
Frictions Lead to Sorting:

a Partnership Model with On-the-Match Search∗

Cristian Bartolucci and Ignacio Monzón†

December 19, 2014

Abstract

We present a partnership model where heterogeneous agents bargain over

the gains from trade and search on the match. Frictions allow agents to ex-

tract higher rents from more productive partners, generating an endogenous

preference for high types. More productive agents upgrade their partners

faster, therefore the equilibrium match distribution features positive assorta-

tive matching. Frictions are commonly understood to hamper sorting. In-

stead, we show how frictions generate positive sorting even with a submod-

ular production function. Our results challenge the interpretation of positive

assortative matching as evidence of complementarity.
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1. Introduction

Markets with two-sided heterogeneity are prevalent. In labor markets, firms and

workers typically differ in their characteristics, quality and ability. The same is

true in other markets, such as the marriage market and the market for CEOs. The

evidence suggests that better CEOs sort into better corporations (Parrino [1997]),

that there is positive assortative mating in the marriage market (Mare [1991]), and

that more productive employees work for better firms (Bartolucci and Devicienti

[2013]). Traditionally, positive assortative matching has been interpreted as evi-

dence of complementarity in the production function. In this paper we argue that

frictions are a natural reason for positive assortative matching to arise, even in the

absence of complementarity in production.

In the presence of frictions higher types become more appealing. While in fric-

tionless markets payoffs reflect individual contributions, the division of output

becomes more even when it takes time to find a partner. To see this, assume that

agents are infinitely impatient (or frictions infinitely strong), and therefore outside

options are zero. In this simple case, the gains from trade are equal to the produc-

tion of the match. Under standard bargaining, both agents receive an equal share

of the gains from trade, so agents receive a constant fraction of the match’s output.

When frictions are strong enough, it is the total production of the match, rather

than individual contributions, that shapes payoffs and preferences over partners.

Production is increasing in the partner’s type, so an endogenous preference for

better types arises. Complementarity in production only plays a secondary role.

A preference for high type partners leads to positive sorting when agents are

allowed to search while matched. When agents on both sides of the market can

replace their partners, more desirable agents upgrade partners faster. In this way,

a preference for high type partners makes high type agents climb the ladder of

partners faster. Therefore, as in Lentz [2010], the distribution of matches features

positive sorting. If instead agents are not allowed to replace their partners (like in

Shimer and Smith [2000] and Atakan [2006]), a preference for high types does not
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translate into positive sorting.1

Match-to-match transitions are pervasive in most developed economies. Fal-

lick and Fleischman [2004] estimate that at least half of all new employment rela-

tionships result from job-to-job transitions. On the firm side, Albak and Sørensen

[1998] and Burgess, Lane, and Stevens [2000] present empirical evidence of re-

placement hiring (see Kiyotaki and Lagos [2007] for a discussion). In the market

for CEOs, Parrino [1997] finds that the availability of a strong outside candidate

is an important consideration in the decision to replace a poor CEO. Murphy and

Zabojnik [2006] report that a large proportion of managers were hired from an-

other firm. Stevenson and Wolfers [2007] find that remarriage is one of the main

determinants of divorce.

We present a partnership model with transferable utility where agents search

on the match.2 A matched agent who finds a new partner can dissolve the cur-

rent match and form a new one. After dissolving a match, the agent bargains with

the new partner without the possibility of returning to the previous one. Our bar-

gaining protocol prevents agents from exploiting the presence of multiple suitors

to raise their payoffs. This timing makes preferences over partners simple: the

value of the match to an agent depends only on her current partner’s type. In some

markets (like the one for academic economists) counteroffers are common prac-

tice. However, this is not the norm in most markets (see Mortensen [2005]). In

Section 5.2 we modify the bargaining protocol to allow for renegotiation and show

how frictions can lead to positive sorting in this case, also without productive com-

plementarity.

Allowing agents to search on the match adds an extra layer of difficulty to the

bargaining problem: the surplus from the match depends on the bargaining out-

come. Patient agents face a trade-off between per-period payoff and expected du-

1In Shimer and Smith [2000], a preference for high type partners implies acceptance sets with
non-increasing lower bounds. Any partner accepted by an agent is also accepted by better agents.
See Section 5.1 for an in-depth discussion.

2In our framework match payoffs are not exogenously given, but rather endogenously deter-
mined through bargaining. Hence, in our environment utility is transferable (Smith [2006]).
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ration of the match: higher wages paid to a worker reduce the firm’s per-period

profits, but they decrease the likelihood that the worker quits. In fact, a higher

wage may increase the value of the match both to the worker and the firm. As

highlighted by Shimer [2006], bargaining sets are not necessarily convex and there-

fore the standard axiomatic Nash Bargaining is not applicable to this setup.

We present a solution for axiomatic bargaining when both sides can leave the

match if they find a preferred option. Bargaining sets do not satisfy Nash’s axioms

[1950]. However, we show that bargaining sets are compact. We follow a modified

version of Nash’s axioms proposed by Kaneko [1980]. Kaneko shows that for com-

pact bargaining sets the solution is exactly as in Nash [1950]: it selects the outcome

which maximizes the product of agents’ individual surpluses.

In our benchmark model there are two agent types (low and high). This sim-

ple model is rich enough to illustrate the trade-offs that agents face with on-the-

match search. We show that several different equilibria can arise, depending on

the degree of complementarity in production, agents’ patience and the degree of

frictions in the market. Each possible equilibrium induces a pattern of sorting. We

show that a preference for the high type is sufficient for positive assortative match-

ing to arise in our model. We fully characterize this two type model. We provide

necessary and sufficient conditions for existence and uniqueness of an equilibrium

featuring an endogenous preference for the high type. We finally present necessary

and sufficient conditions for positive assortative matching.

Our intuition extends to the case with any finite number of types. We show that

an equilibrium where agents endogenously prefer higher types arises as agents be-

come impatient or frictions large. Moreover, this is the unique equilibrium. Next,

we provide numerical examples with parameter values in line with the literature

where agents endogenously prefer higher types. Both with modular and submod-

ular production functions there are equilibria where matching is positively assor-

tative.

The literature on assortative matching mostly focuses on how complementarity
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in production affects the allocation of workers to firms. In Becker’s seminal part-

nership model [1973], a supermodular production function is necessary and suffi-

cient for positive assortative matching. This is not true in markets with frictions.3

When it takes time to find a partner, agents are selective only if complementarity

in production compensates the cost of waiting. Therefore, the conventional wis-

dom is that stronger frictions require stronger complementarity in production for

positive assortative matching to arise. Our paper highlights a different role for fric-

tions: they modify preferences over partners. Thus, frictions can generate positive

assortative matching even with a submodular production function. Our results

challenge the interpretation of sorting as evidence of complementary in produc-

tion.

Policy recommendations differ when sorting results from frictions, rather than

from complementarity. Consider the linear production function case. There, posi-

tive sorting can only arise because of frictions. However, if sorting is interpreted as

evidence of complementarity in production, the standard policy recommendation

is to subsidize agents to wait until they find their preferred partner (see Acemoglu

and Shimer [1999a]). Now, since production is linear, a different distribution of

matches does not change the aggregate production of the economy and moreover

search is costly in terms of forgone output. Then, such a program would be welfare

detrimental.

The rest of the paper is organized as follows. In the next section we present the

model, describe bargaining sets with on-the-match search and present our notion

of equilibrium. In Section 3 we solve the two type case. We provide a full char-

acterization of all equilibria in this simplified setting. Section 4 shows how our

results extend to the case with any number of types. Section 5 relaxes some of the

main assumptions of our baseline model. We show that frictions lead to sorting

3 There is no positive assortative matching in Shimer and Smith [2000] for modular and slightly
supermodular production functions (see Section 5.1 for an in-depth discussion). In Atakan [2006],
whenever the explicit cost of search is high and complementarity weak, random sorting arises in
equilibrium. In Eeckhout and Kircher [2010] root-supermodularity is necessary and sufficient for
positive assortative matching.
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in cases where search on the match is less efficient than out of the match; in cases

with renegotiation; and in the constrained efficient allocation chosen by a central

planner. Section 6 concludes.

2. The Model

Consider a continuous time, infinite horizon stationary economy, populated by in-

finitely lived, risk neutral agents. There is a unit mass population of heterogeneous

agents denoted by their fixed type x ∈ X, where X is a finite ordered set of possible

types. All types are present in equal proportion in the population.

Agents can be either matched or unmatched. Transitions between states occur

due to exogenous destruction and match-to-match transitions. Matches are exoge-

nously destroyed at rate δ and meetings occur at rate ρ. Agents discount the future

at rate r > 0.

A match produces a flow of output f (x, y) : X2 → R+. The production func-

tion is strictly increasing in both arguments and symmetric: f (x, y) = f (y, x). Un-

matched agents produce zero. Until Section 4 we assume that there are two types:

X = {`, h}. In this case f (`, `) = 2`, f (h, h) = 2h, and f (h, `) = f (`, h) = F,

with 0 < 2` < F < 2h. Parameter F captures the degree of complementarity in

production. A modular production function has F = `+ h, a supermodular one

has F < `+ h, and F > `+ h corresponds to the submodular case.

The steady state distribution e(x, y) : {`, h} × {∅, `, h} →
[
0, 1

2

]
specifies the

number e(x,∅) of unmatched x-type agents and the number e(x, y) of x-type agents

matched to agents of type y ∈ {`, h}. Since in the population there are as many

low as high productivity agents, ∑y∈{∅,`,h} e(x, y) = 1
2 for x ∈ {`, h}. We allow both

matched and unmatched agents to meet potential partners (who also themselves

may be matched or unmatched). Any agent, regardless of type and match status,

meets an agent x ∈ {`, h} currently matched to y ∈ {∅, `, h} at rate ρe (x, y).4

4For simplicity, we assume that search on the match and out of the match are equally intensive.
In equilibrium, payoffs while matched are strictly positive. Then, unmatched agents accept all
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The set of partners an agent is willing to accept depends on her current match.

A decision function d (x, y, y′) : {`, h} × {`, h} × {`, h} → [0, 1] specifies the prob-

ability that an agent of type x matched to an agent of type y would dissolve that

match upon meeting a willing partner of type y′. The rate at which an agent of type

x meets an agent of type y who is willing to form a match with her is denoted by

q(x, y) : {`, h}×{`, h} → R+ and given by q(x, y) ≡ ρ
[
e (y,∅) + ∑x′∈{`,h} e (y, x′) d (y, x′, x)

]
.

Agents only get utility from flow payoffs. Flow payoffs are constant for the

duration of the match, and are determined through bargaining, as discussed in

the next subsection. Let π (x, y) : {`, h} × {`, h} → [0, f (x, y)], with π(x, y) +

π(y, x) ≤ f (x, y), be the flow payoff agent x receives when matched to agent y.

