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the market. The policy that maximizes innovative activity depends on the

firms’ R&D productivity. Patent length and forward protection are comple-

mentary, as one tool effectively encourages innovation in markets where the

other tool is not as effective. Overly protective policies decrease the pace

of innovation through two mechanisms: delaying firms’ investments toward

the end of the patent’s life and decreasing the number of firms performing
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1 Introduction

Consider the incentives that a technology leader faces when deciding whether to

improve upon its currently patented technology. When new technologies cannibal-

ize rents from existing products, cannibalization reduces the leader’s incentives to

invest in replacing its patented technology (i.e., Arrow’s replacement effect). The

replacement effect is non-stationary, as patents lose value when the patent’s expi-

ration date approaches. A leader’s incentives to invest in R&D, therefore, increase

as the patent term runs out. Time mitigates the replacement effect.

Firms that are behind in the technology race (or followers) are also affected by

the technology leader’s replacement effect. Strong patent protection against future

innovations disincentivizes followers’ R&D by increasing expected license fees faced

by followers in the event of a successful innovation. These fees are a function of

the time that the replaced patent has remaining. As the patent’s expiration date

approaches, expected licensing fees fade away and followers’ incentives to improve

upon existing technologies also become non-stationary. Both followers and leaders

will have greater incentives to invest in R&D towards the end of a patent’s life.

Patents of different length and strength against future innovation, thus, induce

different innovation patterns among technology leaders and followers; patent policy

plays a crucial role in determining the magnitude and timing of R&D investments

as well as the degree of leadership persistence that exists in the market. This

article studies how patent policy—through its dynamic impact on the replacement

effect—shapes firms’ R&D incentives. Using these results, I study optimal patent

design in the context of a quality-ladder model (Grossman and Helpman, 1991;

Aghion and Howitt, 1992; Aghion et al., 2001).

Innovations may come from a technology leader trying to prolong its lead or

from followers aiming to become the new leader. A patent is represented by

a two-dimensional policy determining how long a leader will be able to exclude

others from using its current technology—patent length—and how enforceable its

patent will be against future innovations—forward protection. Following Lemley

and Shapiro (2005) and Farrell and Shapiro (2008), I treat forward protection as

probabilistic, capturing both the uncertainty that exists when a replaced leader

tries to enforce its patent against a new innovation and the leniency of courts

towards new innovators. When a follower develops a new innovation, the replaced

leader files an infringement lawsuit against the innovating follower. The patent

authority—for example, a U.S. federal court—may decide, with certain probability,
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to uphold the claim or to declare it invalid.1 In the former case, a compulsory

license fee, equal to the damages caused by the commercialization of the new

innovation, must be paid by the infringing firm before the firm can commercialize

the new invention and obtain economic profits. Stronger forward protection, thus,

increases the expected license fees paid by followers, inducing them to internalize

the cost of replacing the leader.2

The article shows that the value of possessing a patent, the extent of the re-

placement effect, and firms’ investment decision are endogenously determined by

patent policy. In contrast with the previous literature—discussed further in the

next section—the finiteness of patent protection induces non-stationary invest-

ments through the patent’s life. Although patents are necessary to incentivize

innovation, longer protection intensifies the replacement effect inducing technol-

ogy leaders to delay their investments towards the end of the patent’s life. Fur-

thermore, under strong forward protection, the replacement effect permeates to

followers, inducing them to also delay investments. The extent of the followers’

internalization of the replacement effect can be substantial. In protective patent

systems, Arrow’s result reverses and followers have less incentives to innovate than

leaders at every moment of the patent’s life. Patent policy, thus, plays an impor-

tant role in determining the persistence of leadership that exists in the market.

To explore the policy consequences of the dynamic incentives induced by the

replacement effect, I examine the combination of patent length and forward pro-

tection that maximizes the speed of innovative activity in a given market.3 I show

that the patent that maximizes innovative activity has a positive but finite length.

From the perspective of a policymaker, length and forward protection complement

each other: one tool effectively encourages innovation in circumstances where the

other tool does not. The optimal level of length and forward protection varies with

the market’s R&D productivity. In particular, among markets in which innovations

take longer to produce or are costlier to develop, such as the pharmaceutical sector,

1In a study on the validity of litigated patents, Allison and Lemley (1998) find that in 46% of
cases that go to litigation, the suing patent is found invalid. In their annual patent litigation re-
port, PricewaterhouseCoopers (2015) documents that 35% of infringement claims were successful
in U.S. federal courts in 2014, and that the success rate varies across sectors.

2Although through a different mechanism to that identified here, Koo and Wright (2010) were
first to recognize that followers have incentives to delay R&D in order to pay lower license fees.

3Observe that even within the WTO’s TRIPS agreement, which fixes the maximum patent
length to 20 years, there is room for policy changes affecting the effective length of patents. For
instance, the prosecution time—the time lapse between the filing of a patent application and its
approval—is discounted from the 20 years of protection. Thus, a policy that aims to speed up
the prosecution process can be effectively interpreted as an increase in patent length.
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patent length is a more effective tool for promoting innovation; long patents with

little forward protection maximize innovative activity.4 In contrast, markets in

which innovations are less costly to produce or are more frequently generated, such

as the software industry, forward protection is a more effective tool for promoting

innovation; short patents that are protective against future inventions maximize

innovative activity.5 This article contributes to the literature of market-contingent

policy by showing that protective policies—such as longer patents—do not neces-

sarily lead to higher innovation rates and by illustrating how the optimal policy

varies across industries.

Patent policy also plays an important role in determining the number of firms

competing in an innovative industry. In particular, overly protective policies can

disincentivize innovation by discouraging market entry. Greater forward protec-

tion has an immediate effect on entry by decreasing followers’ innovation rents

via higher expected license fees. Perhaps surprisingly, longer patent protection

may also discourage entry depending on the degree of forward protection. In a

system with weak forward protection, a longer patent increases innovation rents

and encourages entry. With strong forward protection, however, a longer patent

encourages entry up to a point. Under strong forward protection longer patents

delay followers’ investments and, consequently, the arrival of their innovation rents;

i.e., longer patents can decrease followers’ benefit from participating in the mar-

ket, inducing their exit. Therefore, overly protective policies, not only delay firms’

investments, but also reduce the number of firms investing in R&D.

The article proceeds as follows: the following section contextualizes the article

with respect to the literature. To obtain analytic results, Section 2 introduces a

simplified model of innovation. Section 3 establishes the equilibrium’s existence,

uniqueness, and performs basic comparative statics. Main results are presented in

Sections 4 and 5. The former section studies how patent policy affects the dynamics

of the replacement effect and its impact on R&D. The latter studies the policy that

maximizes the innovation rate across different markets. Section 6 shows that the

results are robust to lifting the simplification introduced in Section 2. Section 7

introduces various extensions of the baseline model and Section 8 concludes. All

proofs are omitted from the main text and presented in Appendix A.

4In a study on the rewards necessary to induce the development of a new drug, Dubois et al.
(2015) find that, at the mean market size, an additional $1.8 billion in revenue is required.

5Consistent with this result, Bessen and Hunt (2007) empirically study the impact of the
extension of patent rights within the software industry. They find that R&D expenditure (relative
to sales) declined between 1987 and 1996.
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Literature Review

The model is a sequential extension of traditional (stochastic) patent races à la

Loury (1979), Lee and Wilde (1980) and Reinganum (1982). Its departure with re-

spect to previous work is the consideration of the non-stationary incentives induced

by patents with a finite length and its interaction with the followers’ internaliza-

tion of the replacement effect.6 The goal is to better understand how patent policy

affects R&D and market dynamics. In particular, I study the different innovation

patterns that patent policy induces between leaders and followers, its consequences

for optimal patent design, and its implications for market structure and the per-

sistence of leadership.

Early work on dynamic R&D incentives focused on models of a sequence

of two innovations. These theories recognize that patent protection can hinder

innovation by creating a tension between the incentives given to develop first-

generation technologies and to develop innovations that build upon (or comple-

ment) a first-generation technology (Scotchmer and Green, 1990; Scotchmer, 1991;

Green and Scotchmer, 1995; Denicolò, 2000; Denicolò and Zanchettin, 2002; Bessen

and Maskin, 2009). Although insightful, these models are unable to explain

how this tension resolves in a sequential context, where every innovation builds

upon previous technologies and enables future inventions. The finding that longer

patents delay investments is a direct consequence of how these tensions resolve.

The study of R&D incentives in the context of an infinite sequence of innova-

tions have focused on stationary environments. Stationarity has been attained by

assuming an exogenous arrival of innovations (O’Donoghue et al., 1998; Hopen-

hayn and Mitchell, 2013); by restricting the policy space to patents of infinite

length (O’Donoghue, 1998; Denicolò and Halmenschlager, 2012; Acemoglu and

Cao, 2015) or to patents that terminate stochastically in a Poisson fashion (Ace-

moglu and Akcigit, 2012; Kiedaisch, 2015); by restricting the agents performing

R&D only to potential followers (Hunt, 2004; Riis and Shi, 2012); or by restricting

R&D to only market leaders (Horowitz and Lai, 1996). Although these studies

have emphasized the role of the replacement effect on the firms’ incentives to in-

novate, stationarity shuts down the dynamic incentives that exists throughout the

patent life, which is the main focus of this work.

6To my knowledge, Doraszelski (2003) is the only other work to analyze non-stationary in-
centives in the context of R&D races. In his article, non-stationarity is due to knowledge accu-
mulation throughout the patent race, whereas here is due to the finiteness of patent protection.
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This article contributes to the literature on the persistence of leadership. In

the context of single innovation models, Arrow (1962) and Reinganum (1983) ar-

gued that the replacement effect discourages leaders, making followers more likely

to generate next generation technologies. Gilbert and Newbery (1982) argue that

incumbents have an incentive to pre-empt followers, persisting as leaders. In the

context of a infinite sequence of innovations, Segerstrom and Zolnierek (1999) and

Segerstrom (2007) show that leadership persistence depends on productivity dif-

ferentials among leaders an followers. Etro (2004) shows that leaders can maintain

their status if they can pre-commit (à la stackelberg) its R&D investments. Deni-

colò and Zanchettin (2012) show that larger technology gaps discourage leaders

from R&D, making them more likely to be leapfrogged by a follower. I build upon

previous work by making explicit the role that patent policy has in determining

the patterns of leadership cycles. In particular, I show that strong forward protec-

tion reverses Arrow’s result, as strong patents induce followers to invest less than

leaders at any point of the patent’s life.

Early work studied the problem of optimal patent design under the assumption

that more protective policies lead to a higher pace of innovation (see Krasteva

(2014) for an exception). The main focus was to find the policy that balances en-

hanced R&D incentives, induced by protective policies, with the social cost (dead-

weight loss) associated with lack of competition due to patent protection.7 Hall

(2007) and Boldrin and Levine (2013) argue that the assumption that protective

policies lead to a higher pace of innovation has weak empirical support; studies

by Qian (2007) and Lerner (2009) suggest that protective patents encourage R&D

only up to a point, becoming detrimental to innovation when too protective.

This article contributes to the discussion of optimal policy by showing that the

different patent tools interact at the moment of incentivising firms. In particular,

the effectiveness of a policy tool strongly depends on the level of protecion granted

by other tools. In a context that patents are infinitely long, O’Donoghue and

Zweimller (2004) and Denicolò and Zanchettin (2012) show that protection against

future innovation decreases R&D. In constrasts, once finite patents are allowed, I

show that positive levels of forward protection may induce higher innovation rates.

Moreover, because longer patents delay firms’ investments, long patent protection

7With this aforementioned trade-off in mind Gilbert and Shapiro (1990), Klemperer (1990)
and Denicolò (1999) study the optimal length and breadth as a function of the market’s demand
shape. Scotchmer (1999) and Cornelli and Schankerman (1999) study how patent renewal systems
could lead firms to self-select into the right length, and Hopenhayn and Mitchell (2001) study
conditions under which firms self-select into the right combination of length and breadth.

