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Abstract

We develop a new theory of exclusive dealing. The theory rests on two
realistic assumptions: that �rms are imperfectly informed about demand,
and that a dominant �rm has a competitive advantage over its rivals.
In this setting, exclusive contracts tend to be pro-competitive when the
dominant �rm�s competitive advantage is small, but are anti-competitive
when it is more pronounced. In this latter case, the dominant �rm can
pro�tably use exclusive dealing as a means to increase its market share
at the expenses of its rivals, but without necessarily driving them out of
the market, or impeding their entry. We discuss the implications of the
results for competition policy.
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1 Introduction

Exclusive dealing has long been a controversial practice under the antitrust
laws. Typically, the sort of situation that antitrust authorities are concerned
with involves two main actors:

(i) a dominant �rm that controls a substantial share of the market and has
entered into some kind of exclusive arrangement with its customers, and

(ii) a smaller competitor (or group of competitors) that has been active in the
industry for some time and in principle could have used exclusive contracts, too,
but apparently has not.1

Until now, such situations have proven surprisingly resistant to formal analy-
sis. In this paper, we propose a new theory of exclusive dealing that naturally
explains those stylised facts. In the model, the dominant �rm competes in non-
linear prices with rivals supplying substitute goods. By requiring buyers not to
purchase from its competitors, the �rm can boost the demand for its product,
raising its market share and pro�t at the expenses of rivals and customers alike.
Crucially, for the strategy to be pro�table it is not necessary that the dom-

inant �rm�s existing rivals are driven out of the market, or that the entry of
new ones is impeded. This marks a key di¤erence with alternative theories
(discussed below) that view exclusive dealing as a means to deprive a rival of
economies of scale. Ours is rather more reminiscent of analyses that pre-date
the Chicago-school critique, and that in the last decades have fallen into disre-
pute as a result of heavy attacks by the Chicago school.2 We show that those
analyses can be vindicated under realistic assumptions.
Our two key assumptions are that �rms are incompletely informed about

demand, and that the dominant �rm has a sizeable competitive advantage over
its rivals in terms of lower costs, better products, or a combination of the two.
Both assumptions are necessary for exclusive contracts to be pro�table and
anti-competitive in our model.

1A recent instance is the Intel case, which has spurred extensive litigation on both sides of
the Atlantic and has led to the largest �ne ever seen in the history of European competition
policy, over a billion Euro. Intel holds a market share of not more than 80%, and its main
competitor, AMD, has been operating for years in the microchip sector. A similar pattern
recurs in classic antitrust cases such as Standard Fashion (where the incumbent had a market
share of around 40%) or Brown Shoe (which controlled less than 10% of the relevant market).

2A typical Chicago-school critique would run as follows:

The theory of exclusionary tactics underlying the law appears to be that �rm X,
which already has ten percent of the market, can sign up more than ten percent
of the retailers, perhaps twenty percent, and, by thus foreclosing rivals from
retail outlets, obtain a larger share of the market. But one must then ask why
so many retailers are willing to limit themselves to selling X�s product. Why do
not ninety percent of them turn to X�s rivals? Because X has greater market
acceptance? But then X�s share of the market would grow for that reason and
the requirements contracts have nothing to do with it. Because X o¤ers them
some extra inducement? But that sounds like competition. It is equivalent to a
price cut, and surely X�s competitors can be relied upon to meet competition.
(Bork and Bowman, 1965, p. 366-7)

See also Bork (1978) and Posner (1976).
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Under complete information, a �rm would extract, through non-linear pric-
ing, all the surplus in excess of what the buyer can obtain by trading with the
�rm�s competitors. Consequently, the �rm would o¤er a contract that max-
imises such surplus �a property known as bilateral e¢ ciency.3 If buyers have
a preference for variety so that e¢ ciency requires that they purchase various
products, exclusive dealing cannot be observed in equilibrium. However, this
argument fails with incomplete information about demand.4 Suppose, for ex-
ample, that the buyer�s demand can be either high or low, but the �rm does
not know which state is realised. The �rm will then be unable to extract all
the surplus when demand is high. Furthermore, in order to extract more sur-
plus in the high-demand state, it must distort the contract that applies in the
low-demand one. If the �rm is restricted to non-linear pricing, all it can do is
to reduce its own quantity below the e¢ cient level. With exclusive contracts,
however, the �rm can set its rivals�volume to zero. By shifting the cost of the
distortion onto the rivals, this often proves to be the most pro�table strategy.
Against this backdrop, the e¤ects of exclusive contracts crucially depend on

the degree of asymmetry among the �rms. When the dominant �rm�s compet-
itive advantage is small, exclusive contracts actually intensify competition as
�rms will now compete for exclusives, i.e. in utility space, where the intensity
of competition is not attenuated by product di¤erentiation. Competitors of
comparable size are therefore caught in a prisoner�s dilemma: they have a uni-
lateral incentive to o¤er exclusive contracts, but would actually bene�t if such
contracts were prohibited. These results con�rm and generalise our �ndings in
a related article (Calzolari and Denicolò, 2013), where the analysis is restricted
to the case of identical �rms.
However, antitrust authorities and the courts are rarely concerned with

equally sized competitors that compete vigorously; more often, they are con-
cerned with dominant �rms facing smaller rivals. In this case, things are radi-
cally di¤erent. If the dominant �rm�s competitive advantage is su¢ ciently large,
its less e¢ cient rivals may not be able to compete for exclusives e¤ectively. Fur-
thermore, the information rent that the buyer obtains when the dominant �rm
acts as a monopolist may actually be larger than the rent that he could obtain
by trading only with the dominant �rm�s competitors, even if the latter price
as aggressively as possible. If this is so, then the dominant �rm can achieve
exclusion at no cost and be completely sheltered from competition. Exclusive
contracts are therefore pro�table for the dominant �rm. When the competitive
advantage is smaller, but still sizeable, exclusive dealing entails a cost (as buyers
must now be compensated for accepting it) but it may still be a pro�table way
of foreclosing rivals.
In any case, in the absence of economies of scale rivals will be foreclosed

3See Bernheim and Whinston (1998) and O�Brien and Sha¤er (1997), who also highlight
that bilateral e¢ ciency must hold even if buyers have some bargaining power, as long as
bargaining is e¢ cient.

4Full extraction of surplus may also be impeded by the �rm being restricted to linear
pricing �a case analysed by Mathewson and Winter (1987). For an excellent analysis of the
role of contractual complexity in exclusive dealing arrangements, see Spector (2011).
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only from low-demand segments of the market. The reason for this is that
when demand is high the most pro�table strategy for the dominant �rm is to
maximise the surplus and then extract it as best as it can, just as under complete
information (a no-distortion-at-the-top property).
Besides staying active and continuing to sell to high-demand buyers, in our

model rivals actively resist being foreclosed from low-demand segments of the
market. They do so by reducing their non-exclusive prices, and in some cases
also by o¤ering exclusive contracts in their turn. However, the dominant �rm
can exploit its competitive advantage to o¤er exclusive deals so attractive that
they cannot be matched by rivals. Thus, even when rivals o¤er exclusive con-
tracts, only those o¤ered by the dominant �rm are accepted in equilibrium.
Buyers bene�t from exclusive contracts when the dominant �rm�s competi-

tive advantage is small, but are harmed when it is large, both in terms of higher
prices and reduced variety. A classic Chicago-school question is: Why do buy-
ers sign exclusive contracts if they get harmed by doing so? The answer is,
that these are the best contracts among those that are actually o¤ered to them.
Buyers are harmed with respect to the hypothetical equilibrium that would
arise if exclusive contracts were prohibited. However, when exclusive contracts
are permitted �rms change their entire pricing strategies, and so non-exclusive
contracts are no longer available at the same conditions.
The di¤erent e¤ects of exclusive contracts with small and large asymmetry

re�ect a more fundamental di¤erence in the way they are pinned down in equi-
librium. When �rms are symmetric, or nearly so, the structure of exclusive
contracts is entirely determined by competition in utility space. Bertrand-like
arguments imply that exclusive prices must then re�ect the �rms�costs. When
the competitive advantage is large, by contrast, the dominant �rm, being shel-
tered from the competitive pressure from rivals, can freely design its exclusive
contracts so as to better screen the buyers. The resulting optimal screening
problem is non standard in nature. It can be formulated as a multi-stage op-
timal control problem, and the solution technique that we develop may be of
independent technical interest.
We close the introduction with a brief discussion of the related literature.

To the best of our knowledge, two papers rely on asymmetric information to
provide a rationale for exclusive contracts: Bernheim and Whinston (1998, sect.
V), who propose a model of moral hazard, and Martimort (1996), who, like us,
focuses on adverse selection. However, he posits symmetric �rms and models
the exclusive dealing case by assuming that each �rm has access to a di¤erent
retailer. Therefore, in his model �rms do not really compete for exclusives.5

Other post-Chicago theories that regard exclusive contracts as anti-competitive
typically assume complete information and rely on the absence from the con-
tracting game of some of the agents that are a¤ected by exclusivity clauses.
The practical relevance of those theories depends on the realism of this crucial
assumption. For example, in Aghion and Bolton (1987) and Rasmusen, Ram-

5Majumdar and Sha¤er (2009) also propose an adverse selection model, but they focus on
market-share discounts rather than exclusive contracts.
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seyer and Wiley (1991) the missing agent is the dominant �rm�s competitor �
in those models, this is a potential entrant that initially cannot contract with
the buyers. Thus, these theories cannot apply to the many antitrust cases in
which the dominant �rm�s competitors are already active. In Bernheim and
Whinston (1998, sect. IV), the agents who are missing from the contracting
stage are future buyers whose demand is essential for the dominant �rm�s rival
to achieve economies of scale. Thus, their explanation applies to markets where
a substantial increase in demand is expected in the not too distant future.
Furthermore, theories that rely on the absence of a¤ected agents from the

contracting stage explicitly or implicitly assume that players are committed to
the signed contracts.6 In fact, should the missing agents materialise, the parties
would have an incentive to renegotiate �a point that has been forcefully made by
Spier and Whinston (1995). In some cases, for exclusion to be prevented it may
su¢ ce that exclusivity clauses may be breached upon payment of reasonable
damages (Simpson and Wickelgren, 2007).
Finally, theories that view exclusive dealing as a means to deprive a rival of

economies of scale are faced with the di¢ culty that exclusivity clauses may not
be necessary for that purpose. The same outcome can sometimes be achieved
by simple non-linear pricing, e.g. via quantity forcing or quantity discounts. If
this is so, then a prohibition of exclusive contracts might be easily overcome
and could even be welfare reducing.
While these di¢ culties may not be insurmountable, they limit the applica-

bility of existing anti-competitive theories in antitrust practice.7 The theory
developed in this paper does not su¤er from any of these drawbacks. It is
consistent with the stylised facts mentioned above, including the fact that all
involved parties can often participate in the contracting game. It produces an
equilibrium in which exclusive contracts are (trivially) renegotiation proof and
need not be long-term to be e¤ective, as they play no commitment role. It
does not rely on the dominant �rm�s rivals being driven out of the market �so
no proof of eviction or recoupment is needed. Finally, it uses as a benchmark
the non-linear pricing equilibrium, which already allows for quantity discounts
(including quantity forcing).
In sum, our theory seems more broadly applicable than alternative anti-

competitive explanations. Having said this, it must be stressed that the anti-
competitive e¤ects that we uncover must be weighted not only against the possi-
ble pro-e¢ ciency rationales for exclusive contracts well known in the literature,8

6This is re�ected in the emphasis that antitrust authorities and the courts sometimes place
on the duration of exclusive contracts.

7See Whinston (2008) for a discussion. Sometimes one di¢ culty can only be addressed at
the cost of exacerbating others. For example, Chen and Sha¤er (2010) develop an interesting
variant of the Rasmusen, Ramseyer and Wiley (1991) model, in which the incumbent uses
as exclusionary devices market-share discounts rather than exclusivity clauses. They show
that market-share discounts can be anti-competitive even if the entrant eventually enters,
which makes their theory applicable to a broader set of cases. However, they assume that the
incumbent can pre-commit to future prices �an assumption that is not made by Rasmusen,
Ramseyer and Wiley (1991).

8See Whinston (2008) for an excellent discussion of these rationales. The pro-competitive
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but also against the pro-competitive e¤ects that arise in our model when �rms
are not too asymmetric.
The rest of the paper is structured as follows. Section 2 sets out the model. In

section 3, we discuss how the possibility of o¤ering exclusive contracts changes
the formulation of the �rm�s pricing problem. Section 4 analyses the case in
which the dominant �rm faces a competitive fringe, and section 5 the case of
duopoly. Section 6 summarises the paper�s results and discusses their implica-
tions for competition policy. Proofs are in an Appendix.

2 The model

We consider a one-period model of price competition. There are two substitute
goods, A and B. Good A is supplied by �rm A, whereas good B may be supplied
either by �rm B (the duopoly model) or by a competitive fringe (the competitive
fringe model).
A buyer who buys qA units of good A and qB units of good B obtains a

bene�t, measured in monetary terms, of u (qA; qB ; �). The reservation payo¤,
u (0; 0; �), is normalised to zero. We may think of buyers as downstream �rms,
and of u as their gross pro�ts,9 or as �nal consumers, with u as their utility
function. The function u is symmetric and smooth. It is initially increasing
in qA and qB , but in view of our normalisation of costs (see below) we assume
that there exists a �nite satiation point. The goods are imperfect substitutes, in
the sense that uqiqi (qA; qB ; �) < uqiqj (qA; qB ; �) < 0, where subscripts denote
partial derivatives. This implies that buyers have a preference for variety.
The one-dimensional parameter � is the buyer�s private information; it is

distributed over an interval [�min; �max] according to a distribution function
F (�) with density f(�). We assume that higher values of � correspond to higher
demand and make the single-crossing assumption u�qi (qA; qB ; �) � 0.
We assume that �rm A (the dominant �rm) has a competitive advantage

in terms of lower cost, better quality, or both. Firm A�s marginal production
cost is normalised to zero. With cost asymmetry, the unit production cost of
product B is c > 0.10 With asymmetric demand, the buyer�s payo¤ becomes
u (qA; qB ; �)� cqB (with B�s cost now set to zero). In this case, the parameter c
can be interpreted as an index of vertical product di¤erentiation, with product

explanations of exclusive contracts are especially plausible when such contracts are used also
by the dominant �rm�s competitors. When they are not, however, e¢ ciency-enhancing expla-
nations may be viewed with some skepticism.

