
A DIAGNOSTIC CRITERION

FOR APPROXIMATE FACTOR STRUCTURE

Patrick Gagliardinia, Elisa Ossolab and Olivier Scailletc*

First draft: February 2014. This version: July 2016.

Abstract

We build a simple diagnostic criterion for approximate factor structure in large cross-sectional equity datasets.

Given a model for asset returns with observable factors, the criterion checks whether the error terms are weakly

cross-sectionally correlated or share at least one unobservable common factor. It only requires computing the largest

eigenvalue of the empirical cross-sectional covariance matrix of the residuals of a large unbalanced panel. A general

version of this criterion allows us to determine the number of omitted common factors. The panel data model

accommodates both time-invariant and time-varying factor structures. The theory applies to random coefficient

panel models with interactive fixed effects under large cross-section and time-series dimensions. The empirical

analysis runs on monthly and quarterly returns for about ten thousand US stocks from January 1968 to December

2011 for several time-invariant and time-varying specifications. For monthly returns, we can choose either among

time-invariant specifications with at least four financial factors, or a scaled three-factor time-varying specification.

For quarterly returns, we cannot select macroeconomic models without the market factor.
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1 Introduction

Empirical work in asset pricing vastly relies on linear multi-factor models with either time-invariant coef-

ficients (unconditional models) or time-varying coefficients (conditional models). The factor structure is

often based on observable variables (empirical factors) and supposed to be rich enough to extract systematic

risks while idiosyncratic risk is left over to the error term. Linear factor models are rooted in the Arbitrage

Pricing Theory (APT, Ross (1976), Chamberlain and Rothschild (1983)) or come from a loglinearization of

nonlinear consumption-based models (Campbell (1996)). Conditional linear factor models aim at capturing

the time-varying influence of financial and macroeconomic variables in a simple setting (see e.g. Shanken

(1990), Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvig-

son (2001), Petkova and Zhang (2005)). Time variation in risk biases time-invariant estimates of alphas

and betas, and therefore asset pricing test conclusions (Jagannathan and Wang (1996), Lewellen and Nagel

(2006), Boguth et al. (2011)). Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

A central and practical issue is to determine whether there are one or more factors omitted in the chosen

specification. Approximate factor structures with nondiagonal error covariance matrices (Chamberlain and

Rothschild (1983)) answer the potential empirical mismatch of exact factor structures with diagonal error

covariance matrices underlying the original APT of Ross (1976). If the set of observable factors is correctly

specified, the errors are weakly cross-sectionally correlated. If the set of observable factors is not correctly

specified, the no-arbitrage restrictions derived from APT will not hold, and the risk premia estimated by the

two-pass regression approach will be meaningless (see Appendix H in (Gagliardini et al., 2016, GOS) for a

discussion of misspecification in the two-pass methodology). Given the large menu of factors available in

the literature (the factor zoo of Cochrane (2011), see also Harvey et al. (2016)), we need a simple diagnostic

criterion to decide whether we can feel comfortable with the chosen set of observable factors.

For models with unobservable (latent) factors, Connor and Korajczyk (1993) are the first to develop a

test for the number of factors for large balanced panels of individual stock returns in time-invariant models

under covariance stationarity and homoskedasticity. Unobservable factors are estimated by the method of

asymptotic principal components developed by Connor and Korajczyk (1986) (see also Stock and Watson

(2002)). For heteroskedastic settings, the recent literature on large panels with static factors (see Hallin and

Liška (2007) and Jan and Otter (2008) for a selection procedure in the generalized dynamic factor model of
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Forni et al. (2000)) has extended the toolkit available to researchers. Bai and Ng (2002) introduce a penal-

ized least-squares strategy to estimate the number of factors (see Amengual and Watson (2007) to include

dynamic factors), at least one, without restrictions on the relation between the cross-sectional dimension (n)

and the time-series dimension (T ). Caner and Han (2014) propose an estimator with a group bridge penal-

ization to determine the number of unobservable factors. Onatski (2009, 2010) looks at the behavior of the

adjacent eigenvalues to determine the number of factors when n and T are comparable. Ahn and Horenstein

(2013) opt for the same strategy and cover the possibility of zero factors. Kapetanios (2010) uses subsam-

pling to estimate the limit distribution of the adjacent eigenvalues. Harding (2013) uses free probability

theory to derive analytic expressions for the limiting moments of the spectral distribution. The asymptotic

distribution of the eigenvalues is degenerate when the ratio T/n vanishes asymptotically (Jonsonn (1982)).

In our empirical application on monthly and quarterly returns for about ten thousand US stocks from Jan-

uary 1968 to December 2011, the cross-sectional dimension is much larger than the time-series dimension.

This explains why we favor the setting T/n = o(1). This impedes us to exploit the Marchenko-Pastur

distribution (Marchenko and Pastur (1967)) or other well defined limiting characterizations obtained when

T/n converges to a strictly positive constant. However, a key theoretical result of our paper is that we can

still have an asymptotically valid selection procedure for the number of latent factors even in the presence of

a degenerate distribution of the eigenvalues of the sample covariance matrix. We show that this extends to

sample covariance matrices of residuals of an estimated linear model with observable factors in unbalanced

panels. In the spirit of Lehmann and Modest (1988) and Connor and Korajczyk (1988), Bai and Ng (2006)

analyze statistics to test whether the observable factors in time-invariant models span the space of unobserv-

able factors. They do not impose any restriction on n and T . They find that the three-factor model of (Fama

and French, 1993, FF) is the most satisfactory proxy for the unobservable factors estimated from balanced

panels of portfolio and individual stock returns. Ahn et al. (2015) study a rank estimation method to also

check whether time-invariant factor models are compatible with a number of unobservable factors. For port-

folio returns, they find that the FF model exhibits a full rank beta (factor loading) matrix. Goncalves et al.

(2015) consider bootstrap prediction intervals for factor models. Factor analysis for large cross-sectional

datasets also find applications in studying bond risk premia (Ludvigson and Ng (2007, 2009)) and measur-

ing time-varying macroeconomic uncertainty (Jurado et al. (2015)). Recent papers (Fan et al. (2015), Pelger
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(2015), Ait-Sahalia and Xiu (2016)) have also investigated large-dimensional factor modeling with in-fill

asymptotics for high-frequency data.

In this paper, we build a simple diagnostic criterion for approximate factor structure in large cross-

sectional datasets. The criterion checks whether the error terms in a given model with observable factors

are weakly cross-sectionally correlated or share at least one common factor. It only requires computing the

largest eigenvalue of the empirical cross-sectional covariance matrix of the residuals of a large unbalanced

panel and subtracting a penalization term vanishing to zero for large n and T . The steps of the diagnostic

are easy: 1) compute the largest eigenvalue, 2) subtract a penalty, 3) conclude to validity of the proposed

approximate factor structure if the difference is negative, or conclude to at least one omitted factor if the

difference is positive. Our main theoretical contribution shows that step 3) yields asymptotically the correct

model selection. We also propose a general version of the diagnostic criterion that determines the number

of omitted common factors. We derive all properties for unbalanced panels in the setting of Connor and

Korajczyk (1987) to avoid the survivorship bias inherent to studies restricted to balanced subsets of available

stock return databases (Brown et al. (1995)). The panel data model is sufficiently general to accommodate

both time-invariant and time-varying factor structures as in GOS. We recast the factor models as generic

random coefficient panel models and develop the theory for large cross-section and time-series dimensions

with T/n = o (1). Omitted latent factors are also called interactive fixed effects in the panel literature

(Pesaran (2006), Bai (2009), Moon and Weidner (2015), Gobillon and Magnac (2016)). As shown below,

the criterion is related to the penalized least-squares approach of Bai and Ng (2002) for model selection with

unobservable factors in balanced panels.

For our empirical contribution, we consider the Center for Research in Security Prices (CRSP) database

and take the Compustat database to match firm characteristics. The merged dataset comprises about ten

thousands stocks with returns from January 1968 to December 2011. We look at a variety of empirical

factors and we build factor models popular in the empirical literature to explain monthly and quarterly

equity returns. They differ by the choice of the observable factors. We analyze monthly returns using recent

financial specifications such as the five factors of Fama and French (2015), the profitability and investment

factors of Hou et al. (2015), the quality minus junk and bet against beta factors of Asness et al. (2014)

and Frazzini and Pedersen (2014), as well as other specifications described below. We analyze quarterly
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returns using macroeconomic specifications including consumption growth (CCAPM), market returns and

consumption growth (Epstein and Zin (1989)), the three factors in Yogo (2006), the three factors in Li et al.

(2006), and the five factors of Chen et al. (1986). We study time-invariant and time-varying versions of the

financial factor models (Shanken (1990), Cochrane (1996), Ferson and Schadt (1996), Ferson and Harvey

(1999)). For the latter, we use both macrovariables and firm characteristics as instruments (Avramov and

Chordia (2006)). For monthly returns, our diagnostic criterion is met by time-invariant specifications with

at least four financial factors, and a scaled three-factor FF time-varying specification. For quarterly returns,

we cannot select macroeconomic models without the market factor.

The outline of the paper is as follows. In Section 2, we consider a general framework of conditional

linear factor model for asset returns. In Section 3, we present our diagnostic criterion for approximate factor

structure in random coefficient panel models. In Section 4, we provide the diagnostic criterion to deter-

mine the number of omitted factors. Section 5 explains how to implement the criterion in practice and how

to design a simple graphical diagnostic tool related to the well-known scree plot in principal component

analysis. Section 6 contains the empirical results. In Appendices 1 and 2, we gather the theoretical assump-

tions and some proofs. We use high-level assumptions on cross-sectional and serial dependence of error

terms, and show in Appendix 3 that we meet them under a block cross-sectional dependence structure in

a serially i.i.d. framework. We place all omitted proofs in the online supplementary materials. There we

link our approach to the expectation-maximization (EM) algorithm proposed by Stock and Watson (2002)

for unbalanced panels. We also include some Monte-Carlo simulation results under a design mimicking

our empirical application to show the practical relevance of our selection procedure in finite samples. The

additional empirical results, discussed but not reported in the paper, are available on request.

2 Conditional factor model of asset returns

In this section, we consider a conditional linear factor model with time-varying coefficients. We work in

a multi-period economy (Hansen and Richard (1987)) under an approximate factor structure (Chamberlain

and Rothschild (1983)) with a continuum of assets as in GOS. Such a construction is close to the setting ad-

vocated by Al-Najjar (1995, 1998, 1999a) in a static framework with an exact factor structure. He discusses

several key advantages of using a continuum economy in arbitrage pricing and risk decomposition. A key
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advantage is robustness of factor structures to asset repackaging (Al-Najjar (1999b); see GOS for a proof).

Let Ft, with t = 1, 2, ..., be the information available to investors. Without loss of generality, the

continuum of assets is represented by the interval [0, 1]. The excess returns Rt (γ) of asset γ ∈ [0, 1] at

dates t = 1, 2, ... satisfy the conditional linear factor model:

Rt(γ) = at(γ) + bt(γ)
′
ft + εt(γ), (1)

where vector ft gathers the values ofK observable factors at date t. The intercept at(γ) and factor sensitivi-

ties bt(γ) are Ft−1-measurable. The error terms εt (γ) have mean zero and are uncorrelated with the factors

conditionally on information Ft−1. Moreover, we exclude asymptotic arbitrage opportunities in the econ-

omy: there are no portfolios that approximate arbitrage opportunities when the number of assets increases.

In this setting, GOS show that the following asset pricing restriction holds:

at(γ) = bt(γ)′νt, for almost all γ ∈ [0, 1], (2)

almost surely in probability, where random vector νt ∈ RK is unique and is Ft−1-measurable. The asset

pricing restriction (2) is equivalent to E [Rt(γ)|Ft−1] = bt(γ)′λt, where λt = νt+E [ft|Ft−1] is the vector

of the conditional risk premia.

