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Abstract

We study optimal spatial policies in quantitative trade and geography frameworks with

spillovers and sorting of heterogeneous workers. We characterize the spatial transfers that must

hold in efficient allocations, as well as labor subsidies that would implement them. Assuming

homogeneous workers and constant-elasticity spillovers, a constant labor tax over space restores

efficiency regardless of micro heterogeneity in fundamentals. Place-specific subsidies are needed

to attain optimal sorting if there are spillovers across different types of workers. We show

how to quantify optimal spatial transfers, and apply the framework to data across U.S. cities

using existing estimates of the spillover elasticities. The results suggest that the U.S. economy

features too much spatial sorting by skill and wage inequality in larger cities relative to efficient

allocations.
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1 Introduction

A long tradition in economics argues that the concentration of economic activity leads to

spillovers. For instance, agglomeration economies drive productive efficiency while congestion

spillovers may arise in dense cities. These spillovers shape the distribution of city size and pro-

ductivity. Groups of workers with different skills arguably vary in how much they contribute to

these spillovers and in how much they are impacted by them, so that these forces also shape spatial

sorting of heterogeneous workers across cities. Being external in nature, spillovers likely lead to

inefficient spatial outcomes. In this paper, we ask: is the observed spatial distribution of economic

activity inefficient? If so, what policies would restore efficiency and what would be their welfare

impact? Would an optimal spatial distribution feature stronger, or weaker, spatial disparities and

sorting by skill than what is observed?

To answer these questions, we develop and implement a new approach. Our framework nests two

recent strands of quantitative spatial research with spillovers: the location choice model with sorting

of heterogeneous workers in Diamond (2016), and the economic geography models in Allen and

Arkolakis (2014) and Redding (2016). Crucially, we generalize these models to allow for arbitrary

transfers across agents and regions. We show that first-best allocations can only be attained under

a particular set of transfers, which we characterize alongside labor subsidies that would implement

them. We then combine the framework with data across metropolitan statistical areas (MSAs) in

the United States, and quantitatively explore the impact of optimal spatial transfers on the spatial

sorting by skill, wage inequality within cities, and welfare relative to the observed equilibrium.

Under existing estimates of the spillover elasticities, the results suggest that the U.S. economy

features too much concentration of high-skill workers and wage inequality in larger cities relative

to efficient allocations.

The framework incorporates many key determinants of the spatial distribution of economic

activity. Firms produce differentiated tradeable commodities and non-tradeables such as housing

using labor, intermediate inputs, and land. Locations may differ in fundamental components of

productivity and amenities, bilateral trade frictions, and housing supply elasticities. Productivity

and amenities are endogenous through agglomeration and congestion spillovers that may depend

on the composition of the workforce.1 Different types of workers vary in how productive they are

in each location, in their ownership of other factors of production, in their preference for each

location, and in the efficiency and amenity spillovers they generate on other workers. In the market

allocation, government policies may arbitrarily redistribute income across agents and regions.2

1As summarized by Duranton and Puga (2004), efficiency spillovers may result from several forces such as knowl-
edge externalities, labor market pooling, or scale economies in the production of tradeable commodities. Amenity
spillovers may result from congestion through traffic or environmental factors such as noise or pollution; availabil-
ity of public services such as education, health, and public transport; availability of public amenities such as parks
and recreation; or specialization thanks to scale effects in the provision of urban amenities such as restaurants or
entertainment. Duranton and Venables (2018) discuss some of these congestion forces.

2A wide range of government policies lead to spatial transfers. Some of these are explicit “place-based policies”,
such as tax relief schemes targeted at distressed areas (e.g. New Markets Tax Credit, or Enterprise Zones) or direct
public investment in specific areas (e.g. Tennessee Valley Authority). Other policies are not explicitly spatial, but
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In the model, the spillovers have complex general-equilibrium ramifications through factor mo-

bility and trade linkages. However, in the spirit of the “principle of targeting” pointed out by Dixit

(1985), the first-best allocation can be implemented by policies acting only upon inefficient mar-

gins. Here, these margins consist of labor supply and demand decisions: workers do not internalize

the impact of their location choice on city-level amenities, and firms do not internalize the impact

of their hiring decisions on city-level productivity. We derive a necessary efficiency condition on

the joint distribution of expenditures and employment across worker types and regions. Using this

condition we then characterize the transfers that must hold in an efficient allocation. Furthermore,

we identify a condition on the distributions of spillover and housing supply elasticities under which

these optimal transfers are also sufficient to implement the efficient allocation.