Unmatched agents obtain a zero flow payoff.5

We denote the value function of an x-type agent by V(x,∅) when she is un-

matched and by V(x, y) when she is matched to a y-type. Values are given by

[r + q (x, `) + q (x, h)]V(x,∅) = 0 + q (x, `)V(x, `) + q (x, h)V(x, h) and

r + δ + ∑

y′∈{`,h}
d
(
x, y, y′

)
q
(
x, y′

)
+ ∑

x′∈{`,h}
d
(
y, x, x′

)
q
(
y, x′

)

V(x, y) = π(x, y)

+


δ + ∑

x′∈{`,h}
d
(
y, x, x′

)
q
(
y, x′

)

V(x,∅) + ∑

y′∈{`,h}
d
(
x, y, y′

)
q
(
x, y′

)
V
(
x, y′

)
.

It is usually more convenient to work directly with the surplus agents obtain

relative to being unmatched. Surplus S (x, y) : {`, h} × {`, h} → R is given by

S (x, y) =


r + δ + ∑

x′∈{`,h}
d
(
y, x, x′

)
q
(
y, x′

)


−1 [

π(x, y) (1)

+ ∑
y′∈{`,h}

d
(
x, y, y′

)
q
(
x, y′

) [
S
(
x, y′

)
− S(x, y)

]
− ∑

y′∈{`,h}
q
(
x, y′

)
S
(
x, y′

)
]

.

partners. In Section 5.1 we allow search intensities to differ.
5Re-scaling the production function to allow for positive payoffs while unmatched leads to

equivalent results.
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We distinguish individual surpluses S(x, y) and S(y, x) from the total surplus

of the match S(x, y) + S(y, x) because the total surplus is not necessarily split sym-

metrically (as we show in the next subsection).

2.1 Timing and Bargaining

We propose the following timing. When two agents meet they observe each others’

type. Before bargaining, each agent decides whether to create a match together.

If both agents are willing to form a match, a transition occurs, and any previous

match is dissolved. Therefore, when an agent bargains with her partner, she cannot

exploit the existence of an alternative partner to improve her bargaining position.

As a result, the outside option is always the value of being unmatched.6

When agents search on the match, the bargaining set is non-standard, so we

need to describe it carefully. Once agents x and y form a match, they bargain

on how to split the output. This allocation of output remains in place until the

match breaks (exogenously or endogenously). Whenever a matched agent meets

a potential partner with whom she anticipates a higher surplus, she leaves her

current partner. Agents cannot commit not to leave each other, and cannot engage

in renegotiation when an offer arrives.

The state of the economy is summarized by S∗ = {S∗(x, y)}(x,y)∈X2 , the surplus

that agents obtain in each possible match and by q∗ = {q∗(x, y)}(x,y)∈X2 , the likeli-

hood of finding willing partners. Agents take the state of the economy as given.

A possible agreement c =
(

d̂, π̂
)

between x and y specifies both a decision

function d̂ and an allocation π̂. Let d̂ =

({
d̂1 (y′)

}
y′∈X

,
{

d̂2 (x′)
}

x′∈X

)
and π̂ =

(π̂1, π̂2), with π̂1 + π̂2 ≤ f (x, y). For example, d̂1 (y′) denotes agent x’s decision

when faced with the possibility to match a (willing) agent of type y′. Taking the

state of the economy (S∗, q∗) as given, an agreement c =
(

d̂, π̂
)

induces surplus

6The timing of match-to-match transitions follows Pissarides [1994] and several recent papers
(Shimer [2006], Gautier, Teulings, and Van Vuuren [2010], and Bartolucci [2013]). In Section 5.2 we
allow agents to make counteroffers à la Kiyotaki and Lagos [2007]. Positive assortative matching
can also arise in this case, even without complementarity in production.
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pair Ŝc =
(

Ŝc
1, Ŝc

2

)
with

Ŝc
1 =

(
r + δ + ∑

x′∈X
d̂2
(
x′
)

q∗
(
y, x′

)
)−1 [

π̂1

+ ∑
y′∈X

d̂1
(
y′
)

q∗
(
x, y′

) [
S∗
(
x, y′

)
− Ŝc

1

]
− ∑

y′∈X
q∗
(
x, y′

)
S∗
(
x, y′

)]
,

and Ŝc
2 defined accordingly.

Since there is no renegotiation or commitment, only consistent agreements can

occur:

DEFINITION 1. CONSISTENT AGREEMENTS. Fix the state of the economy (S∗, q∗).

An agreement c =
(

d̂, π̂
)

is consistent if for all y′ ∈ X,

d̂1
(
y′
)





= 1 if S∗(x, y′)− Ŝc
1 > 0

∈ [0, 1] if S∗(x, y′)− Ŝc
1 = 0

= 0 if S∗(x, y′)− Ŝc
1 < 0

and the same holds for d̂2 (x′), for all x′ ∈ X.

With this definition in hand, we can define our bargaining sets:

DEFINITION 2. BARGAINING SETS S UNDER ON-THE-MATCH SEARCH. Fix the

state of the economy (S∗, q∗). Agents x and y bargain over

Sxy =
{
(S1, S2) : ∃ consistent c with Ŝc

1 = S1 and Ŝc
2 = S2

}
.

Bargaining sets under on-the-match search have features that make the bar-

gaining problem non-trivial. They may be non-convex, so Nash’s assumptions

[1950] are not satisfied.7 Kaneko [1980] presents an extension of Nash’s model that

7Bargaining sets may also be non-comprehensive. S is comprehensive if 0 ≤ x ≤ y and y ∈ S
implies x ∈ S . Non-comprehensiveness makes the analysis in Zhou [1997] and others unapplicable
in a setup with on-the-match search. See Figure 1 in next section for an example of how bargaining
sets look with on-the-match search.
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allows for non-convex sets. Kaneko’s version of Nash’s axioms permits set-valued

decision functions. A decision correspondence φ assigns to each compact subset

S of R2
+ a non-empty subset φ(S) ⊂ S.8 Kaneko shows that a decision correspon-

dence φ satisfies his axioms if and only if it maximizes the product of individual

surpluses:

φ(S) =
{(

S1, S2
)
∈ S : S1S2 ≥ S1S2 for all (S1, S2) ∈ S

}
(2)

In our model, the bargaining sets Sxy are compact (see Appendix A.1 for de-

tails). From now on we assume that φ(·) defined in (2) is the solution to the bar-

gaining problem.

The solution to the bargaining problem maximizes the product of individual

surpluses, as in Nash [1950]. However, the total surplus is not always split sym-

metrically because bargaining sets are non convex. To see why, consider an exam-

ple with only two types of agents: x, y ∈ {`, h}, with ` slightly less than h. Assume

agents produce f (x, y) = x + y if matched and zero otherwise. If ` and h split the

total surplus symmetrically, the low-type agent makes marginally more than ` per

period but is dismissed when the high-type agent finds a high-type partner. There-

fore, it is more convenient for the low-type agent to receive a per-period payoff of

` and get a larger expected duration of the match. The high type also benefits from

that. Then, for ` ≈ h, the outcome from even surplus splitting is dominated.

2.2 Equilibrium

We can now formulate our notion of equilibrium in this economy.

DEFINITION 3. EQUILIBRIUM WITH ON-THE-MATCH SEARCH. Take a pair of

decision functions and allocations (d∗, π∗), its induced state of the economy (S∗, q∗) and

8 There are three main differences between Nash’s and Kaneko’s axioms. First, Kaneko assumes
strict Pareto Optimality, whereas Nash assumes a weak version. Second, the axiom of indepen-
dence of irrelevant alternatives (IIA) is now: T ⊂ S, φ(S) ∩ T 6= ∅ ⇒ φ(T) = φ(S) ∩ T. This is
consistent with Nash’s IIA, but it is a fairly restrictive version. Third, Kaneko assumes a weak form
of continuity in the choice correspondence φ.
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its resulting bargaining sets
{
Sxy
}
(x,y)∈X2 . We say that (d∗, π∗) is an equilibrium if for

all (x, y) ∈ X2,

1. agreements are consistent,9

2. surpluses solve the bargaining problem: (S∗(x, y), S∗(y, x)) ∈ φ
(
Sxy
)
, and

3. market outcomes are robust: S∗(x, y) > S∗(y, x) ⇒ ∃ y′ 6= y : S∗(x, y) =

S∗(x, y′).

Before presenting our results, we provide a short discussion of our definition

of equilibrium and its properties. First, equilibrium outcomes have some straight-

forward properties. For all matches, allocations exhaust production: π(x, y) +

π(y, x) = f (x, y). Moreover, agents only perform match-to-match transitions if

they are strictly better off after the transition: d (x, y, y′) = 1 {S∗(x, y′) > S∗(x, y)}.
These results are direct consequences of the assumption of Strict Pareto Optimal-

ity in bargaining. Second, our model is symmetric in that both sides come from

the same population. Thus, by construction, a low firm matched to a high worker

obtains the same surplus as a low worker matched to a high firm. Third, we focus

on equilibria where behavior is a function of own type and partner’s type. As a

result, equilibrium outcomes with two agents of the same type are symmetric.

Condition 3 in our definition of equilibrium is desirable, although not neces-

sary for our message. We include it for two reasons. First, when it does not hold,

the equilibrium does not survive a positive cost of match-to-match transition (we

elaborate on this in Appendix A.2). In that sense, it is a robustness condition which

restricts the set of equilibria. Our main insight is about existence of equilibria

featuring positive assortative matching. It is prudent then to follow a conserva-

tive approach. Second, beyond robustness, condition 3 provides tractability to the

model. It imposes symmetric surplus splitting in matches with strict preferences

over partners’ type.

9For each match (x, y) ∈ X2, define agreement c =
(

d̂, π̂
)

by d̂ = (d∗(x, y, y′) , d∗(y, x, x′)) and
π̂ = (π∗(x, y), π∗(y, x)).
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2.3 Assortative Matching

An equilibrium decision function d∗ induces a steady state distribution of matches

e(x, y). We argue that this steady state distribution can be positively assortative

due to frictions.

In Becker’s frictionless market [1973] there is positive assortative matching if

agents only match with partners of their same type. In contrast, when it takes time

to find a partner, agents may form matches with more than one type of partner;

hence Shimer and Smith [2000] define sorting in terms of acceptance sets. How-

ever, if an agent can search while matched, her acceptance set depends not only

on her own type, but also on her current partner’s type. Since match-to-match

transitions shape the steady state distribution, a characterization of the acceptance

sets of unmatched agents is not enough to describe the sorting pattern. Therefore

we use the following definition proposed by Lentz [2010] to describe sorting in

markets with match-to-match transitions.

DEFINITION 4. POSITIVE ASSORTATIVE MATCHING. Take any x1, x2 ∈ X with

x1 > x2. There is positive assortative matching if and only if the distribution of partners

of x1 first order stochastically dominates the distribution of partners of x2.

3. Solution for the Two Type Case

The main insight of this paper is that frictions are a driving force towards posi-

tive sorting. Frictions generate rents, and rent splitting may induce an equilibrium

preference for higher types. From now on, we say an equilibrium features hyper-

phily when S∗(x, h) > S∗(x, `) for all x ∈ {`, h}. Frictions leads to sorting since

hyperphily implies positive assortative matching.

LEMMA 1. In an equilibrium with hyperphily and two types, h’s distribution of partners

first order stochastically dominates `’s.

See Appendix A.5 for the proof.