To have a workable version of Equations (1) and (2), we define how the conditioning information is

generated and how the model coefficients depend on it via simple functional specifications. The conditioning

information Ft−1 contains Zt−1 and Zt−1(γ), for all γ ∈ [0, 1], where the vector of lagged instruments

Zt−1 ∈ Rp is common to all stocks, the vector of lagged instruments Zt−1(γ) ∈ Rq is specific to stock γ,

and Zt = {Zt, Zt−1, ...}. Vector Zt−1 may include the constant and past observations of the factors and

some additional variables such as macroeconomic variables. Vector Zt−1(γ) may include past observations

of firm characteristics and stock returns. To end up with a linear regression model, we assume that: (i) the

vector of factor loadings bt (γ) is a linear function of lagged instruments Zt−1 (Shanken (1990), Ferson and

Harvey (1991)) and Zt−1 (γ) (Avramov and Chordia (2006)); (ii) the vector of risk premia λt is a linear

function of lagged instruments Zt−1 (Cochrane (1996), Jagannathan and Wang (1996)); (iii) the conditional

expectation of ft given the information Ft−1 depends on Zt−1 only and is linear (as e.g. if Zt follows a

Vector Autoregressive (VAR) model of order 1).
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To ensure that cross-sectional limits exist and are invariant to reordering of the assets, we introduce a

sampling scheme as in GOS. We formalize it so that observable assets are random draws from an underlying

population (Andrews (2005)). In particular, we rely on a sample of n assets by randomly drawing i.i.d.

indices γi from the population according to a probability distribution G on [0, 1]. For any n, T ∈ N,

the excess returns are Ri,t = Rt(γi). Similarly, let ai,t = at(γi) and bi,t = bt (γi) be the coefficients,

εi,t = εt(γi) be the error terms, and Zi,t = Zt(γi) be the stock specific instruments. By random sampling,

we get a random coefficient panel model (e.g. Hsiao (2003), Chapter 6). In available datasets, we do not

observe asset returns for all firms at all dates. Thus, we account for the unbalanced nature of the panel

through a collection of indicator variables Ii,t, for any asset i at time t. We define Ii,t = 1 if the return of

asset i is observable at date t, and 0 otherwise (Connor and Korajczyk (1987)).

Through appropriate redefinitions of the regressors and coefficients, GOS show that we can rewrite the

model for Equations (1) and (2) as a generic random coefficient panel model:

Ri,t = x′i,tβi + εi,t, (3)

where the regressor xi,t =
(
x′1,i,t, x

′
2,i,t

)′
has dimension d = d1 + d2 and includes vectors x1,i,t =(

vech [Xt]
′ , Z ′t−1 ⊗ Z ′i,t−1

)′
∈ Rd1 and x2,i,t =

(
f ′t ⊗ Z ′t−1, f

′
t ⊗ Z ′i,t−1

)′
∈ Rd2 with d1 = p(p+1)/2+

pq and d2 = K(p + q). In vector x2,i,t, the first components with common instruments take the interpreta-

tion of scaled factors (Cochrane (2005)), while the second components do not since they depend on i. The

symmetric matrix Xt = [Xt,k,l] ∈ Rp×p is such that Xt,k,l = Z2
t−1,k, if k = l, and Xt,k,l = 2Zt−1,kZt−1,l,

otherwise, k, l = 1, . . . , p, where Zt,k denotes the kth component of the vector Zt. The vector-half operator

vech [·] stacks the elements of the lower triangular part of a p × p matrix as a p (p+ 1) /2 × 1 vector (see

Chapter 2 in Magnus and Neudecker (2007) for properties of this matrix tool). The vector of coefficients βi

is a function of asset specific parameters defining the dynamics of ai,t and bi,t detailed in GOS. In matrix

notation, for any asset i, we have

Ri = Xiβi + εi, (4)

where Ri and εi are T × 1 vectors. Regression (3) contains both explanatory variables that are common

across assets (scaled factors) and asset-specific regressors. It includes models with time-invariant coeffi-

cients as a particular case. In such a case, the regressor reduces to xt = (1, f ′t)
′ and is common across

assets, and the regression coefficient vector is βi = (ai, b
′
i)
′ of dimension d = K + 1.
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In order to build the diagnostic criterion for the set of observable factors, we consider the following rival

models:

M1 : the linear regression model (3), where the errors (εi,t) are weakly cross-sectionally dependent,

and

M2 : the linear regression model (3), where the errors (εi,t) satisfy a factor structure.

Under model M1, the observable factors capture the systematic risk, and the error terms do not feature

pervasive forms of cross-sectional dependence (see Assumption A.3 in Appendix 1). Under modelM2, the

following error factor structure holds

εi,t = θ′iht + ui,t, (5)

where the m × 1 vector ht includes unobservable (i.e., latent or hidden) factors, and the ui,t are weakly

cross-sectionally correlated. In (refFactorStructureM2), the θi’s are also called interactive fixed effects in

the panel literature. The m× 1 vector θi corresponds to the factor loadings, and the number m of common

factors is assumed unknown. In vector notation, we have:

εi = Hθi + ui, (6)

where H is the T ×m matrix of unobservable factor values, and ui is a T × 1 vector.

Assumption 1 Under model M2: (i) Matrix
1

T

∑
t

hth
′
t converges in probability to a positive definite

matrix Σh, as T →∞. (ii) µ1

(
1

n

∑
i

θiθ
′
i

)
≥ C, w.p.a. 1 as n→∞, for a constant C > 0, where µ1 (.)

denotes the largest eigenvalue of a symmetric matrix.

Assumption 1 (i) is a standard condition in linear latent factor models (see Assumption A in Bai and Ng

(2002)) and we can normalize matrix Σh to be the identity matrix Im for identification. Assumption 1 (ii)

requires that at least one factor in the error terms is strong. It is satisfied if the second-order matrix of the

loadings
1

n

∑
i

θiθ
′
i converges in probability to a positive definite matrix (see Assumption B in Bai and Ng

(2002)).

We work with the condition:

E[xi,th
′
t] = 0, ∀i, (7)
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that is, orthogonality between latent factors and observable regressors for all stocks. This condition allows us

to follow a two-step approach: we first regress stock returns on observable regressors to compute residuals,

and then search for latent common factors in the panel of residuals (see next section). We can interpret

condition (7) via an analogy with the partitioned regression: Y = X1β1 +X2β2 + ε. The Frisch-Waugh-

Lovell Theorem (Frisch and Frederick (1933), Lovell (1963)) states that the ordinary least squares (OLS)

estimate of β2 is identical to the OLS estimate of β2 in the regression MX1Y = MX1X2β2 + η, where

MX1 = In − X1 (X ′1X1)−1X ′1. Condition (7) is tantamount to the orthogonality condition X ′1X2 = 0

ensuring that we can estimate β2 from regressing the residuals MX1Y on X2 only, instead of the residuals

MX1X2 coming from the regression of X2 on X1. When condition (7) is not satisfied, joint estimation

of regression coefficients, latent factor betas and factor values is required (see e.g. Bai (2009), Moon and

Weidner (2015) in a model with homogeneous regression coefficients βi = β for all i, and Ando and Bai

(2015) for heterogeneous βi in balanced panels). If the regressors are common across stocks, i.e., xi,t = xt,

we can obtain condition (7) by transformation of the latent factors. It simply corresponds to an identification

restriction on the latent factors. If the regressors are stock-specific, ensuring orthogonality between the latent

factors ht and the observable regressors xi,t for all i is more than an identification restriction. It requires an

additional assumption where we decompose common and stock-specific components in the regressors vector

by writing xi,t = (x′t, x̃
′
i,t)
′, where xt := (vech[Xt]

′, f ′t ⊗ Z ′t−1)′ and x̃i,t := (Z ′t−1 ⊗ Z ′i,t−1, f
′
t ⊗ Z ′i,t−1)′.

Assumption 2 The best linear prediction of the unobservable factor EL(ht|{xi,t, i = 1, 2, ...}) is inde-

pendent of {x̃i,t, i = 1, 2, ...}.

Assumption 2 amounts to contemporaneous Granger non-causality from the stock-specific regressors to

the latent factors, conditionally on the common regressors. Assumption 2 is verified e.g. if the latent

factors are independent of the lagged stock-specific instruments, conditional on the observable factors and

the lagged common instruments (see the supplementary materials for a derivation). We keep Assumption

2 as a maintained assumption on the factor structure under M2. Under Assumption 2, EL(ht|{xi,t, i =

1, 2, ...}) =: Ψxt is a linear function of xt. Therefore, by transformation of the latent factor ht → ht−Ψxt,

we can assume that EL(ht|{xi,t, i = 1, 2, ...}) = 0, without loss of generality. This condition implies (7).
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3 Diagnostic criterion

In this section, we provide the diagnostic criterion that checks whether the error terms are weakly cross-

sectionally correlated or share at least one common factor. To compute the criterion, we estimate the

generic panel model (3) by OLS applied asset by asset, and we get estimators β̂i = Q̂−1
x,i

1

Ti

∑
t

Ii,txi,tRi,t,

for i = 1, ..., n, where Q̂x,i =
1

Ti

∑
t

Ii,txi,tx
′
i,t. We get the residuals ε̂i,t = Ri,t − x′i,tβ̂i, where ε̂i,t

is observable only if Ii,t = 1. In available panels, the random sample size Ti for asset i can be small,

and the inversion of matrix Q̂x,i can be numerically unstable. To avoid unreliable estimates of βi, we

apply a trimming approach as in GOS. We define 1χi = 1
{
CN

(
Q̂x,i

)
≤ χ1,T , τi,T ≤ χ2,T

}
, where

CN
(
Q̂x,i

)
=

√
µ1

(
Q̂x,i

)
/µd

(
Q̂x,i

)
is the condition number of the d × d matrix Q̂x,i, µd

(
Q̂x,i

)
is

its smallest eigenvalue and τi,T = T/Ti. The two sequences χ1,T > 0 and χ2,T > 0 diverge asymptotically

(Assumption A.10). The first trimming condition {CN
(
Q̂x,i

)
≤ χ1,T } keeps in the cross-section only

assets for which the time-series regression is not too badly conditioned. A too large value of CN
(
Q̂x,i

)
indicates multicollinearity problems and ill-conditioning (Belsley et al. (2004), Greene (2008)). The second

trimming condition {τi,T ≤ χ2,T } keeps in the cross-section only assets for which the time series is not too

short. We also use both trimming conditions in the proofs of the asymptotic results.

We consider the following diagnostic criterion:

ξ = µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− g(n, T ), (8)

where the vector ε̄i of dimension T gathers the values ε̄i,t = Ii,tε̂i,t, the penalty g(n, T ) is such that

g(n, T ) → 0 and C2
n,T g(n, T ) → ∞, when n, T → ∞, for C2

n,T = min{n, T}. Bai and Ng (2002)

consider several simple potential candidates for the penalty g(n, T ). We discuss them in Section 5. In

vector ε̄i, the unavailable residuals are replaced by zeros. The following model selection rule explains our

choice of the diagnostic criterion (8) for approximate factor structure in large unbalanced cross-sectional

datasets.

Proposition 1 Model selection rule: We select M1 if ξ < 0, and we select M2 if ξ > 0, since under

Assumptions 1, 2 and Assumptions A.1-A.10, (a) Pr (ξ < 0 | M1) → 1, and (b) Pr (ξ > 0 | M2) → 1,

when n, T →∞, such that T/n = o (1).
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Proposition 1 characterizes an asymptotically valid model selection rule, which treats both models sym-

metrically. The model selection rule is valid since parts (a) and (b) of Proposition 1 imply Pr (M1|ξ < 0) =

Pr (ξ < 0|M1)Pr (M1) [Pr (ξ < 0|M1)Pr (M1) + Pr (ξ < 0|M2)Pr (M2)]−1 → 1, as n, T → ∞,

such that T/n = o (1), by Bayes Theorem. Similarly, we have Pr (M2|ξ > 0)→ 1. The diagnostic crite-

rion in Proposition 1 is not a testing procedure since we do not use a critical region based on an asymptotic

distribution and a chosen significance level. The zero threshold corresponds to an implicit critical value

yielding a test size asymptotically equal to zero since Pr(ξ < 0|M1) → 1. The selection procedure is

conservative in diagnosing zero factor by construction. We do not allow type I error underM1 asymptoti-

cally, and really want to ensure that there is no omitted factor. This also means that we will not suffer from

false discoveries related to a multiple testing problem (see e.g. Barras et al. (2010), Harvey et al. (2016)) in

our empirical application where we consider a large variety of factor models on monthly and quarterly data.

