bi, a−i).

Now, as was claimed, CI fails if and only if there exist (i, ai, ω) and σi such that

Pr(ω|σi, a−i)
Pr(ω|a)

=
Pr(ω|σi, b−i)
Pr(ω|ai, b−i)

∀(a−i, b−i).

With private monitoring, UI fails if and only if for some (i, ai, ωi) there exists yi ≥ 0 such that

Pr(ω|a) =
∑

(a′i,ω
′
i)6=(ai,ωi)

yi(a
′
i, ω
′
i) Pr(ω′i, ω−i|a′i, a−i) for all (a−i, ω−i). Now define a deviation

just as before, with σ̂′i = yi/
∑

(a′i,ω
′
i)
yi(a

′
i, ω
′
i). The rest of the proof is the same as that for CI. �

Proof of Lemma 4. Suppose that for every ∆ > 0 there exists ∆t ∈ (0,∆) such that conic

independence fails: either p(ai, ·) ∈ cone{p(bi, ·) : bi 6= ai} or q(ai, ·) ∈ cone{q(bi, ·) : bi 6= ai} for

some (i, ai). Without loss, the second inclusion holds infinitely often at (i, ai) as ∆→ 0, so there

exists yi∆t(ai, ·) ≥ 0 such that for every a−i,

q(a) =
∑
bi 6=ai

yi∆t(ai, bi)p(bi, a−i) ⇔ (15)

1
2 [1− x(a)

√
∆t] = 1

2

∑
bi 6=ai

yi∆t(ai, bi)[1− x(bi, a−i)
√

∆t] ⇔ (16)

x(a) =
∑
bi 6=ai

yi∆t(ai, bi)x(bi, a−i) + (1−
∑
bi 6=ai

yi∆t(ai, bi))/
√

∆t. (17)

For any sequence {∆tm > 0} decreasing to 0, consider the corresponding sequence {yim = yi∆tm}.
Let yim(ai) =

∑
bi 6=ai yim(ai, bi). Without loss assume that {yim(ai)} is a monotone sequence, so

it has a (possibly infinite) limit, yi(ai). If yi(ai) = 0 then obviously (16) fails. If yi(ai) =∞ then

divide (17) by yim(ai), rearrange terms, and let πim(ai) ∈ ∆(Ai \ {ai}) be defined according to

πim(ai, bi) = yim(ai, bi)/yim(ai) to obtain

0 =
∑
bi 6=ai

πim(ai, bi)x(bi, a−i)−
x(a)

yim(ai)
+
yim(ai)− 1

yim(ai)
/
√

∆tm. (18)

But the right-hand side of (18) explodes, a contradiction. To see this, note that the first term,∑
bi 6=ai πim(ai, bi)x(bi, ·), lies in the bounded set conv{x(bi, ·) : bi 6= ai}, so is bounded, too. The

second term, x(ai, ·)/yim(ai), clearly converges to zero because yim(ai) → ∞. The third term

explodes, too, since [yim(ai) − 1]/yim(ai) → 1 and 1/
√

∆tm → ∞. If yi(ai) ∈ R+ is different

from 1 then again [1−yim(ai)]/
√

∆tm explodes, leading to another contradiction of (18). Finally,

suppose that yi(ai) = 1. Since y ≥ 0, it follows that yim(ai, bi) is a bounded sequence, hence has a

convergent subsequence. Taking subsequences of subsequences if necessary, there is a subsequence

such that all yim(ai, bi) converge together to some limit yi(ai, bi). Depending on the rate at which

yim(ai)→ 1 relative to ∆tm → 0, the term (1−yim(ai))/
√

∆tm can converge to any real number,

independently of a−i. The claim now follows from (17), since it implies that (4) fails. �
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Proof of Proposition 1. First notice that, by definition of x and p,

Pr(ω|a)

Pr(ω|σi, a−i)
− Pr(ω|ai, b−i)

Pr(ω|σi, b−i)
= 1 +

Pr(ω|a)

Pr(ω|σi, a−i)
− 1− Pr(ω|ai, b−i)

Pr(ω|σi, b−i)

=
Pr(ω|a)− Pr(ω|σi, a−i)

Pr(ω|σi, a−i)
− Pr(ω|ai, b−i)− Pr(ω|σi, b−i)

Pr(ω|σi, b−i)
.

If x fails conditional identifiability then there is a mixed strategy σ̂i and a scalar αi with

x(a)−
∑
bi 6=ai

σ̂i(bi)x(bi, a−i) = αi ∀a−i.

Applying the previous formula to σ̂i yields

Pr(ω|a)− Pr(ω|σ̂i, a−i)
Pr(ω|σ̂i, a−i)

− Pr(ω|ai, b−i)− Pr(ω|σ̂i, b−i)
Pr(ω|σ̂i, b−i)

= ±

[
1
2αi
√

∆t

Pr(ω|σ̂i, a−i)
−

1
2αi
√

∆t

Pr(ω|σ̂i, b−i)

]
.

Therefore,

1√
∆t

[
Pr(ω|a)

Pr(ω|σ̂i, a−i)
− Pr(ω|ai, b−i)

Pr(ω|σ̂i, b−i)

]
= ±

1
2αi[Pr(ω|σ̂i, b−i)− Pr(ω|σ̂i, a−i)]

Pr(ω|σ̂i, a−i) Pr(ω|σ̂i, b−i)
→ 0 as ∆t→ 0.

Conversely, if x satisfies conditional identifiability then for every mixed strategy σi such that

σi(ai) < 1 there exist (a−i, αi) and (b−i, βi) such that αi 6= βi and both

x(a)−
∑
bi

σi(bi)x(bi, a−i) = αi and x(ai, b−i)−
∑
bi

σi(bi)x(b) = βi.

Following the previous steps,

1√
∆t

[
Pr(ω|a)

Pr(ω|σ̂i, a−i)
− Pr(ω|ai, b−i)

Pr(ω|σ̂i, b−i)

]
= ±

1
2αi Pr(ω|σ̂i, b−i)− βi Pr(ω|σ̂i, a−i)

Pr(ω|σ̂i, a−i) Pr(ω|σ̂i, b−i)
→ ±(αi − βi) as ∆t→ 0,

since each of the probabilities above converges to 1
2 . �

Proof of Lemma 5. Every deviation σ̃i from µ̃ corresponds to a deviation from µ that does not

depend on public announcements, so, integrating out α, it follows that

Ui(µ|σ̃i) = (1− δ)
∑

(τ,aτ ,bτi ,ω
τ ,ατ )

δτ−1ui(biτ , a−iτ ) Pr(aτ , ωτ , ατ , bτi |µ, σ̃i)

= (1− δ)
∑

(τ,aτ ,bτi ,ω
τ )

δτ−1ui(biτ , a−iτ ) Pr(aτ , ωτ , bτi |µ̃, σ̃i) = Ui(µ̃|σ̃i) ≥ Ui(µ̃).