This characterization generalizes a standard efficiency requirement from non-spatial environ-

ments such as Hsieh and Klenow (2009), whereby the marginal product of labor should be equalized

across productive units. Here, the optimal spatial allocation balances the net benefit of agglomera-

tion (through production or amenities) against the opportunity cost of attracting workers-consumers

to each location. Because the location and consumption decisions are not separable, these opportu-

nity costs are measured in terms of local consumption expenditures, and they vary across locations

due to the compensating differentials born of geographic forces (congestion, amenities, trade costs,

and non-traded goods). An important lesson is that diagnosing whether an observed allocation is

efficient therefore requires information about expenditure per capita across locations, alongside the

standard requirement of observing wages and employment.

We then impose specific functional forms in order to inspect policies that lead to the optimal

transfers in well-known models nested in our framework.3 We consider labor subsidies that tackle

the spatial inefficiencies due to spillovers, whereas lump-sum transfers take care of distributional

concerns across types. As a first benchmark, we apply our results to a model with constant-elasticity

spillovers with respect to city size and no spillovers across worker types. Under homogeneous work-

ers and no trade costs, this case corresponds to the canonical Roback (1982) framework extended

with spillovers in both amenities and productivity. A common intuition running through several

studies of place-based policies is that, unless externalities are different across cities, policies that

reallocate workers cannot lead to welfare gains, because increases in externalities in locations that

grow are exactly offset by decreases in ones that shrink.4 However, our results imply that this

intuition does not hold up. The allocation is inefficient even if spillover elasticities are constant. In

that case, a constant labor tax over space coupled with a lump sum subsidy generates net transfers

that distort the allocation of workers across cities and restores efficiency. Somewhat paradoxically,

in this case the optimal “place-based” policy turns out to be a policy that is independent across

space.

end up redistributing income to specific places (e.g., nominal income taxes and credits, state and local tax deductions,
or sectoral subsidies). Neumark et al. (2015) and Austin et al. (2018) review some of these policies.

3Since our focus is on spatial inefficiencies from spillovers, our analysis assumes that distributional concerns across
types can be tackled through type-specific lump-sum taxes.

4This notion is discussed for instance in Glaeser and Gottlieb (2008), Kline and Moretti (2014a) and the review
of the literature on place-based policies by Neumark et al. (2015).
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We then apply our results to establish the normative properties of well-known economic geog-

raphy models, such as Allen and Arkolakis (2014), Helpman (1998) and Redding (2016). These

models correspond to special cases of our framework provided we assume inelastic housing supply,

a single worker type, constant elasticity spillovers and no intermediate inputs. In this context,

global efficiency is characterized by the distribution of trade imbalances between regions. This

distribution can be implemented by a simple transfer rule that depends on spillover elasticities

and the non-traded expenditure share, but is independent from the distribution of fundamentals

or trade costs. We show that, because these models make different assumptions about transfers

in the laissez-faire allocation, they have different implications for whether the optimal government

intervention should redistribute income from high- to low-wage regions, or the opposite.

Our theory thus implies that under constant-elasticity spillovers and either homogeneous work-

ers or no spillovers across different types of workers, constant labor taxes over space implement the

efficient allocation. In the general case with different worker types and heterogeneous spillovers,

spatial variation in optimal policies arises to attain efficient sorting. For example, if the productiv-

ity of low skill workers is positively affected by the presence of high skill workers, the decentralized

pattern of sorting by skill may be too strong. Spatial efficiency may then require subsidies to high

skill workers in cities where they are relatively scarce under the laissez-faire allocation, increasing

the degree of mixing of heterogeneous workers across locations relative to the competitive allocation.

We then show how to use the main framework for quantitative analysis. We identify the

set of sufficient statistics in the data which, in addition to the spillover elasticities and standard

production and utility function parameters, are needed to compute the optimal allocation. The

exercise requires information on expenditures per capita across worker types and regions, on top of

the standard data requirements in economic geography models such as the distributions of wages,

employment and trade flows.

We apply the model to data on the distribution of economic activity across MSAs in the United

States. We allow for two skills groups, high skill (college) and low skill (non college) workers. To

fulfill the previous data requirements, we combine data on labor and non-labor income, taxes and

transfers at the city level from the BEA, with Census data that allows us to break down these

MSA-level totals by skill group within cities. To parametrize the spillover elasticities we rely on

existing values from the literature that, also in the U.S. context, has estimated equations that are

consistent with our model. Specifically, we draw estimates of the amenity spillovers and of the

heterogeneity in spillovers across workers from Diamond (2016), and of the city-level elasticity of

labor productivity with respect to employment density from Ciccone and Hall (1996). We also

explore results under several different specifications around these estimates.