We now present necessary and sufficient conditions for the existence of an
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equilibrium with hyperphily. Then, we present a complete characterization of the

model. We describe all possible equilibria and the conditions for their existence.

This allows us to state necessary and sufficient conditions for hyperphily to be the

unique equilibrium.

3.1 An Equilibrium with Hyperphily

Under hyperphily, since no agent is indifferent between partners of different types,

the total surplus of the match is split evenly in all matches (see equilibrium defini-

tion). Therefore, the equilibrium allocations are given by π∗(`, `) = `, π∗(h, h) =

h, and π∗(`, h) is set so that S∗(`, h) = S∗(h, `).

As explained in the previous section, agents’ transitions must be consistent

with the surplus they obtain in each match. Moreover, we require that, for each

match, no consistent agreement leads to a higher product of individual surpluses.

Thus, the agreement between agents must be a global maximum in the bargaining

set. This is a restrictive condition, which is not easy to check in general. We check

each match step by step.

Pair (d∗, π∗) is consistent in an equilibrium with hyperphily if the resulting

surpluses satisfy

S∗(h, h) > S∗(h, `) and S∗(`, h) > S∗(`, `) . (3)

We discuss next when (d∗, π∗) solves the bargaining problem for each possible

match.

Bargaining Solution in Match (`, h)

Total surplus is split evenly between ` and h. An agreement leading to a higher

product of individual surpluses can only exist if it also induces a larger total sur-

plus. Since ` does not leave the match (`, h) under hyperphily, a larger total surplus

can only be reached in the match (`, h) if h chooses not to leave. Thus, we study
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consistent agreements between ` and h where h does not leave. Let
(

Ŝc
`, Ŝc

h

)
denote

the surplus in some alternative agreement c. h does not leave for a high-type agent

only if Ŝc
h ≥ S∗(h, h).

There are three possible kinds of agreements with h staying. In the first kind

of agreement (c1), both ` and h choose not to leave each other. In the second one

(c2), h always stays, but ` leaves when she finds a new h. In the third one (c3),

h always stays, but ` leaves when she finds any new partner. If the first kind of

agreement exists, it makes both agents better off, so our original candidate is not

an equilibrium. The second and third cases involve ` obtaining a lower surplus.

We need to check whether a higher product of individual surpluses is attained in

these cases. Pair (d∗, π∗) solves the bargaining problem in match (`, h) if and only

if Condition 1 holds.

CONDITION 1. Let c1, c2 and c3 be defined as stated. No allocation generates

Ŝc1
h ≥ S∗(h, h) and Ŝc1

` ≥ S∗(`, h), or

Ŝc2
h ≥ S∗(h, h), S∗ (`, `) ≤ Ŝc2

` < S∗(`, h) and Ŝc2
` Ŝc2

h > S∗(`, h)S∗ (h, `) , or

Ŝc3
h ≥ S∗(h, h), Ŝc3

` < S∗ (`, `) and Ŝc3
` Ŝc3

h > S∗(`, h)S∗ (h, `) .

Figure 1 presents two examples to illustrate how bargaining sets are built and

how to verify Condition 1. As mentioned in the previous section, the trade-off be-

tween expected duration and flow payoff makes the bargaining sets non-convex.

To see why, take the boundary of bargaining set S`h in panel a in Figure 1. Con-

sider first the point that gives ` zero surplus and h his maximum possible surplus

on S`h. At this point, h never leaves the match, while ` gets π(`, h) = 0 so she

leaves for any alternative partner (of either type). An increase in π(`, h), together

with its corresponding decrease in π(h, `), increases Ŝc
` in the same amount as Ŝc

h

decreases. Thus, for small changes in flow payoffs, the boundary of the bargain-

ing set is linear. However, consider now the point where Ŝc
h = S∗(h, h). A further

increase in π(`, h) makes Ŝc
h < S∗(h, h), so h starts leaving whenever she finds
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another h. The expected duration of the match decreases, and although π (`, h) is

higher, Ŝc
` decreases discretely. It is this jump that generates a non-convexity in the

bargaining set. In general, bargaining sets are non-convex in the neighborhood of

agreements leading to indifference.

Figure 1: Bargaining Sets S`h

S∗(h, `)

S∗(h, h)

S∗(`, h)S∗(`, `) Ŝc
`

Ŝc
h

S`h

(a)

S∗ (h, `)

S∗ (h, h)

S∗ (`, h)S∗ (`, `) Ŝc
`

Ŝc
h

(b)

S`h

Note: ρ = 0.1, r = 0.1, δ = 0.05, ` = 1 and h = 2. In (a), F = ` + h. In (b),
F = 1.6`+ h.

As Figure 1 illustrates, bargaining sets are built from potentially disjoint com-

pact sets. In fact, agreement (d∗, π∗) maps to an isolated point in the bargaining

set. Any marginal deviation from π∗ decreases the expected duration of the match

discretely. This occurs because the partner whose flow payoff has been reduced

now leaves when she finds a new partner of the same type as her current one.

Panel a shows a case where condition 1 holds: hyperphily solves the bargaining

problem in the match (`, h). The shaded area in panel a represents the bargaining

set S`h under hyperphily and a modular production function. The curve through

(S∗(`, h), S∗ (h, `)) indicates all points attaining product S∗(`, h)× S∗ (h, `). No el-

ement in the bargaining set attains a higher product of individual surpluses. Note

this occurs without complementarity in production and with patient agents.

Panel b shows a case where condition 1 does not hold. When the production
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function is sufficiently submodular hyperphily is no longer an equilibrium. An

alternative consistent agreement leads to a higher product of individual surpluses

and to a higher individual surplus for both agents. Agent ` receives less than half

of a larger surplus in order to make her partner indifferent. Still, agent ` is better

off. This violates the first line of Condition 1.

In the example presented in panel b the second line of Condition 1 is also vio-

lated. An agreement that makes 1) h indifferent to a match with another h and 2)

` worse off than in a match to a different h is also consistent and leads to a larger

product of individual surpluses.

Bargaining Solution in Match (`, `)

As in match (`, h), there are three cases to consider. In the first (c4), both agents

choose not to leave each other. In the second (c5), one ` agent never leaves while

the second one leaves only when finding a willing h. In the third (c6), one ` agent

never leaves while the other one leaves when finding any willing partner. Let(
Ŝc

1, Ŝc
2

)
denote the surplus in an alternative contract c. Pair (d∗, π∗) solves the

bargaining problem in match (`, `) if and only if Condition 2 holds.

CONDITION 2. Let c4, c5 and c6 be defined as stated. No allocation generates

Ŝc4
1 ≥ S∗(`, h), or

Ŝc5
1 ≥ S∗(`, h), and S∗ (`, `) ≤ Ŝc5

2 < S∗(`, h), or

Ŝc6
1 ≥ S∗(`, h), Ŝc6

2 < S∗ (`, `) and Ŝc6
1 Ŝc6

2 > [S∗ (`, `)]2 .

We present again two examples to illustrate bargaining, this time on match

(`, `). Panels a and b in Figure 2 present bargaining set S`` with hyperphily and

a modular production function. In panel b, types are closer: ` = 1.66 and h = 2,

whereas in panel a, ` = 1 and h = 2. It is easy to see that hyperphily solves the

bargaining problem in panel a. In panel b, however, an alternative agreement with

both ` agents choosing not to leave each other makes them better off, so hyperphily
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does not solve the bargaining problem.

Figure 2: Bargaining Sets S``

Ŝc
1

Ŝc
2

S∗ (`, `)

S∗ (`, h)

S∗ (`, h)S∗ (`, `)

S``

(a)

` = 1

S∗ (`, `)
S∗ (`, h)

S∗ (`, `)S∗ (`, h) Ŝc
1

Ŝc
2

S``

(b)

` = 1.66

Note: ρ = 0.1, r = 0.1, δ = 0.05, h = 2 and F = `+ h.

In the example presented in panel b, the second line in Condition 2 is also vio-

lated. An agreement that makes 1) one ` indifferent to a match with h and 2) the

second ` at least as well off as before is also feasible.

Bargaining Solution in Match (h, h)

There is no endogenous destruction in match (h, h) and agents split the surplus

evenly. Therefore, no consistent alternative agreement leads to a higher product of

individual surpluses.

Equilibrium with Hyperphily

Our first proposition summarizes the necessary and sufficient conditions for hy-

perphily.

PROPOSITION 1. EQUILIBRIUM WITH HYPERPHILY. Conditions 1 and 2 are nec-

essary and sufficient for hyperphily. We solve them explicitly and characterize the set of
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primitives (`, h, F, r, ρ, δ) such that an equilibrium with hyperphily exists.

Proof. Equation (3), and Conditions 1 and 2 generate 8 inequalities which de-

termine when hyperphily can be an equilibrium. Whenever Conditions 1 and 2

are satisfied, then equation (3) also is. We express Conditions 1 and 2 as explicit

functions of (`, h, F, r, ρ, δ). We present the details in Appendix A.6. �

Figure 3 illustrates the set of primitives (`, h, F, r, ρ, δ) which lead to hyperphily.

The shaded areas in panels a, b, c and d represent the set of values of F consistent

with an equilibrium with hyperphily as a function of the matching rate ρ, the de-

struction rate δ, the discount rate r and the difference between h− ` respectively.

As we see in panel a, low values of ρ allow for hyperphily even when the pro-

duction function is significantly submodular. As ρ decreases, the probability that

h leaves the match (`, h) becomes lower, so compensating her to make her stay

becomes less attractive. In the limit as ρ → 0, hyperphily is an equilibrium for

all degrees of complementarity in the production function. On the other side, as

ρ → ∞, the duration of any match with voluntary destruction approaches zero.

Thus, hyperphily cannot be an equilibrium.

As we see in panel b, higher values for the destruction rate δ make hyperphily

more likely. As δ increases, endogenous destruction becomes less relevant rela-

tive to exogenous destruction. Therefore the maximum degree of submodularity

which supports hyperphily increases. As δ → ∞, the duration of every match

goes to zero independently of the allocation of production, so hyperphily holds

for every value of the other primitives. On the other side, lower values of δ leave

less room for hyperphily. When δ is low, there are few unmatched agents. Being

unmatched becomes relatively less attractive, since it takes a long time to find a

partner. However, if agents are impatient enough, as δ → 0 there are still equilib-

ria with hyperphily, even when the production function is submodular.

Panel c illustrates the intuition discussed in the Introduction. As agents become

more impatient (higher r), complementarity in production becomes less important

relative to rent splitting. In the limit as r → ∞, hyperphily is an equilibrium for
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Figure 3: Existence of Equilibrium with Hyperphily
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Note: In (a), ` = 1, h = 2, δ = 0.05 and r = 0.1. In (b), ` = 1, h = 2, ρ = 0.1 and
r = 0.1. In (c), ` = 1, h = 2, δ = 0.05 and ρ = 0.1. In (d), r = 0.1, ρ = 0.1, δ = 0.05
and `+ h = 3, with 0 < ` < 1.5 < h < 3.

any degree of complementarity in the production function. When agents are pa-

tient, there are equilibria with hyperphily provided that the complementarity in

production is not too strong.