6



may slow down the rate of innovation. The extent of this delay strongly depends

on the level of forward protection. By exploring the combination of length and

forward protection that maximizes the rate of innovation, it is also shown that

the incentives provided by different patent instruments vary significantly across

industries, adding a new relevant dimension to the desing of patent policy.8

In environments where innovation dates can be deterministically chosen, earlier

work has recognized that protective policies may be detrimental to innovation. In

contexts where innovations can only be generated by market leaders, Mookherjee

and Ray (1991) and Horowitz and Lai (1996) respectively study the role of dif-

fusion and imitation on the leader’s R&D incentives. The former article shows

that leaders only innovate when its technology gets diffused to followers. Strong

protection delays diffusion, and consequently, innovation. In the latter work, be-

cause leaders can choose when to innovate, innovation only occurs when patent

protection expires. Consequently, an infinitely long patent delays innovation for-

ever. These results, however, are not robust to environments in which followers are

able to invest in R&D. I show that, when innovation is stochastic, the discourage-

ment effect of longer patent protection returns even when followers compete for the

next innovation. Finally, Bessen and Maskin (2009) show that when innovations

increase the value of existing technologies (i.e., complementary innovation), longer

patents may discourage R&D. I build upon this result by showing that protective

policies may also disincentivize innovation when innovations are substitutes—i.e.,

when a new breakthrough cannibalizes existing rents.

This article aims to deepen our understanding about how patents and other in-

stitutions shape dynamic incentives and market structure in innovative industries.

Hopenhayn et al. (2006) study how a buyout scheme can implement the optimal

innovation policy when firms possess private information about the innovation’s

characteristics. Segal and Whinston (2007) study how antitrust regulation in the

post-innovation market affects firms’ innovation outcomes. Acemoglu and Akcigit

(2012) show that a policy contingent on the firms’ technology gap can reduce the

social costs of patents. Hopenhayn and Squintani (2016) study how patent pol-

icy affects the firms incentives to disclose inventions. Lastly, Marshall and Parra

(2017) study the role of product market competition in the firms incentives to

innovate. This article contributes to the dynamic innovation literature by making

8Hopenhayn and Mitchell (2001) identify a sufficient single-crossing condition under which
patent length and breadth substitute for one another in the optimal mechanism. This condition
does not hold here precisely due to the non-monotonicity in incentives induced by finite patents.
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explicit the non-stationary R&D incentives generated by patent policy.

2 A Model of Sequential Innovation

Consider a continuous-time economy characterized by an infinitely-long ladder

of innovations. Firms compete investing in R&D to (stochastically) achieve an

innovation—protected by a patent—and temporarily reach the technological lead

in the market. The firm with the leading technology is called the leader and is

denoted by l. All other firms, the followers, only have access to obsolete technolo-

gies and are denoted by f . The leader invests in R&D in order to extend its lead

in the market, whereas followers invest in R&D to leapfrog the current leader and

become the new technology leader. Payoffs are discounted at a rate r > 0.

Due to the complexity of the non-stationary dynamic game—which does not

have a closed form solution—and as an analysis tool, I (initially) assume that the

leader is a long-run player facing a sequence of short-run followers (cf. Fudenberg

et al. (1990)). By doing so, I am able to retain the main economic forces behind

the long-run firms model and obtain an analytic solution, thus, providing a cleaner

exposition of the results. The scenario in which every firm is a long-run player is

studied in Section 6. There, it is shown that the main results carry through and,

in some cases, become stronger than those in the simplified model. The limitations

imposed by the short-run followers assumption are discussed below.

Denote by t the time that has passed since the last innovation, i.e., t = 0

represents the arrival of a new innovation. Let vt represent the leader’s value of

possessing a patent that has been active for t years. The value of vt is endogenously

determined and depends on the underlying patent system, the profit flow that the

leader receives while holding the patent, and the R&D decisions of every firm in

the market. A patent policy consists of a statutory length T ∈ R+, denoting the

amount of time that a leader will be able to exclude others from commercializing

its current technology, and a forward protection b ∈ [0, 1], denoting the probability

that a new innovation will be considered to infringe on the leader’s patent.

I assume that all innovations are patentable. Whereas a leader’s infringement of

its own patent has no active consequences, followers must pay a compulsory license

fee to be able to profit from any innovation that infringes on an active patent.9

9In a case of an infringement, the leader may also choose to forbid the utilization of the new
innovation. In order to show that overly protective policies slow the pace of innovation down, I
use the best case for patents by assuming compulsory licensing (Tandon, 1982).
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The license fee is assumed equal to the damages that the leader suffers from the

commercialization of the new product, i.e., for an innovation that occurs at instant

t, the license fee is equal to vt. For all of the participants in this market, the tuple

(T , b) is considered common knowledge and exogenously given. To illustrate the

workings of the patent system, consider a patent that grants no forward protection

(b = 0). Under such system the leader is able to preclude imitation of its current

technology for T years. The leader, however, has no protection against innovations

that advance through the technology ladder—no license fees can be collected from

any innovation that improves upon the leader’s technology.10

While a patent is active, the leader receives a monopoly flow of profits π > 0.

When the patent expires, at t = T , competition in the product market drives the

leader’s profit flow to zero. As soon as an innovation occurs, the innovating firm

patents its new technology, gaining the right to exclude others from using it, in

exchange for making this new technology known to the public. As a consequence

of this release of information, any innovation produced by a follower will build

upon the latest technology, leapfrogging the current leader.

For ease in exposition, I assume that the patent of obsolete technologies that

have not yet expired are too costly to enforce and are, therefore, imitated. This

assumptions implies that there always is a one-step lead between the technol-

ogy leader and its competitors. It also implies that two consecutive innovations

by a leader do not increase its stream of profits π, as the old technology gets

imitated—i.e., the only benefits that a leader derives from an innovation are ex-

tending the clock of its patent protection and, in equilibrium, discouraging followers

from investing. Because in practice a new innovation by a leader only partially

cannibalizes existing patents, Section 7 studies the scenario in which consecutive

innovations by the leader not only extend the patent clock but also increase the

profit flow it receives. It is shown that the main forces and intuitions derived in

the one-step lead model are still present there.

In order to develop an innovation, firms invest in R&D. These investments lead

10There may be concern about the possibility of using forward protection as a policy tool. Al-
though, for tractability purposes, I treat b as a continuous policy parameter, there are certainly
episodes where the degree forward protection of patents has changed. Jaffe and Lerner (2011)
argue that the creation of the U.S. States Court of Appeals of the Federal Circuit significantly
increased the number of infringement claims found to be valid. The Federal Trade Commission
(2003) proposed a number of changes to promote innovation. Among the suggestions was weak-
ening patent protection by lowering the requirements to prove the invalidity of an active patent.
In particular, the Commission proposed changing the law from “clear and convincing evidence”
to “the preponderance of evidence”.
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to a stochastic arrival of innovations, which is an increasing function of the firms’

investments. At every t, the technology leader and a new follower simultaneously

choose their R&D investment flows xk,t ≥ 0 with k ∈ {l, f}. Thus, the investment

xf,t represents how the R&D of the different followers evolves through time. The

instantaneous cost flow of this investment is given by the cost function c (x). I

assume that the cost is increasing in x, differentiable, strictly convex, c′ (0) = 0

and limx→∞ c
′ (x) =∞ (in order to obtain an analytical solution, below I will focus

on the case in which c(x) = x2/2).

Firm k’s investment induces an arrival of innovations described by a non-

homogeneous Poisson process. The arrival rate of the leader at instant t is λxl,t

with λ > 0, whereas the arrival rate of the follower investing at t is given by

µxf,t with µ > 0. The parameters λ and µ represent the different levels of R&D

productivity that firms may have. For instance, with λ > µ we can represent

a situation in which the leader has an advantage in building upon its own tech-

nology.11 The Poisson processes are independent among firms and generate a

stochastic process that is memoryless but potentially non-stationary. The waiting

time between two innovations is described by an exponential distribution with the

probability of observing an innovation by instant t equal to 1 − exp(−z0,t) where

zτ,t =
∫ t
τ

(λxl,s + µxf,s) ds measures the accumulated investments from instant τ

to instant t.

Timing of the game. The timing of the game, depicted in Figure 1, is as follows:

when an innovation arrives, the time index t is reset to zero. From that time and

onward, and while the leader’s status lasts, the patent holder receives the monopoly

profit flow π. Followers, on the other hand, obtain zero (product market) profit

flow as they only have access to obsolete technologies. At each instant in time t

the leader faces a different follower. Each follower invests in R&D only once in the

game, maximizing its instantaneous payoff. At every t, both the leader and the

investing follower choose their investments simultaneously, determining the arrival

rate of innovation for both firms.

When an innovation occurs, the succeeding firm becomes the new leader, and

its technology renders the currently patented technology obsolete. If the innovat-

ing firm is a follower, with exogenous probability b, the follower’s innovation is

11Under quadratic costs, λ and µ also measure R&D costs. To see this, assume that the
leader’s productivity is λ̃ and its costs is c̃(x) = ρc(x) for ρ > 0. Redefining λ = λ̃/

√
ρ, we

can proceed with the original (λ, c(x)) formulation, reinterpreting higher cost of innovation ρ as
lower productivity λ.
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Figure 1: Timing of the game

considered to infringe the existing patent. In that case, the follower must pay to

the replaced leader a compulsory license fee (lump sum) of vt, equal to the dam-

ages caused to the leader due to the commercialization of the new innovation. If

no innovation has occurred within the statutory length of the patent, the patent

holder loses its leader status and becomes one of the many followers of the game.

Consequently, no license fees can be charged for innovations that occur after T .

Short-run followers. The main restrictions that the short-run followers model

imposes, with respect to a model with long-run firms, are two. First, followers do

not internalize how their investment decisions impact the value of an active patent

vt and their own value of participating in the race. Relative to the long-run model

this assumption leads (short-run) followers to over invest. The second limitation

is that the terminal value of a patent is vT = 0 because when the active patent

expires the leader becomes a short-run follower. The lack of continuation value

underestimates the effects that patent policy has on the value of active patents.12

Both of these restrictions are incorporated in Section 6, where a model with long-

run firms is studied using a mixture of analytical and numerical methods. There

it is shown that the economic intuitions and the results derived in the short-run

follower model are preserved.

12By assuming, instead, that the leader becomes a short-run follower after another firm inno-
vates, it is possible to accommodate a positive continuation value for the leader without losing
the analytical solution. Doing so does not alter the results nor brings new insights, but increases
the complexity of the model. Thus, for ease in exposition, the current formulation is used.
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Model interpretation. The model admits a wide variety of applications com-

monly studied in the literature. A natural interpretation is to understand each

breakthrough as a process (cost-saving) innovation in the context of a homoge-

neous good market under price competition. There, only the firm with the lowest

marginal cost of production obtains positive profits.13 Similarly, the model can

also be interpreted as firms competing through the quality of their products. For

example, firms compete in price and the consumers’ willingness to pay is equal to

the product’s quality. Then, the leader’s profit is a function of the quality gap

between its product and that of the followers (see O’Donoghue et al. (1998)).

The model also accommodates the traditional (Schumpeterian) creative de-

struction framework in which each innovation completely replaces the old technol-

ogy rendering the previous one obsolete—e.g., the microprocessor industry. Finally,

the profit flow π can be interpreted as coming from the direct commercialization

of the innovation or from licensing the technology to a downstream market.