9 In this interpretation, our analysis literally requires that downstream �rms operate in
separate markets and do not interact strategically with each other. Otherwise, contractual
externalities might complicate the analysis: see, for instance, Fumagalli and Motta (2006),
Simpson and Wickelgren (2007) and Wright (2009). However, our insights might apply also
to situations in which downstream �rms compete, as long as they have some market power.
10We abstract from �xed costs, and hence from economies of scale. As long as all �rms

remain active, this is with no loss of generality. Furthermore, in the competitive fringe model
one can interpret c as the minimum average cost of a number of identical �rms, thus allowing
for economies of scale at the �rm level.
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A being of better quality, and hence having a larger demand, than product B.
The two formulations are equivalent, and in what follows we shall stick to the
cost interpretation.
Firms compete by simultaneously and independently o¤ering menu of con-

tracts. We distinguish two di¤erent modes of competition according to the type
of contract that the �rms may o¤er. With simple non-linear pricing, the pay-
ment to each �rm depends only on its own quantity. A strategy for �rm i then is
a function Pi(qi) in which qi is the quantity �rm i is willing to supply and Pi(qi)
is the corresponding total payment it asks. With exclusive contracts, by con-
trast, a strategy for �rm i comprises two price schedules, PEi (qi) and P

NE
i (qi):

The former applies to exclusive contracts (qj = 0), the latter to non exclusive
ones (qj > 0).11

Buyers have no bargaining power, but are large enough so that �rms can
monitor whether they purchase from their competitors. Buyer � observes the
�rms�o¤ers and then chooses the quantities fqA(�); qB(�)g that maximise his
net payo¤. The buyer�s equilibrium payo¤, net of payments to the �rms, is
denoted by U(�).
The full information, �rst-best quantities aren

qfbA (�); q
fb
B (�)

o
= arg max

qA;qB
[u (qA; qB ; �)� cqB ] :

To make the analysis interesting, we assume that qfbB (�max) > 0; if this condition
is violated, good B should not (and would not) be produced in equilibrium.
To simplify the exposition, we assume that the market is uncovered. This

guarantees that in equilibrium the marginal buyer�s demand is negligible, and
so the price schedules which apply to the marginal buyer cannot involve any
�xed fee or subsidy.12 A su¢ cient condition for the market to be uncovered
is that qfbA (�min) = 0 and qfbA (�) > 0 for all � > �min.13 Additional regularity
assumptions, which help simplify the analysis, will be introduced later.
In order to get explicit solutions, we shall at times focus on a uniform-

quadratic speci�cation of the model. In this speci�cation, the parameter � is
assumed to be uniformly distributed over the interval [0; 1], and the function u
is taken to be:

u (qA; qB ; �) = �(qA + qB)�
1� 

2

(q2A + q
2
B)� 
qAqB : (1)

The parameter 
 captures the degree of substitutability among the products: it
ranges from 1

2 (perfect substitutes) to 0 (independent goods). The factor
1�

2

11To guarantee that the buyer�s maximisation problem has a solution, we assume that each
price schedule Pi must be non decreasing in qi (a free disposal assumption which also implies
that price schedules must be di¤erentiable almost everywhere), that it satis�es Pi(0) = 0, and
that it is upper semi-continuous.
12This property was �rst noted by Wilson (1994) for the case of monopoly non-linear pricing,

and Martimort and Stole (2009) for the case of duopoly. (The marginal buyer is the lowest
type that purchases a positive quantity of at least one good.)
13 In fact it su¢ ces that there exists a � 2 [�min; �max] such that qfbA (�) = 0. If this holds,

one can always choose �min as the largest � for which q
fb
A (�) = 0 and re-scale the distribution

function accordingly.
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in the middle term in (1) prevents changes in 
 from a¤ecting the size of the
market.14 In the uniform-quadratic speci�cation, the condition qfbB (�max) > 0
becomes c < 1�2


1�
 .

3 The pricing problem

Before comparing the equilibrium with and without exclusive contracts, it may
be instructive to discuss how the possibility of using exclusive contracts changes
the formulation of the �rms� optimal pricing problem. To �x ideas, in this
section we shall focus on the dominant �rm�s best response. However, the same
approach applies, in the duopoly model, to its rival.

3.1 Non-linear pricing

When exclusive contracts are prohibited, for any given price schedule o¤ered by
its rivals, PB(qB), the dominant �rm must solve a fairly standard problem of
non-linear pricing. The only twist is that buyers can also purchase a substitute
good, so they behave as if they had an �indirect utility function�

v(qA; �) = max
qB�0

[u (qA; qB ; �)� PB(qB)] ; (2)

which is the maximum payo¤ that buyer � can obtain by purchasing qA and
then trading optimally with the dominant �rm�s rivals.15

Let us brie�y review the solution technique with non-linear pricing. The �rm
maximises its pro�t

R �max
�min

PA(qA(�))f(�)d�, where qA(�) = argmaxqA�0[v(qA; �)�
PA(qA)]. By invoking the Revelation Principle,16 we can reformulate the prob-
lem as if the �rm could control qA(�) directly (i.e. a direct mechanism). Using
the change of variables U(�) = v(qA(�); �) � PA(qA(�)), the �rm�s objective
function becomes maxqA(�)

R �max
~�

[v(qA(�); �)� U(�)] f(�)d�, where ~� � �min is
the lowest type served by the �rm (chosen optimally). Provided that the indi-
rect utility function satis�es the single-crossing condition v�qA(qA; �) � 0, the
incentive compatibility constraint qA(�) = argmaxqA�0[v(qA; �) � PA(qA)] is
equivalent to the requirements that U 0(�) = v�(qA; �) and that qA(�) is non-
decreasing. The participation constraint is U(�) � v(0; �), as the buyer can

14As argued by Shubik and Levitan (1980), this rules out spurious e¤ects in the comparative
statics analysis.
15The indirect utility function is similar to residual demand in models of linear pricing.
16The Revelation Principle applies even if principals (i.e. �rms) compete, since we are

focusing on a �rm�s best response to its rivals�given strategies.
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choose to deal with the �rm�s competitors only.17 The program then becomes

max
qA(�)

Z �max

~�

[v(qA(�); �)� U(�)] f(�)d�

s.t.
dU

d�
= v�(qA(�); �) (3)

U(�) � v(0; �)

and qA(�) non-decreasing. This is an optimal control program with qA(�) as the
control variable and U(�) as the state variable. Once the optimal quantity has
been found, one can then recover the tari¤ that supports it.

3.2 Exclusive contracts

When exclusive contracts are permitted, the dominant �rm can control not only
qA(�), but also whether qB(�) may be positive or must be nil. This leads to a
non standard screening problem, and one that calls for new methods of analysis.
In general, the �rm can set qB(�) to nil (i.e. impose an exclusivity clause) for

some types, and allow qB(�) to be positive for others. However, it is convenient
to consider �rst the constrained problems in which qB(�) may be positive for
all types, or must be nil for all types.
When qB(�) may be positive for all types, the �rm�s problem is similar to

(3), except that the reservation utility is now maxfURA (�); v(0; �)g, where18

URA (�) = max
qB�0

�
u (0; qB ; �)� PEB (qB)

�
:

The dominant �rm�s problem then becomes (following the same steps as above)

max
qA(�)

Z �max

~�

[v(qA(�); �)� U(�)] f(�)d�

s.t.
dU

d�
= v�(qA(�); �) (4)

U(�) � maxfURA (�); v(0; �)g

and qA(�) non-decreasing. We denote by qNEA (�) the solution to this problem.
Next consider the constrained program in which the �rm imposes an exclu-

sivity clause on all buyers. Since qB(�) is thereby set to zero, the �rm�s problem
is

max
qA(�)

Z �max

~�

[u(qA(�); 0; �)� U(�)] f(�)d�

s.t.
dU

d�
= u�(qA(�); 0; �) (5)

U(�) � maxfURA (�); v(0; �)g
17Thus, the buyer�s reservation payo¤ when dealing with the �rm can depend on his type.

For a systematic treatment of type-dependent participation constraints in monopolistic screen-
ing problems see Jullien (2000).
18 In equilibrium, it turns out that PEB (qB) � PNEB (qB), so URA (�) � v(0; �).
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and qA(�) non-decreasing. We denote by qEA(�) the solution to problem (5).
Compared with problem (4), the indirect utility function v(qA(�); �) is now

replaced by u(qA(�); 0; �). Apart from the type-dependent participation con-
straint, the dominant �rm can therefore behave as a monopolist. Notice that
by construction we have u(qA(�); 0; �) � v(qA(�); �), re�ecting the fact that ex-
clusive contracts impose an unnecessary cost on buyers and thus reduce total
surplus. However, they may allow a better screening: if high-type buyers value
the opportunity to purchase both products more than low types, they have more
to lose from accepting exclusive contracts.19

In fact, as noted above, the �rm can impose an exclusivity clause only on
subsets of buyers. Thus, one may view the �rm as faced with a multi-stage
optimal control problem involving two di¤erent control systems, (4) and (5), and
the possibility of switching from one system to the other. To solve this problem,
one needs to choose a sequence of control systems, the switching points, and
the control function qA(�) for each system that maximise the �rm�s pro�t.20

An additional incentive compatibility constraint that must be satis�ed is that
the control system chosen for a type must guarantee to him a (weakly) greater
utility than the other. This re�ects the fact that the �rm just o¤ers both
exclusive and non-exclusive contracts, and buyers freely choose which type of
contract to sign.21 This additional constraint di¤erentiates our problem from
other multi-stage optimal control problems analysed in the literature so far.
Let us start from the choice of the optimal control function qA(�). We have:

Lemma 1 Suppose that qNEA (�) and qEA(�) are strictly increasing and that the
participation constraints bind only in the �rst stage of the problem (i.e., for the
lowest types). Then, for any possible sequence of control systems and switching
points, the optimal control function for the multi-stage problem coincides with
qNEA (�) whenever problem (4) applies, and with qEA(�) whenever problem (5)
applies.

Lemma 1 means that the optimal control function for the multi-stage prob-
lem is formed by appropriately joining the control functions qNEA (�) and qEA(�)
that are optimal for problems (4) and (5) taken separately. This separation
property is remarkable: in general, the solution to a multi-stage problem de-
pends on boundary conditions that may be a¤ected by the sequence of control
systems and the switching points.
19From this viewpoint, exclusive dealing resembles the strategy of damaging one�s goods

analysed by Deneckere and McAfee (1996). One di¤erence, however, is that with exclusive
contracts most of the cost of the damage is borne by the �rm�s rivals, which makes the strategy
more attractive.
20For an early economic analysis of a two-stage optimal control problem, in which there

is only one possible switch between one control system and the other, see Tamiyama (1985).
In our problem, the order in which the control problems apply is not pre-speci�ed and, in
principle, there could be multiple switches.
21The participation constraints guarantee that the buyer prefers to trade with the �rm over

trading with its competitors only. The standard incentive compatibility constraints guarantee
that, within each menu of contracts (non-exclusive and exclusive), each buyer chooses the one
intended for him. In addition, however, each buyer must choose the type of contract (non-
exclusive or exclusive) intended for him, whence the new incentive compatibility constraint.
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Mathematically, the separation property follows from the fact that the state
variable enters linearly, and with the same coe¢ cient, in both control problems
(4) and (5).22 This implies that at the optimum, the costate variable is inde-
pendent of both the exact sequence of the control systems, and the switching
points.
Heuristically, when the only reason why the contract for a given type � is

distorted is to reduce the information rent for higher types, all that matters is
how many higher types there are relative to the current type, i.e. the hazard
rate 1�F (�)

f(�) . The exact contracts o¤ered to higher (and lower) types do not
matter.
The separation property greatly simpli�es the analysis. Among other things,

it may help determine the optimal sequence of control problems in speci�c ex-
amples. To see how, notice that the slope of the equilibrium rent function U(�)
(which by the standard incentive compatibility constraints is v�(qNEA (�); �) un-
der non-exclusivity and u�(qEA(�); 0; �) under exclusivity) can be calculated once
the optimal functions qNEA (�) and qEA(�) have been found. Thus, one can ver-
ify whether the equilibrium rent function for one system is steeper or �atter
than the other. For example, in the uniform-quadratic model the equilibrium
rent function U(�) turns out to be always steeper under non-exclusivity than
under exclusivity. This implies that the optimal sequence is necessarily from
exclusivity (for low-demand types) to non-exclusivity (for high-demand ones).
Let us now turn to the optimal switching points. We denote by PNEA (qA)

and PEA (qA) the non-exclusive and exclusive tari¤s, respectively.

Lemma 2 At any optimal switching point �̂; the following conditions must hold:

u(qEA(�̂); 0; �̂)� PEA (qEA(�̂)) = v(qNEA (�̂); �̂)� PNEA (qNEA (�̂)); (6)

and
PNEA (qNEA (�̂))� PEA (qEA(�̂))
v�(qNEA (�̂); �̂)� u�(qEA(�̂); 0; �̂)

=
1� F (�̂)
f(�̂)

: (7)

Since the tari¤s PNEA (qA) and PEA (qA) must implement the optimal quan-
tity schedules qNEA (�) and qEA(�), they are pinned down fully, except possibly
for constant terms. Furthermore, the constant term of the tari¤ that applies to
the marginal buyer ~� must vanish, as we have noted above. Therefore, the two
conditions (6) and (7) determine the �rst switching point �̂ and the constant
term of the tari¤ that applies for � > �̂. If there are more switching points, con-
ditions (6) and (7) apply recursively. In this way, they provide all the conditions
that are needed to �nd a complete solution.23

22This simple mathematical structure is shared by many screening problems, which suggests
that the separation property applies well beyond the speci�c non-linear pricing problem at
hand.
23 In the duopoly model, equilibrium switching points are jointly determined by the pricing

choices of the two �rms. The corresponding equilibrium conditions will be derived below.
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Condition (6) captures the new incentive compatibility constraint mentioned
above. Condition (7) re�ects the �rm�s optimisation.24 It implies that marginal
pro�tability always jumps up at a switching point. The economic intuition is
simple. Consider an increase in the constant term of the tari¤ that applies for
� > �̂. (Notice that if the entire price schedule to the right of �̂ is shifted up by
a constant, local incentive compatibility is preserved, and hence the equilibrium
quantities in that interval do not change.) Clearly, this move has a direct,
positive e¤ect on pro�ts extracted from higher types, and an indirect e¤ect due
to the resulting increase in �̂. The indirect e¤ect would vanish if PNEA (qNEA (�̂)) =

PEA (q
E
A(�̂)). At the optimum, however, the indirect e¤ect must be negative, as

it must just o¤set the positive, direct e¤ect. This implies that pro�tability must
be greater to the right than to the left of the switching point. For example, when
the denominator of the left-hand side of (7) is positive, the system optimally
switches from exclusivity to non-exclusivity, and the dominant �rm obtains
more pro�ts, at the margin, by serving type �̂ under non-exclusivity than under
exclusivity.
We now apply these ideas to the competitive fringe and the duopoly model.

4 Competitive fringe

In this section, we focus on the case in which the dominant �rm A faces a com-
petitive fringe. Besides often being realistic, this assumption serves two main
purposes. First, it simpli�es the analysis, as the competitive fringe will always
price at cost (i.e., PB(qB) = cqB), without imposing any exclusivity clause.
Given the passive behaviour of the competitive fringe, �nding the model�s equi-
librium is tantamount to �nding the dominant �rm�s optimal pricing strategy.
Secondly, the dominant �rm has no way to eliminate the competitive pressure

from the fringe, which will always stand ready to supply product B at a unit
price of c. This highlights the di¤erence between our theory and other post-
Chicago theories in which exclusive contracts serve to deter entry, or deprive a
rival of economies of scale so as to drive it out of the market. In a competitive
fringe model, the role of exclusive contracts must evidently be di¤erent.
The downside of the competitive fringe assumption is that �rms that just

break even cannot really be harmed. Thus, when exclusive contracts are anti-
competitive, they will harm only the buyers. However, in the next section we
shall see that the main insights carry over to the duopoly model, where exclusive
contracts also impact the dominant �rm�s rival�s pro�t.

24Mathematically, it is equivalent to the continuity of the Hamiltonian. This is a standard
necessary condition in the multi-stage optimal control literature, and may be viewed as a
generalisation of the Weierstrass-Erdmann corner conditions. Another standard necessary
condition (i.e., continuity of the costate variable) holds trivially in our problem and is replaced
by condition (6). Notice that the optimal quantity qA(�) may jump at a switching point.
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4.1 Equilibrium

We �rst characterise the equilibrium with non-linear pricing, and then that with
exclusive contracts.