We first implement the quantification assuming homogeneous workers. In that case, we find

negligible welfare gains from optimal reallocation, as well as optimal transfers that are close to the

data. To demonstrate that this result is not a feature of our model but a feature of the data, we

apply our approach to counterfactual data corresponding to alternative fundamentals, and show

that it can deliver substantial welfare gains even with homogeneous workers.
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The full model with high and low skill workers yields welfare gains from roughly 4% to 8% across

specifications of the spillover elasticities. These gains materialize through a stronger redistribution

towards low-wage cities than what is observed empirically. These transfers imply higher labor

income taxes in high-wage cities for both low and high skill workers. In the case of low skill

workers, the higher taxes in high-wage cities arise because these workers generate congestion and

small productivity spillovers. In contrast, for high skill workers, they arise because these workers

generate positive spillovers onto low skill workers, who are more prevalent in low-wage cities. This

second force offsets the strong positive spillovers that high skill workers generate among each other,

which by itself would call for a subsidy to these workers in high-wage cities. As a result of the

reallocations induced by these transfers, within-city wage inequality decreases in initially larger and

more unequal cities. These qualitative patterns are consistent across specifications that vary the

spillover elasticities around the benchmark by a factor of two.

These results suggest that nudging U.S. policies towards generating a greater mixing of high

and low skill workers in currently low-wage cities would be welfare improving. To further identify

the key spillovers driving this result, in a final exercise we invert the logic of the approach: instead

of calibrating spillover elasticities to existing estimates and inspecting optimal transfers for a range

of values around them, we assume that the observed equilibrium is efficient and use our optimal

transfers formulas to infer the corresponding spillover elasticities. This procedure implies strong

congestion spillovers that are similar, on average, to the elasticities drawn from existing estimates,

as well as positive efficiency spillovers generated by high skill workers. However, it also implies

negative amenity spillovers of similar magnitude for both skill groups, unlike in the calibration

where low skill and high skill workers generate spillovers of opposite signs. In this sense, we

identify a key role for the heterogeneous amenity spillovers across skill types.5

The rest of the paper is structured as follows. Section 2 connects the paper to the related

literature. Section 3 presents the general environment and defines the decentralized allocation and

the planner’s problem. Section 4 characterizes the optimal policies, teases out their implications

in specific cases of the theory corresponding to the models from the literature, and determines the

data that suffices to implement the model. Section 5 describes the data and the calibration. Section

6 presents the quantitative implementation and Section 7 concludes. Proofs, additional derivations

and data construction are detailed in the Appendix.

2 Relation to the Literature

The economic geography models nested in our framework introduce labor mobility and spillovers

in general-equilibrium models with trade frictions such as Eaton and Kortum (2002) and Anderson

5In our parametrization, these spillovers rely on numbers from Diamond (2016), who estimates a positive response
of an urban amenity index (including congestion in transport, crime, environmental indicators, supply per capita of
different public services, and variety of retail stores) to the relative supply of college workers, as well as a higher
marginal valuation for these amenities for college than for non-college workers.
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and van Wincoop (2003).6 These models are the basis of a growing body of research, summarized by

Redding and Turner (2015) and Redding and Rossi-Hansberg (2017), that studies the counterfactual

implications of particular shocks to economic fundamentals or trade costs in spatial settings. Ex-

isting applications of these frameworks, such as Caliendo et al., (forthcoming), impose restrictions

on transfers across locations through assumptions on how the income generated by fixed factors is

distributed across locations. We show that the optimal allocation must be implemented through

a particular set of spatial transfers, and characterize the distribution of imbalances that ensures

spatial efficiency. We focus our theoretical analysis and quantitative application on models with

local spillovers, where efficiency and amenities are a function of the distribution of workers within

a location. In an extension, we also derive optimal transfers in the case where economic activity in

one location may generate spillovers in other locations in the spirit of Rossi-Hansberg (2005) and

recent quantitative studies such as Ahlfeldt et al. (2015) and Desmet and Rossi-Hansberg (2014).7

Our framework also nests the model of Diamond (2016), who allows for asymmetric amenity and

efficiency spillovers across workers with different skills in a Rosen (1979)-Roback (1982) model and

takes the model to the data using the U.S. as an empirical setting. Her analysis shows that these

forces partly determine the spatial distribution of skill shares and skill wage premia, including the

recent “great divergence” in these outcomes across cities in the U.S. pointed out by Moretti (2012),

among others.8 Giannone (2017) argues that productivity spillovers across workers are relevant to

understand the spatial effects of skill biased technological change.