However, a possibility to achieve p-values is to use a randomisation procedure (see Bandi and Corradi (2014)

and Corradi and Swanson (2006)). This type of procedure controls for an error of the first type, conditional

on the information provided by the sample and under a randomness induced by auxiliary experiments.

The proof of Proposition 1 shows that the largest eigenvalue in (8) vanishes at a faster rate (Lemma 1 in

Appendix A.2.1) than the penalization term underM1 when n and T go to infinity. UnderM1, we expect a

vanishing largest eigenvalue because of a lack of a common signal in the error terms. The negative penalizing

term −g(n, T ) dominates in (8), and this explains why we select the first model when ξ is negative. On the

contrary, the largest eigenvalue remains bounded from below away from zero (Lemma 4 in Appendix A.2.1)

underM2 when n and T go to infinity. UnderM2, we have at least one non vanishing eigenvalue because

of a common signal due to omitted factors. The largest eigenvalue dominates in (8), and this explains

why we select the second model when ξ is positive. We can interpret the criterion (8) as the adjusted

gain in fit including a single additional (unobservable) factor in model M1. In the balanced case, where

Ii,t = 1 for all i and t, we can rewrite (8) as ξ = SS0 − SS1 − g (n, T ), where SS0 =
1

nT

∑
i

∑
t

ε̂2
i,t is

the sum of squared errors and SS1 = min
1

nT

∑
i

∑
t

(ε̂i,t − θiht)2 , where the minimization is w.r.t. the

vectors H ∈ RT of factor values and Θ ∈ Rn of factor loadings in a one-factor model, subject to the

normalization constraint
H ′H

T
= 1. Indeed, the largest eigenvalue µ1

(
1

nT

∑
i

ε̂iε̂
′
i

)
corresponds to the
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difference between SS0 and SS1. Furthermore, the criterion ξ is equal to the difference of the penalized

criteria for zero- and one-factor models defined in Bai and Ng (2002) applied on the residuals. Indeed,

ξ = PC (0)− PC (1) , where PC (0) = SS0, and PC (1) = SS1 + g (n, T ) .

In Proposition 1, we have the condition T/n = o (1) on the relative rate of the cross-sectional dimension

w.r.t. the time-series dimension. This exemplifies a key difference with the proportional asymptotics used

in Onatski (2009, 2010) or Ahn and Horenstein (2013) for balanced panel without observable factors. They

rely on the asymptotic distribution of the eigenvalues of large dimensional sample covariances matrices

when n/T → c > 0 as n → ∞. The condition T/n = o (1) agrees with the “large n, small T ” case

that we face in the empirical application (ten thousand individual stocks monitored over forty-five years of

either monthly, or quarterly, returns). Another key difference w.r.t. the available literature is the handling

of unbalanced panels. We need to address explicitly the presence of the observability indicators Ii,t and the

trimming devices 1χi in the proofs of the asymptotic results.

The recent literature on the properties of the two-pass regressions for fixed n and large T shows that the

presence of useless factors (Kan and Zhang (1999a,b), Gospodinov et al. (2014)) or weak factor loadings

(Kleibergen (2009)) does not affect the asymptotic distributional properties of factor loading estimates, but

alters the ones of the risk premia estimates. Useless factors have zero loadings, and weak loadings drift to

zero at rate 1/
√
T . The vanishing rate of the largest eigenvalue of the empirical cross-sectional covariance

matrix of the residuals does not change if we face useless factors or weak factor loadings in the observable

factors underM1. The same remark applies underM2. Hence the selection rule remains the same since the

probability of taking the right decision still approaches 1. If we have a number of useless factors or weak

factor loadings strictly smaller than the number m of the omitted factors under M2, this does not impact

the asymptotic rate of the diagnostic criterion if Assumption 1 holds. If we only have useless factors in the

omitted factors under M2, we face an identification issue. Assumption 1 (ii) is not satisfied. We cannot

distinguish such a specification fromM1 since it corresponds to a particular approximate factor structure.

Again the selection rule remains the same since the probability of taking the right decision still approaches

1. Finally, let us study the case of only weak factor loadings underM2. We consider a simplified setting:

Ri,t = x′i,tβi + εi,t

where εi,t = θiht + ui,t has only one factor with a weak factor loading, namely m = 1 and θi = θ̄i/T
γ

12



with γ > 0. Let us assume that
1

n

∑
i

θ̄2
i is bounded from below away from zero (see Assumption 1 (ii))

and bounded from above. By the properties of the eigenvalues of a scalar multiple of a matrix, we deduce

that c1/T
2γ ≤ µ1

(
1

n

∑
i

θ2
iHH

′

)
≤ c2/T

2γ , for some constants c1, c2 such that c2 ≥ c1 > 0. Hence, by

similar arguments as in the proof of Proposition 1, we get:

c1T
−2γ − g(n, T ) +Op

(
C−2
nT + χ̄TT

−1
)
≤ ξ ≤ c2T

−2γ − g(n, T ) +Op
(
C−2
nT + χ̄TT

−1
)
,

where we define χ̄T = χ4
1,Tχ

2
2,T . To concludeM2, we need thatC−2

nT +χ̄TT
−1 and the penalty g(n, T ) van-

ish at a faster rate than T−2γ , namelyC−2
nT +χ̄TT

−1 = o
(
T−2γ

)
and g(n, T ) = o

(
T−2γ

)
. To concludeM1,

we need that g(n, T ) is the dominant term, namely T−2γ = o (g(n, T )) and C−2
nT + χ̄TT

−1 = o (g(n, T )).

As an example, let us take g(n, T ) = T−1 log T and n = T γ̄ with γ̄ > 1, and assume that the trimming

is such that χ̄T = o(log T ). Then, we conclude M2 if γ < 1/2 and M1 if γ > 1/2. This means that

detecting a weak factor loading structure is difficult if gamma is not sufficiently small. The factor loadings

should drift to zero not too fast to concludeM2. Otherwise, we cannot distinguish it asymptotically from

weak cross-sectional correlation.

4 Determining the number of factors

In the previous section, we have studied a diagnostic criterion to check whether the error terms are weakly

cross-sectionally correlated or share at least one unobservable common factor. This section aims at answer-

ing: do we have one, two, or more omitted factors? The design of the diagnostic criterion to check whether

the error terms share exactly k unobservable common factors or share at least k + 1 unobservable common

factors follows the same mechanics. We consider the following rival models:

M1 (k) : the linear regression model (3), where the errors (εi,t) satisfy a factor structure

with exactly k unobservable factors,

and

M2(k) : the linear regression model (3), where the errors (εi,t) satisfy a factor structure

with at least k + 1 unobservable factors.
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The above definitions yieldM1 =M1 (0) andM2 =M2 (0).

Assumption 3 Under modelM2(k), we have µk+1

(
1

n

∑
i

θiθ
′
i

)
≥ C, w.p.a. 1 as n→∞, for a constant

C > 0, where µk+1 (.) denotes the (k + 1)-th largest eigenvalue of a symmetric matrix.

ModelsM1(k) andM2(k) with k ≥ 1 are subsets of modelM2. Hence, Assumption 1 (i) guarantees the

convergence of matrix
1

T

∑
t

hth
′
t to a positive definite k×k matrix underM1(k), and to a positive definite

m ×m matrix underM2(k), with m ≥ k + 1. Assumption 3 requires that there are at least k + 1 strong

factors underM2(k).

The diagnostic criterion exploits the (k + 1)th largest eigenvalue of the empirical cross-sectional covari-

ance matrix of the residuals:

ξ(k) = µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
− g(n, T ). (9)

As discussed in Ahn and Horenstein (2013) (see also Onatski (2013)), we can rewrite (9) in the balanced

case as ξ(k) = SSk − SSk+1 − g(n, T ) where SSk equals the sample mean of the squared residuals from

the time-series regressions of individual response variables (ε̂i,t) on the first k principal components of
1

nT

∑
i

ε̂iε̂
′
i. The criterion ξ(k) is equal to the difference of the penalized criteria for k and (k + 1)- factor

models defined in Bai and Ng (2002) applied on the residuals. Indeed, ξ(k) = PC(k)−PC(k+ 1), where

PC(k) = SSk + kg(n, T ) and PC(k + 1) = SSk+1 + (k + 1)g(n, T ) in balanced panels.

The following model selection rule extends Proposition 1.

Proposition 2 Model selection rule: We select M1(k) if ξ(k) < 0, and we select M2(k) if ξ(k) > 0,

since under Assumptions 1(i), 2 and 3, and Assumptions A.1-A.11, (a) Pr[ξ(k) < 0|M1(k)] → 1 and (b)

Pr[ξ(k) > 0|M2(k)]→ 1, when n, T →∞, such that T/n = o (1).

The proof of Proposition 2 is also more complicated than the proof of Proposition 1. The proof of the

latter exploits the asymptotic bound on the largest eigenvalue of a symmetric matrix (Lemma 1 in Appendix

A.2.1) based on similar arguments as in Geman (1980), Yin et al. (1988), and Bai and Yin (1993). We

need additional arguments to derive such a bound when we look at the (k + 1)th eigenvalue (Lemma 5
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in Appendix A.2.2). We rely on the Courant-Fischer min-max theorem and Courant-Fischer formula (see

beginning of Appendix 2) which represent eigenvalues as solutions of constrained quadratic optimization

problems. We know that the largest eigenvalue µ1(A) of a symmetric positive semi-definite matrix A is

equal to its operator norm. There is no such norm interpretation for the smaller eigenvalues µk(A), k ≥ 2.

We cannot directly exploit standard inequalities or bounds associated to a norm when we investigate the

asymptotic behavior of the spectrum beyond its largest element. We cannot either exploit distributional

results from random matrix theory since T/n = o(1). The slow convergence rate
√
T for the individual

estimates hat βi also complicates the proof. In the presence of homogeneous regression coefficients βi = β

for all i, the estimate β̂ in Bai (2009) and Moon and Weidner (2015) has a fast convergence rate
√
nT . In

that case, controlling for the estimation error in hat εi,t = εi,t + x′i,t(β − β̂) is straightforward due to the

small asymptotic contribution of (β − β̂).

We can use the results of Proposition 2 in order to estimate the number of unobservable factors. It

suffices to choose the minimum k such that ξ(k) < 0. The next proposition states the consistency of that

estimate when T/n = o(1), namely even in the presence of a degenerate distribution of the eigenvalues.

Proposition 3 Let k̂ = min {k ≥ 0 : ξ(k) < 0}, where k̂ = +∞ if ξ(k) ≥ 0 for all k. Then, under

Assumptions 1(i), 2 and 3, and Assumptions A.1-A.11, and under M1(k0), we have P [k̂ = k0] → 1, as

n, T →∞, such that T/n = o(1).

The number m of unobservable factors in (6) is of no use in Proposition 3. This avoids the need to

prespecify a maximum possible number of factors (kmax) as in Bai and Ng (2002), Onatski (2009, 2010),

Ahn and Horenstein (2013). We believe that this is a strong advantage of our methodology since there are

many possible choices for kmax and the estimated number of factors is sometimes sensitive to the choice

of kmax (see the simulation results in those papers). In the online supplementary materials, we show that

our procedure selects the right number of factors with at least 99 percent chances in most Monte Carlo

experiments when n is much larger than T .
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5 Implementation and graphical diagnostic tool

In this section, we discuss how we can implement the model selection rule in practice and design a simple

graphical diagnostic tool to determine the number of unobservable factors (see Figures 1 and 2 in the next

section). Let us first recognize that

σ̂2 =
1

nT

∑
i

∑
t

1χi ε̄
2
i,t = tr

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
=

T∑
j=1

µj

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
.