Panel d illustrates the example discussed in Section 2.1. When the difference

between types is close to zero, ` does not get much from extracting surplus from h.

Thus, ` makes h indifferent, so he does not leave for another h. Agreement c1 leads

to a higher product of surpluses in match (`, h). As h− ` increases, hyperphily be-

comes an equilibrium for a larger range of values of F. Moreover, as ` approaches

0, hyperphily holds even for a significantly submodular production function.
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3.2 All Possible Equilibria

We present a complete characterization of equilibria in this subsection. Depending

on the value of the primitives, several different equilibria arise in our simple two

type model. In principle, there could be nine different types of equilibria, each

associated to a different vector d∗. Table 1 shows all of them. We present necessary

and sufficient conditions for the existence of all types of equilibrium. Thus, we

obtain necessary and sufficient conditions for hyperphily to be the only possible

equilibrium.

Positive assortative matching can arise not only with hyperphily but also with

strict or weak homophily.10 Therefore, a full characterization of the model allows

us to present necessary and sufficient conditions for the existence and uniqueness

of an equilibrium with positive assortative matching.

Characterizing each equilibrium involves going through the same process as

already performed for hyperphily. First, we select agreements that satisfy condi-

tion 3 in our equilibrium definition. Then, we verify that transitions are consistent.

Lastly, for each possible match, we verify that the equilibrium agreement solves

the bargaining problem.

PROPOSITION 2. ALL EQUILIBRIA WITH TWO TYPES. For each possible type of

equilibrium in Table 1 we characterize explicitly the set (`, h, F, r, ρ, δ) such that the equi-

librium exists.11

We discuss now the main results regarding other equilibria. First, note that

with a supermodular production function the equilibrium cannot feature neither

weak nor strict heterophily. To see this, note that π∗(h, `) < h makes a h-type

agent strictly prefer another agent of type h. Similarly, π∗(`, h) < ` makes an `-

type agent strictly prefer another agent of type `. Then, F ≥ h + ` is a necessary

10In the Online Appendix, for each possible equilibrium, we present closed-form solutions for
densities e(x, y) and we show the sorting pattern that arises. In Table 1 we indicate if sorting is
positive, negative, or random. Equilibria with weak heterophily and weak homophily (B) feature
no first order stochastic dominance.

11The sets are obtained analogously to those from Proposition 1. We present closed-form solu-
tions for these sets (and how they are obtained) in the Online Appendix.
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Table 1: All Possible Equilibria in the Two Type Model

h’s decision
`’s decision d∗(h, `, h) = 1 d∗(h, `, h) = 0 d∗(h, `, h) = 0

d∗(h, h, `) = 0 d∗(h, h, `) = 0 d∗(h, h, `) = 1
d∗(`, `, h) = 1 Hyperphily Weak Heterophily Strict Heterophily
d∗(`, h, `) = 0 (positive sorting) (negative sorting)
d∗(`, `, h) = 0 Weak Homophily (A) Indifference Impossibled∗(`, h, `) = 0 (positive sorting) (random sorting)
d∗(`, `, h) = 0 Strict Homophily Weak Homophily (B) Impossibled∗(`, h, `) = 1 (positive sorting)

condition for both weak and strict heterophily. It is also straightforward to show

that neither weak nor strict homophily can be equilibria with a submodular pro-

duction function. Finally, only strict heterophily exists when h strictly prefers ` to

h (see Appendix A.3 for details).

Strict heterophily is the only equilibrium featuring negative assortative match-

ing. Thus, negative sorting only occurs with a submodular production function.

Positive assortative matching occurs both with homophily and hyperphily. Ran-

dom sorting only happens if both h and ` are indifferent, which requires π∗(`, h) =

` and π∗ (h, `) = h. Hence indifference, and therefore random sorting, can only

happen if the production function is modular.

Figure 4 illustrates the set of primitives which lead to each possible equilib-

rium.12 Equilibria with strict heterophily or strict homophily are rare, as shown in

panel c of Figure 4. In strict heterophily h prefers a match with ` over a more pro-

ductive match with another h. This can happen when `’s outside option is lower

than h’s. Therefore, although the production of the match (`, h) is smaller than the

production of the match (h, h), the total surplus of the match (`, h) is larger than

the total surplus of the match (h, h). On the other hand, strict homophily requires `

to strictly prefer another `, which is demanding given that the match (`, h) is more

productive. As in the case of strict heterophily, the agent prefers a less productive

12The shaded areas in Figure 4 represent the set of values of F consistent with each equilibrium as
a function of the destruction rate δ. In the Online Appendix we present the corresponding figures
for ρ, r, and h− `.
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match because its total surplus is larger. When r or δ increase, or when ρ decreases,

the outside option becomes less relevant and therefore strict homophily and strict

heterophily require stronger complementarity in production.

If agents can search while matched, the match duration depends on the bar-

gaining outcome. Symmetric surplus splitting might not solve the bargaining

problem, as it occurs in the cases of weak heterophily and weak homophily. In

these equilibria, one agent is indifferent between partner types and takes a larger

fraction of the total surplus in the match (`, h). Uneven surplus splitting produces

a larger product of surpluses because it implies a longer duration of the match and

a larger total surplus. These equilibria are more likely to exist when agents care

more about endogenous destruction (when r or δ are low); or when it is easier to

find partners (when ρ is large). This is shown in panel b and d of Figure 4.

As frictions vanish, the outcome does not necessarily approach that of the fric-

tionless market in Becker [1973]. Consider the index of labor market frictions

κ ≡ ρ
δ .13 A larger κ implies weaker frictions. With submodularity, one would

expect perfect negative sorting in a frictionless market. In contrast, we show that

hyperphily, and thus positive sorting, can arise with submodularity when κ → ∞.

The equilibrium outcome in the limit depends on whether it is ρ or δ what drives

κ → ∞. On one side, if κ is large because ρ is large, hyperphily does not occur. On

the other side, if κ is large because δ is small, there are equilibria with hyperphily,

even with a submodular production function. Patient enough `-type agents are

happy to trade a shorter duration of the match for a higher allocation. Interest-

ingly, as δ → 0 sorting becomes perfectly positive, instead of perfectly negative as

in Becker [1973].

As frictions grow, positive assortative matching becomes pervasive. When δ

and r increase, or when ρ decreases, the region where hyperphily is the unique

equilibrium grows. In the next section we obtain this as a general result for any

number of types. This result goes against the idea that stronger frictions require

13κ is used as an index of frictions in several papers. See Ridder and van den Berg [2003] for an
example.
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stronger complementarity in production for the equilibrium to be positively assor-

tative.

Figure 4: The Impact of Destruction Rate δ

(a) (b)

(c) (d)
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Note: ` = 1, h = 2, r = 0.1 and ρ = 0.1.

4. The Case with N Types

We extend now the intuition described in the introduction and developed for two

types to the case with any finite number of types. With a large number of types

one cannot characterize equilibrium behavior for all parameter values. We study

the case with N types in two ways. First, we consider the case with impatient

agents (high values of r), high exogenous destruction rates (high values of δ), or

low meeting rates (low values of ρ). We show that for low enough ρ
r+δ , hyperphily
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is an equilibrium, and no other equilibrium exists.14 Second, we present numerical

examples.

We extend the model to allow for N types: x ∈ X = {1, 2, . . . , N}. Types

are in equal proportion in the population: e(x, y) : X × X ∪ {∅} →
[
0, 1

N

]
has

∑y∈X∪{∅} e(x, y) = 1
N . All other functions are modified appropriately to allow for

N types.

4.1 Sufficient Conditions for Hyperphily with N Types

Hyperphily is the unique equilibrium when agents become impatient, or when en-

dogenous destruction becomes less relevant. When ρ
r+δ is low, continuation values

become less relevant. Therefore, individual surpluses depend mostly on current

payoffs, which are close to an equal split of output. Payoffs then depend on total

output, which increases in the partner’s type. As a result, surplus is increasing

in the partner’s type for low values of ρ
r+δ . Then, no equilibrium other than hy-

perphily can exist. Additionally, we show that hyperphily is an equilibrium. In

that respect, note first that consistency is straightforward for small ρ
r+δ , given our

previous argument. Second, we show in Appendix A.4 how no alternative con-

sistent agreement leads to a higher product of individual surpluses. Proposition 3

summarizes these findings.

PROPOSITION 3. HYPERPHILY WITH N TYPES. When ρ
r+δ is low enough, (d∗, π∗)

is an equilibrium if and only if it features hyperphily.

See Appendix A.4 for the proof.

4.2 Numerical Examples with N Types

We provide now numerical examples in a model with N types for parameter values

in line with the literature. We show that equilibria with hyperphily and positive

14We computed the steady state distribution under hyperphily for 1,000 values of κ−1 ∈ (0, 1)
and 1,000 values of κ ∈ (0, 1) for N = 10, 20 and 100. In all cases there is positive assortative
matching in the steady state distribution.
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assortative matching arise without complementarity in production.

We solve the model by a nested fixed point algorithm. We start from a flat dis-

tribution of matches and calculate value functions for all possible matches. These

first value functions induce preferences over partner types which we use to update

the steady state distribution of matches. With the updated steady state distribu-

tion, we update the value functions. We iterate this process until we find a fixed

point for both the steady state distribution of matches and the value functions.

We search specifically for equilibria without indifference over partners. When

no agent is indifferent, symmetric surplus splitting solves the bargaining problem

in all matches. Once we find a candidate set of value functions and distribution of

matches that solves the model, we check that the solution maximizes the product

of surpluses in all matches. To do this, for each match we evaluate all possible

consistent agreements c =
(

d̂, π̂
)

, given our candidate. Our candidate solves the

model if it maximizes the product of surpluses in every match.

Example 1 presents a case featuring hyperphily with N = 100.

EXAMPLE 1. Types are uniformly distributed in a 100-point grid between 0 and 1. Pro-

duction is modular: f (x, y) = x + y. (δ = 0.05, r = 0.1 and ρ = 0.1).

Figure 5: Positive Assortative Matching in Example 1
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Note: Panel a presents the density of matches e(x, y). Panel b presents the cu-
mulative distribution of type x’s partners E(x, y). Darker points correspond to
higher values.
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Panel a in Figure 5 shows the probability distribution function e(x, y) and panel

b shows the cumulative distribution of type x’s partners E(x, y) ≡ ∑ỹ∈X∪{∅},ỹ<y e (x, ỹ).

Sorting is defined in terms of stochastic dominance, so panel b is informative on

sorting patterns. The strictly increasing contour lines of E(x, y) show that the cu-

mulative distribution of type x’s is decreasing in own type, which implies positive

assortative matching.

A similar result holds with a slightly submodular production function. How-

ever, if either δ or r decrease enough or if ρ increases enough, symmetric surplus

splitting does not maximize the product of surpluses in some matches. Take Ex-

ample 1 and double the search intensity (so ρ = 0.2). Now, hyperphily does not

maximize the product of individual surpluses in matches where |x− y| is large.

For a given set of parameters, if there is at least one match where the agreement

from hyperphily does not solve the bargaining problem, then hyperphily is not an

equilibrium. However, this does not imply that matching is not positively assorta-

tive. As in the case with two types with weak and strict homophily, there may be

other equilibria with positive assortative matching.