In this paper, we study on the normative implications of these forces. In doing so, we are also

motivated by the well known empirical evidence that larger cities feature higher wages, higher share

of skilled workers, and higher skill premium, as documented among others by Combes et al. (2008).

We ask whether these observed patterns of spatial disparities are too strong from the perspective

of spatial efficiency. Recent papers such as Eeckhout et al. (2014), Behrens et al. (2014), and

Davis and Dingel (2012) include spatial sorting of heterogeneous individuals to rationalize some of

these patterns, but do not focus on optimal policies. Our results suggest that spatially efficient

allocations would typically feature weaker sorting and lower wage dispersion within larger cities

than what is currently observed.

Recent papers study spatial misallocation due to wedges in factor or housing markets, such as

Brandt et al. (2013), Desmet and Rossi-Hansberg (2013) and Hsieh and Moretti (2017), or due

to specific spatial policies such as state or federal income taxes or firm subsidies, such as Albouy

(2009), Colas and Hutchinson (2017), Fajgelbaum et al. (2015) and Ossa (2018).9 These studies

6These trade models belong to the class considered by Arkolakis et al. (2012), who show that the welfare implica-
tions of changes in trade costs depend on the elasticity of trade with respect to trade costs. Our theoretical analysis
does not impose the constant-elasticity form for trade flows that is typically assumed in the gravity literature. The
optimal spatial tax turns out to be independent from the trade elasticity.

7Some features studied in recent applications of quantitative spatial models that are not included in our study are
multiple traded sectors with input-output linkages as in Caliendo et al., (forthcoming) and commuting as in Monte
et al. (2015), and dynamics as in Caliendo et al. (2015) and Desmet et al., (forthcoming).

8Baum-Snow and Pavan (2013) document that a considerable share of the increase in wage in inequality in the
U.S. is due to the increase in wage dispersion within larger cities after controlling for worker characteristics.

9Hsieh and Moretti (2017) inspect the role of changes in housing supply elasticities in driving changes in output
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compare the actual allocation to counterfactual ones that typically remove the dispersion of wedges

or policies. We focus instead on inefficiencies created by spillovers, and we implement the globally

optimal spatial allocation through transfers. In addition, these models usually proceed under the

assumption of a single worker type, whereas we incorporate heterogeneous workers with asymmetric

spillovers, allowing us to study optimal sorting patterns. Relative to the magnitude of the welfare

impact of removing dispersion in spatial wedges or policies, our results suggest significant welfare

gains from moving to an optimal allocation arising from dispersion of spillover elasticities across

heterogeneous workers. Gaubert (2015) studies a model without trade frictions, homogeneous

workers, heterogeneous firms and a complementarity between city size and firm productivity, and

characterizes the optimal allocation in that setup.10

Starting with Henderson (1974), a theoretical literature in urban economics studies optimal

city sizes. In environments that feature homogeneous cities or one-dimensional heterogeneity, these

models make predictions for whether cities are too large, and for whether there are too few cities.11

Henderson (1977) and Helpman and Pines (1980) are early studies of optimal city sizes in models

with heterogeneous cities in either amenity or productivity. Albouy et al. (2017) and Eeckhout

and Guner (2017) suggest that large cities are too small under the assumptions of homogeneous

workers, frictionless trade, and efficiency spillovers only. Relative to that literature, we characterize

and quantify optimal spatial transfers in a framework with several dimensions of heterogeneity

across cities (amenities, productivity, housing supply elasticities, and bilateral trade frictions),

spillovers in both production efficiency and amenities, and sorting of heterogeneous workers with

asymmetric spillovers. Due to these multiple sources of heterogeneity, and the fact that we allow

for an arbitrary distribution of observed initial transfers, initial city size alone is a poor predictor of

whether a city is too large or too small in the observed allocation. We abstract from analyzing the

extensive margin of city creation, but we note that this margin does not affect our characterization

of optimal transfers among populated locations.

While we focus on place-based policies that tax and redistribute income across regions and

workers, our paper also relates to analyses of place-based policies in the form of public investments.