Payoffs and strategies. Given any sequence of investments by the followers

{xf,t}Tt=0, from the perspective of time s, the leader’s value of possessing a patent

that has been active for s years is:

vs = max
{xl,t}T

t=s

∫ T

s

(π + λxl,tv0 + µxf,tbvt − c (xl,t)) e
−zs,te−r(t−s)dt. (1)

That is, with probability exp(−zs,t), no innovation has occurred between instant

s and t, and the patent is still active at t. At that instant t, the leader receives the

flow payoff π and pays the flow cost of its investment c(xl,t). The R&D investment

results in an innovation at a rate of λxl,t, obtaining the benefit of a brand new

patent v0. On the other hand, the follower investing at instant t may succeed at a

rate of µxf,t, in which case it may infringe on the current patent with probability

b, and have to pay the leader a compulsory license fee of vt. All of these payoffs

are discounted by exp(−r(t− s)).
On the other hand, at each instant t, a new follower decides how much to invest

by maximizing its instantaneous flow payoff. At every t during which a patent is

13For illustration purposes, consider the isoelastic demand q = a/p. Suppose that each in-
novation decreases the marginal cost of production by a factor of β ∈ (0, 1); so that, after n
innovations the marginal costs cn = βcn−1. Then, due to price competition and for any n, the
market leader profits are equal to π = (p− c)q = (cn − βcn)a/cn = (1− β)a.
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active, the flow payoff is given by:

µxf,t ((1− b) v0 + b(v0 − vt))− c (xf,t) .

This is the follower’s reward from a new innovation v0, minus the expected license

fee bvt, adjusted by the arrival rate induced by its investment µxf,t, minus the cost

of its investment c (xf,t). Thus, the investment rate of the follower at instant t is

implicitly given by:

c′(x∗f,t) = µ(v0 − bvt). (2)

Similarly, when no patent is active and no license fee can be charged for an in-

novation, the followers’ investments become constant and are implicitly given by

c′(x∗f,t) = µv0.

Because t is the only state variable of the dynamic game, I study the Markov

Perfect equilibria by restricting attention to strategies that are a mapping from

the time since the last innovation occurred, t, to an R&D intensity.

3 The Leader’s Problem

In this section, I solve the leader’s problem by using optimal control techniques. I

start by assuming that the value of a new innovation is known and equal to v̂.14

Next, I apply the Principle of Optimality to derive the Hamilton-Jacobi-Bellman

(HJB) equation, which provides necessary and sufficient conditions for a maximum.

Maximizing the HJB equation, I find the leader’s optimal investment rule, which

is used to solve for the value of possessing a patent at t. The previous solution

is implicitly defined in terms of the conjectured value v̂. I show that there is a

unique value of v̂ that is consistent with the solution; i.e., there is a unique value

v̂ such that v0 = v̂.

Let xt = λxl,t+µxf,t, starting at an arbitrarily small time interval [t, t+dt); the

leader’s value of having a patent for t years must satisfy the Principle of Optimality:

vt = max
xl,t

{
(π + λxl,tv̂ + µxf,tbvt − c (xl,t))dt+ e−rdtE [vt+dt|xt]

}
.

That is, evaluated at the optimal strategy, the value of having a patent at t is equal

14To be clear, from this point on, v0 represents the value of an active patent that was just
issued, and v̂ represents the value of the next innovation; i.e., a patent that has not yet been
issued. In equilibrium, v0 = v̂.
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to the payoff flow at that instant in time, plus the discounted expected continuation

value of the patent.

For sufficiently small dt, the discount factor exp(−rdt) is equal to 1− rdt. On

the other hand, the expected continuation value of the patent E[vt+dt|xt] is equal to

the probability of not having an innovation today 1−xtdt, multiplied by the value

of a patent tomorrow vt+dt = vt + v′tdt, plus the probability that an innovation

occurs xtdt times the continuation value of the current patent after an innovation,

which is zero. Using the previous expressions in the equation derived from the

Principle of Optimality and neglecting terms of order dt2, I obtain the following

HJB equation:

rvt = max
xl,t
{π + λxl,t (v̂ − vt)− µxf,t (1− b) vt − c (xl,t) + v′t} . (3)

Condition (3) is necessary and sufficient for a solution to be a maximum. The

leader’s optimal R&D intensity is determined by its first-order condition:

c′
(
x∗l,t
)

= λ (v̂ − vt) . (4)

Equations (2) and (4) are very informative about the firms’ R&D investment

dynamics. They state that at any instant t, the firms’ marginal benefit of their

R&D is a function of the incremental value that the firms obtain from innovating.

For the leader, this value is the expected profits from a new patent v̂, minus the

expected profit loss from giving up the currently active patent vt, i.e., the costs

of replacing itself. For the follower investing at instant t, the incremental value

corresponds to the profits from a new patent, minus the expected license fee bvt

that the follower has to pay in order to commercialize its innovation; that is, the

benefit of a new innovation minus the cost of replacing the leader (license fees).

Proposition 1 (R&D over time). At the beginning of a patent race (t = 0), leaders

do not invest in R&D whereas followers invest at a positive rate whenever b < 1.

As the patent approaches its expiration date, both types of firms perform increasing

investments over time. When firms are equally productive (λ = µ), the leader’s

and followers’ investments converge at the end of the patent life.

When the value of an active patent declines with the proximity of its expi-

ration date, both types of firms perform increasing investments over time (see

Figure 2(a)). At the beginning of a patent race, and as long as b < 1, followers

14



invest at a higher rate than the leader. The leader starts performing zero R&D

at t = 0 as v0 = v̂ in equilibrium, whereas the followers’ investments start at

c′(x∗f,0) = µ(1 − b)v̂. Investments reach their maximum at t = T , when patent

protection expires and the value of the patent becomes zero. At this point, the

leader invests at an implicitly given rate of c′(x∗l,T ) = λv̂ and, from then on, the

followers invest at a rate of c′(x∗f,t) = µv̂.

To obtain an analytic solution, I assume a quadratic R&D cost c (x) = x2/2.

Substituting the leader’s and the followers’ investments into (3) and using the cost

assumption, the following ordinary differential equation is obtained:

− v′t = av2t − θvt + π +
1

2
(λv̂)2 (5)

where a = λ2/2+µ2b(1−b) and θ = r+λ2v̂+µ2(1−b)v̂ are positive constants. This

is a separable Riccati differential equation, which has a unique solution satisfying

the boundary condition that a patent has no value at its expiration date vT = 0.

The solution to equation (5) is given by:

vt =
(2π + (λv̂)2)(eφ(T−t) − 1)

θ(eφ(T−t) − 1) + φ(eφ(T−t) + 1)
(6)

where φ = (θ2 − 2a(2π + (λv̂)2))
1/2

(see Online Appendix C for details).

Equation (6) shows that the value of a patent vt depends on the conjectured

value v̂ and is a decreasing function of t. In order to have a well-defined solution,

it is necessary to show that a fixed point to v0 = v̂ exists. The next proposition

establishes the existence and uniqueness of such a fixed point.

Proposition 2 (Existence and uniqueness). There is a unique v̂ > 0 such that

v0 = v̂. The value of a patent vt decreases with t and is given by equation (6)

evaluated at the fixed-point v̂. In equilibrium, firms’ R&D investments are given

by x∗l,t = λ(v0 − vt) and x∗f,t = µ(v0 − bvt).

When innovation is sequential, the value of a patent is endogenously deter-

mined by the terms of the patent policy, the parameters of the model, and the

firms’ investment decisions. In equilibrium, an exogenous change in a parameter

of the model will have two, often opposing, effects. On the one hand, there is a

direct effect on the patent race taking place at the moment of the change. These

types of effects can often be captured in single-innovation models. On the other

hand, there is an indirect effect through changes in the value of patent races taking
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π = 1/2, and λ = 1.

place in the future. This is captured through changes in the fixed-point v̂, which

affects the value of a patent’s vt at every point of the patent life. By construction,

these latter effects can only be identified by sequential innovation models in which

the value of innovations are endogenously determined. These two effects will play

an important role in understanding the impact of patent policy in the firms’ in-

vestment dynamics. Despite these two forces, the next lemma shows that the main

comparative statics of the model work as expected.

Lemma 3 (Value of a patent). The equilibrium value of patent vt increases with:

i) A decrease in the interest rate r, and an increase in the profit flow π and the

leader’s productivity λ.

ii) An increase in the statutory length of patents’ T .

iii) A decrease in the followers’ productivity µ under low levels of forward pro-

tection b and a change in µ has no effect under maximal forward protection.

iv) An increase in forward protection b for all t when b ≤ 1/2 and, for b > 1/2,

there exists t̂ < T such that vt increases in b whenever t ≥ t̂.

Claims in Lemma 3 are quite intuitive. If the discounted flow of monopoly

profits is higher, if the leader is relatively more productive, or if patents are more

protective, the equilibrium value of a patent increases. Numerical results suggest

that the conditions in claim iv) are not necessary, stronger forward protection

always increases the value of a patent (i.e., t̂ = 0; see Figure 2(b) for an example).15

15Despite the direct (first order) effect of b in vt being always positive. The indirect effect that
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It is interesting to observe the effect that an increase in the followers’ produc-

tivity has on the value of a patent and how it depends on forward protection. As

a first order effect, more productive followers increase the leader’s competition,

shortening the expected duration of its leader status, decreasing the value of hold-

ing a patent. Under strong forward protection, however, a replaced leader is likely

to appropriate remaining rents via license fees. In particular, under full protection

(b = 1), the leader fully appropriates the rents and an increase in the followers’

productivity has no effect on the value of a patent. That is, the increase in com-

petition effect becomes irrelevant as every innovator will fully obtain the expected

rents of the patent either through product market profits or through license fees.

As a consequence of the previous point, an increase in the overall R&D pro-

ductivity within an industry—i.e., a proportional and simultaneous increase in

both λ and µ—may have different effects on the value of a patent depending on

the degree of forward protection. Strong forward protection dissipates the effect

of competition for the leader, and an aggregate rise in productivity increases the

value of patents. In contrast, when forward protection is weak, the value of a

patent may decrease with aggregate productivity, as the effect of an increase in

follower productivity can dominate the effect of an increase in the leader’s pro-

ductivity. In practical terms, this implies that unless a market leader has strong

protection against future innovations, it will not generally benefit from a policy

that facilitates innovation at an industry-wide level; therefore, market leaders may

have incentives to lobby against such measures.

4 Patent Policy and R&D Dynamics

This section studies how patent length and forward protection affect the dynamics

of firms’ R&D incentives. In particular, I investigate how patent policy affects the

replacement effect throughout the patent’s life and the asymmetric impact that

the different policy tools have on the technology leader and followers.

Theorem 4 (Patent length and leader R&D). An increase in patent length T

delays the leader’s investments; i.e., it decreases the leader’s R&D at the beginning

of the patent’s life, but increases it towards the end.

Theorem 4 explores how a change in patent length affects the leader’s R&D

investment throughout the patent life. As Arrow (1962) described, at any instant

the change in fixed-point has in vt does not possess a clear sign when b > 1/2.
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t, the leader’s investment is a function of the incremental value of an innovation.

For the leader, the incremental value is equal to v0 − vt, corresponding to the

value of a new patent v0 minus the cannibalized benefits of the old patent vt. An

increase in patent length increases the value of an active patent vt for all t < T

(Lemma 3). Consequently, the equilibrium effect of an increase in patent length

will depend on how the magnitude of the increase in vt changes throughout the

patent life t. The driving force of Theorem 4 is that the increase in vt becomes

larger the closer the active patent is to its expiration date. As a consequence, the

leader’s value of innovating at instant t decreases, reducing its incentives to invest

in R&D. The delay effect follows from observing that the leader’s investment at

the end of its patent life, xl,T+dT = λv0, must be higher, as the value of a new

patent is an increasing function of patent length T (see Figure 3(a)).

The intuition of why the leader delays its investments follows from observing

that the effective duration of a patent generally differs from its statutory length.

When longer patent protection is offered, the probability of actually reaching and

benefiting from the patent extension is higher when the patent is close to its expi-

ration date T . This implies that the effective gain due to the increase in duration

is larger the closer the patent is to its expiration date, reducing the incremental

value of an innovation v0 − vt, decreasing investments at any instant t < T . The

net effect of a change in patent length on the leader’s total investment in R&D is

hard to quantify and is explored further in Section 5. We can say, however, that

the total effect must be non-monotonic in T , as both T ∈ {0,∞} induce leaders

to perform no R&D (see Lemma 8 below).

Theorem 5 (Patent length and follower R&D). The effect of an increase in patent

length T on followers’ investments depends on the level of forward protection.

When patents offer no protection against future innovation (b = 0), followers’

investments increase in T . When forward protection is maximal (b = 1), followers

internalize the cost of replacing the leader, delaying their investments.