Therefore, µ̃ is a private equilibrium. �

46



Proof of Proposition 2. Let µ be a public mediated strategy that discourages public deviations.

Let σi be any deviation from µ, not necessarily public. The probability of (aτ , ωτ , bτi ) equals

Pr(aτ , ωτ , bτi |µ, σi) =
τ∏
ρ=1

µ(aρ|aρ−1, ωρ−1) Pr(ωρ|biρ, a−iρ)σi(biρ|aiρ, bρ−1
i , ωρ−1, aρ−1)

as usual. Since µ is public, for s ≤ τ , the probability conditional on (as, ωs, bsi ) equals

Pr(aτ , ωτ , bτi |as, ωs, bsi , µ, σi) = Pr(aτ , ωτ , bτi |µ, σi)/Pr(as, ωs, bsi |µ, σi).

Let s+ 1 be the first period where σi depends on bsi . Decompose Ui(µ|σi) as follows:

Ui(µ|σi) = (1− δs)Uis(µ|σi) + δs
∑

(as,ωs,bsi )

U si (µ|as, ωs, bsi , σi) Pr(as, ωs, bsi |µ, σi),

where Uis(µ|σi) = 1−δ
1−δs

∑s
τ=1

∑
(aτ ,ωτ ,bτi ) δ

τui(aτ ) Pr(aτ , ωτ , bτi |µ, σi) and

U si (µ|hs+1
i , σi) = (1− δ)

∑
hτ+1
i >hs+1

i

δτ−s−1ui(aτ ) Pr(hτi |hs+1
i , µ, σi(h

s+1
i )).

Let bs∗i (hs+1
0 , bsi ) ∈ arg maxb̂si

U si (µ|hs+1
0 , bsi , σi(h

s+1
0 , b̂si )). It is easy to see that bs∗i (hs+1

0 , bsi ) =

bs∗i (hs+1
0 ) does not depend on bsi . Indeed, letting bτis+1 = (bis+1, . . . , biτ ),

U si (µ|hs+1
0 , bsi , σi(h

s+1
0 , b̂si )) = (1− δ)

∑
hτ+1
i >hs+1

i

δτ−s−1ui(aτ ) Pr(hτi |hs+1
0 , bsi , µ, σi(h

s+1
0 , b̂si ))

= (1− δ)
∑

hτ+1
i >hs+1

i

δτ−s−1ui(aτ )×

τ∏
ρ=s+1

µ(aρ|aρ−1, ωρ−1) Pr(ωρ|biρ, a−iρ)σi(biρ|aiρ, bρ−1
is+1, b̂

s
i , ω

ρ−1, aρ−1)

= U si (µ|hs+1
0 , σi(h

s+1
0 , b̂si )).

Therefore, a deviation is optimal regardless of the private part of a player’s history. Letting

σsi = σi for τ ≤ s and σsi (h
τ+1
i ) = σi(h

τ+1
0 , btis+1, b

s∗
i (hs+1

0 )), it follows that σsi (h
s+1
i ) = σsi (h

s+1
0 ) is

a public deviation up to and including period s+1, and moreover U si (µ|hs+1
i , σi) ≤ U si (µ|hs+1

i , σsi ).

Now let s′+1 be the next period where σsi is not public, and repeat the algorithm above to obtain

σs
′
i . Proceeding inductively, the limiting deviation is public and its value exceeds that of σi. �
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Proof of Proposition 8. I will prove the claim for conditional irreversibility both in probabilities

and drifts. Assuming λ is regular, consider the following linear program.

Vλ(µ,∆t) = sup
γ,ξ≥0,β,π

γ s.t. ξi(a, ω)µ(a) ≤ µ(a) ∀(i, a, ω),

γ
∑
a−i

∆ui(bi, a−i)µ(a) ≤
∑

(a−i,ω)

[ λi|λi|ξi(a, ω) + βi(a, ω)]∆ Pr(ω|a, bi)µ(a) ∀(i, ai, bi),

0 ≤
∑
a−i

(ξi(a, ω)− π) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω),

π ≥
∑

(i,a,ω)

ξi(a, ω) Pr(ω|a)µ(a),

n∑
i=1

λiβi(a, ω) = 0 ∀(a, ω).

If a proper λ-balanced scoring rule exists then Vλ(µ,∆t) > 0. The dual of this problem is

V (µ,∆t) = sup
η,σ,y≥0

∑
(i,a,ω)

ηi(a, ω)µ(a) s.t.

n∑
i=1

∆ui(µ, σi) ≥ 1,

ηi(a, ω) ≥ λi
|λi|∆ Pr(ω|a, σi) +

∑
bi

yi(ai, bi, ω) Pr(ω|a−i, bi)− ŷPr(ω|a) ∀(i, a, ω),

ŷ =
∑

(i,a,bi,ω)

yi(ai, bi, ω) Pr(ω|a−i, bi)µ(a),

∆ Pr(ω|a, σi) = λiη̂(a, ω) ∀(a, ω).

With the same argument as in Proposition 3, Vλ = 0 implies that

λi
|λi|∆ Pr(ω|a, σi) +

∑
bi

yi(ai, bi, ω) Pr(ω|a−i, bi)− ŷPr(ω|a) = 0 ∀(i, a, ω).

The first dual constraint requires that the deviation profile σi be profitable. The last one requires

that σi be λ-unattributable. Finally. the equation above requires that σ be conditionally re-

versible with respect to λ. The proof for conditional irreversibility in drifts is similar; just replace
λi
|λi|∆ Pr(ω|a, σi) in the dual with λi

|λi|∆x(a, σi). �

Proof of Proposition 9. The proof that UI is generic follows from Rahman (2012a, Theorem 8).

The proof for CI is almost identical. �

Proof of Lemma 8. By belief stability,
∑

a−i
ξi(a, ω) Pr(ω|a)µ(a) ≥ πi

∑
a−i

Pr(ω|a)µ(a) for all

(i, ai, ω). Summing with respect to (ai, ω) yields
∑

(a,ω) ξi(a, ω) Pr(ω|a)µ(a) ≥ πi. Belief stability

also requires that πi =
∑

(a,ω) ξi(a, ω) Pr(ω|a)µ(a), which is violated if there exists (i, ai, ω) such

that
∑

a−i
ξi(a, ω) Pr(ω|a)µ(a) > πi

∑
a−i

Pr(ω|a)µ(a).