5. Extensions and Discussion

5.1 Different Search Intensities

We now relax the assumption that on-the-match search efficiency is equal to search

efficiency out of the match. Let ρ0 denote the search intensity of an unmatched

agent and let ρ1 be the search efficiency of a matched one. The meeting rate is

simply the product of the search intensities of those who meet.15 The following

example illustrates how different values of ρ1 affect the equilibrium.

EXAMPLE 2. Types are uniformly distributed in a 100-point grid between 0 and 1. Pro-

15For example, there are ρ0ρ1e (`,∅) e (h, h) unmatched `-type agents who meet h-type agents
matched to other h-type agents. Similarly, there are (ρ0)

2 e (`,∅) e (h,∅) unmatched `-type agents
who meet unmatched h-type agents. Our approach here is similar to Bobbio [2009].
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duction is modular: f (x, y) = x + y. (δ = 0.05, r = 0.1 and ρ0 =
√

0.1). Consider three

cases: (i) : ρ1 = 0, (ii) : ρ1 = 1
3 ρ0, and (iii) : ρ1 = 2

3 ρ0.

Figure 6: Different On-the-Match and Out-of-the-Match Search Intensity in Exam-
ple 2
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Note: Panels a, c and e present the density of matches e(x, y) for different values
of ρ1. Panels b, d and f present the cumulative distribution of type x’s partners
E(x, y) for different values of ρ1. Darker points correspond to higher values.

Positive sorting does not hold for low values of ρ1, but it does as ρ1 increases.

Upper panels in Figure 6 show densities e(x, y) while lower panels show cumula-

tive distribution of type x’s partners E(x, y). Without on-the-match search (ρ1 = 0)

the equilibrium features hyperphily and negative assortative matching: the contour

lines of E(x, y) are decreasing in x in panel b. When we allow agents to search on

the match but with low search efficiency, there is assortative matching for agents of

high type, but low-type agents still prefer to wait unmatched for more profitable

partners. Therefore matching is not positively assortative for low type agents.

With the parameter values used in these simulations, for values of search efficiency
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on the match as low as two thirds of the search efficiency out of the match, there is

no difference in acceptance sets between unmatched agents of different types. All

unmatched agents accept all partners, and since agents search on the match and

prefer better partners, there is positive assortative matching in the whole support

of types.

Example 2 also illustrates that hyperphily does not imply positive sorting when

on-the-match search is not allowed. This is true in general in a model like Shimer

and Smith [2000]. Since only unmatched agents search, the steady state distribu-

tion of types is shaped by acceptance sets. In an equilibrium with hyperphily, the

total surplus of the match is strictly increasing in types. In this way, if a partner of

type x is accepted by an agent of type y, then every x′ ≥ x is also accepted by every

y′ ≥ y. Therefore, the lower bound of the acceptance set is non increasing in own

type (and there is no upper bound for hyperphily). As a result, when all agents

accept everybody there is random sorting. Otherwise, there is negative sorting.

There is no positive sorting in Shimer and Smith [2000] with a modular, or

slightly supermodular production function. It is easy to show from equations (5)

and (8) in Shimer and Smith [2000] that if complementarity in production is weak

enough the equilibrium features hyperphily. Hyperphily does not lead to positive

assortative matching when agents are not allowed to replace their partners. Then,

a slightly supermodular production function does not lead to positive assortative

matching in their case.

5.2 An Example with Renegotiation

The main result in this paper is that frictions can lead to positive sorting, even with-

out productive complementarity. In our stylized model, agents are not allowed to

renegotiate how to split production when one of them meets an alternative part-

ner. However, the mechanism we highlight can also hold if agents are allowed

to renegotiate. We present next an example with on-the-match search, renegotia-

tion and no complementarity in production that features hyperphily and positive

28



assortative matching.

Since both partners’ outside options change, modeling renegotiation with bilat-

eral on-the-match search is not straightforward. Kiyotaki and Lagos [2007] present

a search model where both the firm and the worker search on the match. In their

setting, contracts can be renegotiated if a partner has a credible threat to dissolve

the match. When an agent finds an alternative partner, her current partner and the

poaching one compete à la Bertrand. Kiyotaki and Lagos do not study sorting since

agents are homogeneous in their model. Matches are heterogeneous only due to a

fixed match-specific productivity shock.

For simplicity, consider infinitely impatient agents of one of two types who bar-

gain à la Kiyotaki and Lagos. As discussed in Section 4.1, in the limit the value of

the match depends only on the flow-payoff received, and outside options converge

to zero. Whenever an unmatched agent meets a matched one, both competing

agents (the poaching one, and the current partner) have being unmatched as their

outside option (with zero value). The more productive one can make a better offer,

so he always wins. However, when matched agents meet other matched agents,

some of the transitions that occur without renegotiation no longer happen.

Renegotiation prevents inefficient separations: the sum of the surplus of the

destroyed matches cannot exceed the surplus of the newly created one. Therefore,

in this simple example, when an h-type agent matched to an `-type meets another

h-type also matched to an `-type, both h-type agents renegotiate their contracts and

no match is destroyed (see Proposition 1 in Kiyotaki and Lagos). However, both

h and ` still leave ` when they find an unmatched h. Therefore the steady-state

distribution of partners of h first order stochastically dominates the distribution of

partners of `, as we show in Appendix A.5.1. In this way, although no inefficient

separations take place when renegotiation is allowed, frictions can lead to positive

assortative matching without productive complementarity.
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5.3 The Planner’s Problem

In this last section we look into which transitions maximize the output in steady

state. We consider only two types of agents: X = {`, h} and a modular production

function. The decentralized equilibrium in this case features either positive sorting

or random sorting.

The solution to the planner’s problem features positive assortative matching

when the planner has full control over transitions. Assume first that he can take

into account current partners’ types when deciding whether two agents who meet

should form a match. An unmatched h-type is more costly than an unmatched

`-type. Therefore, when an agent matched to a partner of type ` meets an un-

matched agent of type h, she replaces her current partner. When two matched

agents meet, they do not form a new match since its output does not exceed the

sum of the outputs of the destroyed matches. Then the planner chooses transitions

as in Section 5.2 to maximize the economy’s output.

The optimal decision of a planner restricted to choose decision functions d in-

stead of transitions depends on primitives. When the difference h − ` is small

enough, the planner has only unmatched agents forming a match. Otherwise, de-

cision functions as in hyperphily are optimal. Then, the planner’s solution features

either positive sorting or random sorting in this case.

6. Conclusion

In this paper we show how frictions lead to positive assortative matching. While in

frictionless markets payoffs reflect individual contributions, the division of output

becomes more even when it takes time to find a partner. The total production of the

match becomes the main determinant of preferences over partners when frictions

are large. Production increases in partner’s type, so an endogenous preference for

better types (hyperphily) arises. When individuals search while matched, more

productive agents upgrade their partners faster. The steady state distribution thus
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becomes positively assortative.

A key element in our analysis is that agents are allowed to search while matched.

Match-to-match transitions are pervasive in markets with two-sided heterogene-

ity. We present a partnership model that includes the key elements of Shimer and

Smith [2000] and allows for bilateral on-the-match search.16 We first analyze the

case where agents are of one of two types: either low or high productivity. We pro-

vide necessary and sufficient conditions for hyperphily and show that this pref-

erence leads to positive assortative matching. We highlight conditions such that

positive assortative matching arises even with a modular or submodular produc-

tion function. Our results extend to the case with any finite number of types. We

show that as agents become impatient or frictions large, hyperphily is the unique

equilibrium.

The conventional wisdom states that stronger frictions require stronger com-

plementarity in production for positive assortative matching to arise. The intu-

ition behind this view is straightforward: with frictions, agents only wait for their

preferred partners if the complementarity is strong enough to compensate for the

waiting cost. Our paper highlights a different role for frictions. Frictions modify

the division of output and therefore shape preferences over partners. If frictions

are strong, agents prefer higher types. Therefore, frictions can lead to positive

sorting. Our result challenges the interpretation of sorting as evidence of comple-

mentarity in production in markets with frictions.

There are legal constraints on replacing partners in several markets with two-

sided heterogeneity. Our results contribute to the discussion on the effects of match

protection. First, we show that the planner uses match-to-match transitions in

order to maximize the economy’s output. Second, our results highlight the role

of match-to-match transitions as a potential tool to mend the hold-up problem

produced by frictions. When differences in types are a result of ex-ante investment

16Most recent studies on assortative matching in markets with frictions and transferable utility
take the canonical model of Shimer and Smith [2000] as a starting point (see Lopes de Melo [2013],
Hagedorn, Law, and Manovskii [2012], and Lise, Meghir, and Robin [2013]).
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decisions, frictions reduce agents’ incentives to invest (see for example Acemoglu

and Shimer [1999b] or Flinn and Mullins [2014]). However, if agents are allowed to

replace their partners, higher types agents can sort to avoid being held up. Then,

under positive sorting, there are higher incentives to invest. A rigorous analysis

of this point is beyond the scope of this paper, but we believe it deserves further

investigation.

A. Appendix

A.1 Bargaining Sets are Compact

LEMMA 2. Take any state of the economy (S∗, q∗). Then, bargaining sets Sxy under
on-the-match search are compact.

Proof. Since r > 0 and f (x, y) is finite, Sxy is bounded. We show next that Sxy

is also closed. Take a sequence
{(

Sn
1 , Sn

2
)}∞

n=1 ∈ Sxy generated by a sequence of

consistent agreements
{(

d̂n, π̂n
)}∞

n=1
and with limn→∞

(
Sn

1 , Sn
2
)
=
(
S1, S2

)
. We

show there is a consistent agreement that generates
(
S1, S2

)
, and so

(
S1, S2

)
∈ Sxy.

Since
{(

Sn
1 , Sn

2
)}∞

n=1 converges, there exists N such that ∀n > N,

max
y′∈X

{
S∗
(
x, y′

)
: S∗

(
x, y′

)
< S1

}
< Sn

1 < min
y′∈X

{
S∗
(
x, y′

)
: S∗

(
x, y′

)
> S1

}
and

max
x′∈X

{
S∗
(
y, x′

)
: S∗

(
y, x′

)
< S2

}
< Sn

2 < min
x′∈X

{
S∗
(
y, x′

)
: S∗

(
y, x′

)
> S2

}
.

Whenever Sn
i > Si or Sn

i < Si, for n > N, d̂n
i is unique. We use this fact repeatedly

in this proof.
We consider first the case where no i ∈ {1, 2} has Sn

i = Si infinitely often. Then,
there is a subsequence

{(
Snm

1 , Snm
2
)}∞

m=1 with either 1) Snm
1 > S1 and Snm

2 > S2, or
2) Snm

1 > S1 and Snm
2 < S2, or 3) Snm

1 < S1 and Snm
2 > S2, or finally 4) Snm

1 < S1 and
Snm

2 < S2. In any such subsequence, for m big enough d̂nm = d is constant. So Snm
1

and Snm
2 are simply linear functions of π̂nm

1 and π̂nm
2 . Since Snm converges, so does

π̂nm → π. Moreover, since π̂nm
1 + π̂nm

2 ≤ f (x, y) ∀ m, then also π1 + π2 ≤ f (x, y).