To analyze the effect of patent length on followers’ investment rewrite them as:

xf,t = µ [(1− b)v0 + b(v0 − vt)] .

The total effect of an increase in patent length on the followers’ investments is a

convex combination of the impact it has on the value of a new patent v0 and on the

incremental value of developing an innovation, v0 − vt. On the one hand, longer
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patent protection increases the value of an innovation, v0, incentivizing followers

to invest in R&D. On the other hand, stronger forward protection induce followers

to internalize the replacement effect, leading them to delay their investments. At

the limit, when b = 1, followers fully internalize the replacement effect, delaying

investments as much as the leader.

Figure 3(a) suggests that the followers’ internalization of the replacement effect

is quite strong, dominating the increase in value of a new patent even with low

levels of forward protection. Section 6 shows that the short-run follower model

underestimates the impact that the replacement effect has on followers. Under

high (not necessarily maximal) levels of forward protection, the replacement effect

can induce followers to invest at a lower rate than the leader at every moment of

the patent life, inverting Arrow’s classical result.

The next lemma connects the sequential model with traditional single-innovation

models by highlighting what drives the delay effect in Theorem 4.

Lemma 6 (Grandfathering). If an increase in the statutory length T does not apply

to currently active patents, but does apply to all subsequent innovations, then the

leader and followers will increase their R&D intensity in the patent race in which

the change in policy takes place.16

It is interesting to observe the contrast in incentives that exist between sequen-

16To be clear, when the policy change has been grandfathered, R&D will increase only in the
first race; in all subsequent races, R&D will present the dynamics described in Theorem 4.
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tial and single-innovation models. In the latter, more protective patents—modeled

as an increase in the value of achieving the next innovation—induce all firms to

invest more in R&D. This effect is still present in sequential models and can be

isolated by looking at the effects on current R&D investments when a change in

policy has been grandfathered until the next innovation arrives. When an increase

in patent length does not apply to patents that are currently active, the effect

in R&D coincides with that predicted by single-innovation models: longer patents

lead to higher innovation rates. From this we conclude that is precisely the sequen-

tial structure of the model that leads to changes in policy to affect the replacement

value of an active patent, inducing the delay in investments.

Theorem 7 (Forward protection and R&D). An increase in forward protection b

that increases the value of a new patent i) delays the followers’ investments when

b ≥ 1/2, and ii) increases the leader’s R&D towards the end of the patent’s life.

Forward protection has a direct negative effect on the followers’ incremental

value of an innovation due to higher expected license fees paid in the case of achiev-

ing a breakthrough. This leads to a decrease in the followers’ investment rates at

the beginning of the patent’s life.17 As the patent expiration date approaches,

expected licenses fees decrease to zero, and the effect of an increase in forward

protection fades away. In particular, at t = T , the effect of an increase in forward

protection in the value of an active patent vT is zero. Hence, the market leader

and followers increase their R&D investment towards the end of the patent’s life.

These effects are shown in Figure 3(b), which depicts firms’ investment dynamics

for different levels of forward protection b.

The combination of Theorems 4, 5 and 7 provides clear and testable empirical

predictions about industry dynamics and the persistence of leadership. First, the

probability that a leader innovates upon its own technology increases as the patent

expiration date approaches. Second, followers are relatively more likely to innovate

at the beginning of the patent’s life, but this difference converges, and may even

reverse, as the patent expiration date approaches. In addition, the proportion

of innovations generated by followers depends on the level of forward protection

provided by patents. In markets with strong forward protection, the innovation

17Once again, despite the direct effect of an increase in b always reduces xf,0, the indirect effect
(fixed-point change) makes this comparative static hard to sign. More generally, it can be proven
that: if π is larger than a very mild lower bound, for each b there exists T̂ such that T ≥ T̂
implies that an increase in b decreases xf,0.
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patterns of the followers would tend to mimic or be even lower to those of the leader;

whereas, under weak forward protection—or in markets in which infringements are

harder to determine—followers’ innovations will be more prevalent.

To conclude this section, I connect the model to the literature on growth

through innovations (Grossman and Helpman, 1991; Aghion and Howitt, 1992;

Aghion et al., 2001). In these models patents do not expire, turning the model

stationary and, due to the replacement effect, leaders perform no R&D.

Lemma 8 (Stationarity). In the limit, when patent protection is infinitely long

(T =∞), the value of a patent becomes stationary and equal to:

v∞ =
1

2µ2 (1− b)2

(√
r2 + 4µ2π (1− b)2 − r

)
(7)

when b < 1, and equal to v∞ = π/r when b = 1. The leader performs no R&D,

whereas followers’ investments are constant and equal to xf = µ(1−b)v∞. Follower

investments are decreasing in the degree of forward protection b.

When patent protection is infinitely long, incentives become stationary and

the leader performs no R&D. For the leader, this is because a new innovation

merely replaces the currently active patent with one of the same value. Since the

protection of a patent never expires, the leader faces the same incentives at any

two moments in time, and the value of an active patent remains constant over

time. Similarly, followers’ investments become stationary, as the license fees they

have to pay in the case of an infringement do not decrease over time. Consistent

with O’Donoghue and Zweimller (2004) and Denicolò and Zanchettin (2012), when

patent protection is infinitely long, followers’ investments—and consequently the

market’s rate of innovation—are decreasing in forward protection. As the next

section shows, some forward protection may be desirable once we allow for finite

patents. Also, Lemma 8 implies that the most protective policy (T = ∞ and

b = 1) cannot be optimal as it completely discourages innovation.

5 Patent Policy and the Rate of Innovation

This section studies different policies in terms of their capacity to generate higher

innovation rates. In particular, I study the policy that maximizes the rate of inno-

vation and how this policy varies across markets according to the market’s R&D
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productivity. The focus on innovation rates, as opposed to welfare, stems from the

need to quantify the extent of the R&D delay induced by protective policies. Also,

through innovation rates, we can better compare how patent length and forward

protection perform and interact when providing R&D incentives to leaders and

followers. Finally, the innovation rate is, by itself, an object of interest in the

endogenous growth literature, applied work and policy discussions. Nevertheless,

below I discuss how my results link with a policy that maximizes total welfare.

Start by decomposing the followers’ R&D productivity into µ = λα. The

parameter λ is now common among firms and represents the market’s R&D pro-

ductivity.18 On the other hand, α captures the relative productivity of the followers

with respect to the leader. I study the policy that maximizes the rate of innovation

as a function of the market’s R&D productivity λ. For simplicity, from now on

I refer to (T ∗, b∗) as the optimal policy, with the understanding that I mean the

policy that maximizes the innovation rate.

To define our measure of innovative activity, I leverage from the property that

innovations follow a non-homogeneous exponential distribution. In particular, I

study the policy that minimizes the market’s expected waiting time between inno-

vations, which is given by:19

E[t] =

∫ ∞
0

xtte
−z0,tdt. (8)

Theorem 9 (Long patents discourage R&D). The optimal policy (T ∗, b∗) consists

of a finite patent length.

When innovation is sequential, longer patents promote R&D with diminishing

returns and, at some point, become detrimental to innovation (see Figure 4(a) for

an example). Under no patent protection (T = 0), innovation is not rewarded

and no R&D is performed. On the other hand, although longer patents increase

investments after patents expire, they also delay the leader’s investments and

possibly those of the followers (depending on forward protection). Under infinitely

long patents, the increase in R&D after the patent expires becomes irrelevant and

the leader delays its investments perpetually, performing no R&D (see Lemma 8);

this decrease the market’s innovation rate.

18As mentioned in footnote 11, λ is also a measure of how costly it is to produce an innovation.
19For the purpose of illustration, if xt = λ for all t, the distribution of successes will follow an

exponential distribution with an arrival rate equal to λ and E[t] = λ−1. The expected waiting
time between innovations, thus, corresponds to the inverse of the market’s R&D productivity.
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Theorem 9 builds on a literature that has shown different mechanisms through

which long patent protection may be detrimental to innovation. In the context

of a single innovation, Gallini (1992) shows that patents that last too long be-

come innefective to reward innovation, as they encourage entry by counterfeiters.

Horowitz and Lai (1996) study an environment in which innovation dates are de-

terministically chosen by market leaders. They show that leaders will wait until

the patent expires to introduce its new innovation and, therefore, infinitely long

patents induce no innovation. Their result, however, is not robust to followers

being able to perform R&D. Theorem 9 shows that, when innovation is stochastic,

the discouragement effect of longer patent protection returns even when followers

can perform R&D. Finally, Bessen and Maskin (2009) show that, when innova-

tions are sequential and complementary, long patents hinder innovation incentives.

Theorem 9 extends their result to a scenario in which innovations are substitutes.20

Despite having a unique equilibrium with closed-form solutions for the value of

a patent vt and firms R&D investments xt, the integral (8) cannot be analytically

solved when b > 0. This, added to changes in policy induce a change in the fixed-

point v̂, makes the analytical computation of (T ∗, b∗) unattainable. I, therefore,

use numerical methods to compute (8). Figure 4(a) shows that E[t]−1 is smooth

on the model’s parameters and that it possesses a unique maximum.

20Complementary innovations increase the value of existing technologies, whereas substitute
innovations cannibalize the rents of existing patents.
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Result 10 (Optimal patent across markets). There exists a unique policy (T ∗, b∗)

minimizing (8). An increase in the market’s R&D productivity λ decreases the

optimal length T ∗ and increases the optimal forward protection b∗.21

Result 10 implies that the previous finding that forward protection discour-

age innovation (see O’Donoghue and Zweimller (2004), Denicolò and Zanchettin

(2012), and Lemma 8) strongly relies on the infinitely-long patent assumption.

Once we allow for finite patents, the non-stationary incentives induced by patent

length make some forward protection desirable.

Result 10 also characterizes how the optimal policy changes across different

markets according to the market’s R&D productivity; see Figure 4(b) and Table

1. From the perspective of a policymaker, the result states that patent length and

forward protection are complementary : one tool is effective at providing R&D in-

centives in markets where the other tool is not as effective. Result 10 implies that

long patents with weak forward protection are more effective in markets where in-

novations are costly to produce or are harder to achieve. Short patents with strong

forward protection, in contrast, are more effective in markets where innovations

occur frequently or are not too costly to produce.

To understand the intuition behind this result, compare the incentives present

in markets with high productivity λ, such as the software industry, with those

incentives present in markets with low productivity, such as the pharmaceutical

sector. Under high R&D productivity, patent length is an ineffective tool to pro-

mote innovation, as the effective duration of a patent changes little when longer

protection is offered. For instance, increasing patent length from twenty to twenty-

one years in an industry in which innovations become obsolete every three years,

does very little to increase the value of an innovation. Furthermore, because longer

protection induces leaders to delay their investments, long patents decrease the

market’s innovation rate. In this context, strong forward protection can be used

to reward innovation and a short patent can be used to minimize the R&D delay;

i.e., to increase the pace of innovation through higher investment rates towards the

end of and after patent protection.

In contrast, in markets with low R&D productivity, the statutory length of

patents can affect the effective duration of patents for a wider range of patent

lengths, making T a useful tool to promote R&D. However, because longer patents

induce leaders to delay their investments, followers’ innovation is crucial to speed

21The term Result is used to highlight that the proof of the statement is numerical.
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Table 1: Optimal patent under different λ and α, and a quantification of the delay
in innovation pace E[t]/E[t]∗ − 1 induced by implementing an inefficient policy.