With private monitoring, belief stability (5) together with the argument above yields∑
(a−i,ω−i)

ξi(a, ω) Pr(ω|a)µ(a) ≥ πi
∑

(a−i,ω−i)

Pr(ω|a)µ(a)
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instead. This establishes (i). For (ii), let ξ be any proper scoring rule with prior punishment

probability vector π. If πi > αi, scale down ξi to obtain ξ′i(a, ω) = αiξi(a, ω)/πi. It follows that

π′i =
∑
(a,ω)

ξ′i(a, ω) Pr(ω|a)µ(a) = αi
∑
(a,ω)

ξi(a, ω) Pr(ω|a)µ(a)πi = αiπi/πi = αi.

Finally, if πi < αi then pick βi = (αi − πi)/(1 − πi) and ξ′i(a, ω) = βi + (1 − βi)ξi(a, ω). Notice

that βi ∈ (0, 1), so ξ′i ∈ [0, 1] and still satisfies (8). Now, similarly to the previous case where

πi > αi, we obtain that π′i = βi + (1 − βi)πi = αi. Since the transformations applied to ξ were

affine and monotone, it follows that ξ′ is still a proper scoring rule. The same proof applies with

private monitoring, except that incentive constraints are those in (6) instead of (8). �

Proof of Proposition 3. A simple application of duality. Consider the following linear program:

V (µ,∆t) = sup
γ,ξ≥0,π

γ s.t. ξi(a, ω)µ(a) ≤ µ(a) ∀(i, a, ω),

γ
∑
a−i

∆ui(bi, a−i)µ(a) ≤
∑

(a−i,ω)

ξi(a, ω)∆ Pr(ω|a, bi)µ(a) ∀(i, ai, bi),

∑
a−i

Pr(ω|a−i, bi)µ(a)πi ≤
∑
a−i

ξi(a, ω) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω),

πi ≥
∑
(a,ω)

ξi(a, ω) Pr(ω|a)µ(a) ∀i.

If a proper scoring rule ξ exists then V (µ,∆t) > 0. The dual of this problem is given by

V (µ,∆t) = inf
η,σ,y≥0

∑
(i,a,ω)

ηi(a, ω)µ(a) s.t.
∑
i

∆ui(µ, σi) ≥ 1,

ηi(a, ω) ≥ ∆ Pr(ω|a, σi) +
∑
bi

yi(ai, bi, ω) Pr(ω|a−i, bi)− ŷi Pr(ω|a) ∀(i, a, ω),

ŷi =
∑

(ai,bi,ω)

yi(ai, bi, ω) Pr(ω|a−i, bi)µ(a) ∀i.

Suppose V (µ,∆t) = 0. Since η ≥ 0, necessarily ηi(a, ω) = 0 for all (i, a, ω). Substituting for ŷi,

it follows that
∑

(a,ω)

∑
bi
yi(ai, bi, ω) Pr(ω|a−i, bi)µ(a) − ŷi Pr(ω|a)µ(a) = 0. Since, in addition,∑

ω ∆ Pr(ω|a, σi) = 0 for each a, the right-hand side of the second dual inequality above adds up

to zero with respect to (a, ω). So, if there exists (a, ω) such that this right-hand side is negative

then there must exist another (a, ω) for which this right-hand side is positive, contradicting the

hypothesis that ηi(a, ω) = 0 for all (a, ω). Therefore, this right-hand side must equal zero for all

(a, ω). Rearranging this equation and dividing by µ(a) > 0 yields∑
bi

Pr(ω|a−i, bi)[σi(bi|ai) + yi(ai, bi, ω)]− Pr(ω|a)[
∑

bi
σi(bi|ai) + ŷi] = 0 ∀(i, a, ω). (19)

Finally, dividing by
∑

bi
σi(bi|ai) + ŷi we obtain that Pr(ω|a) is a positive linear combination of

Pr(ω|a−i, bi), with weights that depend on (ai, bi, ω), but not on a−i. By the first dual inequality

above, σi is (proportional to) a profitable deviation, so Pr fails conditional identifiability.
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With private monitoring, simply replace the second and third families of inequalities in the

primal problem above with (5) and (6). The rest of the argument follows almost identically,

except for a few minor changes. First, the dual problem becomes

V (µ,∆t) = inf
η,σ,y≥0

∑
(i,a,ω)

ηi(a, ω)µ(a) s.t.
∑
i

∆ui(µ, σi) ≥ 1,

ηi(a, ω) ≥ ∆ Pr(ω|a, σi) +
∑

(a′i,ω
′
i)

yi(ai, ωi, a
′
i, ω
′
i) Pr(ω′i, ω−i|a−i, a′i)− ŷi Pr(ω|a) ∀(i, a, ω),

ŷi =
∑

(ai,ωi,a′i,ω
′
i)

yi(ai, ωi, a
′
i, ω
′
i) Pr(ω′i, ω−i|a−i, a′i)µ(a) ∀i,

where ∆ Pr(ω|a, σi) = Pr(ω|a, σi)− Pr(ω|a),

Pr(ω|a, σi) =
∑

(a′i,ω
′
i)

Pr(ω′i, ω−i|a′i, a−i)σi(a′i, ωi|ai, ω′i) and σi(a
′
i, ωi|ai, ω′i) =

∑
{ρi:ρi(ω′i)=ωi}

σi(a
′
i, ρi|ai).

Apart from replacing the left-hand side of (19) above with∑
(a′i,ω

′
i)

Pr(ω′i, ω−i|a−i, a′i)[σi(a′i, ωi|ai, ω′i) + yi(ai, ωi, a
′
i, ω
′
i)]− Pr(ω|a)[

∑
(a′i,ω

′
i)
σi(a

′
i, ωi|ai, ω′i) + ŷi]

the rest of the proof follows identically. �

Proof of Lemma 9. Follows immediately from the Maximum Theorem and the fact that C∗i <∞
while ξ is a proper scoring rule. The fact that µ is a completely mixed correlated strategy is used

only to obtain continuity for π∗∗i , since it is defined with conditional probabilities given by µ. �

Proof of Proposition 4. Let W (µ,∆t) = V (µ,∆t)/
√

∆t for all ∆t > 0, where V (µ,∆t) was

defined in the proof of Proposition 3, so

W (µ,∆t) = sup
λ,ξ,π

λ s.t. 0 ≤ ξi(a, ω) ≤ 1 ∀(i, a, ω),

λ
∑
a−i

∆ui(bi, a−i)µ(a) ≤ 1
2

∑
(a−i,ω)

ξi(a, ω)ω∆x(a, bi)µ(a) ∀(i, ai, bi),

∑
a−i

Pr(ω|a−i, bi)µ(a)πi ≤
∑
a−i

ξi(a, ω) Pr(ω|a−i, bi)µ(a) ∀(i, ai, bi, ω),

πi =
∑
(a,ω)

ξi(a, ω) Pr(ω|a)µ(a) ∀i.