Thus, c =
(

d, π
)

generates
(
S1, S2

)
and is consistent.

Next, we consider the case with Sn
i = Si infinitely often for some i ∈ {1, 2}. If(

Sn
1 , Sn

2
)
=
(
S1, S2

)
for some n, then of course

(
S1, S2

)
∈ Sxy. Otherwise, without

loss of generality, let i = 1. Then there is a subsequence
{(

Snm
1 , Snm

2
)}∞

m=1 with
Snm

1 = S1 and either always Snm
2 > S2, or always Snm

2 < S2. In any such subse-
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quence for m big enough d̂nm
2 = d2. Since Snm

1 = S1, π̂1 = π1 is also constant.
Define π2 = f (x, y)− π1 ≥ π̂n

2 . Let d1 be the most beneficial to 2 (so 1 does not

leave if indifferent). Let S̃ =
(

S1, S̃2

)
be induced by

(
d1, d2

)
and (π1, π2). d1 is no

worse than what 2 gets in the subsequence, and π2 ≥ π̂n
2 . Then Snm

2 ≤ S̃2. Thus,
S2 = limn→∞ Sn

2 ≤ S̃2. If S2 = S̃2 we are done. Otherwise, decrease π2 to make it
so. �

A.2 Details on Multiplicity of Equilibria

Conditions 1 and 2 in our definition of equilibrium are not enough to weed out
some fragile outcomes under on-the-match search.17 Several divisions of output
can satisfy these two conditions for a given decision function d∗, but not all of them
are robust. Consider (d∗, π∗) satisfying conditions 1 and 2 and leading to equal
surplus splitting in match (x, y). Take an alternative (d∗, π∗∗) with the same deci-
sion function and a small perturbation only in match (x, y)’s payoffs. Individual
surpluses change only marginally, so agreements can still be consistent. Regard-
ing condition 2, note that under the alternative (d∗, π∗∗) agent x expects π∗∗(x, y)
when matched to any type-y agent. If y offers x less than that, x breaks the match
whenever she finds another type-y agent. Such an offer increases y’s flow payoff
marginally while the probability that x leaves increases discretely, making both
partners worse off. To sum up, once (π∗∗(x, y), π∗∗(y, x)) is expected, any small
deviation from it leads to a lower surplus for both partners. This example high-
lights that even keeping d∗ and payoffs in all other matches fixed, several divisions
of production in match (x, y) can satisfy conditions 1 and 2.

We include condition 3 to rule out fragile cases like (d∗, π∗∗), which would not
survive a positive cost of transition. If breaking a match were costly, agent x would
not leave for another type-y agent when receiving slightly less than the expected
π∗∗(x, y). So slight deviations from (π∗∗(x, y), π∗∗(y, x)) would increase the sur-
plus of one agent while reducing the surplus of the other one in the same amount
(as long as these slight deviations do not make agents leave for other different types).
Thus, only symmetric surplus splitting would maximize the product of individual
surpluses. Our third condition states that an agent can get a higher surplus than
her partner only if she is indifferent between her current partner and a partner of a
different type. This condition guarantees that equilibria are robust in the following
sense.

Assume that agents have to pay a small cost t > 0 each time they quit their
current partner to form a new match. Surplus from matches are then given by the

17In the Online Appendix we provide a simple example of how on-the-match search can lead to
some uninteresting multiplicity of equilibrium.
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following slightly modified version of (1):

S∗ (x, y) =

(
r + δ + ∑

x′∈X
d∗
(
y, x, x′

)
q∗
(
y, x′

)
)−1 [

π∗(x, y)

+ ∑
y′∈X

d∗
(
x, y, y′

)
q∗
(
x, y′

) [
S∗
(
x, y′

)
− S∗(x, y)− t

]
− ∑

y′∈X
q∗
(
x, y′

)
S∗
(
x, y′

)
]

Take a pair (d∗, π∗) satisfying the first two conditions in our equilibrium defini-
tion. We show next that S∗(x, y) > S∗(y, x) ⇒ ∃ y′ : S∗(x, y) = S∗ (x, y′)− t must
be satisfied. Assume it is not. Then, there exists an alternative consistent agree-
ment between x and y which leads to a higher product of individual surpluses. To
build it, keep the decision function unchanged but pick π̃(x, y) = π∗(x, y)− ε and
π̃(y, x) = π∗(y, x)+ ε. For small ε > 0, agent x does not change his behavior. Thus,
the new pair (d∗, π̃) is consistent. Moreover, again for small ε > 0, the product of
individual surpluses is larger. Then, the original pair (d∗, π∗) does not solve the
bargaining problem.

A.3 Only Strict Heterophily with d∗(h, h, `) = 1

LEMMA 3. S∗(h, `) > S∗(h, h)⇒ S∗(`, h) > S∗(`, `).
Proof. First, since S∗(h, `) > S∗(h, h), the third condition in the equilibrium

definition guarantees S∗(`, h) ≥ S∗(h, `). Next, consider the following alternative
agreement for (h, h): they never leave each other and they split production. Let Ŝ
denote the surplus resulting from that agreement. Then,

S∗(h, `) ≥ Ŝ = (r + δ)−1 [h− q∗(h, `) S∗(h, `)− q∗(h, h)S∗(h, h)]

We show our result by contradiction. Assume S∗(`, `) ≥ S∗(`, h). Note that
q∗(`, h) ≥ q∗(h, h) and q∗(`, `) ≥ q∗(h, `), since both agents prefer low types (at
least weakly). Then,

S∗ (`, `) = (r + δ)−1 [`− q∗(`, `) S∗(`, `)− q∗(`, h)S∗(`, h)] < Ŝ

To sum up, Ŝ > S∗(`, `) ≥ S∗(`, h) ≥ S∗(h, `) ≥ Ŝ. That is our contradiction. �

A.4 Proof of Proposition 3

Surplus in equilibrium - as given by equation (1) - can be rewritten as

S∗ (x, y) =

(
r + δ + ∑

x′∈X
d∗
(
y, x, x′

)
q
(
y, x′

)
)−1 [

π∗(x, y)
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− ∑
y′∈X(y)

q
(
x, y′

)
S∗(x, y)− ∑

y′∈X(y)
q
(
x, y′

)
S∗
(
x, y′

)
]

.

with X(y) = {y′ ∈ X : S∗ (x, y′) > S∗ (x, y)} and X(y) = {y′ ∈ X : S∗ (x, y′) ≤ S∗ (x, y)}.
Note that ∑y′∈X(y) q (x, y′) S∗(x, y)+∑y′∈X(y) q (x, y′) S∗ (x, y′) ≤ ∑y′∈X q (x, y′) S∗(x, y).
Then,

(r + δ + 2ρ)−1 π∗(x, y) ≤ S∗ (x, y) ≤ (r + δ)−1 π∗(x, y). (4)

Next, consider the following simple agreement for match (x, y): production is
split evenly and both agents leave for any willing partner. Individual surpluses
from such agreement are bounded below by S̃ = (r + δ + 2ρ)−1 f (x,y)

2 . There exists
a consistent agreement that gives more than S̃ to both agents.18 This - together
with (4) - leads to the following bounds for the product of individual surpluses:

(
r + δ

r + δ + 2ρ

f (x, y)
2

)2

≤ (r + δ)2 S∗(x, y)S∗(y, x) ≤ π∗(x, y)π∗(y, x) (5)

Payoffs approach an even split of production: lim ρ
r+δ→0 π∗(x, y) = f (x,y)

2 , as
equation (5) shows. Individual surplus are determined mainly by payoffs and the
production function is strictly increasing, so S∗(x, y + 1)− S∗(x, y) > 0 for small
enough ρ

r+δ . Thus, only hyperphily can be an equilibrium if ρ
r+δ is small.

Consider (d∗, π∗) under hyperphily. Condition 3 in our equilibrium definition
is always satisfied for hyperphily since agents split surplus evenly. Condition 1
(consistency) is guaranteed for ρ

r+δ small, as shown above. Then, we only need to
verify next that no consistent agreement c leads to a higher product of individual
surpluses (condition 2).

Individual surpluses under hyperphily are given by

2

(
r + δ + ∑

x′>x
q∗
(
y, x′

)
+ ∑

y′>y
q∗
(
x, y′

)
)

S∗(x, y) = f (x, y) (6)

− ∑
y′≤y

q∗
(
x, y′

)
S∗
(
x, y′

)
− ∑

x′≤x
q∗
(
y, x′

)
S∗
(
y, x′

)
.

Let F = maxx,y f (x, y). It is easy to find the following lower bound from (6):

2 (r + δ + 2ρ) S∗(x, y) ≥ f (x, y)− 2F
ρ

r + δ

Any agreement leading to a higher product of individual must have Ŝc
1 ≥

18Consider the simple agreement described. Calculate x’s surplus. See who would x actually
optimally leave for. Assume x behaves that way. Notice now y’s surplus is weakly larger. Calculate
y’s best response now. At each step, neither x nor y can be worse off. So they leave each time for
less people. Eventually, the process stops. That behavior is consistent.
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S∗(x, y + 1) or Ŝc
2 ≥ S∗(y, x + 1) or both.19 Assume without loss of generality that

Ŝc
1 ≥ S∗(x, y + 1). Next, note that for any agreement Ŝc

1 + Ŝc
2 ≤

f (x,y)
r+δ . Again, pick

ρ
r+δ small, so S∗(x, y + 1) ≥

f (x,y)
2

r+δ . Then the product of surpluses must be bounded:

Ŝc
1Ŝc

2 ≤
f (x,y+1)

2 − F ρ
r+δ

r + δ + 2ρ

[
f (x, y)
r + δ

−
f (x,y+1)

2 − F ρ
r+δ

r + δ + 2ρ

]

<

[ f (x,y)
2 − F ρ

r+δ

r + δ + 2ρ

]2

≤ S∗(x, y)S∗(y, x)

where again the last inequality holds for small ρ
r+δ . �

A.5 Hyperphily and Positive Assortative Matching

Proof. h’s distribution of partners first order stochastically dominates `’s if and
only if e (`,∅) > e (h,∅) and e (`,∅) + e (`, `) > e (h,∅) + e (h, `). Steady state
conditions for e (`,∅) and e (h,∅) require, respectively, that:

δ[1
2 − e(`,∅)] + ρe(`, `)e(h,∅) + ρe(`, h)[e(h,∅) + e(`, h)] = ρe(`,∅)[e(`,∅) + e(h,∅)]

(7)

δ[1
2 − e(h,∅)] = ρe(h,∅)[e(`,∅) + e(`, `) + e(h,∅) + e(h, `)] (8)

Then e(`,∅) > e(h,∅). Otherwise, e (`,∅) and e (h,∅) cannot jointly be in steady
state.20 Next, consider steady state conditions for e (`, h) and e (h, h), respectively:

ρ[1
2 − e(`, h)]e(h,∅) = e(h, `)[δ + ρe(h,∅) + ρe(h, `)] (9)

ρ[1
2 − e(h, h)]2 = δe(h, h) (10)

So e(h, h) > e(h, `). Otherwise, e (`,∅) and e (h,∅) cannot jointly be in steady
state.21 �

A.5.1 The Two Type Case with Renegotiation

Renegotiation prevents inefficient separations. In the example presented in Sec-
tion 5.2 individuals who meet unmatched agents switch partners as often as with

19To see this, note that if Ŝc
1 < S∗(x, y + 1) and Ŝc

2 < S∗(y, x + 1) then neither agent leaves the
other less often. Then Ŝc

1 + Ŝc
2 ≤ 2S∗(x, y).