4.1.1 Non-linear pricing

Consider �rst the optimal pricing strategy for the dominant �rm when it is re-
stricted to simple non-linear pricing. When PB(qB) = cqB , the indirect utility
function v(qA; �) in problem (3) is piecewise smooth, with two branches corre-
sponding to the quantity

~qB(qA; �) = arg max
qB�0

[u (qA; qB ; �)� cqB ] (8)

being nil or strictly positive, and a kink between the two branches. By a stan-
dard integration by parts, the �rm�s problem can be rewritten as

max
qA(�)

Z �max

~�

�
v(qA(�); �)�

1� F (�)
f(�)

v�(qA; �)

�
f(�)d�; (9)

where the term inside square brackets is usually referred to as the �virtual
surplus.�
As we proceed, we shall impose several regularity conditions that serve to

simplify the analysis. The �rst is:

A1. The virtual surplus function

v(qA; �)�
1� F (�)
f(�)

v�(qA; �) (10)

is globally concave in qA and has increasing di¤erences in qA and �.

This assumption guarantees that the solution to the dominant �rm�s problem
can be found by pointwise maximisation of the virtual surplus function. If it
fails, an ironing procedure is needed, and the solution exhibits bunching. The
condition can be reformulated in terms of the primitives of the model, but it
involves third derivatives the economic interpretation of which is not obvious.
However, it is easily met in the uniform-quadratic speci�cation (this is true, in
fact, for all the regularity conditions that we shall introduce).
Like the indirect utility function, the virtual surplus function has two branches

with a kink in between. The maximum can occur on either branches, or at
the kink. When the maximum occurs on the branch with ~qB(qA; �) = 0, it
must coincide with the monopoly solution. We denote it by qm(�), and by
Pm(q) the corresponding price schedule.25 When the maximum occurs on the
branch corresponding to ~qB(qA; �) > 0, we obtain a �common representation�
outcome.26 The common representation quantities are denoted by qcrA (�) and

25 If not stated otherwise, the constant terms of this and the following price schedules must
be understood to be nil.
26We call �common representation�the outcome in which the buyer buys a positive quantity

of product B. This is a slight abuse of terminology, as the quantity of product A may actually
be nil.

13



qcrB (�) = ~qB(q
cr
A (�); �), and P

cr
A (q) is the price schedule that supports them. As

for the kink, it is implicitly de�ned by the condition

uqB (qA(�); 0; �) = c; (11)

and therefore can be interpreted as a limit pricing solution. We denote the
limit-pricing quantity (i.e. the solution to (11)) by qlim(�), and by P lim(q) the
price schedule that implements it.
To reduce the number of cases that must be considered, we rule out mul-

tiple intersections between the curve qlim(�) and the curves qm(�) and qcrA (�).
While this is not really necessary for our results, it simpli�es the exposition
considerably.27

A2. The curves qm(�) and qlim(�), and the curves qlim(�) and qcrA (�), intersect
at most once.

The dominant �rm can actually engage in monopoly or limit pricing only if
the competitive advantage parameter c exceeds critical thresholds, denoted by
cm and clim, respectively (with cm > clim).28

Proposition 1 In the competitive fringe model, there is a unique non-linear
pricing equilibrium where the competitive fringe prices at cost (PB = cqB) and:

� when 0 � c � clim, �rm A o¤ers the price schedule

PA(q) = P
cr
A (q);

� when clim � c � cm, �rm A o¤ers the price schedule

PA(q) =

�
P lim(q) for 0 � q � qlim(��B)
P crA (q) + constant for q � qlim(��B);

27 In the uniform-quadratic model, the functions qm(�); qlim(�) and qcrA (�) can be calculated
explicitly and are

qm(�) =
2� � 1
1� 


;

qlim(�) =
� � c



;

and
qcrA (�) = 2� � 1 + c




1� 2

:

(When the above expressions are negative, quantities must be understood to be nil.) Since
they are all linear, multiple intersections cannot occur. We also have

qcrB (�) = �
1� 2

1� 


+



1� 

� c 1� 


1� 2

:

28To be precise, cm is the lowest c such that there exists at least one type � for whom
qm(�) > qlim(�), and clim is the lowest c such that there exists at least one type � for whom
qcrA (�) > qlim(�). The existence of these thresholds is guaranteed as qlim(�) decreases with
c and vanishes if c is large enough, qcrA (�) increases with c, and q

m(�) is independent of c.
The proof that cm > clim is provided in the Appendix. In the uniform-quadratic model, the
critical thresholds are cm = 1

2
and clim = 1�2


2�3
 .
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where ��B is highest type such that qcrB (�) = 0 and the constant guarantees
the continuity of the price schedule;

� when c � cm, �rm A o¤ers the price schedule

PA(q) =

8<:
Pm(q) for 0 � q � qm(�lim)
P lim(q) + constant for qm(�lim) � q � qlim(��B)
P crA (q) + constant for q � qlim(��B);

where �lim is the solution to qm(�) = qlim(�) and the constants guarantee
the continuity of the price schedule.

The equilibrium pattern is quite intuitive. When c is large, low-demand
buyers are e¤ectively captive, so the dominant �rm can engage in monopoly
pricing in the low-demand segment of the market. As demand increases, how-
ever, the buyer�s temptation to purchase also product B increases. But if a
buyer purchased a positive amount of product B, his demand for product A
would decrease, as the products are substitutes. To prevent this, the dominant
�rm therefore engages in limit pricing, raising the sales of product A just up to
the point where the buyer�s marginal willingness to pay for product B equals
the competitive fringe�s cost c. Finally, when buyer�s demand gets still higher,
foreclosing the competitive fringe becomes unpro�table. The dominant �rm
therefore accommodates, and in equilibrium buyers purchase both goods.
As the competitive advantage c decreases, the dominant �rm can no longer

bene�t from the presence of captive buyers. Thus, it engages in limit pricing in
the low-demand segment of the market, and accommodates in the high-demand
segment. When c is still lower, it is not even pro�table to engage in limit
pricing. In this case, low-demand buyers actually purchase product B only.
The intuition for this is simple. Product A is less costly to produce, or of higher
quality. However, product B is supplied competitively, whereas the dominant
�rm exercises its market power in the market for product A. When c is low, this
latter e¤ect must prevail.
Notice that the highest type, i.e. �max, always purchases both goods. In

particular, it can be easily veri�ed that he obtains the e¢ cient quantities:
qcri (�max) = qfbi (�max) > 0. This no-distortion-at-the-top property must hold
in all equilibria, with and without exclusive contracts. (It also hold under
monopoly, and is preserved under competition.) It implies that the dominant
�rm�s rivals are never driven out of the market in the absence of economies of
scale.

4.1.2 Exclusive contracts

Let us now turn to the case in which exclusive contracts are permitted. Exploit-
ing the separation property (Lemma 1), we �rst consider the case in which the
�rm imposes an exclusive arrangement on all buyer. The case where no such
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arrangement is imposed corresponds to the non-linear pricing solution that we
have just characterised.29

By imposing an exclusive arrangement, the dominant �rm can engage in
monopoly pricing if the competitive pressure from the fringe is not too strong,
that is, if the monopoly tari¤ lies below the cq line. In this case, the participation
constraint U(�) � URA (�) in problem (5) is not binding. Otherwise, the dominant
�rm must undercut the competitive fringe, pricing just below c and selling an
amount qec(�) of its product, where q

e
c(�) is the solution to

uqA(qA; 0; �) = c: (12)

Again, to reduce the number of cases that must be considered, we rule out
multiple intersections between the relevant curves.

A3. The curves qm(�) and qec(�) intersect at most once.
30

Notice that qm(�max) > qec(�max) by the no-distortion-at-the-top property. There-
fore, if the curves do intersect, the curve qec(�) must cut q

m(�) from above. It
follows that the solution to problem (5) may either coincide with qm(�), or it
may be formed by two branches, i.e. qec(�) for low types and qm(�) for high
types. Intuitively, the �rst pattern will emerge if the dominant �rm�s competi-
tive advantage is large enough. To be precise, the condition is c � cm.31
Having found the solution with and without exclusive contracts separately,

it remains to determine which buyers are served under exclusive dealing, and
which under common representation. From the no-distortion-at-the-top prop-
erty, we know that the solution for high-demand types must be nearly e¢ cient,
which rules out exclusive dealing. However, exclusive dealing can be optimal
for low-demand buyers, whose quantities are distorted more heavily. Our last
simplifying assumption guarantees that the solution to the multi-stage control
problem involves a unique switch, which must then necessarily be from exclusive
to non-exclusive dealing.

A4. v�(qNEA (�); �) > u�(q
E
A(�); 0; �):

In speci�c examples, such as the uniform-quadratic model, it is easy to verify
that A4 holds. More generally, A4 will hold if, for example, u�qi is constant
provided that aggregate sales are greater under non exclusivity than under ex-
clusivity.
Under our regularity assumptions, the equilibrium outcome with exclusive

contracts is as follows.32

29Since the competitive fringe always prices at cost, we have URA (�) = v(0; �) and so the
participation constraint does not change.
30 In the uniform-quadratic model, qec(�) =

��c
1�
 , so condition A3 is satis�ed.

31The reason why the critical threshold is again cm is as follows. Since the goods are
imperfect substitutes, it is clear from the de�nitions that

qec(�) � qlim(�);

with equality only when both quantities vanish. The lowest c such qm(�) always exceeds qec(�)
must therefore coincide with the lowest c such that qm(�) can exceed qlim(�).
32Notice that while the equilibrium outcome is still unique, it can now be supported by
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Proposition 2 With exclusive contracts, in the competitive fringe model there
is a unique equilibrium outcome where PEB (qB) = P

NE
B (qB) = cqB for all qB �

0. Furthermore, there exists a threshold �c < cm such that :

� when c � �c, �rm A o¤ers the price schedules:

PEA (q) = cq for 0 � q � qec(�̂)
PNEA (q) = P crA (q) + �A for q � qec(�̂)

where �A is a constant term;

� when �c � c � cm, �rm A o¤ers the price schedules:

PEA (q) =

�
cq for 0 � q � qmA (��)
Pm(q) + constant for qmA (��) � q � qmA (�̂)

where �� is the solution to qec(��) = q
m
A (
��); and the constant guarantees the

continuity of the price schedule, and

PNEA (q) = P crA (q) + �A for q � qmA (�̂);

� when c � cm, �rm A o¤ers the price schedules:

PEA (q) = P
m(q) for 0 � q � qmA (�̂)

PNEA (q) = P crA (q) + �A for q � qmA (�̂):

In each case, �̂ and �A are determined by the equilibrium conditions (6)
and (7) of Lemma 2.

Some general properties of the equilibrium are worth mentioning. First, the
dominant �rm does o¤er exclusive contracts, which are accepted by some buyers.
By revealed preferences, then, exclusive contracts must be pro�table. Secondly,
when demand is highest, buyers are always served under common representation.
Exclusive contracts are chosen only when demand is relatively low. This is a
robust prediction of our model that simply re�ects the no-distortion-at-the-top
property. Thirdly, notice that with exclusive contracts the nature of limit pricing
changes, as the model e¤ectively becomes one of one-stop shopping. Therefore,
the dominant �rm must prevent buyers not from purchasing a small amount of
product B, but only from switching supplier altogether.
Figure 1 depicts the critical thresholds for the uniform-quadratic model.33

It shows, in the parameter space (
; c), the various regions where di¤erent equi-
librium patterns arise.

di¤erent price schedules. The reason for this is that when the dominant �rm o¤ers both
exclusive and non-exclusive contracts, some contracts are destined not to be accepted and
may therefore be speci�ed arbitrarily, at least to some extent. Accordingly, the following
proposition speci�es only the relevant parts of the equilibrium price schedules.
33The threshold �c determines whether at the switching point, the solution under exclusive

contracts is qm(�) or qec(�).
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Figure 1: Critical thresholds for the competitive fringe model (uniform-
quadratic speci�cation).

4.2 Comparison

We can now compare the equilibrium with and without exclusive contracts.
Since the role of exclusive contracts depends on the size of the dominant �rm�s
competitive advantage, we discuss separately the case that this is large (which
is our primary focus) or small.

4.2.1 Large competitive advantage (c � clim)

It is convenient to start from the sub-case c � cm, which is depicted in Figure
2; we shall then brie�y explain what changes when clim � c < cm.
When c � cm, the dominant �rm�s competitive advantage is su¢ ciently large

so that in the non-linear pricing equilibrium the monopoly solution applies in
the low-demand segment of the market. However, as demand increases the
dominant �rm must resort to limit pricing to foreclose its competitors (and
it must accommodate when demand gets still higher). From the dominant
�rm�s viewpoint, limit pricing is clearly a second best. It is less pro�table
than monopoly pricing, and must be adopted only because of the competitive
pressure from the fringe.
The role of exclusive contracts in this case is simply to eliminate such com-

petitive pressure. By imposing an exclusivity clause, the dominant �rm can
keep selling the pro�t-maximising monopoly quantity, without having to resort
to limit pricing. In other words, exclusive contracts allow the dominant �rm to
more e¢ ciently foreclose its competitors from a segment of the market.
Of course, buyers have the option of refusing the exclusivity clause and trad-

ing with the competitive fringe only. However, if the dominant �rm�s competi-
tive advantage is large this option does not really constrain its pricing strategy.
This is so because a buyer obtains an information rent even under exclusive
dealing. When c � cm, this is greater than the rent that he could obtain by
trading with the competitive fringe only, so exclusive dealing e¤ectively shelters
the dominant �rm from the fringe�s competitive pressure at no cost.
In principle, the dominant �rm could then impose exclusive dealing, and sell

the monopoly quantity, to all buyers. However, the most pro�table strategy is in
fact to allow high-demand types to purchase quantities that are nearly e¢ cient
and then extract the surplus as best as it can. Thus, no exclusivity clause is
imposed on high-demand buyers, who therefore buy both goods.
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Figure 2: Equilibrium quantities in the competitive fringe model when the dom-
inant �rm�s competitive advantage is large. Panel (a) non-linear pricing; panel
(b) exclusive contracts.

In particular, the separation property (Lemma 1) implies that high-demand
buyers will purchase exactly the same quantities as in the non-linear pricing
equilibrium. However, the dominant �rm extracts more surplus than under
non-linear pricing by adding a �xed fee to its non-exclusive tari¤. This �xed fee
can be interpreted as a �tax�levied on product variety. Thanks to this tax, the
dominant �rm must actually extract, at the margin, more pro�ts under common
representation than under exclusivity (Lemma 2), even if in the latter case it
charges monopoly prices.
Since exclusive dealing is more pro�table than limit pricing as a foreclosure

strategy, the dominant �rm uses it more extensively. Fewer buyers purchase
both goods when exclusive contracts are permitted than when they are prohib-
ited (that is, �̂ > ��B). Therefore, product variety is reduced.
Buyers are harmed by exclusive contracts, both in terms of higher prices and

reduced variety. To be precise, low-demand buyers (� � �lim) are una¤ected, as
they purchase the monopoly quantity of good A only, both with and without
exclusive contracts. However, some intermediate-demand buyers obtain the
monopoly quantity of good A rather than the limit pricing quantity (�lim <

� � ��B), or the common representation quantities (��B < � < �̂). In this latter
case, buyers su¤er both in terms of lower volumes (and hence higher prices) and
reduced variety. Still higher types (� � �̂) obtain the same quantities as in the
non-linear pricing equilibrium, but they are left with lower rents because of the
�xed fee that is added to the non-linear pricing equilibrium tari¤.34

34When buyers are downstream �rms, the extent to which their gains or losses are shifted
onto �nal consumers may depend on how prices exactly change. Generally speaking, higher
upstream prices tend to translate into higher downstream prices, so �nal consumers should
also su¤er from exclusive contracts when downstream �rms do. However, if the only change
is an increase in a �xed fee, there might be no e¤ect on �nal consumers.
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Figure 3: Equilibrium quantities in the competitive fringe model when the dom-
inant �rm�s competitive advantage is small. Panel (a) non-linear pricing; panel
(b) exclusive contracts (solid lines).