By Lemma 4, W (µ,∆t) > 0 for all small ∆t > 0. (Note that W may still be unbounded.) I will

show that W (µ, 0) = lim∆t→0W (µ,∆t) > 0. This clearly yields C
∗
i > 0 and πi ∈ (0, 1), since

πi = 0 or 1 implies ξi(a, ω) all equal 0 or 1 by virtue of the fact that πi = 1
2

∑
(a,ω) ξi(a, ω)µ(a).

By the incentive constraint above, this in turn implies λ = 0, contradicting W (µ, 0) > 0.
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The dual of the problem above equals

W (µ,∆t) = inf
η,σ,y≥0

∑
(i,a,ω)

ηi(a, ω)µ(a) s.t.
∑
i

∆ui(µ, σi) ≥ 1,

ηi(a, ω) ≥ ω∆x(a, σi) +
∑
bi

yi(ai, bi, ω) Pr(ω|a−i, bi)− ŷi Pr(ω|a) ∀(i, a, ω),

ŷi =
∑

(a,bi,ω)

yi(ai, bi, ω) Pr(ω|a−i, bi)µ(a) ∀i.

For a contradiction, suppose that W (µ,∆t) → 0, and assume that (η, σ, y) solve the dual at

∆t > 0. By the Maximum Theorem, W (µ, 0) = 0. Taking a subsequence if necessary, as ∆t→ 0

the solution (η, σ, y) converges to (η, σ, y), say, which must satisfy the dual constraints evaluated

at ∆t = 0 and η = 0, since η ≥ 0: ∑
i

∆ui(µ, σi) ≥ 1,

0 ≥ ±∆xi(a, σi) + 1
2

∑
bi

yi±(ai, bi)− ŷi

 ∀(i, a), (20)

ŷi = 1
2

∑
(a,bi)

µ(a)[yi+(ai, bi) + yi−(ai, bi)] ∀i. (21)

Substituting for ŷi from (21) and adding all the inequalities in (20) weighted by µ yields

0 ≥
∑
a∈A

µ(a)[∆xi(a, σi)−∆xi(a, σi)] + 1
2

∑
a∈A

µ(a)[
∑
bi

yi+(ai, bi) + yi−(ai, bi)− ŷi] = 0.

Hence, every right-hand side in (20) equals zero. This clearly contradicts CI-x.

For the general case with public monitoring, replace ω∆x(a, σi) above with ∆ Pr(ω|a, σi)/
√

∆t.

If W (µ,∆t) → 0 then ∆ Pr(ω|a, σi)/
√

∆t +
∑

bi
yi(ai, bi, ω) Pr(ω|a−i, bi) − ŷi Pr(ω|a) → 0 for all

(i, a, ω). Replace yi with ỹi = yi/
√

∆t to get Pr(ω|a, (σi+ỹi)/
√

∆t)−((σ̂i+˜̂yi)/
√

∆t) Pr(ω|a)→ 0,

where σ̂i =
∑

bi
σi(bi|ai) and, without loss, this right-hand side does not depend on ai. Let

σ̃i(ai, bi, ω) = σi(bi|ai) + yi(ai, bi, ω). Dividing by
∑

bi
σ̃i(ai, bi, ω) Pr(ω|a) and subtracting the

same condition for b−i from that for a−i yields [Lr(ω|a, σ̃i) − Lr(ω|ai, b−i, σ̃i)]/
√

∆t → 0. As

∆t → 0, σ̃i remains proportional to a deviation for some i by the first dual constraint even in

the limit (with factor of proportionality bounded away from 0), which contradicts Assumption 3.

The proof for the general case with private monitoring is almost identical, therefore omitted. �

Proof of Lemma 10. We already established that (1 − δ)∆ui(σi) ≤ e−rcwi∆πi(σi)fiT−1(τ∗∗i ).

Since 1 − δ ≤ r∆t, it follows that r∆t∆ui(σi) ≤ e−rcwi∆πi(σi)fiT−1(τ∗∗i ) implies (9). Since

T ≤ c/∆t, this is implied by

rcerc
∆ui(σi)

∆πi(σi)
≤ wiTfiT−1(τ∗∗i )
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after rearrangement. Maximizing the left-hand side with respect to σi and substituting for fi,

rcerc
∆u∗i
∆π∗i

≤ wiT
(
T − 1

τ∗∗i

)
π
T−1−τ∗∗i
i (1− πi)τ

∗∗
i .

But T
πi

(
T−1
τ∗∗i

)
=

T−τ∗∗i
πi

(
T
τ∗∗i

)
≥ 1+π∗∗i (T−1)

πi

(
T
τ∗∗i

)
≥ T

(
T
τ∗∗i

)
, from which the claim follows. �

Proof of Lemma 11. The probability mass functions fiT−1(·|hτi ) and fiT−1(·) are obtained from

the convolution of independent Bernoulli trials. By belief stability (7), each of the Bernoulli

trials that generate fiT−1(·|hτi ) have a failure probability that is greater than or equal to the

corresponding Bernoulli trial that generates fiT−1(·), with failure rate πi. At the same time,

these failure probabilities cannot be larger than π∗∗i by definition of π∗∗i .

Let us simplify notation for the purpose of the proof. I will use f instead of the more cum-

bersome fiT−1. I will use the following classic observation due to Samuels (1965) regarding the

mode of a sequence of independent Bernoulli trials. (The notation is slightly different because πi

corresponds to the probability of failure—not success.)

Lemma 14 (Samuels, 1965, Theorem 1). If k is an integer such that

k ≤ (1− πi)(T − 1) ≤ k + 1,

where πi =
∑T−1

τ=1 πiτ/(T − 1) and π∨i = maxτ{πiτ}, then f∨(k) ≥ f∨(k − 1), where f∨ is the

probability mass function that excludes a trial with failure probability π∨i .

Thus, the mode of a Binomial with failure probability p and n trials is b(n + 1)pc. Pick any

sequence of failure probabilities in order from highest to lowest: {π1
iτ}. Let f be the probability

mass function of successes from independent Bernoulli trials with failure probabilities {π1
iτ}. Let

f1 be defined by

f1(n) = f∨(n− 1) + πi∆f
∨(n),

where ∆f∨(n) = f∨(n) − f∨(n − 1). Of course, f(n) has the same expression except for π1∨
i

replacing πi. If k1 satisfies the conditions of Lemma 14 above for {π1
it} then f1(k1) ≤ f(k1), since

πi ≤ π1∨
i and ∆f∨(k1) ≥ 0.