T = 10 T = 20

λ T ∗ b∗ E[t]∗ b = 1/3 b = 2/3 b = 1/3 b = 2/3

1/3 28.3 .42 24.5 70.1% 69.4% 7.1% 6.5%
α = .7 1/2 18.5 .55 13.5 30.3% 27.5% 1.3% 1.1%

2/3 13.7 .62 9.2 11.5% 7.2% 6.8% 8.3%
1/3 23.7 .35 16.8 35.3% 34.9% 1.1% 2.6%

α = 1 1/2 15.7 .49 9.9 11.1% 9.6% 1.7% 4.7%
2/3 11.8 .56 6.9 3.2% 1.3% 6.8% 10.7%
1/3 21.2 .27 12.7 19.5% 19.7% 0.1% 3.8%

α = 1.3 1/2 14.0 .42 7.7 4.3% 4.2% 2.2% 7.2%
2/3 10.6 .50 5.5 0.8% 1.0% 5.6% 11.1%

Note: Parameters used: r = 5% and π = 1/20. (T ∗, b∗) represent the optimal combination
of length and forward protection. E[t]∗ is the minimal waiting time between innovations, and
E[t]/E[t]∗ − 1 quantifies (in percentage points) the delay of implementing an inefficient policy.

up innovative activity. Thus, weak forward protection has to be offered in order to

induce followers to perform R&D in the early stages of the patent life and increase

the market’s rate of innovation.

Result 11 (Optimal patent and followers’ productivity). An increase in followers’

productivity leads the optimal patent to be shorter with weaker forward protection.

Table 1 shows the optimal patent policy under different levels of market’s R&D

productivity λ and different relative productivity of the followers α (also see Fig-

ure 4(b)). It shows that when the relative productivity of the followers increases,

followers’ R&D efforts become more predominant. Thus, the optimal patent is

characterized by lower levels of forward protection. In addition, more productive

followers decrease the expected waiting time between innovations E[t]∗, shortening

the effective duration of patents. As a consequence, patent length becomes less

effective to promote R&D and the optimal patent length is also shorter.

Table 1 also quantifies, in percentage points, the delay in innovation rates

induced by implementing an inefficient policy (E[t]/E[t]∗ − 1). The cost of an

inefficient policy can be substantial. It can easily decrease the market’s innovation

pace by 10%. The cost of implementing an inefficient length tends to be one order

of magnitude larger than the cost of implementing an inefficient level of forward

protection. Also, patents that are shorter than the optimal length seem to harm

the innovation pace of the economy more than patents that are too long.
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With respect to the literature, Gilbert and Shapiro (1990), Klemperer (1990)

and the work that builds on them, argue that a policy contingent on market

characteristics—rather than “a one size fits all” policy—incentivizes innovation at

a lower social cost. Following the results in single-innovation models, this discus-

sion assumes that the only cost of providing protective patents is the deadweight

loss associated to the market power of patent protection. Thus, my previous results

add a new layer to the discussion about patent design by showing that protective

policies do not necessarily lead to higher innovation rates and by illustrating how

the effectiveness of the different patent tools varies across markets.

Because total welfare is affected by both the industry’s innovation rate and the

deadweight loss induced by patent protection, it is intuitive to see that adding

consumer welfare into the analysis will simply result in even shorter prescribed

patents and, consequently, more forward protection. The magnitude of these effects

will depend on the increase in consumer surplus that occurs with each innovation

and the extend of the deadweight loss associated with patent protection. Both

of which strongly depend on the underlying model of competition, the assumed

demand, and the nature of innovation.

6 Long-run Followers

This section extends the previous analysis by allowing for an endogenous number

of long-run followers to compete throughout the race. The main objective is to

show that previous results are robust to, the previously unaccounted, long-term

strategic interaction among firms. Also, I explore the role that patent policy plays

in determining market structure.

Formally, I extend the previous model to allow for one market leader and n

endogenously determined symmetric followers. At the beginning of each race (at

t = 0), the followers decide whether to enter the R&D race by paying an entry

cost K. Let wt denote the value of being a follower that is competing against

a leader at instant t. Followers will enter the race as long as w0 > K. Since

followers’ value of participating in this market will be decreasing with the number

of competitors, in equilibrium we will have w0 = K. When an innovation occurs,

the non-successful firms have to repay the entry cost K in order to participate in

the next race. Thus, the costs K represents the followers’ cost of adjusting their

labs to be able to develop the next technology in the ladder. To keep notation
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simple, and because changes in the relative productivity of followers α will be

internalized by the number of followers in the market, throughout this section I

assume that leaders and followers are equally productive; i.e., µ = λ.

Competition after patent protection expires. When patent protection ex-

pires (t ≥ T ), the (no-longer) patented technology is imitated and the leader’s

profits are cannibalized to zero. The market, thus, becomes a stationary race with

n + 1 symmetric firms competing to achieve the next innovation. The value for

firm i to be competing in this scenario is:

q = max
xi

2λxiv0 + 2λx−i(w0 −K)− (xi)
2

2(r + λ(xi + x−i))
(9)

where x−i =
∑

j 6=i xj is the sum of the innovation rates of all other firms in the

market. Maximizing equation (9) with respect xi we obtain the optimal R&D

investment rate x∗i = v0 − q. Imposing symmetry among firms and using the

equilibrium condition w0 = K, we can solve for the value of competing in the race

after patent protection expires which is given by

q = (r + λ2(n+ 1)v0 − ρ)/(λ2(2n+ 1))

where ρ = ((r + λ2nv0)
2 + 2λ2rv0)

1/2. It easy to verify that x∗i , q > 0 and that

satisfy standard comparative statics: q and x∗i increase in v0 and decrease in n.

Competition under patent protection. Let qt = q · exp(−zt,T − r(T − t))

represent the expected-discounted continuation value q at time t. Redefine the

license fees paid for an infringement at instant t by `t = vt−qt. Because license fees

correspond to the damages caused by the commercialization of a new innovation,

the payment `t discounts from vt the continuation value qt as the loss of q occurs

regardless of whether or not a patent is in place. The leader’s valuation for its

active patent at instant t, vt, is given by:

max
{xl,s}Ts=t

∫ T

t

(
π + λxl,sv0 + λnxf,s (b`s + w0 −K)− (xl,s)

2/2
)
e−r(s−t)e−zt,sds+ qt.

There are three key differences with respect to the payoff described in equation (1):

(i) The leader now faces n followers. (ii) When replaced by an innovating follower,

the leader receives the value of becoming a follower w0, minus the entry costs to

the next race K, plus the expected license fees received b`t. (iii) The value of an
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active patent takes into account that, when patent protection expires, the leader

obtains the continuation payoff q.

Similarly, the value that a follower derives from competing in this market at

instant t, wt, is:

max
{xf,s}Tt

∫ T

t

(
λxf,s (v0 − b`s) + λx−f,s(w0 −K)− (xf,s)

2/2
)
e−r(s−t)−zt,sds+ qt (10)

where x−f,t = xl,t+(n−1)xf,t is the R&D of all other firms in the market. At every

instant t, a follower pays the costs of its R&D, receives the expected revenues of

an innovation v0 − b`t plus the expected revenue w0 −K if other firms innovate,

and the continuation value after the patent expires qt. Note that both, the value of

being the technology leader and the value of being a follower, converge to q when

patent protection expires; i.e., vT = wT = q.

Following the optimal control techniques from Section 3 and using that w0 = K

in equilibrium, the necessary and sufficient conditions for a maximum are:

rvt = max
xl,t≥0

{
v′t + π + λxl,t(v0 − vt)− λnxf,t(bqt + (1− b)vt)− (x2l,t)/2

}
rwt = max

xf,t≥0

{
w′t + λxf,t (v0 − wt − b`t)− λx−f,twt − (x2f,t)/2

}
.

(11)

Taking first order conditions, the optimal R&D investment rates for the firms are:

x∗l,t = λ(v0 − vt) and x∗f,t = max{0, λ(v0 − wt − b`t)}. (12)

Proposition 12 (R&D dynamics). At the beginning of a patent race (t = 0), lead-

ers do not invest in R&D. As an active patent approaches its expiration date, both

types of firms perform increasing investments over time. When patent protection

expires, leader’s and followers’ investments converge.

Looking at (12) and comparing with (2) and (4) we can see that the dynamics

described in Section 4 are replicated by this model. The leader’s R&D incentives

are driven by the value of a new innovation minus the costs of replacing itself.

For the followers, incentives are given by the value of a new innovation minus the

cost of replacing the leader. In addition, followers now also internalize the cost of

replacing themselves, represented by the wt term.

Because the cost of replacing itself, vt, decreases throughout time, the leader

increases its investments as the patent expiration date approaches. Similarly, fol-
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lowers’ investments also increase, as the expected license fees paid when they suc-

ceed, `t, vanish when patent protection expires. Recall that this occur because

damages are a function of the residual patent life. When patent protection expires

(t = T ), leader and followers’ values converge (vT = wT = q), as no license fee

can be charged, the technology gets imitated, and firms compete in a symmetric

patent race. Consequently, investment rates also converge, x∗l,t = x∗f,T = v0 − q.

Theorem 13 (Follower’s replacement effect: Leadership persistence). Depending

on forward protection, followers internalize the cost of replacing the leader. In

particular, when forward protection is sufficiently strong, followers do not invest

at the beginning of the patent life and then invest at a lower rate than the leader.

It is interesting to observe that Arrow’s result—that followers have more incen-

tives to innovate than leaders—may be reversed in a dynamic setting. This occurs

because followers not only internalize the cost of replacing the leader, but they

also internalize the cost of replacing themselves. To see this, take the maximal

forward protection and observe that the followers’ investments can be written as

xf,t = max{0, xl,t − (wt − qt)}. Equation (10) implies wt > qt for t < T . Thus, at

every t < T , followers invest at a lower rate than the leader. Also, because xl,0 = 0,

followers make no R&D investments towards the beginning of the patent’s life. By

continuity, this is true not only at b = 1 but for a range of forward protection

levels (see, for example, Figure 5(d) when b = 3/4). Theorem 13 implies that

patent policy plays an important role in the degree of leadership persistence in the

industry. Depending on strength, the leader may be more likely to improve upon

itself than any follower at every moment of the patent’s life.

Replacing the optimal R&D investments rates (12) into equation (11), we derive

the system of differential equations (17) in Appendix B. Unfortunately, this system

has no analytic solution; thus, the numeric method described in Appendix B is

used to compute the equilibrium and perform comparative statics. Consistent

with Proposition 2, a unique follower-symmetric equilibrium was found for each

set of parameters. Figure 5(a) shows that the main comparative statics in Lemma 3

for the value of a new patent remain unaltered: more protective policies lead to

an increase in the value of a new patent.

Result 14 (Patent policy and R&D dynamics). Longer patent protection delays the

leader’s R&D investments and, when forward protection is strong, they also delay

the followers’ R&D. Forward protection increases the leader’s R&D, but delays that

of the followers.
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Figure 5: Endogenous market structure

Note: Parameters’ values are r = 5%, π = 1/20, K = 1/30, λ = 1, and, when fixed, T = 20 and
b = 1/3. Value functions were approximated to the 4th decimal point.

The previous result (depicted in Figures 5(c) and 5(d)) implies that the key

comparative statics of Theorems 4, 5 and 7 remain unaltered. As before, a patent

extension increases both the value of a new patent v0 and the value of an active

patent vt. The intuition that the expected benefit of increasing T is higher the

closer the leader is to its patent expiration date—raising vt, for t > 0, more than

v0—still holds. Finally, when the patent expires at t = T + dT , investments are

given by xl,T+dT = λ(v0 − q). Thus, investments increase after patent protection

expires because the benefit of larger T impacts more the value of possessing a new

patent, v0, than the option value to compete for a new patent, q. Similarly, under

strong forward protection, followers internalize the cost of replacing the leader,

also delaying investments.
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Stronger patent protection, on the other hand, delays the followers’ R&D.

Strong patents increase expected license fees, raising the cost of replacing the

leader, and discouraging followers from investing at the beginning of the patent’s

life. As the patent’s expiration date approaches, license fees vanish, and the effect

of increased patent value v0 starts to dominate, increasing followers’ investments

towards the end of the patent life (see Figure 5(d)). For leaders, in contrast,

stronger forward protection encourages innovation, especially towards the end of

the patent life.

Figure 5(b) shows how the number of followers changes with patent policy. As

expected, stronger forward protection decreases the number of followers competing

in the market. Interestingly, the effect of patent length on the number of followers

depends on the strength of forward protection.

Result 15 (Patent policy and entry). Patents that are too short induce no entry.