The impact of exclusive contracts on social welfare is also negative. This
follows immediately from the fact that the equilibrium quantities are the same
as under non-linear pricing for buyers of type � � �lim and � � �̂. However,
under exclusive contracts intermediate types (�lim < � � �̂) obtain the monopoly
quantity, which entails a bigger distortion than either limit pricing or common
representation.
When clim � c < cm, exclusive contracts are still used as a substitute for

limit pricing. Now, however, the monopoly tari¤ lies above the cq line when q
is small. Thus, the competitive pressure from the fringe forces the dominant
�rm to set the exclusive quantity at qec(�) > q

m(�) for some low-demand buyers.
However, these buyers would have purchased the limit pricing quantity qlim(�)
under non-linear pricing. Since this is higher than qec(�), buyers are still harmed
(and social welfare reduced) by exclusive contracts.
We can therefore conclude that when the dominant �rm�s competitive advan-

tage is large ( c � clim), exclusive contracts are unambiguously anti-competitive.

4.2.2 Small competitive advantage (c < clim)

When the competitive advantage is small, the pro�tability of exclusive contracts
rests on a di¤erent mechanism. Furthermore, even if exclusive contracts still
harm buyers, their e¤ects on social welfare are less clear cut.
The equilibrium quantities for this case are depicted in Figure 3 (the picture

is actually drawn for the sub-case c � �c). When c < clim, in the non-linear
pricing equilibrium the marginal buyer purchases only product B. Only su¢ -
ciently high-demand types purchase also product A. This is disappointing from
the point of view of the dominant �rm (as well as being ine¢ cient from the so-
cial viewpoint). If only the dominant �rm could replace the competitive fringe
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in the low-demand segment of the market, it would save the production cost
cqB(�) and increase its pro�ts by the same amount.
However, to achieve that result the dominant �rm should undercut the com-

petitive fringe. With non-linear pricing, this would improve the high-demand
buyers�contractual options, since buyers could now purchase a certain amount
of product A at a unit price just below c, in addition to product B at a unit price
of c. This possibility would reduce the rent that the �rm can extract from high
demand buyers, to such an extent that the resulting loss in the high-demand
segment of the market would o¤set any gains in the low-demand one.
With exclusive contracts, however, the dominant �rm can undercut the com-

petitive fringe in the low-demand segment under the protection of an exclusivity
clause. This leaves the high-demand buyers�contractual options substantially
unchanged, as they can already purchase one product, namely B, at a price
only nominally higher than that charged by �rm A. It follows that by impos-
ing an exclusivity clause the dominant �rm can replace the competitive fringe
in the low-demand segment of the market, without losing any pro�t on the
high-demand segment.
However, the dominant �rm cannot now restrict its supply to low-demand

buyers to the monopoly quantity, as buyers would rather prefer to trade with
the competitive fringe only. Therefore, even if it imposes an exclusivity clause,
the dominant �rm must o¤er a quantity of at least qec(�).

35

Under the exclusivity clause, then, the dominant �rm sells (at least) qec(�)
units of product A. This guarantees a positive pro�t, which makes the dominant
�rm less eager to switch to common representation. Therefore, the dominant
�rm imposes exclusivity also on some buyers who would have purchased both
products under non-linear pricing. As a result, these buyers su¤er a loss in
terms of both lower volumes and reduced variety.
Again, it is only for su¢ ciently high types that the dominant �rm stops

imposing the exclusivity clause. At that point, the equilibrium quantities must
coincide with those of the non-linear pricing equilibrium. Not only do fewer
buyers purchase both goods than in the non-linear pricing equilibrium, those
who do also pay higher prices, as the dominant �rm adds a positive �xed fee to
the non-linear pricing equilibrium tari¤, just as in the previous case.
Therefore, buyers are again harmed by exclusive contracts. The e¤ect on

social welfare is ambiguous, though. On the one hand, equilibrium quantities,
which are already ine¢ ciently low, are further reduced. This is bad for e¢ ciency.
A countervailing e¤ect, however, is the replacement of the competitive fringe
with the more e¢ cient dominant �rm in the low-demand segment of the market,
which reduces total production costs. This cost-saving e¤ect may make the total
welfare e¤ect of exclusive contracts ambiguous.

35When c � �c, this is greater than the monopoly quantity. When �c � c � clim, however,
the dominant �rm can still sell the monopoly quantity to a subset of buyers.
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5 Duopoly

In this section, we turn to the case in which there is only one supplier of product
B (�rm B), which will then have some market power. This opens up new pos-
sibilities. Firstly, since �rm B may reap positive pro�ts in equilibrium, it can
be de�nitely harmed by the dominant �rm�s exclusionary strategy. Secondly,
unlike the competitive fringe �rm B can respond actively to the dominant �rm�s
attempt at foreclosing it. In particular, it may o¤er exclusive contracts in its
turn, lower its non-exclusive prices, or both. Therefore, the analysis now deter-
mines who o¤ers exclusive contracts, and whose exclusive contracts are accepted
in equilibrium, endogenously.
The duopoly model is more complex than the competitive fringe model. The

main reason for this is that the solution to a �rm�s pricing problem (discussed
in section 3) does not yield directly the equilibrium, but only its best response
to its rival�s strategy. Finding the equilibrium requires �nding a �xed point of
the best response correspondence. Given the extra complexity, to simplify the
exposition we shall focus on the uniform-quadratic speci�cation of the model.

5.1 Non-linear pricing

To �nd the non-linear pricing equilibrium, we adapt to the asymmetric case the
solution procedure proposed by Martimort and Stole (2009) for the symmetric
case (i.e. c = 0). This is a �guess and check�procedure that starts from the
conjecture that the equilibrium price schedules are (piecewise) quadratic and
then veri�es it by identifying the coe¢ cients of the price schedules.36

The non-linear pricing equilibrium turns out to be similar to the competitive
fringe model: depending on the size of its competitive advantage c and the
intensity of demand �, the dominant �rm can engage in monopoly pricing, limit
pricing, or it can accommodate its rival. The exact structure of the equilibrium
is as follows:

Proposition 3 In the duopoly model, the following is a non-linear pricing equi-
librium. Firm B o¤ers the price schedule

PB(q) = P
cr
B (q)

and:
36 It is important to stress that this procedure makes a guess on the structure of the equilib-

rium, but does not restrict �rms to quadratic price schedules. The drawback of the guess and
check procedure is that it cannot �nd equilibria in which the price schedules do not conform
to the guess, if there are any. However, this is not a serious problem for our purposes. If
there were multiple non-linear pricing equilibria, for each there would exist a corresponding
equilibrium with exclusive contracts, with the same comparative statics properties.
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� when c � ~c,37 �rm A o¤ers the price schedule

PA(q) =

�
P lim(q) for 0 � q � qlim(��B)
P crA (q) + constant for q � qlim(��B)

where ��B is implicitly de�ned by the condition qcrB (��B) = 0 and the con-
stant guarantees the continuity of the price schedule;

� when c � ~c, �rm A o¤ers the price schedule

PA(q) =

8<:
Pm(q) for 0 � q � qm(�lim)
P lim(q) + constant for qm(�lim) � q � qlim(��B)
P cr(q) + constant for q � qlim(��B);

where �lim is implicitly de�ned by the condition qm(�lim) = qlim(�lim) and
the constants guarantee the continuity of the price schedule.

The monopoly schedule is exactly the same as in the competitive fringe
model. The limit pricing schedule is similar, except that now the unit cost c is
replaced by the marginal price that �rm B charges for the �rst unit it o¤ers,
P 0crB (0). As for the common representation quantities, now they are:38

qcrA (�) =
� � �
1� � + c




1� 2
 ; qcrB (�) =
� � �
1� � � c

1� 

1� 2
 ; (13)

where � = 1
4

h
3(1� 
)�

p
1� 2
 + 9
2

i
� 0 is a decreasing function of 
 that

vanishes when 
 = 1
2 . The corresponding price schedules are

P crA (q) = �q+c
�


1� 2
 q�
�

2
q2; P crB (q) = cq+�

�
1� c(1� 
)

1� 2


�
q� �

2
q2; (14)

respectively, so P 0crB (0) = c+ �
h
1� c(1�
)

1�2


i
. Since �rm B is now exercising its

market power, qcrB (�) is lower than in the competitive fringe model; accordingly,
qcrA (�) is higher.
The only qualitative di¤erence with the competitive fringe model is that

the case in which the marginal buyer purchases product B only can no longer
arise in equilibrium. Low-demand buyers always purchase only product A. The
reason for this is that now both �rms exercise their market power, so the only
e¤ect at work is that the dominant �rm is more e¢ cient than its rival.

37To be precise, the threshold ~c is the lowest c such that there exists at least one type � for
whom qm(�) > qlim(�).
38Notice that the guess and check procedure is used only to �nd the common representation

price schedules. The monopoly and (given P 0crB (0)) the limit pricing schedules are unique.
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Figure 4: Critical thresholds for the duopoly model.

5.2 Exclusive contracts: large competitive advantage

With exclusive contracts, the nature of the duopoly equilibrium depends on
the size of the dominant �rm�s competitive advantage even more profoundly
than in previous cases. In particular, when the dominant �rm�s competitive
advantage is large there is a unique equilibrium outcome, and exclusive contracts
tend to be anti-competitive. When instead c is small the equilibrium outcome
is no longer unique, and the e¤ect of exclusive contracts is to reduce prices
and pro�ts. Because of these di¤erences, it is convenient to deal with the two
cases separately. Figure 4 shows the parameter values for which the di¤erent
equilibrium patterns may arise.
We start from the case of a large competitive advantage: c � �c. Since �rm B

may charge di¤erent prices for exclusive and non exclusive contracts, we analyse
separately the competition in exclusive and non-exclusive prices. In equilibrium,
the former will apply to low-demand buyers, the latter to high-demand ones.
Let us consider the competition for exclusives �rst. Like in the competitive

fringe model, when c � cm exclusive dealing completely shelters the dominant
�rm from any competitive pressure. That is, even if �rm B priced as aggressively
as it can, leaving to the buyer all the gain from trade, this would still be lower
than the information rent obtained by dealing with �rm A only. The dominant
�rm can therefore safely engage in monopoly pricing: in this case, whether or
not �rm B o¤ers exclusive contracts is, in fact, irrelevant.
When c < cm, however, the monopoly tari¤exceeds cq for a range of quantity

levels. This means that �rm B can now compete for exclusives. However, com-
petition for exclusives is competition in utility space, where the �rms�products
e¤ectively become homogeneous.39 In the ensuing Bertrand-like equilibrium,
�rm B always prices at cost, whereas �rm A either undercuts �rm B or engages
in monopoly pricing �whichever leads to lower prices. Notice that even if �rm
B now o¤ers exclusive contracts, only those o¤ered by the dominant �rm are
accepted in equilibrium, and hence can be observed in practice. Therefore, the
equilibrium outcome is still consistent with the stylised facts described in the
introduction to this paper.
The condition that c exceeds the critical threshold �c guarantees that the

Betrand-like equilibrium is the only possible outcome of the competition for
exclusives. Below the threshold, �rms could manage to coordinate their pricing

39That competition in utility space is tougher than competition in product space has been
noted by several authors: see for instance Armstrong and Vickers (2001).
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strategies to reduce the intensity of competition, as we shall see in the next
subsection. This may lead to a multiplicity of equilibria. Above the threshold,
however, there is no scope for coordination.40

Now consider the non-exclusive contracts. Except for constant terms, the
non-exclusive tari¤s coincide with the common representation tari¤s (14) that
arise in the non-linear pricing equilibrium. This result is reminiscent of the
separation property, but in fact it rests on a subtler reasoning. The key idea is
that the equilibrium quantities for high-demand types must be independent of
whatever happens to low-demand buyers �a property that we call �type con-
sistency.�Intuitively, if there were a pro�table deviation from the non-exclusive
price schedules, this would also be a pro�table deviation (modulo a constant
term to account for the participation constraint) in the non-linear pricing game.
But this contradicts the fact that fP crA (q); P crB (q)g is, for high-demand types,
an equilibrium of that game.
To complete the derivation of the equilibrium it remains to determine the

constant terms of the non-exclusive tari¤s, which we denote by �A and �B .
These determine the critical buyer �̂ who is just indi¤erent between exclusive
and non-exclusive contracts. For this buyer, the following condition must hold

u(qEA(�̂); 0; �̂)�PEA (qEA(�̂)) = u(qcrA (�̂); qcrB (�̂); �̂)�P crA (qcrA (�̂))�P crB (qcrB (�̂)��A��B :
(15)

Clearly, an increase in �i will increase �̂.
Intuitively, when choosing �A and �B , both �rms are trading o¤ market

share and pro�tability. Consider, for instance, �rm B. Since its exclusive con-
tracts are not accepted (and in any case would not be pro�table), it must try
to induce more high-demand buyers, who value product variety more highly,
to reject the exclusive contracts o¤ered by �rm A and buy both products. To
get such buyers to purchase both products, �rm B must lower its non-exclusive
prices by adding a negative term (a �xed subsidy) to the tari¤ P crB (q). Firm
A, by contrast, will add a �xed fee to the tari¤ P crA (q). The �xed fee must be
su¢ ciently large that the dominant �rm earns more, at the margin, from buy-
ers who choose common representation than from those who choose exclusive
dealing. This follows from arguments similar to those leading to Lemma 2.
More formally, consider the optimal choice of �A and �B . Firm A�s pro�t

is Z �̂

~�

PEA (q
E
A(�))d� +

Z 1

�̂

[P crA (q
cr
A (�)) + �A] d�;

and �rm B�s is Z 1

�̂

[P crB (q
cr
B (�))� cqcrB (�) + �B ] d�:

40To be precise, the threshold �c is 2(1�2
)
5(1�
)+

p
1�2
+9
2

.
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Since �̂ is determined by (15), the equilibrium conditions for �A and �B are:

P crA (q
cr
A (�̂)) + �A � PEA (qEA(�̂))
qcrA (�̂) + q

cr
B (�̂)� qEA(�̂)

= 1� �̂; (16)

P crB (q
cr
B (�̂)) + �B � cqcrB (�̂)

qcrA (�̂) + q
cr
B (�̂)� qEA(�̂)

= 1� �̂: (17)

Condition (16) and (17) are the duopoly counterpart of condition (7) in Lemma
2. The economic intuition is similar. It can be con�rmed that in equilibrium
�A > 0, �B < 0 and �A +�B > 0.
We are now ready to provide the characterisation of the equilibrium when ex-

clusive contracts are permitted and the dominant �rm�s competitive advantage
is large.