The ratio µj

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
/σ̂2 gauges the contribution of the jth eigenvalue in percentage of the vari-

ance σ̂2 of the residuals. Similarly, the sum
k∑
j=1

µj

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
/σ̂2 gauges the cumulated contribu-

tion of the k largest eigenvalues in percentage of σ̂2. From Proposition 2, when all eigenvalues in that sum

are larger than g(n, T ), this is equal to the percentage of σ̂2 explained by the k unobservable factors. There-

fore we suggest to work in practice with rescaled eigenvalues which are more informative. We can easily

build a scree plot where we display the rescaled eigenvalues µj

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)
/σ̂2 in descending order

versus the number of omitted factors k, and use the horizontal line set at g(n, T )/σ̂2 as the cut-off point

to determine the number of omitted factors. This yields exactly the same choice as the one in Proposition

3. Such a scree plot helps to visually assess which unobservable factors, if needed, explain most of the

variability in the residuals. We can set g(n, T )/σ̂2 =

(
n+ T

nT

)
ln

(
nT

n+ T

)
following a suggestion in Bai

and Ng (2002). Those authors propose two other potential choices
(
n+ T

nT

)
lnC2

nT and
(

lnC2
nT

C2
nT

)
. In

our empirical application, n is much larger than T , and they yield identical results.

In Section 3, we saw that ξ = SS0 − SS1 − g(n, T ) in the balanced case. Given such an interpretation

in terms of sums of squared errors, we can think about another diagnostic criterion based on a logarithmic

version ξ̌ as in Corollary 2 of Bai and Ng (2002). The second diagnostic criterion is

ξ̌ = ln
(
σ̂2
)
− ln

(
σ̂2 − µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

))
− g(n, T ). (10)

In the balanced case, we get σ̂2 = SS0, and ξ̌ = ln(SS0/SS1)− g(n, T ) is equal to the difference of

IC (0) and IC (1) criteria in Bai and Ng (2002). Then, the model selection rule is the same as in Proposi-

tion 1 with ξ̌ substituted for ξ. For the logarithmic version, Bai and Ng (2002) suggest to use the penalty
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g(n, T ) =

(
n+ T

nT

)
ln

(
nT

n+ T

)
since the scaling by σ̂2 is implicitly performed by the logarithmic trans-

formation of SS0 and SS1. Since we can rewrite Equation (10) as ξ̌ = ln
(
1/
(
1− µ1

(
1
nT

∑
i 1

χ
i ε̄iε̄

′
i

)
/σ̂2
))
−

g(n, T )unexpected′′inmath, and x is close to ln(1/(1− x)) for a small x, we see that a rule based on the

rescaled criterion ξ/σ̂2 is closely related to the logarithmic version when the rescaled eigenvalue is small.

This further explains why we are in favour of working in practice with rescaled eigenvalues.

Prior to computation of the eigenvectors, Bai and Ng (2002) advocate each series to be demeaned and

standardize to have unit variance. In our setting, each time series of residuals ε̄i,t have zero mean by con-

struction, and we also standardize them to have unit variance over the sample of T observations before

computing the eigenvalues. Working with ¯̄εi,t = ε̄i,t/

√
1

T

∑
t

ε̄2
i,t ensures that all series of residuals have a

common scale of measurement and improves the stability of the information extracted from the multivari-

ate time series (see e.g. Pena and Poncela (2006)). Since tr

(∑
i

1χi ¯̄εi ¯̄ε
′
i

)
= nχT with nχ =

∑
i

1χi , we

suggest to work with the normalised matrix
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i, so that the variance

1

nχT

∑
i

∑
t

1χi ¯̄ε2
i,t of the

scaled residuals is 1 by construction, and we can interpret µj

(
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i

)
directly as percentage of

the variance of the normalised residuals.

From Johnstone (2001), we know that for a matrix of residuals, all of whose entries are independent

standard Gaussian variates in a balanced panel, the distribution of the largest eigenvalue of the correspond-

ing Wishart variable suitably normalized approaches the Tracy-Widom law of order 1. That result tells

us that, for such standard Gaussian residuals, the largest eigenvalue that we compute should be approxi-

mately 1/T (see also Geman (1980)) without the need to rely on a scaling by an estimated variance σ̂2.

This further explains why we are in favor of working with standardised residuals, so that we are as close

as possible to a standardized Gaussian reference model. This is akin to use the standard rule of thumb

based on a Gaussian reference model in nonparametric density estimation (Silverman (1986)). We know

the rate of convergence of the kernel density estimate but need an idea of the constant to use that infor-

mation for practical bandwidth choice. In our setting, we can set the constant to one, when we face inde-

pendent standard Gaussian residuals. The Gaussian reference model also suggests to use the penalisation
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g(n, T ) =

(√
n+
√
T
)2

nT
ln

 nT(√
n+
√
T
)2

, and this is our choice in the empirical section with nχ

substituted for n.

6 Empirical results

In this section, we compute the diagnostic criteria and the number of omitted factors using a large variety

of combinations of financial and macroeconomic factors. We estimate linear factor models using monthly

(T = 546) and quarterly (T = 176) data from January 1968 to December 2011.

6.1 Factor models and data description

We consider several linear factor models that involve financial and macroeconomic variables. Let us start

with the financial specifications listed in Table 1. We estimate these linear specifications using monthly

data. We proxy the risk free rate with the monthly 30-day T-bill beginning-of-month yield. The three

factors of Fama and French (1993) are the monthly excess return rm,t on CRSP NYSE/AMEX/Nasdaq

value-weighted market portfolio over the risk free rate, and the monthly returns on zero-investment factor-

mimicking portfolios for size and book-to-market, denoted by rsmb,t and rhml,t. The monthly returns on

portfolio for momentum is denoted by rmom,t (Carhart (1997)). The two operative profitability factors of

Fama and French (2015) are the difference between monthly returns on diversified portfolios with robust

and weak profitability and investments, and with low and high investment stocks, denoted by rrmw,t and

rcma,t. We have downloaded the time series of these factors from the website of Kenneth French. We denote

the monthly returns of size, investment, and profitability portfolios introduced by Hou et al. (2015) by rme,t,

rI/A,t and rROE,t (see also Hou et al. (2014)). Furthermore, we include quality minus junk (qmjt) and bet

against beta ( babt) factors as described in Asness et al. (2014) and Frazzini and Pedersen (2014). The factor

return qmjt is the average return on the two high quality portfolios minus the average return on the two low

quality (junk) portfolios. The bet against beta factor is a portfolio that is long low-beta securities and short

high-beta securities. We have downloaded these data from the website of AQR.

As additional specifications, we consider the two reversal factors which are monthly returns on portfolios
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for short-term and long-term reversals from the website of Kenneth French. Besides, the monthly returns of

industry-adjusted value, momentum and profitability factors are available from the website of Robert Novy-

Marx (see Novy-Marx (2013)). We also include the three liquidity-related factors of Pastor and Stambaugh

(2002) that consist of monthly liquidity level, traded liquidity, and the innovation in aggregate liquidity. We

have downloaded them from the website of Lubos Pastor.

In Table 2, we list the linear factor specifications that involve finance and macroeconomic variables. We

estimate these specifications using quarterly data. We consider the aggregate consumption growth cgt for

the CCAPM (Lucas (1978), Breeden (1979)) and the Epstein and Zin (1989) model (see also Epstein and

Zin (1991)), the durable and nondurable-consumption growth rate introduced by Yogo (2006) and denoted

by dcgt and ndcgt. The investment factors used in Li et al. (2006) track the changes in the gross private

investment for households, for non-financial corporate and for non-financial non-corporate firms, and are

denoted by dhht, dcorpt, and dncorpt. Finally, we consider the five factors of Chen et al. (1986) available

from the website of Laura Xiaolei Liu. Those factors are the growth rate of industrial production mpt, the

unexpected inflation uit, the change in the expected inflation deit, the term spread utst, proxied by the

difference between yields on 10-year Treasury and 3-month T-bill, and the default premia uprt, proxied by

the yield difference between Moody’s Baa-rated and Aaa-rated corporate bonds.

To account for time-varying coefficients, we consider two conditional specifications:

(i) Zt−1 = (1, divYt−1)′ and (ii) Zt−1 = (1, divYt−1)′, Zi,t−1 = bmi,t−1, where divYt−1 is the lagged

dividend yield and the asset specific instrument bmi,t−1 corresponds to the lagged book-to-market equity of

firm i. We compute the firm characteristic from Compustat as in the appendix of Fama and French (2008).

We refer to Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the

chosen conditional specifications. The parsimony and the empirical results below explain why we have not

included an additional firm characteristic such as the size of firm i.

As additional specifications, we consider the lagged default spread, term spread, monthly 30-day T-

bill, aggregate consumption-to-wealth ratio (Lettau and Ludvigson (2001)), and labour-to-consumption ratio

(Santos and Veronesi (2006)) as common instruments.

The CRSP database provides the monthly stock returns data and we exclude financial firms (Standard

Industrial Classification Codes between 6000 and 6999) as in Fama and French (2008). The dataset after
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matching CRSP and Compustat contents comprises n = 10, 442 stocks, and covers the period from Jan-

uary 1968 to December 2011 with T = 546 months. We constructed the quarterly stock returns from the

monthly data. In order to account for the unbalanced characteristic, if the monthly observability indicators

Ii,t, Ii,t+set1 and Ii,t+2 are observed, we built the returns of the quarter s = 1, 2, 3, 4 as the average of the

three monthly returns at time t, t+ 1 and t+ 2. Otherwise, the observability indicator of the quarter s takes

value zero.

6.2 Results for financial models

In this section, we compute the diagnostic criteria for the linear factor models listed in Table 1. We fix

χ1,T = 15 as advocated by Greene (2008) and χ2,T = 546/60, i.e., at least 60 months of return observations

as in Bai and Ng (2002). In Table 3, we report the trimmed cross-sectional dimension nχ. In some time-

varying specifications, we face severe multicollinearity problems due to the correlations within the vector

of regressors xi,t, that involves cross-products of factors ft and instruments Zt−1. These problems explain

why we shrink from nχ = 6, 775 for time-invariant models to around three thousand assets for time-varying

models.

Table 4 reports the contribution in percentage of the first eigenvalue µ1 with respect to the variance of

normalized residuals
1

nχT

∑
i

1χi ¯̄εi ¯̄ε
′
i, that is equal to one by construction under our variance scaling to one

for each time series of residuals. We also report the number of omitted factors k, the contribution of the first

k eigenvalues, i.e.,
k∑
j=1

µj , and the incremental contribution of the k + 1 eigenvalue µk+1. For each model,

we also specify the numerical value of the penalisation function g (nχ, T ), as defined in Section 5.

Let us start with the results for the time-invariant specifications. The number k of omitted factors is

larger than one for the most popular financial models, e.g., the CAPM (Sharpe (1964)), the three-factor

Fama-French model (FF) and the four-factor Carhart (1997) model (CAR). On the contrary, for the recent

proposals based on profitability and investment (5FF, HXZ), quality minus junk (QMJ), and bet against beta

(BAB) factors, we find no omitted latent factor. We observe that adding observable factors helps to reduce

the contribution of the first eigenvalue µ1 to the variance of residuals. However, when we face latent factors,

the omitted systematic contribution
k∑
j=1

µj only accounts for a small proportion of the residual variance.
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For instance, we find k = 2 omitted factors in the CAPM. Those two latent factors only contribute to

µ1 + µ2 = 4.06% of the residual variance. Figure 1 summarizes this information graphically by displaying

the penalized scree plots and the plots of cumulated eigenvalues for the CAPM. For instance, µ3 = 1.47%

lies below the horizontal line g(nχ, T ) = 1.79% in Panel A for the time-invariant CAPM, so that k = 2. In

Panel B for the time-invariant CAPM, the vertical bar µ1 + µ2 = 4.06% is divided into the contribution of

µ1 = 2.16% (light grey area) and that of µ2 = 1.90% (dark grey area).

For the time-varying specifications (i) and (ii) of Table 4, we still find one omitted factor for the CAPM.