Now let {π2
iτ} be the sequence of failure probabilities obtained by first replacing π1

i1 with πi

and then reordering the probabilities from highest to lowest. Let f2 be defined by

f2(n) = f∨1 (n− 1) + πi∆f
∨
1 (n).

Similarly, if k2 satisfies the conditions of Lemma 14 above for {π2
iτ} then f2(k2) ≤ f1(k2). But

since π2
iτ ≤ π1

iτ for all τ , it follows that k2 ≤ k1, therefore f2(k1) ≤ f1(k1) ≤ f(k1). Proceeding

inductively, it follows that πT−1
iτ = πi for all τ and fT−1(k1) ≤ f(k1). In other words, the

probability of k1 successes with failure probability πi at every period t is less than or equal to

that with arbitrary failure probabilities {π1
iτ}.

Finally, the largest possible value of k1 is associated with π1
iτ = π∗∗i for all τ , rendering k1 = τ∗∗i .

Notice that, by unimodality, for any other sequence of π1
iτ ’s between πi and π∗∗i , k1 ≤ τ∗∗i , therefore

f∨(k1) ≥ f∨(k1 − 1) implies that f∨(τ∗∗i ) ≥ f∨(τ∗∗i − 1). This finally implies the claim. �
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Proof of Proposition 5. The first claim follows by a simple application of the de Moivre-Laplace

Theorem. Recall the condition from Lemma 10:

rcerc
∆u∗i
∆π∗i

≤ wiT
(
T

τ∗∗i

)
π
T−τ∗∗i
i (1− πi)τ

∗∗
i .

Rearranging
√
T ≤

√
c/∆t and writing ∆π∗i = z∗i

1
2

√
∆t yields

rcerc
∆u∗i
z∗i
√
c
≤ wi 1

2

√
T

(
T

τ∗∗i

)
π
T−τ∗∗i
i (1− πi)τ

∗∗
i .

Since τ∗∗i = b(1 − π∗∗i )(T − 1)c and by assumption πi = 1
2 along the sequence of scoring rules as

∆t→ 0, by the de Moivre-Laplace Theorem,

1
2

√
T

(
T

τ∗∗i

)
π
T−τ∗∗i
i (1− πi)τ

∗∗
i ≈

1
2√

2ππi(1− πi)
e
− (τ∗∗i −(1−πi)T )2

2Tπi(1−πi)

≈ 1√
2π
e
− [(πi−π

∗∗
i )
√
T ]2

2πi(1−πi)

≈ 1√
2π
e
− (z∗∗i

1
2
√
c)2

2πi(1−πi) =
1√
2π
e−

(z∗∗i
√
c)2

2 = ϕ(z∗∗i
√
c).

Again by the de Moivre-Laplace Theorem, the left-hand side converges to the right-hand side,

meaning that the ratio of the left and right hand sides above converges to 1.

For the second claim, choose wi so that inequality (11) holds with equality. Substituting this

expression into the lifetime utility for player i yields

vi → ui(µ)− rc∆u∗i
1− e−rc

Πi0

ϕ(z∗∗i
√
c)z∗i
√
c

as ∆t→ 0.

By the Central Limit Theorem and a similar calculation to the one above, Πi0 → 1− Φ(z∗∗i
√
c).

Moreover, recent improvements to the Berry-Esseen Theorem,19 establish uniform convergence in

the Central Limit Theorem of order 1
2

√
∆t/c. For the third claim, the hazard rate of the normal

distribution explodes faster than linearly, so its inverse implodes:

1− Φ(z∗∗i
√
c)

ϕ(z∗∗i
√
c)z∗i
√
c
→ 0 as c→∞.

Finally, for the last claim, if c → ∞ but rc → 0 as r → 0 (e.g., c = rε−1 and 0 < ε < 1) then

rc/(1− e−rc)→ 1, therefore

lim
r→0

lim
∆t→0

vi = ui(µ).

In the general case beyond Example 3, it is possible that z∗∗i → ∞. If not, then the previous

argument survives intact. If so, then—instead of fixing c—fix T ∈ N arbitrarily large and let

wi ≥
r
√
T∆t

ϕ(2∆π∗i
√
T )

∆u∗i
z∗i

.

By Proposition 4, z∗i 6→ 0 as ∆t → 0, so wi is well defined and bounded above. The rest of the

arguments now follow similarly, except with the different interpretation of T fixed instead of c. �

19See http://en.wikipedia.org/wiki/Berry-Esseen theorem.
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Proof of Lemma 12. The proof is straightforward. The first derivative of R̂i equals

R̂′i(π̂i) =

τi∗∑
τ=0

(
T

τ

)
[τ π̂τ−1

i (1− π̂i)T−τ − (T − τ)π̂τi (1− π̂i)T−1−τ ]

= T

τi∗∑
τ=0

(
T − 1

τ − 1

)
π̂τ−1
i (1− π̂i)T−τ −

(
T − 1

τ

)
π̂τi (1− π̂i)T−1−τ

= −T
(
T − 1

τi∗

)
π̂τi∗i (1− π̂i)T−1−τi∗ < 0,

therefore R̂′i(π̂i) is a decreasing function of π̂i. Similarly, the second derivative equals

R̂′′i (π̂i) = −T
(
T − 1

τi∗

)
[τi∗π̂

τi∗−1
i (1− π̂i)T−1−τi∗ − (T − 1− τi∗)π̂τi∗i (1− π̂i)T−2−τi∗ ]

= −T
(
T − 1

τi∗

)
π̂τi∗−1
i (1− π̂i)T−2−τi∗ [τi∗(1− π̂i)− (T − 1− τi∗)π̂i]

= −T
(
T − 1

τi∗

)
π̂τi∗−1
i (1− π̂i)T−2−τi∗ [τi∗ − (T − 1)π̂i]

= −T
(
T − 1

τi∗

)
π̂τi∗−1
i (1− π̂i)T−2−τi∗ [bπi(T − 1)c − 1− (T − 1)π̂i]

≥ −T
(
T − 1

τi∗

)
π̂τi∗−1
i (1− π̂i)T−2−τi∗ [πi(T − 1)− 1− (T − 1)π̂i]

= T

(
T − 1

τi∗

)
π̂τi∗−1
i (1− π̂i)T−2−τi∗ [(T − 1)(π̂i − πi) + 1] > 0.