Proposition 4 The following is an equilibrium in the duopoly model when �rms
can use exclusive contracts and the dominant �rm�s competitive advantage is
large, i.e. c > �c.41

� When �c < c < cm the two �rms o¤er the following exclusive price schedules

PEB (q) = cq

PEA (q) =

�
cq for q � qec(�m)
PmA (q) + constant for q > qec(�

m)

where �m is such that qec(�
m) = qmA (�

m) and the constant guarantees
the continuity of the price schedule, and the following non-exclusive price
schedules

PNEA (q) = P crA (q) + �A for q � qcrA (�̂)
PNEB (q) = P crB (q) + �B for q � qcrB (�̂)

where �̂, �A and �B are the solution to system (15)-(17).

� When c � cm the two �rms o¤er the following price schedules

PEA (q) = P
m(q)

(�rm B may not o¤er any exclusive contract at all), and

PNEA (q) = P crA (q) + �A for q � qcrA (�̂)
PNEB (q) = P crB (q) + �B for q � qcrB (�̂)

where �̂, �A and �B are de�ned as in the previous case.

41As we have already noted, if there were di¤erent equilibrium price schedules under common
representation, P cri (q), for each of them there would be corresponding equilibria with exclusive
contracts with the same structure as that described in Proposition 4. The same remark applies
also to Proposition 5 below.
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5.2.1 Comparison

When c � cm, the role of exclusive contracts is exactly the same as in the
competitive fringe model. Exclusive contracts, that is to say, are used by the
dominant �rm as a substitute for limit pricing � a more pro�table means to
foreclose the rival from a segment of the market.
The equilibrium quantities, with and without exclusive contracts, are qual-

itatively the same as in Figure 2. The only di¤erence is that under duopoly
qcrA (�) is greater, and q

cr
B (�) smaller, than in the competitive fringe model. By

exactly the same arguments, we can therefore conclude that when the dominant
�rm�s competitive advantage is large, exclusive contracts harm the buyers and
are unambiguously anti-competitive. A novel implication of exclusive contracts
is that they now also harm the dominant �rm�s rival. Firm B is harmed both
because its market share falls, and because it must decrease its prices in order
to resist being foreclosed from an even larger segment of the market. Notice
that when c � cm �rm B may well refrain from o¤ering exclusive contracts, as
they would not be accepted in any case.
When �c � c < cm, competition for exclusives is �ercer, implying that for

low volumes the dominant �rm�s equilibrium exclusive tari¤ is cq rather than
Pm(q). As a result, low-demand types buy qec(�) units of product A. This is
still less than the limit pricing quantity that they would have obtained, under
non-linear pricing, in the region c < ~c. However, in the region where �c � c <
cm and c � ~c, some low-demand buyers would have obtained the monopoly
quantity under non-linear pricing. These buyers may therefore now gain from
exclusive contracts. Although high-demand buyers still lose, the welfare e¤ect
may become ambiguous.
It may be instructive to elaborate on the reason why competition for low-

demand buyers becomes tougher with exclusive contracts when ~c � c < cm, as
this help to understand what happens in the small competitive advantage case
which we will investigate next. Under non-linear pricing, in that region �rm
B does not actually compete for low-demand buyers as doing so would provide
better outside options for high-demand buyers, reducing the rent that �rm B can
extract for them. With exclusive contracts, however, �rm B can o¤er a discount
conditioned on exclusivity. By doing so, it can compete for low-demand buyers,
without losing any pro�t on the high-demand segment of the market. This
forces �rm A to match its rival�s o¤er, to the bene�t of low-demand buyers.

5.3 Exclusive contracts: small competitive advantage

We conclude the analysis by considering the case in which the dominant �rm�s
competitive advantage is small (c � �c). This generalises the analysis of symmet-
ric �rms that we developed in our companion paper (Calzolari and Denicolò,
2013).
When �rms are nearly symmetric, there is a multiplicity of equilibria that

arises because the �rms may or may not succeed in coordinating their strategies
so as to extract the preference for variety and reduce the intensity of competition.

27



To understand the coordination problems that the �rms face, consider the
outcome of the competition for exclusives in the large competitive advantage
case: �rm B prices at cost, whereas �rm A undercuts it. Clearly, this is a pos-
sible equilibrium even when the competitive advantage is small. However, both
�rms can now obtain larger pro�ts. This requires that the �rms lower their non-
exclusive prices in coordinated fashion, inducing some buyers to purchase both
products. This move allows �rms to extract the buyers�preference for variety.42

If �rms manage to coordinate their non-exclusive prices in this way, however, a
new opportunity of coordination arises. Since certain exclusive contracts will no
longer be accepted in equilibrium, �rms have no longer an incentive to undercut
one another�s exclusive prices; therefore, they can also increase exclusive prices
so as to reduce the intensity of competition.
However, in all equilibria the e¤ect of exclusive contracts is to reduce prices

and pro�ts. For brevity, we shall not provide a complete characterisation of the
set of equilibria, but we content ourselves with showing that exclusive contracts
are pro-competitive. To this end, we shall focus exclusively on the �most coop-
erative� equilibrium, where prices and pro�ts are largest, given that the �rms
actually play a non-cooperative game. In such an equilibrium, the exclusive and
non-exclusive price schedules must be determined simultaneously.
We now derive the conditions that must be satis�ed in the equilibrium where

the �rms coordinate their strategies so as extract the preference for variety, and
reduce the intensity of competition, as best as they can given that they cannot
collude. Let UE(�) be the (type-dependent) reservation utility that buyer �
could obtain by choosing his most preferred exclusive contract. To extract
the buyer�s preference for variety, the �rms must introduce non-exclusive price
schedules implicitly de�ned by the condition:

max
qA;qB

�
u(qA; qB ; �)� PNEA (qA)� PNEB (qB)

�
= UE(�); (18)

with a small tie-breaking discount if necessary. These price schedules apply to
low-demand buyers; high-demand buyers will actually obtain more than UE(�)
simply thanks to the competition in non-exclusive contracts. Notice that equa-
tion (18) does not pin down PNEA (qA) and PNEB (qB) uniquely. This re�ects
the fact that the preference for variety can be split between the two �rms in
di¤erent ways, provided that the �rms do not ask, in the aggregate, for more
than the buyer is willing to pay to purchase both goods. Since we look for
the equilibrium in which �rms�pro�ts are largest, we shall focus on the case in
which the �rms maximise the rents that they extract from low-demand buyers.
This requires maximisation of the total surplus u(qA; qB ; �) � cqB , subject to
the constraint that buyers must obtain UE(�). Using the envelope theorem, the
constraint can be rewritten as

qA(�) + qB(�) = q
E(�); (19)

42Notice that while the function u always entails a preference for variety, the presence of
the cost c means that when the intensity of demand is low, only good A must e¢ ciently be
produced. Thus, there is room for extracting the preference for variety only if the competitive
advantage is not too large: to be precise, the condition is c � �c.
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where qE(�) is the optimal quantity under exclusivity. Notice that qE(�) de-
pends on what exclusive prices are sustainable in the most cooperative equilib-
rium and hence must be determined jointly with all other variables.
Generally speaking, the more e¢ cient �rm must produce more than the less

e¢ cient one. In particular, the problem of total-surplus maximisation may have
a corner solution in which some low-demand types must buy good A only. In
this case, exclusive contracts must be accepted in equilibrium by those types,
and so Bertrand competition in utility space implies that exclusive prices must
fall to marginal costs. Therefore, for low-demand types qA(�) must coincide
with qec(�), and qB(�) must vanish.
When instead the total-surplus maximisation problem has an interior solu-

tion, which is

qA(�) =
1

2
qE(�) +

c

2(1� 2
) ; qB(�) =
1

2
qE(�)� c

2(1� 2
) ; (20)

buyers purchase both products. The corresponding exclusive contracts are not
actually accepted in equilibrium, and so there may be room for coordinating
also the exclusive prices. The reason for this is that exclusive contracts a¤ect
the equilibrium outcome even if they are not accepted: the less aggressively
�rms bid for exclusivity, the lower the buyer�s payo¤ under exclusive dealing,
and hence the greater the payments �rms can obtain for non-exclusive contracts.
Thus, raising the exclusive prices is good for the �rms�pro�ts.
Let us denote by an upper bar the highest exclusive prices that can be

sustained in a non-cooperative equilibrium. To �nd them, we can assume, with
no loss of generality, that both �rms o¤er the same exclusive price schedule
�PE(q).43 By construction, low-type buyers must be just indi¤erent between
exclusive and non-exclusive contracts (equation (18)). Thus, any arbitrarily
small discount would trigger a switch to an exclusive contract. In equilibrium,
no such deviation can be pro�table. This implies the following no undercutting
conditions:

PE(qE(�)) � PNEA (qcrA (�));
PE(qE(�))� cqE(�) � PNEB (qcrB (�))� cqcrB (�);

(21)

which in the most cooperative equilibrium must hold as equalities.
The most cooperative equilibrium is found by solving the system of equations

(18)-(21). Speci�cally, denote by �qE(�) the optimal quantity associated with
the exclusive prices �PE(q), and by �qcri (�) the values of qi(�) given by (20) when
qE(�) = �qE(�). Rewrite (18) as

u(�qcrA (�); �q
cr
B (�); �)� �PNEA (�qcrA (�))� �PNEB (�qcrB (�)) = u(0; �q

E(�); �)� �PE
�
�qE(�)

�
43We can prove that this does not entail any loss of generality by contradiction. Suppose

to the contrary that one �rm o¤ered more attractive exclusive contracts than its rival. Since
these contracts are not accepted in equilibrium, the �rm could increase its exclusive prices
without losing any pro�ts on its exclusive contracts. In fact, the buyers� reservation utility
would decrease, allowing both �rms to increase their pro�ts from non-exclusive contracts.
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and use the no-undercutting conditions (21) to get

�PE
�
qE(�)

�
=
�
u(�qcrA (�); �q

cr
B (�); �)� u(0; �qE(�); �)

�
+ c

�
�qE(�)� �qcrB (�)

�
:

The term inside the �rst square brackets on right-hand side can be interpreted
as the preference for variety, while the term inside the second square bracket is
the cost saving. Using (20), we �nally get

�PE(q) =
c2

2(1� 2
) +
c

2
q +

1� 2

4

q2; (22)

and

�P crA (qA) = �cq + (1� 2
)q2 + cqec(�̂); �P crB (qB) = 2cq + (1� 2
)q2; (23)

where �̂ is now the solution to qec(�̂) = �qcrA (�̂) and the constant term in �P crA (qA)
guarantees smooth pasting from exclusive to non-exclusive contracts. The cor-
responding quantities are

�qE(�) =
2� � c
3� 4
 ; (24)

and

�qcrA (�) =
2� � c
2(3� 4
) +

c

2(1� 2
) ; �qcrB (�) =
2� � c
2(3� 4
) �

c

2(1� 2
) : (25)

We are now ready to provide the characterisation of the most cooperative
equilibrium.

Proposition 5 Suppose that the dominant �rm�s competitive advantage is small:
c � �c. Then, in the duopoly model the most cooperative equilibrium with exclu-
sive contracts is as follows. Both �rms o¤er the exclusive price schedules

PEA (q) = P
E
B (q) =

�
cq for q � qec(�̂)
�PE(q) for q > qec(�̂)

with �rm A slightly undercutting �rm B, though. Furthermore:

PNEA (q) =

�
�P crA (q) for q � �qcrA (

��)
P crA (q) + constant for q � �qcrA (

��)

PNEB (q) =

�
�P crB (q) for q � �qcrB (

��)
P crB (q)+ constant for q � �qcrB (

��)

where �̂ is the solution to qec(�̂) = �qcrA (�̂) and �� the solution to �q
cr
A (
��) = qcrA (

��)
(and to �qcrB (��) = q

cr
B (
��)), and the constants guarantee the continuity of the price

schedules.

The equilibrium quantities are depicted in Figure 5 (panel b) along with
those of the non-linear pricing equilibrium (panel a). In the most cooperative
equilibrium with exclusive contracts, buyers are divided into four groups. For
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Figure 5: Equilibrium quantities in the duopoly model (small competitive ad-
vantage). Panel (a) non-linear pricing; panel (b) exclusive contracts (solid lines).

� � c; buyers do not buy any product; for c < � � �̂, buyers purchase qec(�) units
of product A only at a price just below c; for �̂ < � � ��, buyers purchase �qcrA (�)
units of good A and �qcrB (�) units of good B, and so obtain the same net surplus
as if they had accepted an exclusive contract; �nally, for �� < � � 1, buyers
buy qcrA (�) units of good A and q

cr
B (�) units of good B, and strictly prefer their

non-exclusive contracts to any exclusive one.

5.3.1 Comparison

Exclusive contracts are now unambiguously pro-competitive. To see why, notice
that equilibrium quantities are larger than under non-linear pricing, and are
everywhere closer to the �rst best. Since the social surplus (i.e., the sum of
buyers� surplus and �rms� pro�ts) is concave in qA and qB , it is clear that
exclusive contracts increase social welfare.
Buyers bene�t from exclusive contracts. Low-demand buyers (c < � <

��) increase their purchases. High-demand buyers (� � ��) purchase the same
quantities as in the non-linear pricing equilibrium, but they too are better o¤
as they now have more attractive alternatives. The bene�t is obtained via �xed
subsidies that in the equilibrium with exclusive contracts are added to the non-
linear pricing equilibrium price schedules.
However, both �rms lose as compared to the non-linear pricing equilibrium.

This follows from the fact that prices must be lower in order to support higher
quantities. Since in the non-linear pricing equilibrium prices are already lower
than under monopoly, the fact that they are further reduced means that ex-
clusive contracts decrease �rms�pro�ts. Thus, �rms are caught in a prisoner�s
dilemma: they have a unilateral incentive to o¤er exclusive contracts, but would
actually bene�t if such contracts were prohibited.
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These conclusions are qualitatively similar to those obtained in Calzolari and
Denicolò (2013) for the symmetric case.