An increase in patent length: i) increases the number of competitors under weak

forward protection and, ii) increases the number of competitors up to a point and

then reduces the number of competitors, under strong forward protection.

When patent protection is too short, no followers enter the market, as the value

of participating in the patent race, w0, is not high enough to compensate for the

entry cost K. Under weak forward protection, longer patents induce more firms

to enter the market. This also causes the value of a new patent, v0, to not be

very responsive to changes in patent length (see Figure 5(a)). In particular, when

no forward protection is offered, we can see that most of the effect of increasing

patent length is absorbed by the increase in the number of followers in the market,

and the value of a patent increases only by a small amount (see Figure 5(b)).

As forward protection becomes stronger, we find an additional countervailing

effect of offering long patent protection: it not only delays the firms’ investments,

but also induces followers to exit the market (see Figure 5(b)). The exit of followers

is produced by three effects of patent length on the followers’ value. (i) The

followers’ incremental rent from an innovation, v0 − b`t, starts suffering the delay

effect discussed in Theorem 4. This effect delays the expected arrival time of a

breakthrough, decreasing the followers’ value. (ii) The leader is able to charge

license fees for a follower’s innovation for a longer period of time. (iii) Longer

patent protection delays the arrival of the continuation value of competing in a

race with no patent protection q. The conjunction of these three effects makes the

market less attractive to followers, decreasing the number of competitors. Notice in
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Table 2: Optimal patent under different λ and a quantification of the delay in
innovation pace E[t]/E[t]∗ − 1 induced by implementing an inefficient policy.

T = 10 T = 20

λ T ∗ b∗ E[t]∗ n∗ b = 1/3 b = 2/3 b = 1/3 b = 2/3

0.5 33.6 0 6.26 3.10 19.2% 23.8% 6.6% 21.4%
0.75 14.4 0 4.42 2.57 2.4% 8.6% 5.8% 18.5%
1.0 9 0.02 3.48 2.18 1.7% 8% 7% 17.8%
1.25 5.7 0.22 2.87 1.81 3.8% 9.7% 9.36% 19.2%
1.50 4.1 0.24 2.45 1.55 6.6% 11.8% 12.2% 19.6%
1.75 3.2 0.25 2.14 1.35 9.6% 14.1% 15.1% 23.6%

Note: Parameters used: r = 5% and π = 1/20. (T ∗, b∗) represents the optimal combination
of length and forward protection. E[t]∗ is the minimal waiting time between innovations, and
E[t]/E[t]∗ − 1 quantifies (in percentage points) the delay of implementing an inefficient policy.

Figure 5(a) that, when forward protection is strong, the value of a new innovation is

very responsive to an increase in patent length, which is consistent with the leader

simultaneously benefiting from longer patent protection and less competition.

Result 16 (Optimal policy). The optimal patent length T ∗ is finite. An increase

in the market’s R&D productivity λ decreases the optimal length T ∗ and increases

the optimal level of forward protection b∗.

Table 2 shows the optimal patent under different market’s R&D productiv-

ity and quantifies the cost of implementing the incorrect policy (E[t]/E[t]∗ − 1).

Consistent with the results presented in Section 5, the optimal policy consists of

a finite length and positive forward protection. Patent length and forward pro-

tection complement each other, with one tool being more effective in markets in

which the other tool is not. It is interesting to contrast these results with those

in Table 1. The cost of implementing the incorrect policy is still quite substantial,

and the cost of implementing the incorrect forward protection is larger than in the

previous scenario. In addition, for markets with similar R&D productivity λ, the

optimal patent prescribed in this scenario is longer but with weaker forward pro-

tection. These results are consistent with the additional disincentive that forward

protection has on the number of competitors in the market. The ability of forward

protection to promote R&D depends heavily on how responsive followers are to

entry incentives. In industries in which the number of competitors is fixed, as in

the baseline model, we can rely on a system with stronger forward protection to

promote R&D. In industries where followers respond to entry incentives, weaker
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policies against future innovations are preferred.

7 Extensions

In this section, I briefly discuss the robustness of previous results to extensions of

the baseline model that, due to space limitations, are not fully developed here.

Extending the leader’s techonogical lead. The delay effect on the leader’s

investment persists once we allow the leader to extend its technological lead in the

market. To see this, modify the baseline model by assuming that profits πm are

increasing in the number of consecutive innovations that a leader has achieved,

m, and that the leader can extend the protection of its previous innovations with

the arrival of a new innovation. Let vm,t be the value of possessing m consecutive

patents with the latest innovation occurring t years ago. It can be shown that the

functions vm,t are increasing in the number of consecutive innovations m. Then,

equilibrium investments are given by:

xl,m,t = λ(vm+1,0 − vm,t), xf,m,t = µ(v1,0 − bvm,t).

As before, firms’ investments are increasing towards the end of the patent life.

Because vm,t is increasing in m, the cost (license fees) of replacing the leader

increases with the technology gap between the leader and followers, discouraging

followers to perform R&D. The extent of this internalization, once again, depends

on the degree of forward protection. In contrast, the leader experiences increased

incentives to invest. For instance, xl,m,0 = λ(vm+1,0 − vm,0) and investments are

positive at t = 0, as the replacement effect does not completely cannibalize the

value of the previous innovation. It can be shown that an increase in T initially

increases the leader’s R&D investments, then decreases the leader’s investments

towards the middle of the patent’s life, and then increases investments when the

patent is about to expire. In other words, the leader’s incentive to delay exists

but becomes weaker. For the followers, on the other hand, the incentive to delay

(under strong forward protection) increases with a larger quality gap m. The

sensitiveness of vm,t with respect to T increases with m, making followers delay

their investments even more. Therefore, Arrow’s prediction that leaders invest less

than followers may also reverse once we allow leaders to increase their lead.
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License fees: Bargaining. The proposed framework can accommodate the

study of incentives provided by different forms of license fees. In particular, we

can explore the effects of allowing a bargaining process between the leader and

an infringing follower to determine license fees beyond the profit loss vt; i.e., `t =

vt + β(v0 − vt), where β can be interpreted as the Nash bargaining power of the

leader or as the breadth of the patent. In this context, investments are given by

xl,t = λ(v0−vt) and xl,t = µ(v0−b`t). The delay effect that longer patents have on

the firms’ investments is still present. In addition, the greater bargaining power of

the leader increases the discouragement effect that forward protection has over the

followers’ investments. Interestingly, because expected license fees may be actually

higher than the residual value of a patent at t—for instance, b`T = bβv0 > 0 = vT—

patents that provide too much forward protection may harm the leader. Stronger

forward protection discourages followers’ R&D, causing the leader’s valuation for

a patent to decrease, as the leader prefers to be replaced by a follower and extract

higher rents through license fees.

License fees: Undiscounted damages. I have also examined the effects of

computing the damages as the undiscounted sum of the stream of profit loss; i.e.,

`t = (T − t)π instead of vt. Once again, this specification does not alter the in-

centives to delay induced by longer patent protection, nor the discouraging effect

that stronger forward protection has on followers’ investments. It is interesting to

observe that the expected license fee b(T − t)π may be higher than v0, inducing

followers not to invest during the first years of the patent. Once again, this ef-

fect always fades away as the patent expiration date approaches and license fees

decrease to zero.

8 Concluding Remarks

This article studied how patent length and forward protection affect the innovation

incentives of market leaders and followers. Longer patent protection delays the

leader’s investments and, depending on the strength of forward protection, may

encourage or delay followers’ investments. In contrast, strong forward protection

delays the follower’s investments, but encourages the leader’s investments towards

the end of the patent’s life. Under strong forward protection, Arrow’s traditional

result reverses, and incumbents are more like to persists as technology leader. In

other words, leadership persistence on an industry strongly depends on the existing
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degree of protection and enforceability of patents.

Policies that aim to maximize innovative activity must balance the effects that

patent length and forward protection have on the leader’s and followers’ invest-

ments. It was shown that short patents with strong forward protection are prefer-

able in markets where innovations occur often or are not too costly to produce.

In contrasts, long patents with weak future protection are preferable in markets

where innovations take longer or are costly to produce. The cost of implementing

an incorrect policy can be substantial and is larger in scenarios in which patent

protection is both too long and protective against future innovations.

Patent policy also affects the number of firms competing in the market. Al-

though stronger forward protection always discourages the entry of new firms,

longer patent protection may encourage or discourage entry depending on the

level of forward protection. In this context, a protective policy not only delays the

firms’ investments, but also decreases the number of competitors in the market.

As a consequence, the ability to use forward protection to encourage innovation

heavily depends on the elasticity of firm-entry to market incentives. In markets

where the number of firms is very elastic, it is preferable to have weaker forward

protection, as policies that are too protective drive firms out of the market.

Important questions about how patent policy affects innovation in a sequen-

tial context remain. The results presented here naturally open the question on

whether, given the dynamic incentives induced by patent policy, there is a self-

enforced mechanism under which firms self-select into the right policy inducing

faster technological progress at a lower social cost. The framework presented can

serve as a building block to study this and many open questions about how patent

policy can affect firms’ decisions regarding adoption of new technologies, innova-

tion quality choice, and disclosure of new innovations. In addition, the framework

can be used to study the relation that exists between patent policy and (endoge-

nous) growth of different sectors in the economy. These question are regarded as

future research.
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Appendix

A Omitted Proofs

Proof of Proposition 1. The only statement not proven in the text is that investments
increase towards the patent expiration date. To see this observe that vT = 0, so that
equation (3) evaluated at T and using the first order condition (4) becomes

−v′T = π + x∗l,T c
′(x∗l,T )− c(x∗l,T ).

Convexity of c(x) plus the assumption that c′(0) = 0 implies that xc′(x) > c(x). Then,
the right hand side of the expression above must be positive; i.e., v′T < 0. By continuity,
there exist t̂ < T such that v′t < 0 for t ∈ [t̂, T ) and vt converges to zero from above,
implying the result. �

Proof of Proposition 2. I start by proving the existence of a fixed-point. From
Online Appendix C, we know that there is a unique solution to (5), so I can restrict
attention to show that there is a fixed-point v0 = v̂ for a positive value of v̂.22 To do so,
I start by reformulating the problem, defining a function f(z) = v0(z) − z where v0(z)
denotes the dependence of the solution (6) on the conjectured value z. Then, showing
the existence of the fixed-point is equivalent to show that exists v̂ > 0 such that f(v̂) = 0.

I show existence by means of the intermediate value theorem. Observe that φ and θ
go to ∞ at a rate of z, when z goes to infinity. Then, it is easy to check that

lim
z→∞

f (z) = lim
z→∞

(
2π
z − zµ

2 (1− b)− r
) (

1− 1
eφT

)
− φ

(
1 + 1

eφT

)
θ
z

(
1− 1

eφT

)
+ φ

z

(
1 + 1

eφT

)
= −∞.

It remains to show that there is z such that f(z) > 0. The result follows from choosing
z = 0. There, f(0) = v0(0) − 0. Given the behavior of firms in an equilibrium, and
because there is no benefit from developing a new innovation, we are in phase 0 (see
Online Appendix C) throughout the patent’s life, so v0(0) = (π/r)(1− exp(−rT )) > 0.

To prove uniqueness, I make use of the fact that f(z) is continuous and show that
at any fixed point f ′(v̂) < 0 so f(z) can single-cross zero from above just once. Define
the function

ψt =
e2φ(T−t) − 2φ (T − t) eφ(T−t) − 1

φ
(
eφ(T−t) − 1

)2 . (13)

Section D of the Online Appendix shows that, for all t < T , the function ψ satisfies
ψt > 0, ψ′t < 0, and ψT = 0. This function will be used in several proofs.

Because it will be useful later on, I compute the derivative of vt(z)− z with respect
to z, evaluated at v̂

dvt(v̂)

dz
− 1 = −λ

2(v̂ − vt)2 + µ2(1− b)v2t + 2π + ψtkv
2
t

2π + (λv̂)2
,

22There may be other fixed points such that v̂ ≤ 0; however, those do not have an economic
meaning and, consequently, are ignored.
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where k = µ2(2λ2 + µ2)(1 − b)2v̂ + r(λ2 + µ2(1 − b)) is a positive constant. Therefore,
the previous derivative is negative for all t. In particular, the derivative is negative at
t = 0 which corresponds to f ′(v̂) and the result follows.