Therefore, R̂i is strictly convex on [πi, 1]. �

Proof of Proposition 7. The first two claims follow immediately from Proposition 6 above, since

Ri0 = 1
2 . It remains to establish the third claim, which, since rc/(1− e−rc)→ 1 as rc→ 0, boils

down to showing that Di <∞ and 1
2Di → ∆udi .

To see that Di < ∞, writing E[∆ûi(σ
T
i )], defined just after Lemma 12 as just E[∆ûi], by

convexity

DiT (σTi ) :=
E[∆ûi]

E[Ri(πi)−Ri(π̂i)]
=
E[∆ûi]

E[∆π̂i]

E[∆π̂i]

E[Ri(πi)−Ri(π̂i)]
≤ E[∆ûi]

E[∆π̂i]
E

[
∆π̂i

Ri(πi)−Ri(π̂i)

]
.

Notice that E[∆ûi]
E[∆π̂i]

≤ ∆u∗i
∆π∗i

<∞. By Lemma 12, the slope Ri(πi)−Ri(π̂i)
π̂i−πi is a decreasing function of

π̂i, with minimum at π∗∗i . Therefore, ∆π̂i
Ri(πi)−Ri(π̂i) ≤

∆π∗∗i
Ri(πi)−Ri(π∗∗i ) < ∞. Moreover, by Lemma 9

and Proposition 4, C
∗
i = lim∆t→0C

∗
i <∞, and

z∗∗i
Ri(πi)−Ri(π∗∗i )

→ z∗∗i
Φ(0)− Φ(−z∗∗i

√
c)

as ∆t→ 0

by the central limit theorem, so

lim
∆t→0

DiT (σTi ) ≤ ∆u∗i
z∗i

z∗∗i
Φ(0)− Φ(−z∗∗i

√
c)
<∞
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unless z∗∗i = 0, which would imply that µ is implementable with completely constant transfers,

that is, there is no incentive problem. This last inequality implies that Di <∞.

For the last claim, notice first that Di ≥ ∆udi /[Φ(0) − Φ(−zdi
√
c)] by having player i always

deviate to σdi . It follows that limc→∞Di ≥ 2∆udi . For the converse inequality, let

σ̃Ti ∈ arg max
σTi

E[∆ui(σ
T
i )]

E[Ri(πi)−Ri(π̂i)]

be an optimal dynamic deviation for a T -period block. There exists π∨i ∈ [πi, π
∗∗
i ] such that

E[Ri(π̂i)] = Ri(π
∨
i ),

therefore E[Ri(πi) − Ri(π̂i)] = Ri(πi) − Ri(π∨i ). By convexity of Ri, π
∨
i ≤ E[π̂i], but since Ri

is strictly decreasing, π∨i = πi only if E[∆ui(σ
T
i )] ≤ 0. Let π̃i be the average failure probability

generated by σ̃i, that is, π̃i = 1
TE[

∑
τ πiτ ], where πiτ is the (random) failure probability associated

with σ̃Ti in period τ . Let z̃i be the failure drift associated with π̃i. Notice that E[∆ûi] ≤ ∆û∗i (z̃i),

where ∆u+
i (σi) =

∑
(ai,bi)

σi(bi|ai) max{
∑

a−i
µ(a)∆ui(a, bi), 0} and

∆û∗i (z̃i) := max
σi≥0

{∆u+
i (σi) : z̃i ≥

∑
(a,ω)

ξi(a, ω)ω∆x(a, bi)σi(bi|ai)µ(a),
∑
bi

σi(bi|ai) ≤ 1 ∀ai}.

This follows simply because E[∆ûi] is constructed as a deterministic average of T random utility

payoffs (one for each time period) that can be incorporated into σi. The function ∆û∗i (z̃i) is

defined as the value of a linear program. Its dual is given by

min
λ,κi≥0

{λzi +
∑
ai

κi(ai) : ∆u+
i (ai, bi) ≤ λ

∑
a−i

ξi(a, ω)ω∆x(a, bi)µ(a) + κi(ai)},

where ∆u+
i (ai, bi) = max{

∑
a−i

µ(a)∆ui(a, bi), 0}. To estimate Di, let us first bound the direc-

tional derivative of ∆û∗i at 0. By duality, this is bounded above by λ∗, where (λ∗, κ∗i ) solve the

dual above. Since the dual minimizes its objective, this λ∗ is bounded above by

C+
i = sup

σi∈M(Ai)

∑
(ai,bi)

∆u+
i (ai, bi)σi(bi|ai)∑

a,bi
ξi(a, ω)ω∆x(a, bi)σi(bi|ai)µ(a)

.

This follows because C+
i is clearly a feasible solution for λ in the dual together with κi ≡ 0. By

Proposition 4, there exists a proper scoring rule for ∆u+
i , so without loss we may assume that ξi

is such a rule. Therefore, C+
i = C∗i <∞ and C

∗
i <∞.

As ∆t → 0, Ri(πi) − Ri(π∨i ) → Φ(0) − Φ(−z∨i
√
c), where z∨i ∈ [0, z∗∗i ] is the limit of failure

drifts corresponding to π∨i as ∆t→ 0. If z∨i = 0 then by l’Hopital’s Rule

lim
∆t→0

max
σTi

E[∆ui(σ
T
i )]

E[Ri(πi)−Ri(π̂i)]
≤ C

∗
i

ϕ(0)
√
c

=
∆u+∗

i

ϕ(0)z∗
√
c
.

By convexity of Φ(z) for z ≤ 0 (see Figure 5), it follows that

ϕ(0) ≥ Φ(0)− Φ(−z∗i
√
c)

z∗i
√
c

.
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Therefore,
∆u+∗

i

ϕ(0)z∗
√
c
≤

∆u+∗
i

Φ(0)− Φ(−z∗i
√
c)
.

Taking the limit as c→∞ yields 2∆u+∗
i , where ∆u+∗

i ≤ ∆udi by definition of ∆udi .

Taking a subsequence if necessary, z∨i converges to some failure drift z
∨
i ∈ [0, z∗∗i ] as c→∞. If

this limit is different from zero then E[∆ui(z
∨
i )] ≥ 0 and Φ(0)−Φ(−z∨i

√
c)→ 1

2 , so limc→∞Di ≤
2∆udi . On the other hand, now suppose instead that z

∨
i = 0. If z∨i → 0 as fast as 1/

√
c or slower

then trivially limc→∞Di = 0, as the numerator tends to zero but not the denominator (recall

that E[∆ûi] ≤ ∆û∗i defined above), which contradicts the previously derived lower bound on Di.