We see that the scaled three-factor FF model with Zt−1 = (1, divYt−1)′ passes the diagnostic criterion. In

Figure 2, the largest eigenvalue µ1 = 1.37% lies below the horizontal line g(nχ, T ) = 2.05% in Panel B for

the scaled three-factor FF model, so that k = 0. The additional stock specific instrument Zi,t−1 = bmi,t−1

is not necessary to exhaust the cross-sectional dependence. Hence, the empirical message of Table 4 is that

we can choose either among time-invariant specifications with at least four financial factors, or a scaled FF

time-varying model. The latter is more parsimonious for the factor space in the conditional sense (K = 3

versus K = 4), but less parsimonious for the parameter space (d = 9 versus d = 5). For a balanced panel

of monthly returns for 4, 883 stocks on the period January 1994 to December 1998 (T = 60), Bai and Ng

(2002) find only two latent factors.

As observed in GOS, measures of limits-to-arbitrage and missing factor impact (not reported here) like

those in Pontiff (2006), Lam and Wei (2011), Ang et al. (2010), Stambaugh et al. (2015) decrease with the

number of observable factors.

Concerning the additional factors and instruments mentioned in Section 6.1, none of them allow to reach

a more parsimonious factor structure in a time-invariant or time-varying setting. Moreover, neither the time-

invariant CAPM, FF and CAR models, nor their time-varying specifications with term spread, default spread

and book-to-market equity used in GOS, pass the diagnostic criterion. As conjectured in GOS, this might

be one reason for the rejection of the asset pricing restrictions.

6.3 Results for macroeconomic models

In this section, we perform the empirical exercises on the macroeconomic linear factor models listed in

Table 2. We fix χ1,T = 15 and χ2,T = 176/20, i.e., at least 20 quarterly return observations. In Table
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5, we report the trimmed cross-sectional dimension nχ. The quarterly dataset has 6, 707 stocks with more

than twenty quarterly observations. The trimming is driven by the multicollinearity between regressors,

when nχ < 6, 707. Table 5 further reports the empirical results for the macroeconomic models. The time-

invariant specifications which include only macroeconomic variables (CCAPM, NDC and DC, LVX, and

CRR) and exclude the market, do not pass the diagnostic criterion. We find k = 2 omitted factors and

µ1 + µ2 is about 15% of the residual variance, in contrast to the 4.06% found for the CAPM in Table 4

with monthly returns. When we incorporate the market (EZ and YO), we find no omitted latent factors.

This is not surprising since, for quarterly data, the CAPM fully captures the systematic risk of individual

stocks, with µ1 = 3, 15%, g(nχ, T ) = 3, 74%, and nχ = 6, 707. We do not report results for time-varying

specifications. We have a limited sample size T = 176. Because of multicollinearity problems and the

parameter dimension being up to d = 14, the estimation yields imprecise results. The trimmed sample size

nχ is often below T , which violates our large panel assumption.
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Table 1: Financial linear factor models

Model Factors K

CAPM rm,t 1

FF rm,t, rsmb,t, rhml,t 3

CAR rm,t, rsmb,t, rhml,t, rmom,t 4

5FF rm,t, rsmb,t, rhml,t, rrmw,t, rcma,t 5

HXZ rm,t, rme,t, rI/A,t, rROE,t 4

FF and QMJ rm,t, rsmb,t, rhml,t, qmjt 4

FF and BAB rm,t, rsmb,t, rhml,t, babt 4

The table lists the linear factor models based on financial variables. We estimate these specifications by

using monthly data. For each model, we report the factors labeling and their number K. FF, CAR, 5FF,

HXZ, QMJ and BAB refer to the three Fama-French factors, the four Carhart factors, the five Fama-French

factors, the four Hou-Xue-Zhang factors, quality minus junk factor, and bet against beta factor.

Table 2: Macroeconomic linear factor models

Model Factors K

CCAPM cgt 1

EZ rm,t, cgt 2

NDC and DC ndcgt, dcgt 2

YO rm,t, ndcgt, dcgt 3

LVX dhht, dcorpt, dncorpt 3

CRR mpt, uit, deit, utst, uprt 5

The table lists the linear factor models based on macroeconomic variables and the market. We estimate

these specifications by using quarterly data. For each model, we report the factors labeling and their number

K. EZ, NDC and DC, YO, LVX and CRR refer to the two Epstein-Zin factors, the two nondurable and

durable consumption growth factors, the three Yogo factors, the three Li-Vassalou-Xing factors, and the five

Chen-Roll-Ross factors.
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Table 3: Trimmed cross-sectional dimensions nχ and number d of parameters to estimate for financial models

Financial model Time-invariant Time-varying

nχ (i) d nχ (ii) d nχ

CAPM 6,775 5 3,766 8 3,004

FF 6,775 9 3,536 14 2,780

CAR 6,775 11 3,468 17 2,608

5 FF 6,775 13 2,989 20 2,058

HXZ 6,775 11 3,344 17 2,612

FF and QMJ 6,775 11 3,391 17 2,466

FF and BAB 6,775 11 3,224 17 2,441

For each financial model of Table 1, we report the trimmed cross-sectional dimension nχ for estimation

from monthly data. For the time-varying specifications, we give the dimension d of vector xi,t and nχ for

two sets of instruments: (i) Zt−1 = (1, divYt−1)′ and (ii) Zt−1 = (1, divYt−1)′, Zi,t−1 = bmi,t−1. For the

time-invariant specifications, we have d = K + 1 (see Table 1).
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Table 4: Results for time-invariant and time-varying financial models

Financial Panel A - Time-invariant Panel B - Time-varying

model µ1 k

k∑
j=1

µj µk+1 g (nχ, T ) µ1 k

k∑
j=1

µj µk+1 g (nχ, T )

CAPM 2.16% 2 4.06% 1.47% 1.79% (i) 2.87% 1 2.87% 1.79% 2.02%

(ii) 3.00% 1 3.00% 1.98% 2.13%

FF 2.03% 1 2.03% 1.16% 1.79% (i) 1.37% 0 0.00% 1.37% 2.05%

(ii) 1.53% 0 0.00% 1.53% 2.17%

CAR 2.03% 1 2.03% 1.12% 1.79% (i) 1.34% 0 0.00% 1.34% 2.05%

(ii) 1.51% 0 0.00% 1.51% 2.20%

5FF 1.40% 0 0.00% 1.40% 1.79% (i) 1.44% 0 0.00% 1.44% 2.13%

(ii) 1.77% 0 0.00% 1.77% 2.34%

HXZ 1.43% 0 0.00% 1.43% 1.79% (i) 1.35% 0 0.00% 1.35% 2.07%

(ii) 1.54% 0 0.00% 1.54% 2.20%

FF and QMJ 1.44% 0 0.00% 1.44% 1.79% (i) 1.30% 0 0.00% 1.30% 2.07%

(ii) 1.54% 0 0.00% 1.54% 2.23%

FF and BAB 1.64% 0 0.00% 1.64% 1.79% (i) 1.40% 0 0.00% 1.40% 2.09%

(ii) 1.58% 0 0.00% 1.58% 2.24%

The table shows the contribution of the first eigenvalue µ1 to the variance of normalised residuals, the

number of omitted factors k, the contributions of the first k and of the k + 1 eigenvalues, and the penalty

term g(nχ, T ). Panels A and B report empirical results for time-invariant and time-varying financial models

estimated from monthly data. The time-varying specifications use two sets of instruments: (i) Zt−1 =

(1, divYt−1)′ and (ii) Zt−1 = (1, divYt−1)′, Zi,t−1 = bmi,t−1.
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Table 5: Results for the macroeconomic models

Macroeconomic model nχ µ1 k

k∑
j

µj µk+1 g (nχ, T )

CCAPM 6, 707 8.12% 2 14.36% 3.29% 3.74%

EZ 6, 707 3.07% 0 0.00% 3.07% 3.74%

NDC and DC 6, 306 8.07% 2 14.21% 3.36% 3.76%

YO 6, 272 3.38% 0 0.00% 3.38% 3.76%

LVX 6, 707 7.96% 2 14.04% 3.34% 3.74%

CRR 5, 540 8.83% 2 15.79% 3.12% 3.82%

For each macroeconomic model of Table 2, we report the trimmed cross-sectional dimension nχ for time-

invariant specifications estimated from quarterly data. We further show the contribution of the first eigen-

value µ1 to the variance of normalised residuals, the number of omitted factors k, the contributions of the

first k and of the k + 1 eigenvalues, and the penalty term g(nχ, T ).
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Figure 1: Number of omitted factors and cumulated eigenvalues for the CAPM
Time-invariant CAPM
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Time-varying CAPM
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Panel A plots the scree-plot of the values of the first five eigenvalues in percentage, i.e. µj

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
with j = 1, ..., 5. The horizonal line corresponds to the penalty function g (nχ, T ). Panel B plots the cumulated

eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µl

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
, the dark grey is the

contribution of the jth eigenvalue in percentage. The figure reports results for the CAPM for the time-invariant and

time-varying specifications with Zt−1 = (1, divYt−1)′.



Figure 2: Number of omitted factors and cumulated eigenvalues for the FF model
Time-invariant FF
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Time-varying FF
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Panel B

Panel A plots the scree-plot of the values of the first five eigenvalues in percentage, i.e. µj

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
with j = 1, ..., 5. The horizonal line corresponds to the penalty function g (nχ, T ). Panel B plots the cumulated

eigenvalues in percentage. The light grey area corresponds to
j−1∑
l=1

µl

(
1

nχT

∑
i

1χi ε̄iε̄
′
i

)
, the dark grey is the

contribution of the jth eigenvalue in percentage. The figure reports results for the FF model for the time-invariant

and time-varying specifications with Zt−1 = (1, divYt−1)′.



Appendix 1 Regularity conditions

In this appendix, we list and comment additional assumptions used in the proofs in Appendix 2. The error

terms (εi,t) are εi,t = ui,t under model M1, and εi,t = θ′iht + ui,t under model M2 (see Equation (6)).

Since modelsM1 (k) andM2 (k) are subsets of modelM2, the assumptions stated forM2 also hold for

M1 (k) andM2 (k), for any k ≥ 1. We use M as a generic constant in the assumptions.

Assumption A.1 For a constant M > 0 and for all n, T ∈ N, we have:

1

n2T 2

∑
i,j

∑
t1,t2,t3,t4

E
[∣∣E [ui,t1ui,t2uj,t3uj,t4 ∣∣xi,T , xj,T , γi, γj ]∣∣] ≤M.

Assumption A.2 We have E[|ui,t|q] ≤M , for all i, t, and some constants q ≥ 8 and M > 0.

Assumption A.3 Let δ = δn ↑ ∞ be a diverging sequence such that
√
T/δq−1 = o(1) and δ ≥ nβ , for

β > 2/q. Let ei,t = ui,t1{|ui,t| ≤ δ} − E[ui,t1{|ui,t| ≤ δ}|γi]. Then:

1

nk

∑
i1,...,ik

∑
t1,...,tk

E
[
|E[ei1,tkei1,t1ei2,t1ei2,t2ei3,t2 · · · eik−1,tk−1

eik,tk−1
eik,tk |γi1 , ..., γik ]|

]
≤Mk,

for a sequence of integers k = kn ↑ ∞ and a constant M > 0, where indices i1, ..., ik run from 1 to n, and

indices t1, ..., tk from 1 to T .

Assumption A.4 There exists a constant M > 0 such that ‖xi,t‖ ≤M , P -a.s., for any i and t.

Assumption A.5 Under modelM2, a) there exists a constant M > 0 such that ‖ht‖ ≤M , P -a.s., for all

t. Moreover, b) ‖θi‖ < M , for all i.

Assumption A.6 Under modelM2, for a constant M > 0 and for all n, T ∈ N, we have:

1

n2T 2

∑
i,j

∑
t1,t2,t3,t4

E
[
‖E[(xi,t1h

′
t1)(xi,t2h

′
t2)′(xj,t3h

′
t3)(xj,t4h

′
t4)′|γi, γj ]‖

]
≤M.

Assumption A.7 The processes (It(γ)) and (εt(γ)) are independent.

Assumption A.8 There exist constants η, η̄ ∈ (0, 1] and C1, C2, C3, C4 > 0 such that, for all δ > 0 and

n, T ∈ N, we have:
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a) sup
1≤i≤n

P

[
‖ 1

T

∑
t

Ii,t
(
hth
′
t − Σh

)
‖ ≥ δ|γi

]
≤ C1T exp{−C2δ

2T η}+ C3δ
−1 exp{−C4T

η̄}.