6 Conclusion

In this paper, we have developed a new theory of exclusive dealing. We have
argued that a dominant �rm may �nd it pro�table to use exclusive contracts
just to increase its market share, without necessarily driving its existing rivals
out of the market, or impeding the entry of new ones. This theory is valid under
two assumptions. First, �rms are imperfectly informed about demand. Second,
the dominant �rm has a sizeable competitive advantage over its rivals, in terms
of lower cost, higher demand, or a combination of the two.
Not only are these assumptions realistic, but the model�s predictions are

also consistent with the stylised facts of many antitrust cases. In addition
to a dominant �rm that controls a substantial share of the market and has
entered into some kind of exclusive arrangement with its customers, these often
involve one or more smaller competitors, which have been active in the industry
for some time and in principle could themselves use exclusive contracts, but
apparently have not. Existing theories have found it di¢ cult to explain this
recurrent situation without making ad hoc assumptions. Ours, by contrast, can
reproduce the stylised facts naturally.
Our theory o¤ers new insights for competition policy. Since in our model

exclusive contracts may be either pro or anti-competitive, the analysis does not
call for a radical change in the current policy, which is based on the rule of
reason. However, it may suggest that di¤erent factors should be considered for
the purposes of antitrust evaluation.
In our model, the key factor is the size of the dominant �rm�s competitive

advantage. This determines whether the dominant �rm�s rival can compete
for exclusives e¤ectively or not. If it can, exclusive contracts tend to be pro-
competitive, reducing prices and pro�ts and bene�ting buyers. If it cannot,
exclusive contracts are anti-competitive. The dominant �rm gains, but both its
rival and customers are harmed, and social welfare goes down.
While the size of the dominant �rm�s competitive advantage cannot be ob-

served directly, it is correlated with variables that often can. One, for instance,
is the dominant �rm�s market share. Another is the fraction of the market that
is foreclosed. When these variables are large, an anticompetitive e¤ect is more
likely.
Factors other than the dominant �rm�s competitive advantage, which are

often emphasised by antitrust authorities and the courts, turn out to be less
important in our analysis. For example, the length of exclusive contracts is
irrelevant, since contracts are not used for commitment purposes. Furthermore,
if the negative impact of exclusive contracts on competition arises because ri-
vals are driven, or kept, out of the market, then arguably claimants should
be required to prove that eviction is likely, and that recoupment is possible.
However, our analysis shows that exclusive contracts may have anti-competitive
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e¤ects even if the dominant �rm�s rivals are, and stay, active. It also shows that
the exclusionary strategy may not entail any short-term sacri�ce on the part of
the dominant �rm. This implies that no proof of eviction and recoupment may
be needed.
Finally, it is worth stressing that while our theory does not rely on the

presence of economies of scale, if economies of scale are signi�cant then exclusive
contracts can have anti-competitive e¤ects under even broader circumstances.
The reason for this is that in the duopoly model exclusive contracts always
reduce the less e¢ cient �rm�s pro�t � even if they intensify the competitive
pressure on the dominant �rm. With economies of scale, such more intense
competition may drive the rival out of the market, in which case the welfare
e¤ects of exclusive contracts may well become negative.44

44The impact of exclusive contracts on the dominant �rm�s rival�s pro�t can be signi�cant
even if the competitive advantage, and hence the fraction of the market that is foreclosed,
is small. This is so because the e¤ects of a small segment of the market being foreclosed
reverberate throughout the entire market �for example, by inducing �rms to reduce also their
non-exclusive prices. This observation may suggest caution in providing �safe harbours.�For
example, it might seem that if exclusive dealing arrangements foreclose 30% of the market or
less, the market that remains contestable should su¢ ce for a rival to prosper. However, this
argument overlooks the possibility that the dominant �rm may retain the lion�s share even of
the market that is contestable, thereby forcing its competitor to exit.
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Appendix

This Appendix contains the proofs omitted in the text.

Proof of Lemma 1. For the purposes of this Lemma, we assume that the switch-
ing points are exogenous, not being controlled either by the �rm or by the
buyers. Therefore, the switching points are not necessarily optimal or even just
incentive compatible. The result holds for arbitrary switching points (and hence
also when they are indeed optimal and incentive compatible).
Assuming a �nite number of switches, denoted by N , the multistage optimal

control problem can be compactly written as follows: the �rm maximises

NX
i=0

Z �̂i+1

�̂i

[vri(qA(�); �)� U(�)] f(�)d�

where �̂0 = ~�, ri 2 fE;NEg is the regime that applies to types � 2 [�i; �i+1],
vE(qA(�); �) = u(qA(�); 0; �) and vNE(qA(�); �) = v(qA(�); �), subject to the
following constraints:

dU

d�
= vri� (qA(�); �) for any � 2 [�i; �i+1] and all i = 0; 1; :::; N

U(�) � �Uri(�);

and qA(�) non decreasing, where �UE(�) = maxfURA (�); v(0; �)g and �UNE(�) =
v(0; �).
Consider �rst the relaxed problem without the monotonicity constraint and

in which the participation constraint is just U(�) � v(0; �). The objective
function can be rewritten as follows

NX
i=0

Z �̂i+1

�̂i

vri(qA(�); �)f(�)d� �
Z �max

~�

U(�)f(�)d�

Let �(�) denote the co-state variable associated with the state variable U(�).
By Pontryagin�s maximum principle, we have

_�(�) = �@H
@U

= f(�)

Since U(�max) is unconstrained, the transversality condition �(�max) = 0 must
hold. Integrating we get

�(�) = F (�)� 1

Therefore, the Hamiltonian is

vri(qA(�); �)f(�)� (1� F (�))vri� (qA(�); �) + constants.
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This must be maximised pointwise, which is equivalent to pointwise maximisa-
tion of the virtual surplus

vri(qA(�); �)�
1� F (�)
f(�)

vri� (qA(�); �):

The Lemma then simply follows by noting that this is also the optimality con-
dition for problems (4) and (5) separately, provided that the monotonicity con-
straint and the participation constraints do not bind. The assumption that
qEA(�) and q

E
A(�) are strictly increasing guarantees that the monotonicity con-

straint does not bind (otherwise, there would be bunching and the solution
would be constant over a non degenerate interval).
To conclude the proof, notice that if the participation constraints binds only

in the �rst stage of the problem, i.e. for � 2 [�0; �1], then it will a¤ect the
solution to the multi-stage problem exactly in the same way as it a¤ects the
solution in regime r0. �

Proof of Lemma 2. Now we assume that the switches are determined opti-
mally, subject to appropriate incentive compatibility constraints. In particular,
the �across-regimes�incentive compatibility constraints must guarantee that no
type has an incentive to choose a regime di¤erent from that intended for him.
This means that for any � 2 [�i; �i+1] and any �0 2 [�j ; �j+1]

vri(qA(�); �)� P ri(qA(�)) � vrj (qA(�0); �)� P rj (qA(�0)):

At a switching point �̂, the above weak inequality must hold as an equality.
(To see this, let j = i + 1 and � = �0 = �̂, and note that the weak inequality
must hold in both directions.) Therefore:

u(qEA(�̂); 0; �̂)� PEA (qEA(�̂)) = v(qNEA (�̂); �̂)� PNEA (qNEA (�̂)):

This proves that condition (6) must hold. Consider next condition (7). This
can be derived as follows. Let � be a parallel shift in the price schedules that
apply for � � �̂. Notice that a change in � will not a¤ect the quantities nor
the switching points to the right of �̂. Therefore, a small increase d� in � will

increase pro�ts by
h
1� F (�̂)

i
d�. On the other hand, a change � will change

�̂. By implicit di¤erentiation, the associated change in pro�ts is

PNEA (qNEA (�̂))� PEA (qEA(�̂))
v�(qNEA (�̂); �̂)� u�(qEA(�̂); 0; �̂)

f(�̂)d�;

irrespective of whether the switch is from exclusivity to non exclusivity, or vicev-
ersa. At an optimum, pro�t must be locally constant and so

PNEA (qNEA (�̂))� PEA (qEA(�̂))
v�(qNEA (�̂); �̂)� u�(qEA(�̂); 0; �̂)

=
1� F (�̂)
f(�̂)

: �
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Proof that cm > clim. For the purposes of this proof, let us de�ne �m(c) and
�lim(c) as follows: �m(c) is such that qlim(�m) = qm(�m), and �lim(c) such
that qlim(�lim) = qcrA (�

lim). Then, it is clear that cm satis�es qlim(�m(cm)) =
qm(�m(cm)) = 0, and clim satis�es qlim(�lim(clim)) = qcrA (�

lim(clim)) = 0.
We distinguish between two cases: �m(c) � �lim(c) and �m(c) > �lim(c). If

�m(cm) � �lim(cm) then

qlim(�lim(cm)) = qcrA (�
lim(cm)) � qlim(�m(cm)) = qm(�m(cm)) = 0;

where the inequality simply follows from the fact that all quantities are increas-
ing in �. Furthermore, since qlim is decreasing in c and qcrA is increasing in c, it
follows that �lim is increasing in c. This immediately implies that clim < cm.
If instead �m(cm) > �lim(cm), then the equilibrium never entails monopoly

pricing and hence the comparison between clim and cm is irrelevant (strictly
speaking, cm is not even well de�ned). To see why this is so, notice that when
�m > �lim monopoly pricing can only take place for intermediate types, with
both lower and higher types buying both products under common representa-
tion. But this is impossible as it would entail multiple intersections between
qm(�) and qcrA (�), thus contradicting assumption A2. �

Proof of Proposition 1. Because the proof is based on the use of direct mecha-
nisms, it is convenient to report the equilibrium quantities �rst. They are:

� when c � clim,

qA(�) =

�
0 for � � ��A

qcrA (�) for � � ��A
qB(�) =

8<:
0 for � � c
qec(�) for c � � � ��A
qcrB (�) for � � ��A;

� when clim � c � cm;

qA(�) =

8<:
0 for � � ��
qlim(�) for �� � � � ��B
qcrA (�) for � � ��B

qB(�) =

�
0 for � � ��B

qcrB (�) for � � ��B ;

� when c � cm,

qA(�) =

8>><>>:
0 for � � �m
qm(�) for �m � � � �lim

qlim(�) for �lim � � � ��B
qcrA (�) for � � ��B

qB(�) =

�
0 for � � ��B

qcrB (�) for � � ��B ;

where the thresholds ��A and ��B are implicitly de�ned as the largest � such
that qcrA (�) = 0 and qcrB (�) = 0, respectively, �m is the marginal buyer under
monopoly, �� is de�ned by the condition uqA (0; 0; �) = c (or, equivalently, q

e
c(�) =
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0) and hence is the marginal buyer under limit pricing, and �lim is implicitly
de�ned by the condition qm(�) = qlim(�). The marginal buyer is �� when c � cm,
and �m when c � cm.
Obviously, the competitive fringe will always price at cost: PB(qB) = cqB .

To prove the proposition, it then su¢ ces to show that the dominant �rm�s
equilibrium pricing strategy is indeed optimal. To do so, we shall focus on direct
mechanisms and hence �nd the optimal quantity qA(�), showing that it coincides
with the equilibrium quantity reported above. It is then straightforward to
conclude that the price schedules that support these quantities, which are the
equilibrium price schedules, are indeed optimal.
To begin with, consider the indirect utility function v(qA; �) when PB(qB) =

cqB . This is piecewise smooth, with two branches corresponding to the cases in
which the quantity

~qB(qA; �) = arg max
qB�0

[u (qA; qB ; �)� cqB ]

is 0 or is strictly positive, and a kink between the two branches. It can be
easily checked that the function v is globally concave in qA. It also satis�es the
single-crossing condition v�qA(qA; �) � 0, since we have

v�(qA; �) = u� (qA; ~qB(qA; �); �)

and hence:

v�qA = u�qA +
d~qB(qA; �)

dqA
u�qB

= u�qA �
uqBqA
uqBqB

u�qB � 0;

where the inequality follows by the fact that the goods are imperfect substitutes.
The single-crossing condition guarantees that the participation constraint

binds only for the marginal buyer, whom we indicate here as ~�, and that �rm
A�s optimisation program (3) can be written as

max
qA(�)

Z �max

~�

[v(qA(�); �)� U(�)] f(�)d�

s.t.
dU

d�
= v�(qA; �)

U(~�) = v(0; ~�)

By a standard integration by parts, the problem reduces to �nding the func-
tion qA(�) that pointwise maximises the indirect virtual surplus:

s(qA; �) = v(qA; �)�
1� F (�)
f(�)

v�(qA; �):

Like the indirect utility function, the indirect virtual surplus has two branches
and a kink at qA = qlim(�).
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Generally speaking, for any � the maximum can occur in either one of the
two quadratic branches, or at the kink. Let qm(�) = argmaxqA s(qA; �) when
the maximum lies on the �rst branch, and qcrA (�) = argmaxqA s(qA; �) when
it lies on the second. Notice that the kink qlim(�) is implicitly de�ned by the
condition uqB

�
qlim(�); 0; �

�
= c.

Since qA(�) must pointwise maximise the virtual surplus, we can conclude
that qA(�) = qmA (�) if the maximum is achieved on the upper branch, qA(�) =
qcrA (�) if the maximum is achieved on the lower branch, and qA(�) = qlim(�) if
the maximum is achieved at the kink. By assumption A1, s(qA; �) is globally
concave in qA. This implies that if qm(�) > qlim(�), then s(qA; �) is increasing at
the kink and the maximum is achieved at qm(�). If instead qm(�) < qlim(�), then
s(qA; �) is decreasing to the right of the kink, and one must further distinguish
between two cases. If qcrA (�) > qlim(�), then s(qA; �) is increasing to the left
of the kink and so the maximum is achieved at the kink, qlim(�). If instead
qcrA (�) < q

lim(�), the maximum is achieved to the left of the kink and is qcrA (�).
It remains to �nd out when each type of solution applies. By A2, the

condition qm(�) > qlim(�) is equivalent to � < �lim. Since qm(�) is positive
only for � > �m, the monopoly solution is obtained if and only if the interval
�m � � � �lim is not empty. This is true if only if c > cm (recall that cm is
de�ned as the lowest c such that qm(�) > qlim(�) for some �). In this case,
then, we have qA(�) = qm(�) for �

m � � � �lim. Of course, the corresponding
equilibrium quantity of good B must be nil.
Now suppose that � > �lim; so that qm(�) < qlim(�). In this case, the

solution depends on whether qcrA (�) is larger or smaller than q
lim
A (�). The limit

pricing solution can emerge only if qcrA (�) > qlimA (�). By A2, the condition
qcrA (�) > q

lim(�) reduces to � < ��B : Since qlim(�) is positive only for � > ��, the
limit pricing solution is obtained if and only �� < ��B . This condition is equivalent
to c � clim (recall that clim is the lowest c such that qcrA (�) > q

lim(�) for some
�). When this condition holds, there exists an interval of types to whom the
limit pricing solution applies. Again, the corresponding equilibrium quantity of
good B must be nil.
Finally, consider the case in which � � ��B , so that qcrA (�) � qlim(�) and the

maximum is achieved on the lower branch of the virtual surplus function. Here,
we must distinguish between two sub-cases, depending on whether the solution
is interior, or is a corner solution at qA(�) = 0. Clearly, the solution is interior,
and is qcrA (�), when � � ��A. In this case, the corresponding equilibrium quantity
of good B is qcrB (�) = ~qB(q

cr
A (�); �): Now, notice that when c < clim we have

��B < ��A, whereas the inequality is reversed when c � clim. This means that if
c � clim and the maximum is achieved in the lower branch, it must necessarily be
an interior solution. However, when c < clim we have ��B < ��A. In this case, for
�� � � � ��A, we have a corner solution for qA, and the corresponding equilibrium
quantity of good B is qec(�); for � � ��A, the solution is again interior.
This completes the derivation of the optimal quantities in all possible cases.

It is then easy to check that they coincide with the equilibrium quantities re-
ported above, and that they are implemented by the equilibrium price schedules.
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This completes the proof of the Proposition.45 �

Proof of Proposition 2. Since the proof will use direct mechanisms, we start
again by reporting the equilibrium quantities. They are:

� when c � �c,

qA(�) =

8<:
0 for � � ��
qec(�) for �� � � � �̂
qcrA (�) for � > �̂

qB(�) =

�
0 for � � �̂

qcrB (�) for � > �̂

� when �c � c � cm,

qA(�) =

8>><>>:
0 for � � ��
qec(�) for �� � � � �+

qm(�) for �+ � � � �̂
qcr(�) for � > �̂

qB(�) =

�
0 for � � �̂

qcrB (�) for � > �̂

when c � cm,

qA(�) =

8<:
0 for � � �m

qm(�) for �m � � � �̂
qcrA (�) for � > �̂

qB(�) =

�
0 for � � �̂

qcrB (�) for � > �̂

where �̂ is de�ned in the text of the Proposition and �+ is the solution to
qec(�) = q

m(�) (this is unique by A3).
The strategy of proof is the same as for Proposition 1. Obviously, the com-

petitive fringe will always price at cost, i.e. PEB (qB) = PNEB (qB) = cqB . As
for �rm A, we shall focus on direct mechanisms and hence look for the optimal
quantity qA(�), showing that it coincides with the equilibrium quantity reported
above.
Lemma 2 implies that the solution to the dominant �rm�s problem is formed

by appropriately joining the solution to the maximisation program (5) and that
to the maximisation program (4). By assumption A4, the former applies to
low-demand buyers (� < �̂), the latter to high-demand buyer (� > �̂). The solu-
tion to problem (4), which has been characterised in the proof of Proposition 1
(notice that since PEB (qB) = P

NE
B (qB), the constraint U(�) � UR(�) is already

subsumed into the indirect utility function), implies that the participation con-
straints binds only for the lowest type. Together with A1, this implies that the
assumptions of Lemma 2 indeed hold true.