20Assume to the contrary that e(`,∅) ≤ e(h,∅). Then, the right hand side is lower in (7) than in
(8), but the left hand side is lower in (8) than in (7).

21Assume to the contrary that e(h, h) ≤ e(h, `). Then, the right hand side is lower in (10) than in
(9), but the left hand side is lower in (9) than in (10).
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hyperphily with on-the-match-search. However, if the production function is not
supermodular, as 2F > 2h, a type-h agent matched to a `-type one does not break
the match when she finds a matched h-type agent. In contrast, in an equilibrium
featuring hyperphily with on-the-match-search, h leaves ` if she meets another h
matched to `. Therefore the steady state distribution of matches in a model with
and without renegotiation may differ.22 However, it is still straightforward to show
that h’s distribution of partners first order stochastically dominates `’s.

With renegotiation, steady state conditions for e (`,∅) , e (h,∅) , e (`, h), and e (h, h)
now require, respectively, that:

δ[1
2 − e(`,∅)] + ρe(`, `)e(h,∅) + ρe(`, h)e(h,∅) = ρe(`,∅)[e(`,∅) + e(h,∅)]

δ[1
2 − e(h,∅)] = ρe(h,∅)[e(`,∅) + e(`, `) + e(h,∅) + e(h, `)]

ρ[1
2 − e(`, h)]e(h,∅) = e(h, `)[δ + ρe(h,∅)]

ρ[1
2 − e(h, h)]e(h,∅) + ρe(h,∅)e(h, `) = δe(h, h)

A proof analogous to that without renegotiation shows that h’s distribution of part-
ners first order stochastically dominates `’s.

A.6 Conditions for Hyperphily

Under hyperphily d(`, `, h) = d(h, `, h) = 1 and d(`, h, `) = d(h, h, `) = 0. Then,
the steady state conditions become:

e(`, `) [δ + q(`, h)] + e(`, h) [δ + q(h, h)] = e(`,∅) [q(`, `) + q(`, h)]
e(`,∅)q(`, `) = e(`, `) [δ + 2q(`, h)]

[e(`,∅) + e(`, `)] q(`, h) = e(`, h) [δ + q(h, h)]
δ [e(h, `) + e(h, h)] = e(h,∅) [q(h, `) + q(h, h)]

[e(h,∅) + e(h, `)] q(h, h) = δe(h, h)

The successful meeting rates become, q(`, `) = ρe(`,∅), q(`, h) = ρe(h,∅), q(h, `) =
ρ[e(`,∅) + e(`, `)] and q(h, h) = ρ[e(h,∅) + e(h, `)]. Substituting these into the
steady state conditions, dividing by ρ, and setting κ = ρ

δ , we get

e(`, `)
[
κ−1 + e(h,∅)

]
+ e(`, h)

[
κ−1 + 1

2 − e(h, h)
]
= e(`,∅) [e(`,∅) + e(h,∅)]

(11)

e(`,∅)2 = e(`, `)
[
κ−1 + 2e(h,∅)

]
(12)

[e(`,∅) + e(`, `)] e(h,∅) = e(`, h)
[
κ−1 + e(h,∅) + e(h, `)

]
(13)

22If only one side of the market searches on the match, the distribution of matches in a model
with or without renegotiation is the same (see Bartolucci [2013]). This is because a matched agent
can never meet another matched agent.
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κ−1 [e(h, `) + e(h, h)] = e(h,∅) [e(`,∅) + e(`, `) + e(h,∅) + e(h, `)]
(14)

[e(h,∅) + e(h, `)]2 = κ−1e(h, h) (15)

Solving equation (14) for e(h,∅), gives a quadratic equation in the unknown
e(h,∅), κ−1

[
1
2 − e(h,∅)

]
= e(h,∅)

[
1
2 + e(h,∅)

]
, the positive solution of which is

e(h,∅) =
1
2

(√
κ−2 + 3κ−1 +

1
4
− κ−1 − 1

2

)

A similar procedure on equation (15), gives

e(h, h) =
1
2

(
1 + κ−1 −

√
κ−2 + 2κ−1

)

Using these two results together with the normalization condition gives

e(h, `) = e(`, h) =
1
2

(
1
2
+
√

κ−2 + 2κ−1 −
√

κ−2 + 3κ−1 +
1
4

)

Solving equation (11) for e(`,∅) yields the following quadratic equation (the
e(h, ·) are all known by now):

e(`,∅)2 +
[
κ−1 + 2e(h,∅)

]
e(`,∅)− 1

2
κ−1 − 1

2
e(h,∅)− e(h, `)2 = 0

Its positive solution, after substituting in the values of e(h,∅) and e(h, `), is

e(`,∅) =
1
4
− 1

2

√
κ−2 + 3κ−1 +

1
4

+
1
2

√

3κ−2 + 9κ−1 +
1
2
−
√

κ−2 + 3κ−1 +
1
4

(
2
√

κ−2 + 2κ−1 + 1
)
+
√

κ−2 + 2κ−1

Finally, since e(`, `) = 1
2 − e(`,∅)− e(h, `) we get

e(`, `) =

√
κ−2 + 3κ−1 +

1
4
− 1

2

√
κ−2 + 2κ−1

− 1
2

√

3κ−2 + 9κ−1 +
1
2
−
√

κ−2 + 3κ−1 +
1
4

(
2
√

κ−2 + 2κ−1 + 1
)
+
√

κ−2 + 2κ−1

Under hyperphily, surpluses are:

S∗(h, `) = [r + δ + q∗(h, `) + q∗(h, h)]−1 [F− π∗(`, h)]

38



S∗(h, h) = [r + δ + q∗(h, h)]−1 [h− q∗(h, `)S∗(h, `)]

S∗(`, h) = [r + δ + q∗(`, h) + q∗(h, h)]−1 [π∗(`, h)− q∗(`, `)S∗(`, `)]

S∗(`, `) = [r + δ + 2q∗(`, h) + q∗(`, `)]−1 `

Surplus equalization S∗(h, `) = S∗(`, h) requires:

π∗(`, h) =
[r + δ + q∗(`, h) + q∗(h, h)] F + r+δ+q∗(h,`)+q∗(h,h)

r+δ+2q∗(`,h)+q∗(`,`)q∗(`, `)`

2 (r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)

As discussed in Section 3.1, a pair (d∗, π∗) is consistent in an equilibrium with
hyperphily if G1

HYP ≡ S∗(h, h)− S∗(h, `) > 0 and G2
HYP ≡ S∗(`, h)− S∗(`, `) > 0.

Bargaining in match (`, h)

Condition 1 in the main text lists the three kinds of agreement which may prevent
(d∗, π∗) from solving the bargaining problem in the match (`, h). We check next
when these agreements are not feasible. First, in agreement c1, neither ` nor h
leave each other, and h is made indifferent. ` obtains Ŝc1

` . We need then G3
HYP ≡

S∗(`, h) − Ŝc1
` > 0. In agreement c2, Ŝc2

h = S∗(h, h) (thus h never leaves) and `

only leaves when she finds an h, leading to surplus Ŝc2
` . We need then G4

HYP ≡
S∗(`, h)S∗(h, `)− Ŝc2

` S∗(h, h) ≥ 0. Finally, agreement c3 also has Ŝc3
h = S∗(h, h), but

now ` always leaves. We need G5
HYP ≡ S∗(`, h)S∗(h, `)− Ŝc3

` S∗(h, h) ≥ 0.

Bargaining in match (`, `)

Condition 2 lists the three kinds of agreements which may prevent (d∗, π∗) from
solving the bargaining problem in match (`, `). We check next when these agree-
ments are not feasible. First, let Ŝc4

1 be the surplus obtained by either agent in
match (`, `) when they do not leave each other. If c4 were consistent, it would
lead to a higher product of surpluses, as both agents would receive a higher sur-
plus. Therefore G6

HYP ≡ S∗(`, h) − Ŝc4
1 > 0 must hold for hyperphily to be an

equilibrium. Next, in agreement c5 one agent ` obtains S∗(`, h) and does not
leave, whereas the other one leaves only when meeting agent h. We need then
G7

HYP ≡ S∗(`, `)− Ŝc5
1 > 0. Finally, in agreement c6, Ŝc6

1 is the surplus obtained by
an ` agent in match (`, `) when she always leaves and her partner is indifferent be-
tween this match and one with h. For hyperphily to solve the bargaining problem,
it must be the case that G8

HYP ≡ S∗(`, `)2 − Ŝc6
1 Ŝc6

2 ≥ 0.

Bargaining in match (h, h)

In match (h, h) there is no endogenous destruction and agents equalize surplus,
therefore they are maximizing the product of surpluses.
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Details on equilibrium conditions

We characterize each condition as a function of primitives. Let us start with match
(`, h). In alternative agreement c1 for match (`, h), we have d̂` = d̂h = 0 and
π̂h = h. Note that for any lower π̂h, h leaves. Next, any higher π̂h leads to a lower
product of surpluses. It suffices then to focus on this agreement. We need to show
that G3

HYP ≡ S∗(`, h)− Ŝc1
` > 0.