Furthermore the same upper bound holds for

b) sup
1≤i≤n

P

[
| 1
T

∑
t

Ii,t − E[Ii,t|γi]| ≥ δ|γi

]
.

Assumption A.9 inf
1≤i≤n

E[Ii,t|γi] ≥M−1, for all n ∈ N and a constant M > 0.

Assumption A.10 The trimming constants χ1,T and χ2,T are such that χ4
1,Tχ

2
2,T = o (Tg (n, T )).

Assumption A.11 We have µ1(W ) = Op(C
−2
n,T ), where W = [wt,s] is the T × T matrix with elements

wt,s =
1

nT

∑
i

(Ii,t − Īt)(Ii,s − Īs), and Īt =
1

n

∑
i

Ii,t.

Assumption A.1 restricts serial dependence in the bivariate process of error terms (ui,t, uj,t) of any two

assets. It involves conditional expectations of products of error terms ui,t for different dates and any pair of

assets. That assumption can be satisfied under weak serial dependence of the errors (ui,t, uj,t), such as mix-

ing, with mixing size uniformaly bounded across pairs (i, j). Assumption A.2 is an upper bound on higher

moments of ui,t, to control tail thickness. Assumption A.3 is a restriction on both serial and cross-sectional

dependence of the error terms and on the growth rates of n and T . We use Assumptions A.2 and A.3 to

characterize the asymptotic behavior of the spectrum of the cross-sectional variance-covariance matrix of

errors under the rival models. They yield the so-called truncation and centralization lemmas in the proof of

Lemma 1. For those lemmas, we do not need a strcuture on the error terms based on matrix transformations

of i.i.d. random variables as in Onatski (2010) and Ahn and Horenstein (2013). In Appendix 3, we show

that Assumptions A.1 and A.3 are satisfied under cross-sectional block-dependence and time-series inde-

pendence of the errors, provided n grows sufficiently faster than T . Under cross-sectional independence of

the errors, the condition T/n = o (1) is enough as discussed at the end of Appendix 3. Assumptions A.4 and

A.5 require upper bounds on regressor values, latent factors and factor loadings. Assumption A.6 restricts

serial dependence of the products of latent factors and regressors. Recall that matrices xi,th′t are zero-mean

under Assumption 2. In Assumption A.7, we assume a missing-at-random design (Rubin (1976)), that is,

independence between unobservability and return generation. Another design would require an explicit

modeling of the link between the unobservability mechanism and the return process of the continuum of as-

sets (Heckman (1979)); this would yield a nonlinear factor structure. Assumption A.8 a) restricts the serial
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dependence of the latent factors and the individual processes of observability indicators. Specifically, As-

sumption A.8 a) gives an upper bound for large deviation probabilities of the sample average of zero-mean

random matrices hth′t − Σh, computed over date with available observations for assets i, uniformly w.r.t.

asset i. It implies that the unbalanced sample moment of squared components of the latent factor vector

converges in probability to the corresponding population moment at a rate Op(T−η/2(log T )c), for some

c > 0. Assumption A.8 b) gives a similar upper bound for large-deviation probabilities of sample averages

of observability indicators uniformly w.r.t. asset i. We use such assumptions to get the convergence of time-

series averages uniformly across assets as in GOS. Assumption A.9 implies that asymptotically the fraction

of the time period in which an asset return is observed is bounded away from zero uniformly across assets,

so that τi = plim
T→∞

τi,T = E[Ii,t|γi]−1 is bounded uniformly across all assets as in GOS. Assumption A.10

gives an upper bound on the divergence rate of the trimming constants. Assumption A.11 controls the rate

at which the largest eigenvalue of the matrix with entries made of cross-sectional empirical covariances of

observability indicators vanishes to zero. The matrix gathering those empirical covariances should not be

associated to an omitted factor structure.

Appendix 2 Proofs

We start by listing several results known from matrix theory. They are used several times in the proofs.

(i) Weyl inequality: The singular-value version states that if A and B are T × n matrices, then

µi+j−1[(A+B)(A+B)′]1/2 ≤ µi(AA′)1/2 + µj(BB
′)1/2, for any 1 ≤ i, j ≤ min{n, T} such that 1 ≤

i+j ≤ min{n, T}+1 (see Theorem 3.3.16 of Horn and Johnson (1985)). The Weyl inequality for i = k+1

and j = 1 yields:

µk+1[(A+B)(A+B)′]1/2 ≤ µk+1(AA′)1/2 + µ1(BB′)1/2, (11)

µk+1[(A+B)(A+B)′]1/2 ≥ µk+1(AA′)1/2 − µ1(BB′)1/2, (12)

for any T×nmatricesA andB and integer k such that 0 ≤ k ≤ min{n, T}−1. We also use Weyl inequality

for eigenvalues: for any T × T symmetric matrices A and B we have: µi+j−1(A+ B) ≤ µi(A) + µj(B),

for any 1 ≤ i, j ≤ T such that i+ j ≤ T + 1 (see Theorem 8.4.11 in Bernstein (2009)).

(ii) Equality between largest eigenvalue and operator norm: The largest eigenvalue µ1(A) of a symmetric
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positive semi-definite matrix A is equal to its operator norm ‖A‖op = max
x:‖x‖=1

‖Ax‖. Besides, ‖A‖op ≤ ‖A‖

for any square matrix A, where ‖ · ‖ is the Frobenius norm (see e.g. Meyer (2000)).

(iii) Inequalities fot the eigenvalues of matrix products: if A and B are m×m positive semidefinite and

positive definite matrices, respectively,

λk (A)λm (B) ≤ λk (AB) ≤ λk (A)λ1 (B) , (13)

for k = 1, 2, ...,m (see Fact 8.19.17 in Bernstein (2009)).

(iv) Courant-Fischer min-max Theorem: If A is a T × T symmetric matrix, we have, for k = 1, ..., T ,

µk(A) = min
G:dim(G)=T−k+1

max
x∈G:‖x‖=1

x′Ax, (14)

where the minimization is w.r.t. the (T − k + 1)-dimensional linear subspace G of RT (see e.g. Bernstein

(2009)). The max-min formulation states:

µk(A) = max
G:dim(G)=k

min
x∈G:‖x‖=1

x′Ax, (15)

where the maximization is w.r.t. the k-dimensional linear subspace G of RT .

(v) Courant-Fischer formula: If A is a T × T symmetric matrix, we have, for k = 1, ..., T ,

µk(A) = max
x∈F⊥k−1:‖x‖=1

x′Ax, (16)

where F⊥k is the orthogonal complement of Fk with Fk being the linear space spanned by the eigenvectors

associated to the k largest eigenvalues of matrix A, and F0 ≡ RT .

A.2.1 Proof of Proposition 1

a) The OLS estimator of βi in matrix notation is β̂i =
(
X̃ ′iX̃i

)−1
X̃ ′iR̃i, with R̃i = Ii � Ri, where Ii is

the T × 1 vector of indicators Ii,t for asset i, and � is the Hadamard product. We get the vector of residuals

ε̂i = Ri −Xi

(
X̃ ′iX̃i

)−1
X̃ ′iR̃i. Then, we have ε̄i = Ii � ε̂i = MX̃i

R̃i = MX̃i
ε̃i, where ε̃i = Ii � εi

and MX̃i
= IT − PX̃i

, with PX̃i
= X̃i

(
X̃ ′iX̃i

)−1
X̃ ′i. Thus, under M1, we have the decomposition

1χi ε̄i = ε̃i − (1 − 1χi )ε̃i − 1χi PX̃i
ε̃i. From Weyl inequality (11) with k = 0, and the inequality between

matrix norms, we get:

µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≤ µ1

(
1

nT

∑
i

ε̃iε̃
′
i

)1/2

+ I
1/2
1 + I

1/2
2 , (17)
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where:

I1 := ‖ 1

nT

∑
i

(1− 1χi )ε̃iε̃
′
i‖, I2 := ‖ 1

nT

∑
i

1χi PX̃i
ε̃iε̃
′
iPX̃i
‖. (18)

We bound the largest eigenvalue of matrix
1

nT

∑
i

ε̃iε̃
′
i and the remainder terms I1 and I2 in the next two

lemmas.

Lemma 1 Under modelM1 and Assumptions A.2, A.3, A.7, as n, T →∞ such that T/n = o (1), we have

µ1

(
1

nT

∑
i

ε̃iε̃
′
i

)
= Op(C

−2
n,T ).

Lemma 2 Under modelM1 and Assumptions A.1, A.2 and A.4, as n, T → ∞ such that T/n = o (1), we

have: (i) I1 = Op(T
−b̄), for any b̄ > 0; (ii) I2 = Op(χ

4
1,Tχ

2
2,T /T ).

From Inequality (17) and Lemmas 1 and 2, we get ξ = Op(C
−2
n,T ) +Op(

χ4
1,Tχ

2
2,T

T
)− g(n, T ). Then,

from Assumption A.10 on the trimming constants and the properties of penalty function g(n, T ), Proposition

1(a) follows.

b) Let us now consider the caseM2. We have ε̄i = MX̃i
ε̃i and ε̃i = H̃iθi + ũi, where H̃i = Ii � H

and H is the T × m matrix of latent factor values, with m ≥ 1. Hence, we have the decomposition

1χi ε̄i = H̃iθi + ũi − (1 − 1χi )ε̃i − 1χi PX̃i
H̃iθi − 1χi PX̃i

ũi. By using Weyl inequalities (11) and (12) with

k = 0, and the inequality between matrix norms, we get:

µ1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≥ µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)1/2

− µ1

(
1

nT

∑
i

ũiũ
′
i

)1/2

− I1/2, (19)

where I1/2 = I
1/2
1 + I

1/2
3 + I

1/2
4 , term I1 is defined as in (18), and

I
1/2
3 := ‖ 1

nT

∑
i

1χi PX̃i
H̃iθiθ

′
iH̃
′
iPX̃i
‖1/2, I

1/2
4 := ‖ 1

nT

∑
i

1χi PX̃i
ũiũ
′
iPX̃i
‖1/2.

By Lemma 1 applied on ũi instead of ε̃i, we have µ1

(
1

nT

∑
i

ũiũ
′
i

)
= Op(C

−2
n,T ). Moreover, from the

next Lemma 3 and Assumption A.10 on the trimming constants, we get I = op(g (n, T )) underM2.

Lemma 3 Under modelM2 and Assumptions A.1, A.2, A.4, A.5 and A.6, as n, T → ∞ such that T/n =

o (1), we have: (i) I1 = Op(T
−b̄), for any b̄ > 0; (ii) I3 = Op(χ

4
1,Tχ

2
2,T /T ); (iii) I4 = Op(χ

4
1,Tχ

2
2,T /T ).
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The next Lemma 4 provides a lower bound for the first term in the r.h.s. of Inequality (19).

Lemma 4 Under model M2 and Assumptions 1, A.8 and A.9, we have µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C,

w.p.a. 1, for a constant C > 0.

Then, from Inequality (19) and Lemma 4, we get ξ ≥ C/2, w.p.a. 1, and Proposition 1(b) follows.

A.2.2 Proof of Proposition 2

We prove Proposition 2 along similar lines as Proposition 1 by exploiting the Weyl inequalities (11) and (12)

for a generic k.

a) Let us first consider the caseM1(k). We have ε̄i = MX̃i
ε̃i and ε̃i = H̃iθi+ũi, where H̃i = Ii�H and

H is the T ×k matrix of latent factor values. Then, 1χi ε̄i = H̃iθi+ ũi−(1−1χi )ε̃i−1χi PX̃i
H̃iθi−1χi PX̃i

ũi.