Finally, investments are increasing through time because the value of a patent de-
creases with t

dvt
dt

= −
2φ2

(
θ2 − φ2

)
eφ(T−t)

λ2
(
(θ + φ) eφ(T−t) − (θ − φ)

)2 < 0

where θ2 − φ2 = (λ2 + 2µ2b(1− b))(2π + (λv̂)2). �

Proof of Lemma 3. Let f(z, α) = v0(z, α) − z be the construction presented in the
proof of Proposition 2, where its dependence on a parameter α ∈ {π, r, T, b, λ, µ} has
been made explicit. By the implicit function theorem, there is a function V (α) implicitly
defined by f (V (α), α) = 0 that describes the equilibrium value of having a new patent.
Then, the comparative statics for how the value of a new patent, v0, changes due to a
change in parameter is given by

dV (α)

dα
= − ∂f (V (α), α)

∂α

/
∂f (V (α), α)

∂z
.

=
∂v0(v̂, α)

∂α

/(
1− dv0(v̂, α)

dz

)
(14)

From the proof of Proposition 2, we know that the denominator of (14) is positive. Thus,
it is sufficient to look at the sign of the partial derivative ∂v0(v̂, α)/∂α.
Comparative static with respect to π: v0 increases with an increase in π as

∂vt
∂π

=
vt

2π + (λv̂)2
(
2 + ψtvt(λ

2 + 2b(1− b)µ2)
)
> 0

where ψt is the function defined in equation (13).
Comparative static with respect to r: v0 decreases with an increase in r as

∂vt
∂r

= −v
2
t (1 + ψtθ)

2π + (λv̂)2
< 0.

Comparative static with respect to T : v0 increases with an increase in T as

∂vt
∂T

=
2φ2(2π + (λv̂)2)eφ(T−t)(

θ
(
eφ(T−t) − 1

)
+ φ

(
eφ(T−t) + 1

))2 (15)

is positive for all t ≤ T . Moreover, it can be easily checked that this derivative increases
with t.
Comparative static with respect to b: The derivative of vt with respect b is

∂vt
∂b

=
µ2v2t

2π + (λv̂)2
(
v̂ + ψt

[
(2λ2 + µ2)(1− b)v̂2 + rv̂ + 2π(1− 2b)

])
.

This derivative is zero at t = T . The condition b ≤ 1/2 is sufficient for the term in square
breakers to be positive and the derivative to be positive for all t < T . When b > 1/2
the term in square brackets may be negative (in fact is negative when b = 1). Observe
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however that ψt continuously goes to zero as t approaches T . Then, by intermediate value
theorem and as v̂ > 0, there exists t̂ < T such that the expression in round parenthesis
is positive for all t ≥ t.
Comparative static with respect to λ: The derivative of v0 with respect λ is

∂vt
∂λ

=
2λvt

2π + (λv̂)2
(
v̂(v̂ − vt) + ψtvt

[
π − rv̂ − (µ(1− b)v̂)2

])
A sufficient condition for this derivative to be positive it that the term in square brackets
to be non-negative. Solving the quadratic equation derived from setting the square
bracket to zero we find that the condition hold whenever v̂ ≤ v∞, where v∞ is the value
of a patent when T = ∞ defined in Lemma 8. Since v̂ is increasing in T , the result
follows.
Comparative static with respect to µ: The derivative of vt with respect µ is

∂vt
∂µ

= −2µ(1− b)v2t
2π + (λv̂)2

(
v̂ + ψt

[
(λ2 + µ2)(1− b)v̂2 + rv̂ − 2bπ

])
A sufficient condition for this derivative to be negative it that the term in square brackets
to be non-negative. Observe that the square brackets is strictly positive when b = 0 and,
by continuity, it is positive for low values of b. When b = 1, the derivative is zero. �

Proof of Theorems 4 and 5. Formally, we want to show that there exists t̂ > 0 such
that for all t < t̂ the derivative

dxl,t
dT

= λ

(
dv̂

dT

(
1− dvt

dv̂

)
− ∂vt
∂T

)
. (16)

is negative. Making use of equation (14), we can readily check that dxl,0/dT = 0. From
the proof of Lemma 3, we know that dv̂/dT > 0 and that ∂vt/∂T > 0 and increasing
in t. Hence, a sufficient condition for the result to hold is to show that dvt/dv̂ increases
with t around t = 0. The derivative of previous expression with respect to t at t = 0 is

d2v0
dvdt

= −v̂2µ(1− b)v′0 + k (2v′0ψ0 + v0ψ
′
0)

v̂2λ2 + 2π
,

where k is the positive constant defined in the proof of Proposition 2. This derivative is
positive as v′0 and ψ′0 are both negative, and the result follows. Finally, to show that the
terminal investment increases, simply observe that xl,T+dT = λv̂ which increases with T
as proven by Lemma 3. Theorem 5 follows from the discussion in the text and previous
results. �

Proof of Lemma 6. The total derivative with respect to the patent length is given
by equation (16). When the change in policy is grandfathered to the next innovation,
there is no direct effect in the current race, i.e., ∂vt/∂T = 0, and the derivative becomes

dxl,t
dT

= λ
dv̂

dT

(
1− dvt

dv̂

)
.

From Lemma 3, we know that dv̂/dT > 0. From the proof of Proposition 2 we know
1− dvt/dv̂ > 0 and the results follows. Similar proof holds for the follower. �
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Proof of Theorem 7. Followers decrease R&D at the beginning of the patent’s life
as:

dxf,0
db

= µ

(
−v̂ + (1− b)dv̂

db

)
= −

µv̂
(
ψ0

(
µ2 (b (3− 2b)− 1) 2π + λ2rv̂

)
v̂ + 2π

)
µ2 (1− b) v̂2 + kψ0v̂2 + 2π

,

where k is the positive constant defined in the proof of Proposition 2. This derivative is
positive whenever b ≥ 1/2. Followers increase R&D at towards the end of the patent’s
life as xf,T = µv̂, which increases by assumption. Similar argument can be applied for
the second claim. �

Proof of Lemma 8. I start by showing that the limiting value of a patent is given by
(7). Taking the limit of (6) when T goes to infinity, for every t, delivers

v∞ = lim
T→∞

vt =
2π + (λv∞)2

θ + φ
.

Solving this expression for v∞ delivers a unique positive solution corresponding to (7)
when b < 1 and to v∞ = π/r when b = 1. Finally, it can be readily verified that the
derivative of xf = µ(1− b)v∞ with respect to b is negative. �

Proof of Theorem 9. Observe that (8) can be written as

E [t] =

∫ T

0
xtte

−z0,tdt+ e−z0,T
(
T +

1

(λα)2v̂

)
.

Taking the limit when T → 0 shows that E [t] → ∞ as the value of a new innovation v̂
converges to zero, precluding T = 0 to be optimal. I show T ∗ < ∞ by contradiction.
Start by assuming that T ∗ = ∞. Then, using Lemma 8, E[t] = (µxf )−1 which is
increasing in b. Thus, the policy (T ∗, b∗) = (∞, 0) is the only candidate for optimality
if T ∗ = ∞ were to be optimal. When b = 0, the followers’ investments are constant
and equal to xf,t = µv̂ for all t. This scenario is the only case where E [t] can be solved
analytically. For (T ∗, b∗) = (∞, 0) to be a minimum, we need E [t] to converge to (µxf )−1

from above, as T approaches infinity. Section E in the Online Appendix shows that E[t]
converges from below, contradicting T ∗ =∞ and proving the result. �

Proof of Proposition 12. At t = 0, xl,0 = λ(v0 − v0) = 0 and the first claim follows.
Similarly, xf,0 = max{0, λ((1 − b)v0 + q0 − w0)}. Equation (10) implies that q0 > w0

and, therefore, the leader does not invest in R&D for sufficiently high b. Convergence
of investments is given by wT = vT = q, therefore `T = 0 and xf,T = xl,T = v0 − q.
To show that investment are increasing towards the end of the patent life observe that
equation (11) at t = T becomes

v′T = (r + nλ2(v0 − q))q − π −
λ2

2
(v0 − q)2, w′T = (r + nλ2(v0 − q))q −

λ2

2
(v0 − q)2.

Using the solution for q the previous expressions reduce to v′T = −π and w′T = 0.
Differentiating the firms investment rates with respect t

dxl,t
dt

= −v′t and
dxf,t
dt

= −(w′t + b(v′t − q′t)).
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Evaluating the derivatives at t = T and using q′t = (r + nλ2(v0 − q))q > 0 we obtain
x′l,T = π > 0 and x′f,T = π + q′t implying, by continuity, that both investments increase
towards the end of the patent life. �

B Endogenous Market Structure

This section derives the system of ODEs describing how vt and wt evolve throughout t,
and explains the numeric method used to compute the market equilibrium.

The Principle of Optimality Using the first order conditions (12), I obtain the
following system of differential equations when xf,t > 0

−v′t = α1v
2
t + α2vtwt − α3,tvt + α4,twt + α5,t

−w′t = α6w
2
t +

(λbvt)
2

2
+ λ2(1 + bn)vtwt − α7,twt − α8,tvt + α9,t

(17)

where

α0,t = v0 + bqt α3,t = r + (λ2 + α2)v0 + (1− 2b)α4,t α8,t = λ2bα0,t

α1 = λ2/2 + bα2 α5,t = π + (λv0)
2/2− α0,tα4,t α9 = (λα0,t)

2/2
α2 = λ2n(1− b) α6 = λ2(n− 1/2)
α4,t = λ2nbqt α7,t = r + λ2(v0 + nα0,t)

When xf,t = 0, the system becomes:

−v′t =
(λvt)

2

2
− (r + λ2v0)vt + π +

(v0)
2

2
; −w′t = λ2vtwt − (r + λ2v0)wt

Numerical Method The maximum value that a leader can obtain for an innovation
is to receive the profit π forever. Thus, the value of being the leader is bounded above
by π/r. The numeric method follows these steps:

1. Define Vp to be a partition of [0, π/r]. Each element of Vp will be tested as a
candidate for v0.

2. Fix v ∈ Vp. Start with n = 0 and define dn to be a small increase in n.

(a) As a function of (v, n) compute the continuation value q(v, n) using equation
(9) in equilibrium.

(b) Starting from q(v, n), use the system of ODEs (17) backwards to compute
the initial values of being a leader and a follower; i.e, set vT = wT = q(v, n)
and using (17) obtain v0(v, n) and w0(v, n).

(c) If w0(v, n) > K, increase n in dn and go back to (a). If w0(v, n) < K save
results as a pair as (v, n(v)). Start step 2 with a different v ∈ Vp.23

3. Once all the pairs (v, n(v)) have been computed, the solution (v0, n
∗) corresponds

to the pair (v, n(v)) where

v ∈ argmin
v∈Vp

‖v0(v, n(v))− v‖

23This step uses that w0(v, n) is monotonically decreasing in n.
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Online Appendix
Sequential Innovation and Patent Policy

by Álvaro Parra
Supplemental Material –Not for Publication

C Solving the Ordinary Differential Equation

This Appendix solves the differential equation that describes how the value of a patent
evolves as its expiration date approaches. Depending on the conjectured value v̂, compe-
tition during the life of the patent may go through one of three phases. Phase 0 occurs
when the value v̂ is low, i.e., when v̂ < bvt ≤ vt. In this phase no firm will invest in
R&D, as the cost of replacing the currently active patent is larger than its benefit. Phase
1 occurs when bvt ≤ v̂ < vt, i.e., when only followers have incentives to perform R&D.
Finally, phase 2 occurs when v̂ ≥ vt, in which case both firms will invest. In equilibrium,
only phase 2 will be observed. However, for the purposes of proving the existence and
uniqueness of the fixed-point (Proposition 2), the three phases have to be characterized.
Let vj,t be the value of having an active patent in phase j ∈ {0, 1, 2} at time t.24

Restate the differential equation (5), corresponding to phase 2, as

dv2,t
dt

+ av22,t − θv2,t + â = 0

where

a =
λ2

2
+ µ2b(1− b), θ = r + (λ2 + µ2(1− b))v̂, and â = π +

(λv̂)2

2
.