Ŝc1
` = (r + δ)−1 [F− h− q∗(`, `)S∗(`, `)− q∗(`, h)S∗(`, h)] and

S∗(`, h) =
F− q∗(`,`)`

r+δ+2q∗(`,h)+q∗(`,`)

2 (r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)

Therefore, we need

F− h− q∗(`, `)`
r + δ + 2q∗(`, h) + q∗(`, `)

<
[r + δ + q∗(`, h)]

[
F− q∗(`,`)`

r+δ+2q∗(`,h)+q∗(`,`)

]

2[r + δ + q∗(h, h)] + q∗(`, h) + q∗(h, `)

Thus

F < h
(

1 +
r + δ + q∗(`, h)

r + δ + 2q∗(h, h) + q∗(h, `)

)
+

q∗(`, `)`
r + δ + 2q∗(`, h) + q∗(`, `)

(HYP 1)

Next, in agreement c2, d̂h = 0, d̂`(`) = 0, d̂`(h) = 1 and π̂` is such that Ŝc2
h =

S∗(h, h). Note that for any lower π̂h = F− π̂`, h leaves. Next, any higher π̂h leads
to a lower product of surpluses. It suffices then to focus on this agreement. We
need to show that G4

HYP ≡ S∗(`, h)S∗(h, `)− Ŝc2
` Ŝc2

h ≥ 0. Surpluses are:

Ŝc2
h = (r + δ + q∗(`, h))−1 (F− π̂` − q∗(h, h)S∗(h, h)− q∗(h, `)S∗(h, `)) = S∗(h, h)

Ŝc2
` = (r + δ + q∗(`, h))−1 (π̂` − q∗(`, `)S∗(`, `))

From this we can recover π̂`:

π̂` = F− [r + δ + q∗(h, h)]−1
[
(r + δ + q∗(`, h) + q∗(h, h)) h− q∗(h, `)q∗(`, h)(F− π∗(`, h))

r + δ + q∗(h, `) + q∗(h, h)

]

From now on, we work with π∗(`, h) = A1 + B1F and π̂` = A2 + B2F, with:

A1 =
r + δ + q∗(h, `) + q∗(h, h)

[r + δ + 2q∗(`, h) + q∗(`, `)] [2 (r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)]
q∗(`, `)`

B1 =
r + δ + q∗(`, h) + q∗(h, h)

2 (r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)

A2 = −r + δ + q∗(`, h) + q∗(h, h)
r + δ + q∗(h, h)

h− q∗(h, `)q∗(`, h)A1

(r + δ + q∗(h, `) + q∗(h, h)) (r + δ + q∗(h, h))
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B2 = 1 +
q∗(h, `)q∗(`, h)(1− B1)

(r + δ + q∗(h, h)) (r + δ + q∗(h, `) + q∗(h, h))

We first check that Ŝc2
` ≥ S∗(`, `). This occurs whenever

F ≥ B−1
2

(
r + δ + q∗(`, h) + q∗(`, `)
r + δ + 2q∗(`, h) + q∗(`, `)

`− A2

)

If agreement c2 is consistent we still have to check that F is large enough to make
the product of surpluses larger, that is, S∗(h, `)S∗(`, h) ≥ Ŝc2

h Ŝc2
` :

[(1− B1)F− A1]
2 ≥ C1

(
B2F + A2 −

q∗(`, `)`
r + δ + 2q∗(`, h) + q∗(`, `)

)

×
(

h− q∗(h, `)
(1− B1)F− A1

r + δ + q∗(h, `) + q∗(h, h)

)
with

C1 =
(r + δ + q∗(h, h) + q∗(h, `))2

(r + δ + q∗(`, h))(r + δ + q∗(h, h))
.

The previous expression holds with equality for F given by:
[
(1− B1)

2 + C1B2
q∗(h, `)(1− B1)

r + δ + q∗(h, `) + q∗(h, h)

]
F2

+

[
−2(1− B1)A1 − C1B2

(
h +

q∗(h, `)A1

r + δ + q∗(h, `) + q∗(h, h)

)]
F

+
C1q∗(h, `)(1− B1)

r + δ + q∗(h, `) + q∗(h, h)

(
A2 −

q∗(`, `)`
r + δ + 2q∗(`, h) + q∗(`, `)

)
F

+A2
1 − C1

(
h +

q∗(h, `)A1

r + δ + q∗(h, `) + q∗(h, h)

)(
A2 −

q∗(`, `)`
r + δ + 2q∗(`, h) + q∗(`, `)

)
= 0

Since (1− B1), C1 and B2 are positive, G4
HYP is a convex function of F. In order

to have an equilibrium with hyperphily, F has to be smaller than the lower root or
larger than the higher one. Only the first of these two conditions is relevant. To see
this, note that there exists an F̂ such that S∗(`, h) = S∗(h, h). For F = F̂, Ŝc2

` Ŝc2
h >

S∗(`, h)S∗(h, `) holds.23 Therefore, F larger than the large root of G4
HYP = 0 requires

that F > F̂. However, consistency condition G1
HYP states than an equilibrium with

hyperphily requires F < F̂. Therefore if F4
HYP is the small root of G4

HYP = 0, an

23 If F = F̂, this is equivalent to Ŝc2
` > S∗(`, h) because Ŝc2

h = S∗(h, h) = S∗(h, `). Add Ŝc2
h =

S∗(h, `) on both sides of the inequality and rearrange terms to get:

F̂− q∗(h, h)S∗(h, h)− q∗(h, `)S∗(h, `)− q∗(`, `)S∗(`, `)
r + δ + q∗(`, h)

>
F̂ + [q∗(`, h)− q∗(h, `)− q∗(h, h)]S∗(h, `)− q∗(`, `)S∗(`, `)− q∗(h, h)S∗(`, h)

r + δ + q∗(`, h)

Comparing numerators gives q∗(h, h) > q∗(`, h), which indeed holds.
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equilibrium with hyperphily requires:

F ≤ max
(

F4
HYP, B−1

2

[
r + δ + q∗(`, h) + q∗(`, `)

r + δ + 2q∗(`, h) + q∗(`, `)
`− A2

])
(HYP 2)

We move next to alternative agreement c3. Surpluses are:

Ŝc3
h = [r + δ + q∗(`, h) + q∗(`, `)]−1 [F− π̂` − q∗(h, h)S∗(h, h)− q∗(h, `)S∗(h, `)] = S∗(h, h)

Ŝc3
` = [r + δ + q∗(`, h) + q∗(`, `)]−1π̂`

Then π̂` = A3 + B3F, with

A3 = −r + δ + q∗(`, h) + q∗(`, `) + q∗(h, h)
r + δ + q∗(h, h)

h− q∗(h, `)(q∗(`, h) + q∗(`, `))A1

[r + δ + q∗(h, h)][r + δ + q∗(h, h) + q∗(h, `)]

B3 = 1 +
q∗(h, `)(q∗(`, h) + q∗(`, `))B1

[r + δ + q∗(h, h)] [r + δ + q∗(h, h) + q∗(h, `)]

Condition G5
HYP ≡ S∗(h, `)S∗(`, h)− Ŝc3

h Ŝc3
` ≥ 0 holds if:

[(1− B1)F− A1]
2 ≥ C2 (B3F + A3)

(
h− q∗(h, `)

(1− B1)F− A1

r + δ + q∗(h, `) + q∗(h, h)

)
with

C2 =
(r + δ + q∗(h, h) + q∗(h, `))2

(r + δ + q∗(`, h) + q∗(`, `))(r + δ + q∗(h, h))

Therefore:

G5
HYP =

[
(1− B1)

2 + C2B3
q∗(h, `)(1− B1)

r + δ + q∗(h, `) + q∗(h, h)

]
F2

+

[
−2(1− B1)A1 − C2B3

(
h +

q∗(h, `)A1

r + δ + q∗(h, `) + q∗(h, h)

)
+

q∗(h, `)(1− B1)

r + δ + q∗(h, `) + q∗(h, h)
C2 A3

]
F

+ A2
1 −

(
h +

q∗(h, `)A1

r + δ + q∗(h, `) + q∗(h, h)

)
C2 A3 ≥ 0

Since (1− B1), C2, and B3 are positive, G6
HYP is a convex function of F. There are

two values F5
HYP < F5′

HYP of F that equalize the product of the surplus. In order to
have an equilibrium with hyperphily F has to be smaller than F5

HYP or larger then
F5′

HYP:

F 6∈
(

F5
HYP, F5′

HYP

)
(HYP 3)

We move next to match (`, `). Consider alternative agreement c4. We need to
show that G6

HYP ≡ S∗(`, h)− Ŝc4
1 > 0, with

Ŝc4
1 = (r + δ)−1 [`− q∗(`, h)S∗(`, h)− q∗(`, `)S∗(`, `)]
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This occurs whenever

F >
[2(r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)][r + δ + 2q∗(`, h)] + [r + δ + q∗(`, h)]q∗(`, `)

r + δ + q∗(`, h)][r + δ + q∗(`, `) + 2q∗(`, h)]
`

(HYP 4)

Next, consider agreement c5. Agent ` indexed by 2 does not leave so Ŝc5
2 =

S∗(`, h), with

Ŝc5
2 = (r + δ + q∗(`, h)−1[π̂2 − q∗(`, `)S∗(`, `)− q∗(`, h)S∗(`, h)]

This requires

π̂2 =
r + δ + 2q∗(`, h)

2 (r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)
F

+
r + δ + 2q∗(h, h)− q∗(`, h) + q∗(h, `)

[r + δ + 2q∗(`, h) + q∗(`, `)][2(r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)]
q∗(`, `)`

We need to verify now that G7
HYP ≡ S∗(`, `)− Ŝc5

1 > 0 with

Ŝc5
1 =

2`− π̂2 − q∗(`, `)S∗(`, `)
r + δ + q∗(`, h)

< S∗(`, `)

If condition G6
HYP holds, it must be the case that Ŝc5

1 < S∗(`, h). We look for the

maximum F that makes the agreement
(

Ŝc5
1 , Ŝc5

2

)
consistent:

F >
[r + δ + 3q∗(`, h) + q∗(`, `)][2(r + δ + q∗(h, h)) + q∗(`, h) + q∗(h, `)]

[r + δ + 2q∗(`, h)][r + δ + 2q∗(`, h) + q∗(`, `)]

− [r + δ + 2q∗(h, h)− q∗(`, h) + q∗(h, `)]
[r + δ + 2q∗(`, h)][r + δ + 2q∗(`, h) + q∗(`, `)]

`

(HYP 5)
Next, consider agreement c6. We need to verify that G8

HYP ≡ S∗(`, `)2− Ŝc6
1 Ŝc6

2 ≥
0 with

Ŝc6
1 =

2`− π̂2

r + δ + q∗(`, h) + q∗(`, `)
and

Ŝc6
2 =

π̂2 − q∗(`, h)S∗(`, h)− q∗(`, `)S∗(`, `)
r + δ + q∗(`, `) + q∗(`, h)

Note that
Ŝc6

1 + Ŝc6
2 =

2`− q∗(`, h)S∗(`, h)− q∗(`, `)S∗(`, `)
r + δ + q∗(`, `) + q∗(`, h)

and

2S∗(`, `) =
2`

r + δ + q∗(`, `) + 2q∗(`, h)
=

2`− 2q∗(`, h)S∗(`, `)
r + δ + q∗(`, `) + q∗(`, h)

43



Since S∗(`, `) < S∗(`, h) and q∗(`, `) = ρe(`,∅) > ρe(h,∅) = q∗(`, h), then
2S∗(`, `) > Ŝc6

1 + Ŝc6
2 . Both ` agents equalize surplus in S∗(`, `), and no agreement

in the same segment of the frontier or in an interior segment of the frontier can
generate a larger product of surpluses. Therefore condition G8

HYP always holds.
Finally, we check consistency of the equilibrium with hyperphily. For condition

G1
HYP, note that S∗(h, h) > S∗(h, `) if and only if h > π∗(h, `). The following

expression holds: S∗(`, h)− Ŝc1
` = (r + δ)−1 [π∗(`, h)− (F− h)− q∗(h, h)S∗(`, h)].

Condition G3
HYP implies the previous expression is positive. Thus π∗(`, h)− F +

h > 0⇒ F− π∗(h, `)− F + h > 0⇒ h > π∗(h, `), so G1
HYP holds.

G2
HYP holds whenever G6

HYP holds. To see this, note that

Ŝc4
1 = S∗(`, `) +

q∗(`, h) [2S∗(`, `)− S∗(`, h)]
r + δ

.

Then, whenever S∗(`, `)− S∗(`, h) ≥ 0, also Ŝc4
1 − S∗(`, h) ≥ 0.
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