From Weyl inequalities (11) and (12), and the inequality between matrix norms, we get:

µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≤ µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)1/2

+ µ1

(
1

nT

∑
i

ũiũ
′
i

)1/2

+ I1/2, (20)

where I1/2 = I
1/2
1 + I

1/2
3 + I

1/2
4 and terms I1, I3 and I4 are defined as in the proof of Proposition 1. Since

model M1(k) is included in model M2 for any k ≥ 1, we get I = op(g (n, T )), from Lemma 3 and

Assumption A.10 on the trimming constants. Moreover, µ1

(
1

nT

∑
i

ũiũ
′
i

)
= Op(C

−2
n,T ) by Lemma 1 with

ũi replacing ε̃i. The first term in the r.h.s. of (20) is bounded by the next lemma.

Lemma 5 Under modelM1(k) and Assumptions A.5 and A.11, we have µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
= Op(C

−2
n,T ).

From Inequality (20) and Lemma 5, we get ξ = Op(C
−2
n,T ) + op(g (n, T )) − g(n, T ). Then, by the

properties of g(n, T ), Proposition 2(a) follows.

b) Let us now consider the caseM2(k). We have ε̄i = MX̃i
ε̃i and ε̃i = H̃iθi + ũi, where H̃i = Ii �H

and H is the T ×m matrix of latent factor values, with m ≥ k+1. By similar arguments as in part a), using

Weyl inequalities (11) and (12), and the inequality between matrix norms, we get:

µk+1

(
1

nT

∑
i

1χi ε̄iε̄
′
i

)1/2

≥ µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)1/2

− µ1

(
1

nT

∑
i

ũiũ
′
i

)1/2

− I1/2. (21)

42



As in part a) we have µ1

(
1

nT

∑
i

ũiũ
′
i

)
= Op(C

−2
n,T ) and I = op(g(n, T )).

Lemma 6 Under modelM2(k) and Assumptions 1(i), 3, A.8 and A.9, we have µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C,

w.p.a. 1, for a constant C > 0.

Then, from Inequality (21) and Lemma 6, we get ξ ≥ C/2, w.p.a. 1, and Proposition 2(b) follows.

A.2.3 Proof of Proposition 3

Let us define the events Ak = {ξ(k) ≥ 0}, k = 0, ..., k0 − 1, and Ak0 = {ξ(k0) < 0}. We have

P [k̂ = k0] = P [{A0 ∩A1 ∩ ... ∩Ak0−1} ∩Ak0 ]. For generic eventsB andC, we have P [B∩C] = P [B]+

P [C] − P [B ∪ C], and we conclude that P [B ∩ C] → 1 if both P [B] and P [C] converge to 1 since

P [B ∪ C] ≥ P [B] and P [B ∪ C] ≥ P [C]. Applying repeatedly this argument to the probability P [{A0 ∩

A1 ∩ ... ∩ Ak0−1} ∩ Ak0 ] yields P [k̂ = k0] → 1 since P [Ak] → 1, k = 0, ..., k0 − 1, and P [Ak0 ] → 1,

underM1(k0) from Proposition 2.

A.2.4 Proof of Lemma 1

We prove:

lim sup
n,T→∞

µ1

(
1

n
Ẽ Ẽ ′
)
≤ C, a.s., (22)

for a constant C < ∞, where Ẽ is the T × n matrix with elements ε̃i,t = Ii,tεi,t. Then, since T/n = o(1),

the statement of Lemma 1 follows. To show (22), we follow similar arguments as in Geman (1980), Yin

et al. (1988), and Bai and Yin (1993).

We first establish suitable versions of the so-called truncation and centralization lemmas. We denote

by Ξ and E the T × n matrices with elements (ξi,t) and (ei,t), where ξi,t = εi,t1{|εi,t| ≤ δ} and ei,t =

ξi,t − E[ξi,t|γi], and δ = δn ↑ ∞ is a diverging sequence as in Assumption A.3. Let us define matrices

Ẽ = (Ii,tei,t) and Ξ̃ = (Ii,tξi,t) by analogy to Ẽ . Lemma 7 shows that we can substitute the truncated ξi,t

and Ii,tξi,t for εi,t and Ii,tεi,t, and Lemma 8 shows that we can substitute the centered Ii,tei,t for the Ii,tξi,t

to show boundedness of the largest eigenvalue in (22). We prove Lemmas 7 and 8 in the supplementary

material.
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Lemma 7 Under Assumption A.2, if δ = δn is such that δ ≥ nβ for β > 2/q, then: (i) P (E 6= Ξ i.o.) = 0,

and (ii) P
(
Ẽ 6= Ξ̃ i.o.

)
= 0, where i.o. means infinitely often for n = 1, 2, ....

Lemma 8 Under Assumption A.2, if δ = δn ↑ ∞ such that
√
T/δq−1 = o(1), then:

µ1

(
1

n
Ξ̃Ξ̃′

)
= µ1

(
1

n
ẼẼ′

)
+ o(1), a.s.

From Lemma 7(ii) and Lemma 8, condition (22) is implied by:

lim sup
n,T→∞

µ1

(
1

n
ẼẼ′

)
≤ C, a.s., (23)

for a constant C <∞. Now, we use that the upper bound (23) is implied by the condition:

∞∑
n=1

E

[(
µ1

(
1

n
ẼẼ′

)
/C

)k]
<∞, (24)

for an increasing sequence of integers k = kn ↑ ∞. To prove the validity of condition (24), we use that:

µ1

(
1

n
ẼẼ′

)k
≤ Tr

[(
1
nẼẼ

′
)k]

=
1

nk

∑
i1,...,ik

∑
t1,...,tk

ẽi1,t1 ẽi2,t1 ẽi2,t2 ẽi3,t2 · · · ẽik−1,tk−1
ẽik,tk−1

ẽik,tk ẽi1,tk ,

for any integer k, where in the summation the indices i1, ..., ik run from 1 to n, and indices t1, ..., tk run

from 1 to T . Therefore, from Assumption A.7:

E

[
µ1

(
1

n
ẼẼ′

)k]
≤ 1

nk

∑
i1,...,ik

∑
t1,...,tk

E
[
|E[ei1,tkei1,t1ei2,t1ei2,t2ei3,t2 · · · eik−1,tk−1

eik,tk−1
eik,tk |γi1 , ..., γik ]|

]
.

Then, we get E

[
µ1

(
1

n
ẼẼ′

)k]
≤M , for the sequence k = kn defined in Assumption A.3. Condition

(24) holds for any C > M , and the conclusion follows.

A.2.5 Proof of Lemma 2

i) We have I2
1 =‖ 1

nT

∑
i(1 − 1χi )ε̃iε̃

′
i‖2 = 1

n2T 2

∑
i,j(1 − 1χi )(1 − 1χj )(ε̃′iε̃j)

2 = 1
n2T 2

∑
i,j

∑
t1,t2

(1 −

1χi )(1− 1χj )Ii,t1Ij,t1Ii,t2Ij,t2εi,t1εj,t1εi,t2εj,t2 . By the Cauchy-Schwarz inequality:

E[I2
1 ] ≤ 1

n2T 2

∑
i,j

∑
t1,t2

E[1− 1χi ]1/4E[1− 1χj ]1/4E[ε8
i,t1 ]1/8E[ε8

j,t1 ]1/8E[ε8
i,t2 ]1/8E[ε8

j,t2 ]1/8.
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Now, we have E[ε8
i,t] ≤ M from Assumption A.2 and E[1− 1χi ] = P [1χi = 0] = O(T−b̄) for any b̄ > 0,

uniformly in i and t (see GOS). Then, I1 = Op(T
−b̄) for any b̄ > 0.

ii) We have:

I2
2 = ‖ 1

nT

∑
i

1χi PX̃i
ε̃iε̃
′
iPX̃i
‖2 =

1

n2T 2

∑
i,j

1χi 1
χ
j Tr

[
PX̃i

ε̃iε̃
′
iPX̃i

PX̃j
ε̃j ε̃
′
jPX̃j

]

=
1

n2T 2

∑
i,j

1χi 1
χ
j

τ2
i,T τ

2
j,T

τ2
T,ij

Tr

[
Q̂−1
x,i

(
X̃ ′i ε̃i√
T

)(
ε̃′iX̃i√
T

)
Q̂−1
x,i Q̂x,ijQ̂

−1
x,j

(
X̃ ′j ε̃j√
T

) (
ε̃′jX̃j√
T

)
Q̂−1
x,jQ̂x,ji

]
,

where Q̂x,ij =
1

Ti,j

∑
t

Ii,tIj,txi,tx
′
j,t and τij,T = T/Tij . By using Tr(AB′) ≤ ‖A‖‖B‖, 1χi ‖Q̂

−1
x,i‖ ≤

Cχ2
1,T , 1χi τi,T ≤ χ2,T , ‖xi,t‖ ≤M (Assumption A.4), τij,T ≥ 1, for all i and t, we get:

I2
2 ≤

Cχ8
1,Tχ

4
2,T

n2T 2

∑
i,j

‖ ε̃
′
iX̃i√
T
‖2‖

ε̃′jX̃j√
T
‖2

=
Cχ8

1,Tχ
4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

Ii,t1Ii,t2Ij,t3Ij,t4εi,t1εi,t2εj,t3εj,t4x
′
i,t1xi,t2x

′
j,t3xj,t4 .

Thus:

E[I2
2 |Ii,T , Ij,T , xi,T , xj,T , γi, γj ]

≤
Cχ8

1,Tχ
4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

‖xi,t1‖‖xi,t2‖‖xj,t3‖‖xj,t4‖|E[εi,t1εi,t2εj,t3εj,t4 |xi,T , xj,T , γi, γj ]|.

Hence E[I2
2 ] ≤

CM5χ8
1,Tχ

4
2,T

T 2
, from Assumptions A.1 and A.4. It follows E[I2

2 ] = O(
χ8

1,Tχ
4
2,T

T 2
), which

implies I2 = Op(
χ4

1,Tχ
2
2,T

T
).

A.2.6 Proof of Lemma 3

i) The proof of Lemma 3(i) is the same as that of Lemma 2(i), since the bound E[|εi,t|8] ≤M applies under

M2 as well (Assumptions A.2 and A.5).

ii) The proof of Lemma 3(ii) is similar to that of Lemma 2(ii), by replacing ε̃i with H̃iθi and using
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Assumption A.6. We have:

I2
2 = ‖ 1

nT

∑
i

1χi PX̃i
H̃iθiθ

′
iH̃
′
iPX̃i
‖2 =

1

n2T 2

∑
i,j

1χi 1
χ
j Tr

[
PX̃i

H̃iθiθ
′
iH̃
′
iPX̃i

PX̃j
H̃jθjθ

′
jH̃
′
jPX̃j

]

=
1

n2T 2

∑
i,j

1χi 1
χ
j

τ2
i,T τ

2
j,T

τ2
T,ij

Tr

[
Q̂−1
x,i

(
X̃ ′iH̃i√
T

)
θiθ
′
i

(
H̃ ′iX̃i√
T

)
Q̂−1
x,i Q̂x,ijQ̂

−1
x,j

(
X̃ ′jH̃j√
T

)

θjθ
′
j

(
H̃ ′jX̃j√
T

)
Q̂−1
x,jQ̂x,ji

]
.

By using Tr(AB′) ≤ ‖A‖‖B‖, 1χi ‖Q̂
−1
x,i‖ ≤ Cχ2

1,T , 1χi τi,T ≤ χ2,T , ‖θi‖ ≤M , ‖xi,t‖ ≤M , τij,T ≥ 1, for

all i and t, we get:

I2
2 ≤

Cχ8
1,Tχ

4
2,T

n2T 2

∑
i,j

‖H̃
′
iX̃i√
T
‖2‖

H̃ ′jX̃j√
T
‖2

=
Cχ8

1,Tχ
4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

Ii,t1Ii,t2Ij,t3Ij,t4h
′
t1ht2x

′
i,t1xi,t2h

′
t3ht4x

′
j,t3xj,t4 .

Thus:

E[I2
2 |IT ,i, IT ,j , γi, γj ] ≤

Cχ8
1,Tχ

4
2,T

n2T 4

∑
i,j

∑
t1,t2,t3,t4

|E[h′t1ht2x
′
i,t1xi,t2h

′
t3ht4x

′
j,t3xj,t4 |γi, γj ]|.