A large empirical literature, summarized by Kline and Moretti (2014b), Neumark et al. (2015)

and Duranton and Venables (2018), estimates the local impacts of policies such as government

investments in public goods or infrastructure, often in the presence of agglomeration economies.

For instance, Kline and Moretti (2014a) study the effect of a large regional development pro-

gram. Glaeser and Gottlieb (2008) and Kline (2010) draw some of the aggregate implications of

these policies. We characterize and implement first-best place-based subsidies in a quantitative

spatial framework accounting for multiple indirect effects across the economy and heterogeneous

spillovers across workers.12 Finally, a literature in fiscal federalism focuses on the optimal financing

in a welfare. We incorporate heterogeneity in housing supply elasticities and keep them constant throughout our
analysis, treating them as a technological constraint in the planner’s problem.

10Other recent papers studying different spatial policies include Allen et al. (2015) who consider zoning restrictions
within a city and Fajgelbaum and Schaal (2017) who consider transport network investments.

11See Abdel-Rahman and Anas (2004) for a review.
12In his review of the policy implications of empirical economic-geography studies, Combes (2011) notes the lack
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of local public goods, showing that an efficient arrangement may involve a fiscal union with inter-

governmental grants to correct distortions caused by local taxes.13 In an extension, we show that

incorporating public goods with inter-governmental transfers does not affect the optimal policies

designed to deal with the spillovers.

3 Economic Geography Model with Worker Sorting and Spillovers

3.1 Environment

We start by describing the physical environment, then the competitive equilibrium and finally

the planner’s allocation. We consider a closed economy with a discrete number J of locations

typically indexed by j or i. Workers are heterogeneous. Each worker belongs to one of Θ different

types. The type indexes each worker’s preference and productivity in each location, as well as

each worker’s capacity to generate and absorb productivity and amenity spillovers. The utility of

a worker of type θ in location j is

uθj = aθj
(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

)
. (1)

The function aθj (·) depends on the number Lθj of each type-θ worker located at j, and it captures the

valuation of a worker of type θ for location j’s amenities. Workers may vary in how much they value

fundamental amenities associated with exogenous features of each location. They may also vary in

how much they value amenity spillovers created by each type; for example, a demographic group

may prefer living in locations with higher density of their own demographic group, or may value

some urban amenities generated or congested by specific groups. Workers also derive utility from

a bundle of differentiated tradeable commodities (cθj) and from non-tradeable services including

housing (hθj).
14 The utility function U (c, h) is homogeneous of degree 1.15

In both the competitive and optimal equilibria we consider, the number Lθj of type-θ workers

of a general-equilibrium analysis of the optimal allocation of employment in a model of regional trade allowing for
geographic inter-dependencies.

13Early papers making this point include Flatters et al. (1974) and Wildasin (1980). Another concern in that
literature is to analyze the responses of local governments to taxes set in other jurisdictions, as in for example
Gordon (1983), and the role of a fiscal union in correcting the potential distortions from fiscal competition. We take
the observed transfers as given, without taking a stand on how they are generated.

14There is no heterogeneity across workers within each type. However, since the number of types is unrestricted,
this is not a restriction on the theory. For example, two skilled workers with different preferences for location can be
represented as two different types. A standard formulation in the empirical literature is to allow for heterogeneity
in preferences for location across workers distributed according to an extreme value distribution. In Section 4.4 we
show how to incorporate this margin.

15The analysis can be easily generalized to homothetic utility functions which are not homogeneous of degree 1 at
the cost of more burdensome notation. E.g., we can accommodate functions of the form F0

(
U
(
cθj , h

θ
j

))
at the cost of

keeping track of the elasticity of F with respect to U . Such a formulation would capture decreasing marginal utility
from the consumption bundle of each location.
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located at j is endogenous. National labor market clearing is∑
j

Lθj = Lθ, (2)

where Lθ is the fixed aggregate supply of group θ.