If convergence is faster, again by l’Hopital’s rule

E[∆ûi]

E[Ri(πi)−Ri(π̂i)]
≈

∆u+∗
i

ϕ(0)z∗
√
c
→ 0.

This again contradicts our previously derived lower bound. The result now follows. In the general

case beyond Example 3, the proof is amended just as for the proof of Proposition 5. �

Proof of Theorem 2. The proof is a simple application of Fudenberg et al. (1994). First I study

the setting of Example 3, then I discuss the general cases of public and private monitoring.

To begin, let W be any smooth subset of the interior of U0.20 I will eventually show that W is

locally self-decomposable. Let B(W, r,∆t, c) be the set of all payoff vectors v ∈ U such that, for

T = bc/∆tc, there is a T -public mediated strategy µ̃ and continuation payoffs w : (A×Ω)T →W

that enforce v, i.e., (i) vi equals the expected lifetime utility for player i from playing µ̃ for the first

T -period block followed by the expected continuation payoff E[wi], and (ii) the mechanism (µ̃, w) is

incentive compatible in the sense that every σTi ∈MT
i is unprofitable. The set B(W, r,∆t, c) of so-

called decomposable payoffs is indexed by the set of feasible continuation payoffs W , the discount

rate r, the time-step ∆t and the length of calendar time c of the T -period blocks during which

equilibrium strategies are private. This leads to the following version of local self-decomposability.

Definition 14. Given ∆t > 0 and c > 0, W ⊂ Rn is called self-decomposable ifW ⊂ B(W, r,∆t, c)

for some r > 0. W is locally self-decomposable if for each v ∈ W there exists r > 0 and an open

set O containing v such that O ∩W ⊂ B(W, r,∆t, c).

This standard definition of local self-decomposability leads to the following useful lemma, which

is proved in Lemma 4.2 of Fudenberg et al. (1994).

Lemma 15. Fix ∆t > 0 and c > 0. If W ⊂ Rn is compact, convex and locally self-decomposable

then there exists r > 0 such that W ⊂ E(r,∆t, c) for all r ∈ (0, r], where E(r,∆t, c) is the set

of T -public communication equilibrium payoffs when the time interval has length ∆t, T = bc/∆tc
and players’ common discount rate is r > 0.

20By definition (Fudenberg et al., 1994, p. 1012), the set W is smooth if (i) it is closed and convex, (ii)

it has nonempty interior, and (iii) its boundary is a C2-submanifold of Rn.
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The key step towards proving Theorem 2 is the following.

Lemma 16. Every smooth subset of the interior of V ∗∗ is locally self-decomposable.

Proof. Let W be any such smooth subset of the interior of V ∗∗ and pick any v ∈W . If v ∈ int W

(as in Fudenberg et al., 1994), choose an open ball O containing v whose closure belongs to the

interior of W . Then there exists δ < 1 such that for each u ∈ O there exists u′ ∈ W such that

u = (1− δT )u(µ0) + δTu′, where µ0 is a correlated equilibrium of the stage game. Now let rO(c)

solve δ = e−rc, where c is determined later.

Next, suppose that v ∈ ∂W .21 Since W is in the interior of V ∗∗, there exists ε1, ε2 > 0 such

that W belongs to the interior of V ε1,ε2
∗ ∩ U0, too. Therefore, we may use our previously derived

punishment and reward schemes consistently. Let Λ = {λ ∈ Rn : ‖λ‖ = 1} be the set of directions.

Let J = {i ∈ I : λi ≥ 0}, and choose µ ∈ ∆ε1(A) such that vi ≥ udi (µ) + ε2 for all i 6∈ J and

ui(µ) ≥ vi + ε2 for all i ∈ J , therefore u(µ) ∈ int V ε1,ε2
J .

Players in J face punishment schemes and the rest reward schemes. The mediator makes

recommendations according to the correlated strategy µ independently during every period of a

T -period block, where T = bc/∆tc will be chosen later. Given µ, the scoring rule is determined in

two steps. First, find a proper scoring rule ξ′ that solves the linear program defined in the proof

of Proposition 4 with value W (µ,∆t). By Assumption 3, W (µ,∆t) > 0. Next, apply an affine

transformation to ξ′ to obtain a proper scoring rule ξ such that πi = 1
2 (Lemma 8(ii)). Since

∆ε1(A) is compact and W (µ,∆t) is continuous on that set, every µ ∈ ∆ε1(A) has a well-defined

proper scoring rule for each ∆t > 0, and these converge to their corresponding limiting proper

scoring rules as ∆t → 0. In each period, a scoring trial is implemented, and players’ scores are

calculated according to the rules of Section 6.

Consider two kinds of direction λ in trying to decompose v with respect to some µ. First, say

λi 6= 0 for every i. If λi > 0, by Proposition 5 and its proof δT /(1 − δT )Πi0wi = ui(µ) − vi and

for every ε3 > 0 there exists ∆ > 0 such that

δT

1− δT
Πi0wi >

∆u∗i [1− Φ(z∗∗i
√
c) +

√
∆/c]

z∗i
√
cϕ(z∗∗i

√
c)(1− ε3)

. (22)

I will now derive a uniform bound on the right-hand side above. First of all, let

C
∗

= max
i,µ∈∆ε1 (A)

∆u∗i /z
∗
i .

By the Maximum Theorem, C
∗
i (µ) is continuous on ∆ε1(A), a compact set, therefore its maximum

is attained, so this maximization is well defined. Given ε3 > 0, by continuity of z∗ and z∗∗ with

respect to µ, the same choice of ∆ satisfies (22) in a neighborhood of µ. Repeating this exercise

for every µ yields an open cover of ∆ε1(A) indexed by µ, with each neighborhood in the cover

having its own associated ∆ > 0. Since ∆ε1(A) is compact there exists a finite sub-cover. Let

∆′ > 0 be the minimum of the ∆’s in the finite sub-cover. Define the highest possible failure rate

21The ∂ notation stands for boundary, thus ∂W is the boundary of W .
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by z′ = max(i,µ){z∗∗i : µ ∈ ∆ε1(A)}, which is clearly finite. The tightest failure rate, for each ∆

and c, is defined by

z∗ ∈ arg max
z∈[0,z′]

[1− Φ(z
√
c) +

√
∆/c]

ϕ(z
√
c)
√
c

.