This ODE is separable and of the form dv/h (v) = dt where h (v) = −(av2 − θv+â).
Separable ODEs have a unique non-singular solution that goes through its boundary
condition, in this case v2,t = 0.25 To find the non-singular solution I integrate both sides
to get

− ln

(
θ − 2v2,ta+

√
θ2 − 4aâ

θ − 2v2,ta−
√
θ2 − 4aâ

)√
1

θ2 − 4aâ
= Ĉ + t

where Ĉ is a constant of integration. Define φ = (θ2 − 4aâ)1/2 and solving for v2,t, we
find

v2,t =
1

2a

θ + φ

(
1 + e−φ(Ĉ+t)

)
(

1− e−φ(Ĉ+t)
)
 , (18)

which is the general solution to the ODE. To find the particular solution, we just make

24Phases 0, 1 and 2 correspond to situations in which there are zero, one, or two firms investing
at a given instant in time.

25Singular solutions to (5) are found by setting v′t = 0 and solving the quadratic equation.
These solutions are disregarded, as they do not generically satisfy the boundary condition vT = 0
and have no economic meaning.
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use of the boundary condition v2,T = 0 to get

Ĉ = − 1

φ
ln

(
θ + φ

θ − φ

)
− T. (19)

Replacing back (19) in to (18) and rearranging terms, we obtain v2,t which corresponds
to equation (6). Now, I make sure that v2,t is well defined for all positive conjectures of
v̂. This clearly is true in cases where v̂ is such that φ > 0. I have to check the cases under
which φ is either imaginary or zero. For the former case, let φ = qi where i denotes the
imaginary number, and q is the positive real coefficient of i. Rewrite v2,t as

v2,t =
2π + (λv̂)2

θ + q e
q(T−t)i+1
eq(T−t)i−1 i

.

Observe that Euler’s identity implies26

q
eq(T−t)i + 1

eq(T−t)i − 1
i =

q sin (q (T − t))
1− cos (q (T − t))

,

establishing that the value of a patent v2,t is real when φ is imaginary.
Finally, for the case when φ = 0, let v◦ be the value of v such that φ(v◦) = 0. When

φ = 0 the value of the patent at every t becomes v2,t = 0/0. Then, I define v2,t to be the
limv̂→v◦ v2,t which can be computed by applying L’Hôspital’s rule to equation (6) and is
equal to27

v2,t =

(
2π + (λv̂)2

)
(T − t)

θ(T − t) + 2
,

showing that v2,t is well defined for any possible value of v̂.
Similar steps can be followed to obtain v1,t; however, two key differences apply. First,

the optimal investment rate of the leader is zero. Second, because v2,t is decreasing in t
(see proof in Section A), there exists t2 ≤ T that determines the time in which phase 1
finishes and phase 2 starts; at that point the boundary condition v1,t2 = v2,t2 must hold.
Under those conditions, I find

v1,t =
v2,t2

(
θ1 + φ1 + (φ1 − θ1) eφ1(t2−t)

)
+ 2π

(
eφ1(t2−t) − 1

)
φ1
(
1 + eφ1(t2−t)

)
+ (θ1 − 2a1v2,t2)

(
eφ1(t2−t) − 1

)
where a1 = µ2b(1 − b), θ1 = r + µ2(1 − b)v̂ and φ1 = (θ21 − 4a1π)1/2. Similar steps as
those shown above can be followed to show that v1,t is well defined for any conjecture of
v̂. Finally, the value of v0,t is

v0,t =
π

r

(
1− e−r(t1−t)

)
+ v1,t1e

−r(t1−t)

where t1 ≤ T is the instant of time in which phase 1 starts. To conclude, t1 and t2 are
found by solving bv1,t1 = v̂ and v2,t2 = v̂.

26Euler’s identity: eiψ = cos(ψ) + i sin(ψ).
27 In this case, left and right limit converge to the same point, so this is a well defined con-

struction.
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D Properties of the Function Psi

To study ψt for t ∈ [0, T ] it is useful to make a change in variable. Define the new variable
x = φ(T − t) and, because φ is just a constant with respect to t, define ψ̂ (x) = φψt
under the respective change in variable. The domain of this new function is x ∈ [0, φT ]
and is equal to

ψ̂ (x) =
e2x − 2xex − 1

(ex − 1)2
.

To show ψ′ < 0 is equivalent to show ψ̂′ > 0. I start showing this for x ∈ (0, φT ]:

ψ̂′(x) =
2ex

(ex − 1)3
(x (1 + ex) + 2 (1− ex))

the terms outside the parenthesis are positive, I need to determine the sign of h (x) ≡
x (1 + ex) + 2 (1− ex), which takes the value of 0 at x = 0 and h′ (x) = xex − ex + 1, an
expression that is always positive, thereby proving the result. To show that ψT = 0 is
equivalent to showing ψ̂ (0) = 0. At that point we have that ψ̂ is not well defined. To
identify its limit, I apply L’Hôspital’s rule (twice) and get:

lim
x→0

=
− (x− ex + 1)

(2ex − 1)
=

0

1
= 0.

The conjunction of these two results proves that ψ̂ (x) is positive for all x which implies
ψt is positive for all t < T .

E Omitted Details in Theorem 9

I start by proving a lemma and making computations that will be used in the proof.
Recall that b = 0 is assumed throughout the proof.

Lemma 17. For T sufficiently large, φ > r.

Proof: As φ continuously increases with v̂, and v̂ continuously increases with T , it is
sufficient to show the result at T =∞:

φ =
(
(r + λ2(1 + α2)v∞)2 − λ2

(
2π + λ2v2∞

))1/2
=

(
r2

2

(
1 +

√
1 +

4π(αλ)2

r2

)
+
π(αλ)2

2r2

)1/2

>

(
r2
(
1 +
√

1
)

2

)1/2

= r

where (7) was used in the second line. �

In the context of this proof, Lemma 17 implies that when T is large enough, the
terms multiplied by eT (r−φ) converge to zero.

Computations: We need to know e−z0,t for t ≤ T , where z0,t =
∫ t
0 xtdt. Start by

integrating the value of an active patent with respect to time:
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∫ t

0
vsds =

1

λ2

(
t (φ+ θ)− 2 log

(
θ
(
eφT − 1

)
+ φ

(
eφT + 1

)
θ
(
eφ(T−t) − 1

)
+ φ

(
eφ(T−t) + 1

))) .
Since xt = λ2((1 + α2)v̂ − vt), we obtain

z0,t = 2 log

(
θ(eφT − 1) + φ(eφT + 1)

θ(eφ(T−t) − 1) + φ(eφ(T−t) + 1)

)
− (r + φ)t

Thus

e−z0,t =


(
θ(eφ(T−t)−1)+φ(eφ(T−t)+1)

θ(eφT−1)+φ(eφT+1)

)2

e(φ+r)t if t < T(
2φ

θ(eφT−1)+φ(eφT+1)

)2

e(φ+r)T if t = T

(20)

Proof: The proof proceed as follows: first we solve (8). Then, we compute its deriva-
tive. Since the integral converges as T goes to infinity, the derivative is the sum of terms
that converge to zero at different rates. It is shown that the slowest term converging to
zero is positive. Thus, the derivative is positive for T sufficiently large and the integral
converges from below; i.e., T =∞ can not be a minimum. Recall Equation (8)

E [t] =

∫ T

0
(1 + α2)λ2v̂te−z0,tdt−

∫ T

0
λ2vtte

−z0,tdt+ e−z0,T
(
T +

1

(αλ)2v̂

)
. (21)

Define k1 = λ2(1 + α2)v̂/(θ(eφT − 1) + φ(eφT + 1))2; using (20), the first integral of (21)
can be written as:

k1

(
(θ + φ)2e2φT

∫ T

0
te(r−φ)tdt+ (θ − φ)2

∫ T

0
te(φ+r)tdt+ 2(φ2 − θ2)eφT

∫ T

0
tertdt

)
and using (20) and equation (6), the second integral of (21) can be written as:

k2

(
(θ + φ) e2φT

∫ T

0
te(r−φ)tdt+ (θ − φ)

∫ T

0
te(φ+r)tdt− 2θeφT

∫ T

0
tertdt

)
.

where k2 = (θ2 − φ2)/(θ(eφT − 1) + φ(eφT + 1))2. Together, they imply that:∫ T

0
λxtte

−z0,tdt =
(φ− r)(θ + φ)2e2φT

(θ (eφT − 1) + φ (eφT + 1))
2

∫ T

0
te(r−φ)tdt

− (r + φ)(θ − φ)2

(θ (eφT − 1) + φ (eφT + 1))
2

∫ T

0
tet(φ+r)dt+ 2rk2e

φT

∫ T

0
tertdt

The generic solution to the three integrals above is given by:∫ T

0
teatdt =

1

a2
(
eTa (Ta− 1) + 1

)
.

iv



With this information we solve (8) which is equal to:

E[t] =
(θ + φ)2

(φ− r)
f1(T )− (θ − φ)2

(r + φ)
f2(T ) +

2
(
θ2 − φ2

)
r

f3(T ) +
4φ2

λ2v̂
f4(T )

where

f1 (T ) =
e2Tφ

(
eT (r−φ) (T (r − φ)− 1) + 1

)
(θ (eφT − 1) + φ (eφT + 1))

2 f2 (T ) =

(
eT (r+φ) (T (φ+ r)− 1) + 1

)
(θ (eφT − 1) + φ (eφT + 1))

2

f3 (T ) =
eTφ

(
erT (rT − 1) + 1

)
(θ (eφT − 1) + φ(eφT + 1))

2 f4 (T ) =

(
1 + T (αλ)2v̂

)
e(φ+r)T

(θ (eφT − 1) + φ (eφT + 1))
2 .

As T approaches infinity, f1(T ) converges to a positive constant. The other functions
converge to zero. To know whether the integral increases when T approaches to infinity,
we need to study its derivative. The derivative will be the sum of terms converging to
zero at exponential rates. When T is large enough, only the slowest converging term is
relevant. The derivatives with respect to T are:

df1(T )

dT
= (φ− r)K +O

(
e−Tφ

) df2(T )

dT
= 2φJ − (φ+ r)K +O

(
TeT (r−2φ)

)
df3(T )

dT
= φJ − rK +O

(
e−Tφ

) df4(T )

dT
= (θ − φ)J − α2λ2v̂K +O

(
TeT (r−2φ)

)
where

J =
(θ + φ)eT (2φ+r)

(θ (eφT − 1) + φ (eφT + 1))
3 and K =

(φ+ θ) (φ− r)TeT (2φ+r)

(θ (eφT − 1) + φ (eφT + 1))
3

are positive and converge to zero at a rate of eT (r−φ) and TeT (r−φ) respectively. The
derivative of (8) with respect to T is given by

dE[t]

dT
=
∂E[t]

∂T
+
dE[t]

dv̂

dv̂

dT

where

∂E[t]

∂T
=

2φ2(θ − φ)
(
2r(r + φ) + (αλ)2v̂(2r + θ + φ)

)
(αλ)2r(r + φ)v̂

J +O
(
e−Tφ

)
dE[t]

dv̂
≈ C +O

(
e−T (r−φ)

)
and

dv̂

dT
≈ O

(
e−Tφ

)
,

where C is a positive constant. The K terms in ∂E[t]/∂T cancel out. Equation (15)
shows that dv̂/dT converges to zero at a rate of e−φT . Using Lemma 8 it can be shown
that dE[t]/dv̂ converges to a positive constant C. When T is large enough the terms
of order e−φT (or smaller) are negligible. Thus the only relevant term is the positive
constant accompanying J , and the derivative is always positive; i.e, E[t] converges to the
limit from below, contradicting the conjecture that (T ∗, b∗) = (∞, 0) is a minimum. �
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