45Notice that since equilibrium quantities are everywhere continuos, the equilibrium price
schedules must be continuous. The constant terms that guarantee continuity are all negative,
i.e. �xed subsidies. In fact, it can be veri�ed that the equilibrium price schedules are also
everywhere smooth.
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We therefore start by focusing on problem (5). This is a standard monopo-
listic non-linear pricing problem with a utility function u(qA; 0; �), except that
buyers now have a type-dependent reservation utility

URA (�) = max [u(0; q; �)� cq] :

Thus, the problem becomes

max
qA(�)

Z 1

0

[u(qA(�); 0; �)� U(�)] f(�)d�

s.t.
dU

d�
= u�(qA(�); 0; �) (A.1)

U(�) � URA (�):

Its solution is given in the following.

Lemma 3 When c � cm, the solution to problem (A.1) is

qA(�) =

�
0 for 0 � � � �m
qmA (�) for � � �m:

When instead c � cm, the solution is

qA(�) =

8<:
0 for � � ��
qec(�) for �� � � � �+
qmA (�) for � � �+:

Proof. Consider �rst the unconstrained problem. Clearly, its solution is qmA (�).
When c � cm, we have Um(�) � URA (�) for all �, so the unconstrained solu-

tion applies. To show this, notice �rst of all that it follows from our de�nitions
that

qec(�) � qlim(�);

with equality only when both quantities vanish. Thus, �� is the largest � such
that qec(�) = qlim(�) = 0. The condition c � cm guarantees that �m � ��. By
A3, this implies that qmA (�) > q

e
c(�) for � > �

m. Since

Um(�) =

�Z
�m

u�(q
m
A (s); 0; s)ds

whereas

URA (�) =

�Z
�m

u�(q
e
c(s); 0; s)ds

it follows by the sorting condition u�qA � 0 that the participation constraint is
always satis�ed.
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Now suppose that c < cm, so that the type-dependent participation con-
straint must bind for a non-empty set of types. To deal with this constraint,
we use the results of Jullien (2000), and in particular his Proposition 3. To
apply that proposition, we must show that our problem satis�es the conditions
of Weak Convexity, Potential Separation, Homogeneity, and Full Participation.
Weak Convexity requires that Um(�) is more strongly convex than URA (�). This
is implied by assumption A3. Following Jullien (2000), de�ne the virtual surplus
function

sE(g; qA; �) = u(qA; 0; �)�
g � F (�)
f(�)

u�(qA; 0; �)

where the �weight�g 2 [0; 1] accounts for the possibility that the participation
constraint may bind over any subset of the support of the distribution of types.
Pointwise maximisation of the virtual surplus function yields

`E(g; �) = argmax
qA

sE(g; qA; �):

Potential Separation requires that `E(g; �) is non-decreasing in �, which is ob-
viously true. Homogeneity is obvious, as it requires that URA (�) can be imple-
mented by a continuous and non decreasing quantity; in our case, this is by
construction qec(�). Finally, the condition of Full Participation requires that in
equilibrium all types � > �� obtain positive quantities, which is obvious given
that their reservation utility is strictly positive.
Proposition 3 in Jullien (2000) then implies that the solution to problem (5)

is

qA(�) =

�
qec(�) for �� � � � �+
qmA (�) for � � �+;

and obviously qA(�) = 0 for � � ��. �

Next, we proceed to the characterisation of the optimal switching point,
�̂. To begin with, observe that condition A4 guarantees that the equilibrium
rent function U(�) is steeper under non-exclusivity than under exclusivity. This
implies that the solution to the hybrid optimal control problem involves a unique
switch from problem (A.1) (which applies to low-demand types) to problem (4)
(which applies to high-demand types).
The next lemma says that the switch must be from exclusive dealing to

a common representation equilibrium. In other words, at the switching point
the solution to problem (4) is given by the common representation quantities
qcrA (�); q

cr
B (�) > 0. This rules out the possibility that the switch occurs for types

who obtain the monopoly or limit pricing quantity of product A.

Lemma 4 When � > �̂, both qA(�) and qB(�) are strictly positive.

Proof. From condition (7), it is clear that when v�(qNEA (�); �) > u�(q
E
A(�); 0; �)

(which is guaranteed by A4) it must be PNEA (qcrA (�̂)) > PEA (q
E
A(�̂)), so the
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dominant �rm extracts more rents, at the margin, from buyers who accept non-
exclusive contracts than from those who accept exclusive ones. From this, it
follows immediately that that qNEA (�̂) > 0 (otherwise, PNEA (qNEA (�̂)) must be
nil). The proof that also qNEB (�̂) > 0 is equally simple. If the solution to
problem (4) entails qB(�) = 0, it must be either max[qmA (�); q

e
c(�)] or q

lim
A (�).

In the former case, the dominant �rm would obtain the same rent from buyers
who accept non-exclusive contracts as from those who accept the exclusive one;
in the latter, it would actually obtain less. Since we have just shown that it
must obtain more, these two cases are not possible. �

While for � > �̂ we always have the common representation quantities, for
� < �̂ we can have either the monopoly quantity qmA (�) or the quantity q

e
c(�).

The former case arises when c > �c, the latter when c � �c, where the threshold �c
is implicitly de�ned as the solution to �̂(c) = �+(c) and hence satis�es �c < clim.
This completes the derivation of the equilibrium quantities in all possible

cases. It is then easy to check that these equilibrium quantities are implemented
by the price schedules reported in the statement of the Proposition. �

The uniform-quadratic model. Before proceeding, we provide the explicit deriva-
tion of the equilibrium for the competitive fringe model under the uniform-
quadratic speci�cation and check that all of our assumptions are satis�ed in
this case.
Consider the non-linear pricing equilibrium �rst. The indirect utility func-

tion is piecewise quadratic, with two branches corresponding to the cases in
which the quantity

~qB(qA; �) = max

�
0;
� � c� 
qA
1� 


�
is 0 or is strictly positive, and a kink between the two branches. That is:

v(qA; �) =

(
�qA �

1� 

2

q2A if ~qB(qA; �) = 0 or, equivalently, qA � qlimA (�)

A0 +A1qA +A2q
2
A if ~qB(qA; �) > 0 or, equivalently, qA � qlimA (�);

where

A0 =
(� � c)2
2(1� 
) ; A1 =

c
 + �(1� 2
)
1� 
 ; and A2 = �

1� 2

2(1� 
) :

On both branches, the coe¢ cients of the quadratic terms are negative. Further-
more,

@v(qA; �)

@qA

����
qA<qlimA (�)

=
c
 + �(1� 2
)

1� 
 � 1� 2

(1� 
)q

lim
A (�)

� @v(qA; �)

@qA

����
qA>qlimA (�)

= � � (1� 
) qlimA (�);
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so the function v is globally concave in qA.
It can also be easily checked that the single-crossing condition v�qA(qA; �) � 0

is satis�ed since:

v�qA(qA; �) =

�
1 if qA � qlim(�)
1�2

1�
 > 0 if qA < qlim(�):

Like the indirect utility function, the indirect virtual surplus s(qA; �) = v(qA; �)�
(1� �)v�(qA; �) is a piecewise quadratic function, with two branches and a kink
at qA = qlim(�). Since the additional term (1 � �)v�(qA; �) is linear in qA and
v(qA; �) is globally concave, s(qA; �) is also globally concave in qA.
Generally speaking, for any � the maximum can occur on either one of the

two quadratic branches, or at the kink. It is easy to verify that qm(�), qlim(�)
and qcrA (�) are given precisely by the expressions reported in footnote 27:

qm(�) =
2� � 1
1� 
 ;

qlim(�) =
� � c


;

qcrA (�) = 2� � 1 + c



1� 2
 :

We also have
qcrB (�) = �

1� 2

1� 
 +




1� 
 � c
1� 

1� 2
 :

The critical thresholds are cm = 1
2 , c

lim = 1�2

2�3
 , �

m = 1
2 , �

lim = c(1�
)�

1�3
 ;

�� = c, ��A = 1
2 + c



2(1�2
) and

��B = c
(1�
)2
(1�2
)2 �



1�2
 .

With exclusive contracts, the utility function in problem (5) is

u(qA; 0; �) = �qA �
1� 

2

q2A;

and the type-dependent reservation utility is

URA (�) =
(� � c)2

2(1� 
) :

The virtual surplus function for problem (A.1) is

sE(g; qA; �) = (2� � g)qA �
1� 

2

q2A:

Pointwise maximisation yields

`E(g; �) =
2� � g
1� 
 :

Straightforward calculations show that Weak Convexity always holds.
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To show that condition A4 holds, i.e. that the equilibrium rent function U(�)
is steeper under non-exclusivity than under exclusivity, it su¢ ces to notice that
the slope of U(�) is the sum of the equilibrium quantities. It is easy to verify
that qNEA (�) + qNEB (�) � qEA(�), with a strict inequality whenever qNEB (�) > 0.
The explicit expression for �c and �A > 0 are complicated and are reported

in a Mathematica �le which is available from the authors upon request.

Proof of Proposition 3. As usual, we start by reporting the equilibrium quanti-
ties, which are

� when c � ~c,

qA(�) =

8<:
0 for � � P 0crB (0)

qlim(�) for ��A � � � ��B
qcrA (�) for ��B � � � 1

qB(�) =

�
0 for � � ��B
qcrB (�) for ��B � � � 1:

� when c > ~c,

qA(�) =

8>><>>:
0 for � � 1

2

qm(�) for 1
2 < � � �

lim

qlim(�) for �lim < � � ��B
qcrA (�) for � > ��B

qB(�) =

�
0 for � � ��B
qcrB (�) for ��B � � � 1:

where

P 0crB (0) = �+ c

�
1� �(1� 
)

1� 2


�
:

Like in Section 4, ��B is implicitly de�ned by the condition qcrB (��B) = 0 and
�m by the condition qm(�m) = qlim(�m); now, however, the explicit expres-
sions are di¤erent as qcrB (��B) and q

lim(�m) in the duopoly model di¤er from the
competitive fringe model. The explicit solutions are

��B = �+ c
(1� 
)(1� �)

1� 2


and

�m =
(1� 
)
1� 3
 P

0cr
B (0)� 


1� 3
 :

To prove the proposition, we must show that the equilibrium price schedules
satisfy the best response property. Given its rival�s price schedule, a �rm is faced
with an optimal non-linear pricing problem that can be solved by invoking the
Revelation Principle and thus focusing on direct mechanisms. The strategy of
the proof is to show that for each �rm i = A;B the optimal quantities qi(�),
given P�i(q�i), coincide with the equilibrium quantities reported above. It is
then straightforward to conclude that the price schedules that support these
quantities must be equilibrium price schedules.
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Given P�i(q�i), �rm i faces a monopolistic screening problem where type �
has an indirect utility function

vi(qi; �) = max
q�i�0

[u(qi; q�i; �)� P�i(q�i)] ;

which accounts for any bene�t he can obtain by optimally trading with its rival.
Since u is quadratic and P�i(q�i) is piecewise quadratic, vi is also piecewise
quadratic. It may have kinks, but we shall show that any such kink preserve
concavity, so the indirect utility function is globally concave.
Provided that the single-crossing condition holds, �rm i�s problem reduces

to �nding a function that pointwise maximises the �indirect virtual surplus�

si(qi; �) = v
i(qi; �)� ciqi � (1� �)vi�;

where ci is zero for i = A and c for i = B. It is then easy to verify ex post that
the maximiser qi(�) satis�es the monotonicity condition.
Consider, then, �rm A�s best response to the equilibrium price schedule of

�rm B, PB(qB). The indirect utility function is piecewise quadratic, with two
branches corresponding to the case in which argmaxqB�0 [u(qA; qB ; �)� PB(qB)]
is 0 or is strictly positive, and a kink between the two branches:

vA(qA; �) =

(
�qA �

1� 

2

q2A if qB = 0 or, equivalently, qA � qlim(�)
A0 +A1qA +A2q

2
A if qB > 0 or, equivalently, qA < qlim(�):

The coe¢ cients A0, A1 and A2 can be calculated as

A0 =
[(� � c)(1� 2
)� �(1� c(1� 
)� 2
)]2

2(1� 
 � �)(1� 2
)2 ;

A1 = 

c(1� 2
) + �(1� c(1� 
)� 2
)

(1� 
 � �)(1� 2
) + �
1� 2
 � �
1� 
 � �

A2 = �
1� 2
 + �(1� 
)
2(1� 
 � �) < 0:

On both branches of the indirect utility function, the coe¢ cients of the quadratic
terms are negative. In addition, it can be easily checked that

@vA(qA; �)

@qA

����
qA�qlimA (�)

� @vA(qA; �)

@qA

����
qA>qlimA (�)

;

so the function vA(qA; �) is globally concave in qA. It can also be checked that
the sorting condition @2vA

@�@qA
> 0 is satis�ed as

@2vA

@�@qA
=

8<: 1 if qA � qlimA (�)
1� 2
 � �
1� 
 � � > 0 if qA < qlimA (�):

We can therefore obtain A�s best response by pointwise maximising the vir-
tual surplus function sA(qA; �). Like the indirect utility function, the virtual
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surplus function is piecewise quadratic with a kink. The maximum can occur
in either one of the two quadratic branches, or at the kink. To be precise:

argmaxqA(�)[�
A(qA; �)] =

8>>>>>><>>>>>>:

2� � 1
1� 
 if 
 < 1

3 and
1
2 � � � �

lim

� � P 0crB (0)�




if 
 < 1
3 and �

lim � � � ��B
or if 
 � 1

3 and P
0cr
B (0) � � � ��B

� � �
1� � +

c


1� 2
 if � � ��B :

But these are precisely the monopoly, limit-pricing and common representation
quantities de�ned in the main text. Note also that the case in which 
 < 1

3
and 1

2 � � � �m cannot arise if c < ~c. In this case, the optimum is never
achieved on the upper branch of the indirect utility function; in other words,
�rm A�s best response never involves setting the quantity at the monopoly
level. It is therefore apparent that �rm A�s best response is to o¤er precisely
the equilibrium quantities. This can be achieved by o¤ering the equilibrium
price schedules. This veri�es that �rm A�s equilibrium price schedule satis�es
the best response property.
Consider now �rm B: The procedure is the same as for �rm A, but now we

must distinguish between two cases, depending on whether A�s price schedule
comprises the lowest, monopoly branch or not.
Consider �rst the case in which there is no monopoly branch in A�s price

schedule. The indirect utility function of a buyer when trading with �rm B then
is

vB(qB ; �) =

8<:
�qB � 1�


2 q
2
B if qB � qlimB (�)