Substituting the value recursion expression above into the incentive constraint, and recognizing

that ui(µ)− vi ≥ ε2, yields a sufficient condition, uniform in i and µ, for incentive compatibility

of punishment schemes:

ε2 > C
∗ [1− Φ(z∗

√
c) +

√
∆/c]

ϕ(z∗
√
c)
√
c(1− ε3)

,

where ε3 ∈ (0, 1) is arbitrary. As ∆ → 0 and c → ∞, the right-hand side tends to zero, and as

c → 0 it tends to ∞. Therefore, there exists c′ > 0 that satisfies this inequality, hence implies

incentive compatibility for our punishment schemes based on any µ ∈ ∆ε1(A).

If λi < 0 then, by Proposition 7, incentive compatibility is implied by

δT

1− δT
Ri0wi ≥ 1

2Di,

where value recursion for rewards yields δT /(1 − δT )Ri0wi = vi − ui(µ). Recognizing that vi −
ui(µ) ≥ ∆udi + ε2 yields the sufficient condition

ε2 >
1
2Di −∆udi .

By the proof of Proposition 7, there exist ∆̂ small enough and ĉ large enough to satisfy this

inequality. Now fix ∆ = min{∆′, ∆̂} and c = max{c′, ĉ}.
Recall δT /(1−δT )Πi0wi = ui(µ)−vi for i with λi > 0 and δT /(1−δT )Ri0wi = vi−ui(µ) for i with

λi < 0. Let wi = α[ui(µ)− vi]/Πi0 when λi > 0 and wi = α[vi−ui(µ)]/Ri0 when λi < 0, for some

α > 0. Let v′i = vi − wi if λi > 0 and v′i = vi + wi if λi < 0. Now choose α such that v′ ∈ int W .

Finally, choose rv > 0 to solve e−rc/(1 − e−rc) = 1/α. It now follows that v is decomposable

with respect to µ, W and (rv,∆, c). Moreover, a small enough perturbation of v within W , with

corresponding changes in wi to preserve value recursion, maintains decomposability, v′ ∈ int W ,

and incentive compatibility (since the sufficient incentive inequalities above were strict) for the

same rv. Therefore, there is an open set O containing v such that O ∩W ⊂ B(W, rv,∆, c).

It remains to argue the case where λi = 0 for some i. For self-generation, we must amend other

players’ continuation value (see Figure 4 for geometric intuition). If λi > 0, he will now face a

punishment scheme where his contingent payoffs are vi − λiε2(1 − e−rc)/e−rc if no punishment

ensues an vi−λiε2(1− e−rc)/e−rc−wi if punishment ensues. Similarly, if λi < 0, he will now face

a reward scheme where his contingent payoffs are vi + λiε2(1− e−rc)/e−rc if no reward ensues an

vi +λiε2(1− e−rc)/e−rc +wi if reward ensues. If λi = 0 then player i faces a punishment scheme,

shifted by the amount Πi0wi. That is, if punishment ensues (which happens with probability Πi0),

player i’s continuation payoff becomes vi + Πi0wi − wi, otherwise it becomes vi + Πi0wi. Hence,

player i’s expected continuation payoff equals vi. The incentive compatibility constraints derived

above still hold relative to J = {i : λi ≥ 0}.
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Now, in order for the continuation values to be self-generated we choose w and r > 0 as follows.

By value recursion, e−rc/(1−e−rc)Πi0wi = ui(µ)−vi− 1
2λiε2 when λi > 0, e−rc/(1−e−rc)Ri0wi =

vi − ui(µ) + 1
2λiε2 when λi < 0, and vi = ui(µ) for λi = 0. However, for λi = 0, the punishments

and rewards for player i relative to vi are less than or equal to wi in magnitude. The incentive

constraint for this player i with λi = 0 is given by

e−rc/(1− e−rc)Πi0wi > C
∗ [1− Φ(z∗

√
c) +

√
∆/c]

ϕ(z∗
√
c)
√
c(1− ε3)

=: K.

Therefore, e−rc/(1 − e−rc)wi = K/Πi0. For λi = 0, choose wi = αK/Πi0. For λi > 0, choose

wi = α[ui(µ)− vi − 1
2λiε2]/Πi0. For λi < 0, choose wi = α[vi − ui(µ) + 1

2λiε2]/Ri0.

It remains to show that for some small α > 0, the continuation values v′ belong to int W . For

λi 6= 0 this is clear. For λi = 0, notice that the ratio of contingent payments to player i relative

to transfers to everyone else (which, since λ is a unit vector, have length 1
2ε2) equals K

Πi0
1
2
ε2
<∞.

Since W is smooth, a second-order Taylor series expansion of ∂W shows that, following the proof

of Theorem 4.1 in Fudenberg et al. (1994), since

wi = (K/Πi0)(1− e−rc)/e−rc <
√

1
2ε2(1− e−rc)/e−rc

for sufficiently small r > 0, the change in continuation value induced by wi is insufficient to escape

from W . Therefore, it is possible to pick α, hence r, such that every v′ ∈ int W . Let rv > 0 be

such an interest rate. Therefore, v is decomposable with respect to µ, W and (rv,∆, c). Finally,

as before, a small perturbation of v is still decomposable with the same parameters, so there is

an open set O containing v such that O ∩W ⊂ B(W, rv,∆, c). �

For each v ∈W , we just argued that there is an open set Ov and (r,∆t, c) such that O ∩W ⊂
B(W, r,∆t, c). By compactness, the open cover {Ov} of W has a finite sub-cover, {Ok : k ∈
{1, . . . ,m}}. Let ∆ = min{∆tk} > 0, let c = max{ck} <∞ and finally define r = min{rkck}/c <
min{rk}. By construction, rc ≤ rkck for every k. Hence, W ⊂ E(r,∆, c) for some (r,∆, c). By

construction of the open cover above and Propositions 5(1) and 7(1), W ⊂ E(r,∆t, c) for all

(r,∆t) ≤ (r,∆). This proves Theorem 2 for the case of Example 3. In the general case beyond

Example 3, the proof is amended just as for the proofs of Propositions 5 and 7. �

Proof of Theorem 3. Almost nothing changes from the outline of Example 6. Pick a profile v

of payoffs that belongs to the interior of U0. Let µ ∈ ∆(A) be a completely mixed correlated

strategy whose payoff profile strictly dominates v. Now the method of Example 6 can be applied

by finding a profile of continuation value changes w on the line crossing u(µ) and v and letting

w = α(v − u0) be the expected change in payoffs from playing according to equilibrium versus

punishing with the inefficient static equilibrium whose payoffs are given by u0. Now α as well as

the rest of the proof can be derived as in Rahman (2013, Proposition 3) in the environment of

Example 3. The general case with public and private monitoring is dealt in the same way as in

Theorem 2, by amending proofs just as in Propositions 5 and 7 if necessary. �
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