Hence E[I2
2 ] ≤

CMχ8
1,Tχ

4
2,T

T 2
, from Assumption A.6. It follows E[I2

2 ] = O(
χ8

1,Tχ
4
2,T

T 2
), which implies

I2 = Op(
χ4

1,Tχ
2
2,T

T
).

iii) The proof of Lemma 3(iii) is the same as that of Lemma 2(ii), by replacing ε̃i with ũi.

A.2.7 Proof of Lemma 4

We have µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
= max

x∈RT :‖x‖=1
x′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x. From Assumption 1 (i), matrix

1

T
H ′H =

1

T

∑
t

hth
′
t is positive definite w.p.a. 1. Thus, for any a ∈ Rm with ‖a‖ = 1, the vector
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x(a) ∈ RT defined by x(a) =
1√
T
Ha[a′(H ′H/T )a]−1/2 is such that ‖x(a)‖ = 1, w.p.a. 1. Therefore:

µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ max

a∈Rm:‖a‖=1
x(a)′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x(a)

= max
a∈Rm:‖a‖=1

a′

[
1

n

∑
i

(H ′H̃i/T )θiθ
′
i(H̃

′
iH/T )

]
a

a′(H ′H/T )a

= max
a∈Rm:‖a‖=1

a′

[
1

n

∑
i

τ−2
i,T

(
1

Ti

∑
t

Ii,thth
′
t

)
θiθ
′
i

(
1

Ti

∑
t

Ii,thth
′
t

)]
a

a′

(
1

T

∑
t

hth
′
t

)
a

.

We have a′
(

1

T

∑
t

hth
′
t

)
a ≤ µ1

(
1

T

∑
t

hth
′
t

)
, for any a ∈ Rm such that ‖a‖ = 1, and from Assumption

1 (i), we have µ1

(
1

T

∑
t

hth
′
t

)
≤ 2µ1(Σh) w.p.a. 1. Moreover, from GOS, under Assumptions A.8 and

A.9, we have sup
1≤i≤n

‖ 1

Ti

∑
t

Ii,thth
′
t − Σh‖ = op(1), sup

1≤i≤n
|τi,T − τi| = op(1), and 1 ≤ τi ≤ M , for all i.

It follows:

µ1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C max

a∈Rm:‖a‖=1
a′Σh

(
1

n

∑
i

θiθ
′
i

)
Σha = Cµ1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
,

for a constant C > 0. From the inequality (13) for the eigenvalues of a matrix product applied twice, we

have µ1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
≥ µ1

(
1

n

∑
i

θiθ
′
i

)
µm(Σh)2. From Assumption 1 (ii), the conclusion

follows.

A.2.8 Proof of Lemma 5

We start with the case k = 1, and then extend the arguments to the case k ≥ 2.

a) When k = 1, let us consider matrix Ã =
1

nT

∑
i

θ2
i H̃iH̃

′
i = (ãt,s) with elements ãt,s =

1

nT

∑
i

Ii,tIi,sθ
2
i hths

=: at,shths. Further, define matrices A = (at,s) and D = diag(ht : t = 1, ..., T ). Then Ã = DAD, and

both Ã and A are positive semidefinite matrices. In the first step of the proof, we show that:

µ2(Ã) ≤M2µ2(A), (25)
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where M is the constant in Assumption A.5 a).

Let G be a linear subspace of RT and consider the maximization problem max
x∈G:‖x‖=1

x′Ãx = max
x∈G:‖x‖=1

x′DADx.

For x ∈ G such that ‖x‖ = 1, define y = Dx. Then, y ∈ D(G) (the image of space G under the linear map-

ping defined by matrix D) and ‖y‖2 ≤ ‖h‖2∞,T ‖x‖2 = ‖h‖2∞,T ≤M2, where ‖h‖∞,T = max
t=1,...,T

|ht| ≤M

under Assumption A.5 a). Then:

max
x∈G:‖x‖=1

x′Ãx ≤ max
y∈D(G):‖y‖≤M

y′Ay = M2 max
y∈D(G):‖y‖=1

y′Ay. (26)

Suppose that ht 6= 0 for all t = 1, ..., T (an event of probability 1). Then D corresponds to a one-to-

one linear mapping. Let F1 be the eigenspace associated to the largest eigenvalue of matrix A, and define

G = D−1(F⊥1 ), which is a linear subspace of RT with dimension T − 1. Then, from Inequality (26) we get:

max
x∈D−1(F⊥1 ):‖x‖=1

x′Ãx ≤M2 max
y∈F⊥1 :‖y‖=1

y′Ay. (27)

From the Courant-Fisher min-max theorem (14), we have: µ2(Ã) ≤ max
x∈D−1(F⊥1 ):‖x‖=1

x′Ãx, and, from the

Courant-Fisher formula (16), we have: µ2(A) = max
y∈F⊥1 :‖y‖=1

y′Ay. Then, Inequality (27) implies bound

(25).

Finally, let us bound µ2(A). By writing A =
1

nT
(B + C)(B + C)′, where B = (bt,i) and C = (ct,i)

are T × n matrices with elements bt,i = θiĪt and ct,i = θi(Ii,t − Īt), the Weyl inequality (12) implies

µ2(A)1/2 ≤ µ2

(
1

nT
BB′

)1/2

+ µ1

(
1

nT
CC ′

)1/2

= µ1

(
1

nT
CC ′

)1/2

, since matrix BB′ has rank 1.

Now
1

nT
CC ′ =

1

nT
C̃DC̃ ′, where the elements of the T × n matrix C̃ are c̃t,i = Ii,t − Īt and D is a n× n

diagonal matrix with elements θ2
i . From Assumption A.5b), we have µ1

(
1

nT
CC ′

)
≤M2µ1 (W ) , where

the elements of matrix W =
1

nT
C̃C̃ ′ are wt,s =

1

nT

∑
i

(
Ii,t − Īt

) (
Ii,s − Īs

)
. Thus, from Assumption

A.11, we get µ2(A) = Op(C
−2
n,T ). From bound (25), the conclusion follows.

b) Let us now consider the case k ≥ 1. Consider the matrix Ã =
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i = (ãt,s) with ele-

ments ãt,s =
1

nT

∑
i

Ii,tIi,sθ
′
ihtθ

′
ihs =

∑
m,l

(
1

nT

∑
i

Ii,tIi,sθi,mθi,l

)
ht,mhs,l =:

∑
m,l

a
(m,l)
t,s ht,mhs,l,where

summation w.r.t. m, l is from 1 to k. Then, we have Ã =
∑

m,lD
(m)A(m,l)D(l) = DAD′, where A(m,l) =

[a
(m,l)
t,s ], D(m) = diag(ht,m : t = 1, ..., T ), the T × (Tk) matrix D is defined by D = [D(1) : ... : D(k)] and

A is the (Tk)× (Tk) block matrix with blocks A(m,l).
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Lemma 9 Let

 A B

B′ D

 be a positive definite (or semi-definite) block matrix. Then,

 A B

B′ D

 ≤
2

 A 0

0 D

 , where the inequality is w.r.t. the ranking of symmetric matrices.

By repeated application of Lemma 9, we get: A ≤ 2k−1


A(1,1)

. . .

A(k,k)

 . This implies Ã ≤

2k−1
∑

mD
(m)A(m,m)D(m). Since two symmetric matrices are ranked if, and only if, their corresponding

eigenvalues are ranked, we get:

µk+1(Ã) ≤ 2k−1µk+1

(∑
m

D(m)A(m,m)D(m)

)
. (28)

Moreover, we use the next lemma.

Lemma 10 For k symmetric matrices A1, A2, ... Ak, µk+1(A1 + ...+Ak) ≤ µ2(A1) + ...+ µ2(Ak).

From Inequality (28) and Lemma 10, we get: µk+1(Ã) ≤ 2k−1
∑

m µ2

(
D(m)A(m,m)D(m)

)
. By using

the arguments deployed for the case k = 1 in part a), we have µ2(D(m)A(m,m)D(m)) ≤ M2µ2(A(m,m)).

Therefore, we get µk+1(Ã) ≤ 2k−1M2
∑

m µ2(A(m,m)). As in part a), the Weyl inequality and Assump-

tions A.5b) and A.11 imply µ2(A(m,m) ≤M2µ1(W ) = Op(C
−2
n,T ). Thus µk+1(Ã) = Op(C

−2
n,T ).

A.2.9 Proof of Lemma 6

From the Courant-Fisher max-min Theorem (15), we have:

µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
= max
G:dim(G)=k+1

min
x∈G:‖x‖=1

x′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x, (29)

where the maximization is w.r.t. the linear (k + 1)-dimensional subspace G of RT . From Assumption 1 (i),

under modelM2(k) matrix H/
√
T has full column-rank equal to m, w.p.a. 1, with m ≥ k + 1. Thus, for

any linear subspace A of Rm with dimension k + 1, the set GA :=

{
x ∈ RT : x =

1√
T
Ha, a ∈ A

}
is a
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linear subspace of RT of dimension k + 1. We deduce from (29):

µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ max

A:dim(A)=k+1
min

x∈GA:‖x‖=1
x′

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
x

= max
A:dim(A)=k+1

min
a∈A:‖a‖=1

a′

(
1

n

∑
i

H ′H̃i

T
θiθ
′
i

H̃ ′iH

T

)
a

a′
(

1

T
H ′H

)
a

.

By similar arguments as in the proof of Lemma 4, under Assumptions A.8 and A.9, we get the inequality:

µk+1

(
1

nT

∑
i

H̃iθiθ
′
iH̃
′
i

)
≥ C max

A:dim(A)=k+1
min

a∈A:‖a‖=1
a′Σh

(
1

n

∑
i

θiθ
′
i

)
Σha,

w.p.a. 1. By the max-min Theorem, the r.h.s. is such that:

max
A:dim(A)=k+1

min
a∈A:‖a‖=1

a′Σh

(
1

n

∑
i

θiθ
′
i

)
Σha = µk+1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
.

Moreover, from inequality (13) for the eigenvalues of product matrices applied twice, we have

µk+1

(
Σh

(
1

n

∑
i

θiθ
′
i

)
Σh

)
≥ µk+1

((
1

n

∑
i

θiθ
′
i

))
µm(Σh)2. Then, from Assumptions 1 (i) and 3,

the conclusion follows.

Appendix 3 Check of Assumptions A.1 and A.3 under block dependence

In this appendix, we verify that the high-level Assumptions A.1 and A.3 on serial and cross-sectional de-

pendences of error terms are satisfied under a block-dependence structure in a serially i.i.d. framework.

Assumption BD.1 The error terms ut(γ) are i.i.d. over time with E[ut(γ)] = 0, for all γ ∈ [0, 1]. For

any n, there exists a partition of the interval [0, 1] into bn ≤ n subintervals of approximate length Bn =

O(1/bn), such that ut(γ) and ut(γ
′) are independent if γ and γ′ belong to different subintervals, and

b−1
n = O(n−α) as n→∞, where α ∈ (0, 1].

Assumption BD.2 The error terms (ut(γ)), the factors (ft), and the instruments (Zt), (Zt(γ)), γ ∈ [0, 1],

are mutually independent.
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The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unob-

served industry-specific factors independent among industries and over time, as in Ang et al. (2010). In

empirical applications, blocks can match industrial sectors. Then, the number bn of blocks amounts to a

couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately

nBn assets in each block, when n is large. In the asymptotic analysis, Assumption BD.1 requires that the

number of independent blocks grows with n fast enough. Within blocks, covariances do not need to vanish

asymptotically.

Lemma 11 Under Assumptions A.2 and BD.1: (i) Assumption A.1 holds. (ii) Assumption A.3 holds if

n ≥ T γ̄ and:

α > 4/q, γ̄ >
1

α− 4/q
. (30)

The conditions in (30) provide a restriction on the relative growth rate of the cross-sectional and time-

series dimensions in terms of: (i) the strength of cross-sectional dependence (via α), and (ii) the existence

of higher-order moments of the error terms (via q). We can have γ̄ (arbitrarily) close to 1, if cross-sectional

dependence is sufficiently weak and the tails of the errors are sufficiently thin.
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