B̂0 + B̂1qB + B̂2q
2
B if �qB(�) � qB < qlimB (�)

B0 +B1qB +B2q
2
B if 0 < qB � �qB(�)

where

qlimB (�) =
� � �



� �c

1� 2


�qB(�) =
� � �� c(1� �)



+

�c

1� 2
 :

The �rst branch corresponds to �rm B acting as a monopolist. Along the second
branch, �rm B competes with �rm A�s limit-pricing price schedule. Clearly,
neither case can occur in equilibrium. Finally, the third branch corresponds to
the case in which �rm A accommodates.
The coe¢ cients of the lower branches of the indirect utility functions are

B̂0 =
(� � c)2
2


; B̂1 = c; B̂2 = �
1� 2

2

and

B0 =
2� � 1
2(1� 
) ; B1 = � �




1� 
 ; B2 = �
1� 

2

:
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All branches are concave. Global concavity can be checked by comparing the
left and right derivatives of vB(qB ; �) at the kinks, as we did for �rm A. The
sorting condition can also be checked as for �rm A. We can therefore �nd B�s
best response by pointwise maximisation of the virtual surplus function.
It is easy to verify that there is never an interior maximum on the upper or

intermediate branch of the virtual surplus function. This is equivalent to saying
that �rm B is active only when �rm A supplies the common representation
quantity qcrA (�). Pointwise maximisation of the relevant branch of virtual surplus
function then leads to

argmax[�B(qB ; �)] =
� � �
1� � � c

1� 

1� 2
 :

This coincides with qcrB (�), thereby con�rming that the equilibrium price sched-
ule PB(qB) is indeed its best response to �rm A�s strategy.
The case where �rm A�s price schedule comprises also the monopoly branch

is similar. The indirect utility function vB(qB ; �), and hence the virtual surplus
sB(qB ; �), now comprise four branches (all quadratic). The equation of the
fourth branch, which corresponds to 0 < qA < qm(�), is

vB(qB ; �) = ~B0 + ~B1qB + ~B2q
2
B

where

~B0 =
(2� � 1)2
4(1� 
) ;

~B1 =
� + 
(1� 3
)

1� 
 ; ~B2 = �
1� 
(2 + 
)
2(1� 
) :

However, it turns out that the optimum still lies on the same branch as be-
fore and that it therefore entails a quantity equal to qcrB (�). This observation
completes the proof of the Proposition. �

To avoid repetitions, it is now convenient to take up Proposition 5 before
Proposition 4.

Proof of Proposition 5. The equilibrium quantities are:

qA(�) =

8>><>>:
0 for � � c
qec(�) for c � � � �̂
�qcrA (�) for �̂ � � � ��
qcrA (�) for �� � � � 1

qB(�) =

8<: 0 for � � �̂
�qcrB (�) for �̂ � � � ��
qcrB (�) for �� � � � 1;

where �̂ and ��, which are de�ned in the text of the Proposition, are given by

�̂ =
c(2� 3
)
1� 2
 ;

�� =
c(1� 2
) + �[3� c� 2(2� c)
]

�+ 2(1� 2
) :

The claim that this is the most cooperative equilibrium is justi�ed in the
main text. Here, we just verify that this is indeed an equilibrium of the game.
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The logic of the proof is the same as for Proposition 3. We must show that
for each �rm the equilibrium price schedules satisfy the best response property.
When calculating the best response, we take fPE�i(q); PNE�i (q)g as given and
hence can invoke the Revelation Principle and focus on direct mechanisms. We
must therefore show that for each �rm i = A;B the optimal quantities qi(�)
coincide with the equilibrium quantities reported above. It is then straightfor-
ward to conclude that the price schedules PEi (q); P

NE
i (q) that support these

quantities must be equilibrium price schedules.
Given its rival�s exclusive and non exclusive price schedules, a �rm must

solve a monopolistic screening problem in which the buyer has an indirect utility
function

vi(qi; �) = max
q�i�0

�
u (qi; q�i; �)� PNE�i (q�i)

�
;

and a reservation utility

URi (�) = max
q�i

�
u(0; q�i; �)� PE�i(q�i)

�
:

Since �rm i can impose exclusivity clauses, it must solve a hybrid optimal control
problem in which the two control systems are

max
qi

Z �
vi(qi; �)� U(�)� ciqi

�
d�

s.t.
dU

d�
= vi�(qi; �) (A.2)

U(�) � URi (�)

if q�i(�) > 0, and

max
qi

Z
[u(qi; 0; �)� U(�)� ciqi] d�

s.t.
dU

d�
= u�(qi; 0; �) (A.3)

U(�) � URi (�)

if q�i(�) = 0. In both cases, qi(�) must be non-decreasing.
Problem (A.3) is relevant only for the dominant �rm. When it sets qB(�) = 0,

noting that problem (A.3) coincides with problem (A.1) in the proof of Propo-
sition 2, we can apply Lemma 3 and conclude that

qA(�) =

8<: 0 for � � c
qec(�) for c � � � 1� c
qmA (�) for � � 1� c:

It is then easy to verify that �̂ is now lower than 1� c, so the only relevant part
of the solution is qec(�).
Consider now problem (A.2). Several properties of the solution to this prob-

lem must hold for both �rms. By construction, the indirect utility functions
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vi(qi; �) are almost everywhere di¤erentiable. At any point where the deriva-
tives exist, by the envelope theorem we have

vi�(qi; �) = qi + ~q�i(qi; �);

where
~q�i(qi; �) = arg max

q�i>0

�
u (qi; q�i; �)� PNE�i (q�i)

�
Generally speaking, the indirect utility functions vi(qi; �) have two branches,
according to whether ~q�i(qi; �) � �q�i(��) or ~q�i(qi; �) � �q�i(��) respectively.
When ~q�i(qi; �) � �q�i(��), we have PNE�i (q�i) =

�P cr�i(q�i). When ~q�i(qi; �) �
�q�i(��), we have PNE�i (q�i) = P

cr
�i(q�i) (plus a constant).

The indirect utility functions vi(qi; �) are continuous, almost everywhere
di¤erentiable, and satisfy vi�qi(qi; �) > 0. Continuity and a.e. di¤erentiability
follows directly from the de�nition of vi(qi; �). To prove the sorting condition,
observe that

vi�qi(qi; �) = 1� 

@~q�i(qi; �)

@qi
� 0:

Consider the two branches of the indirect utility function in turn. When ~q�i(qi; �) �
�q�i(��),

vi�qi(qi; �) = 1 +
@~q�i(qi; �)

@�
(�
)2 = 3� 6


3� 5
 > 0:

When instead ~q�i(qi; �) � �q�i(��) the sorting condition is immediately veri�ed
since

v�qi(qi; �) =
1� �� 2

1� �� 
 � 0:

Now consider problem (A.2). Because of the type-dependent participation
constraint, following Jullien (2000) we de�ne the virtual surplus function:

�i(g; qi; �) = v
i(qi; �)� (g � �) vi�(qi; �)

where the �weight�g 2 [0; 1] accounts for the possibility that the participation
constraint may bind for a whole set of types. Let

`i(g; �) = argmax
qi�0

�i(g; qi; �)

be the maximiser of the virtual surplus function. This solution is still in implicit
form, as it depends on the value of g, which is still to be determined. This can
be done by exploiting Proposition 5.5 of Jullien (2000).
To apply that Proposition, we �rst prove the following lemma.

Lemma 5 Problem (A.2) satis�es the conditions of Potential Separation, Ho-
mogeneity and Weak Convexity.
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Proof. Potential Separation requires that `i(g; �) is non-decreasing in �. This
follows from the fact that the virtual surplus function has increasing di¤erences.
To show this, consider each branch of the indirect utility function separately.
First, when ~q�i(qi; �) � �q�i(��) we have

�iqi�(qi; �) = v
i
qi�(qi; �)�

�
1 +

@~q�i(qi; �)

@qi

�
d

d�
(g � �) :

The �rst term is positive, as we have just shown. The second term is positive
because d

d� (g � �) < 0 and

1 +
@~q�i
@qi

=
1� 2

3� 5
 > 0:

Second, when ~q�i(qi; �) � �q�i(��) the indirect utility function coincides, mod-
ulo a constant, with the one arising in the equilibrium with non-linear pricing.
In this case, it is immediate to show that �iqi�(qi; �) > 0. This completes the
proof that problem (A.2) satis�es the condition of Potential Separation.
Homogeneity requires that URi (�) can be implemented by a continuous and

non decreasing quantity. This is obvious, since URi (�) is implemented by q
E(�),

where qE(�) is the optimal quantity given the exclusive price schedule PE�i(q):

qE(�) =

�
qec(�) if � � �̂
�qE(�) if � > �̂:

To prove Weak Convexity, we �rst show that `i(0; �)+~q�i(`i(0; �); �) � qE(�)
for all � 2 [0; 1]. By de�nition,

`i(0; �) = argmax
qi

�
vi(qi; �) + �v

i
�(qi; �)

�
:

Thus, `i(0; �) is implicitly de�ned by the �rst order condition

viqi(qi; �) + �v
i
�qi(qi; �) = 0:

Since vi�qi(qi; �) > 0, this implies that v
i
qi(qi; �) < 0, or uqi(qi; ~q�i(qi; �); �) < 0.

In other words, `i(0; �) exceeds the satiation consumption uqi(qi; ~q�i(qi; �); �) =
0. The quantity qE(�), on the contrary, is lower than the satiation consumption.
It follows that `i(0; �) + ~q�i(`i(0; �); �) � qE(�).
In addition, Weak Convexity requires that the curve qE(�) cuts the curve

`i(1; �) + ~q�i(`i(1; �); �) = qcrA (�) + q
cr
B (�) from above. Noting that `i(1; �) =

qcri (�), the fact that q
E(�) can only cut the curve qcrA (�) + q

cr
B (�) from above as

d[qcrA (�) + q
cr
B (�)]

d�
� dqE(�)

d�
;

irrespective of whether qE(�) is qec(�) or �q
E(�). This �nally proves Weak Con-

vexity and hence the lemma. �
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With these preliminary results at hand, let us now consider the dominant
�rm�s problem. The solution when qB(�) = 0 has been already characterised. If
qB(�) > 0, Proposition 5.5 in Jullien (2000) guarantees that generally speaking
the solution partitions the set of types into three sets: buyers who are excluded,
buyers who obtain their reservation utility URA (�), and buyers whose payo¤ is
strictly greater than URA (�). Clearly, the �rst set is always empty: if qB(�) > 0,
we always have qA(�) > 0.
Next consider the second group of buyers. When the participation constraint

binds, �rm A can guarantee to each low-type buyer his reservation utility URA (�)
in two ways. First, it can o¤er an exclusive price schedule that just undercuts
that of �rm B. Alternatively, it can implement via non-exclusive prices the
quantities that satisfy the condition

�qcrA (�) + �q
cr
B (�) = �qE(�);

which by the envelope theorem guarantees that the participation constraint is
met as an equality. The maximum payment that �rm A can requested for �qcrA (�)
is

�P crA (�qcrA (�)) = �c�qcrA (�) + (1� 2
) [�qcrA (�)]
2
+ cqec(�̂):

The second strategy is at least as pro�table as the �rst one if

�P crA (�qcrA (�)) � �PE(�qE(�));

which is precisely the no-undercutting condition (21) which holds by construc-
tion. This shows that o¤ering �P crA (qA) is indeed a best response for �rm A
when the participation constraint is binding.
Finally, when the participation constraint does not bind, the solution to �rm

A�s program is obtained simply by setting g = 1. Assume that `A(1; �) � �qcrA (
��)

when � > �̂ (this will be proven shortly). Since the virtual surplus function
�A(1; qA; �) is exactly the same as in the non-linear pricing equilibrium, modulo
a constant, the maximisers of the virtual surplus functions must coincide and
the optimal quantity is

`A(1; �) = q
cr
A (�):

Finally, the cuto¤ �� is implicitly given by the condition

�qE(��) = `A(1; ��) + ~qB(`A(1; ��); ��):

This also establishes that `A(1; �) � �qcrA (
��) when � > �̂.

To complete the veri�cation of the best response property for �rm A, it
remains to consider the switch from exclusive to non-exclusive contracts. By
the no-deviation condition (21), which in the most cooperative equilibrium holds
as an equality, �rm A is just indi¤erent between imposing an exclusivity clause
or not for all � � ��. Exclusive dealing arises just when �qcrB (�) � 0; which is
equivalent to � � �̂. Because �rm A is indi¤erent between the exclusive and
non-exclusive regimes, at the switching point a smooth-pasting condition must
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now hold, which implies that aggregate quantities must be continuous, and
hence that PNEA (�qcrA (�̂)) = P

E
A (�q

E
A(�̂)).

The problem faced by �rm B is similar, except that �rm B can never make
a pro�t by selling under an exclusivity clause. Thus, we can focus on problem
(A.2). Proceeding as for �rm A, one can show that the optimal quantity is
�qcrB (�) when the participation constraint U(�) � URA (�) is binding, and q

cr
B (�)

when it is not.
These arguments complete the proof that the solution to the problem of �rm

i coincides with qi(�) as shown in the text of the proposition. By construction,
this solution can be implemented by �rm i using the equilibrium price schedules�
PEi (qi); P

NE
i (qi)

�
.

This solution is well de�ned when the three intervals [c; �̂), [�̂; ��] and (��; 1]
are non-empty. This requires c � �̂, �̂ � �� and �� � 1. It is immediate to show
that the �rst and the last of these inequality always hold. Thus, the solution is
well de�ned if and only is �̂ � ��, which is equivalent to

c � �c � 2(1� 2
)
5(1� 
) +

p
1� 2
 + 9
2

: �

We can now �nally proceed to the proof of Proposition 4.

Proof of Proposition 4. As usual, we start by reporting the equilibrium quanti-
ties, which are:

� when �c � c � cm,

qA(�) =

8>><>>:
0 for � � c
qec(�) for c � � � �m

qmA (�) for �m � � � �̂
qcrA (�) for �̂ � � � 1

qB(�) =

�
0 for � � �̂
qcrB (�) for �̂ � � � 1;

� when c > cm

qA(�) =

8<:
0 for � � 1

2

qmA (�) for 1
2 � � � �̂

qcrA (�) for �̂ � � � 1
qB(�) =

�
0 for � � �̂
qcrB (�) for �̂ � � � 1:

The strategy of the proof is the same as for Proposition 5. Many of the
arguments are indeed the same as in previous proofs and so need not be repeated
here. In particular, notice that:

� �rst, when c > �c, there is no longer any scope for coordinating exclusive
prices (this was shown in the proof of Proposition 5. Hence, �rm B always
sets exclusive prices at the competitive level PEB (qB) = cqB . This implies
that when �rm A imposes an exclusivity clause, the buyers�reservation
utility is exactly the same as in the competitive fringe model. It follows
that the solution to problem (5) is still given by Lemma 3;
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� second, without exclusivity the problems that are faced by the �rms are
exactly the same as in the proof of Proposition 3 when the participation
constraint does not bind.

These remarks imply that Proposition 4 can be proved simply by combining
arguments already presented in the proofs of Proposition 3 and Proposition 5.
The only di¤erence is that now the switch from the exclusive to the non-exclusive
regime is the result of the interaction between the pricing choices of �rm A and
�rm B. This point, however, has already been discussed in the main text, which
shows that the equilibrium switching point must satisfy conditions (15)-(17).
The explicit expressions for �A and �B are complicated and are reported in a
Mathematica �le that is available from the authors upon request. �
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