Every location produces traded and non-traded goods. Tradeable output uses the aggregate

technology Yj

(
NY
j , I

Y
j

)
requiring services of labor NY

j and intermediates IYj . Similarly, production

in the non-traded sector is Hj

(
NH
j , I

H
j

)
. The functions Yj and Hj may be city-specific and

feature constant or decreasing returns to scale. They can also be constants if the good is supplied

inelastically. The decreasing returns arise due to the use of fixed factors in production, such as

land. Therefore, the framework allows for different housing supply elasticities across cities through

the city specific decreasing returns to scale in Hj (·).16

The feasibility constraint in the non-traded sector in j is

Hj

(
NH
j , I

H
j

)
=
∑
θ

Lθjh
θ
j . (3)

Goods in the traded sector can be shipped domestically or to other locations. The country’s

geography is captured by iceberg trade frictions dji ≥ 1. These frictions mean that djiQji units

must be shipped from location j to i for Qji units to arrive in location i. The feasibility constraint

dictates that the quantity of traded goods produced at j must equal the quantities shipped:

Yj
(
NY
j , I

Y
j

)
=
∑
i

djiQji. (4)

Traded goods may be differentiated by origin, reflecting either industrial specialization at the

regional level or variety specialization at the plant level.17 The traded goods arriving in i are

combined through the homothetic and concave aggregator Q (Q1i, .., QJi). This bundle of traded

commodities may be used for the final consumption of the local population or as an intermediate

input in the production of traded and non-traded sectors:

Q (Q1i, .., QJi) =
∑
θ

Lθi c
θ
i + IYi + IHi . (5)

All workers supply one unit of labor with efficiency that may vary by worker type and location.

16I.e., if Hj
(
NH
j , I

H
j

)
is homothetic, so that it can be expressed as Hj

(
NH
j , I

H
j

)
= H1

j

(
H0
j

(
NH
j , I

H
j

))
for some

H0
j

(
NH
j , I

H
j

)
that is homogeneous of degree 1, then in the competitive allocation the elasticity of H1

j is the housing
supply elasticity. To keep notations light, we do not feature land explicitly as a variable input and we assume that
the fixed factors in production cannot be reallocated between the traded and non-traded sectors. This assumption
can also be easily relaxed.

17Section 4.3 shows that our analysis encompasses a market structure with free entry of producers of differentiated
varieties under monopolistic competition.
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Each type-θ worker in location j supplies

zθj = zθj
(
L1
j , .., L

Θ
j

)
(6)

efficiency units. The function zθj captures exogenous differences in productivity between locations

and skill groups, as well as productivity spillovers across workers. As with amenities, these spillovers

may depend on the distribution of types. For example, high-skill workers may benefit more than

low-skill workers from being employed in the same city as other high-skill workers, or in more

densely populated areas. In both traded and non-traded sectors, the services zθjL
θ
j of the various

types of labor are combined through the constant-returns aggregator N
(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
.18 This

aggregator also captures imperfect substitution across workers.19 Feasibility in the use of labor

services dictates that

NY
j +NH

j = N
(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
. (7)

We highlight two key features relative to an otherwise standard neoclassical framework with a

representative worker/consumer. First, the location of a worker drives both her marginal product

(productivity is place specific) and her marginal utility of consumption (through local amenities).

Therefore, production and consumption decisions are not separable. Second, the framework features

two potential sources of non-convexities through the amenity and productivity spillover functions.

The utility of each agent may increase with the number of other agents in the same location through

aθj , and the labor aggregator N (·) may feature increasing returns to the number of workers in a

particular group through zθj

(
L1
j , .., L

Θ
j

)
Lθj . Both sources of non-convexities operate though the

same margin, Lθj .

3.2 Competitive Allocation

In the decentralized equilibrium each worker chooses location and consumption to maximize

utility, while competitive producers hire labor and buy intermediate inputs to maximize profits.

Being atomistic, these agents do not take into account the impact of their choices on the spillover

functions aθj

(
L1
j , .., L

Θ
j

)
and zθj

(
L1
j , .., L

Θ
j

)
.

Workers Conditional on living in j, a type-θ worker with expenditure level xθj solves

max
cθj ,h

θ
j

U
(
cθj , h

θ
j

)
s.t. Pjc

θ
j +Rjh

θ
j = xθj , (8)

18This aggregator can more generally be homothetic, in which case the expressions for optimal transfers would
include an additional term with the aggregate curvature of this function. We limit the analysis to the CRS case to
save notation.

19This formulation implies that different types of workers supply the same amount of efficiency units to every
sector, ruling out comparative advantages of different types across sectors. Including this force would be feasible
in both the theory and the quantification, subject to the availability of the proper production function and sector-
specific spillover parameters. Our current formulation allows us to calibrate the model to match existing values of
the spillover elasticities estimated at the city level with respect to each type of worker.
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where Pj is the price of the bundle of traded goods and Rj is the unit price in the nontraded sector.

As a result, the common component of utility from (1) becomes

uθj = aθj
(
L1
j , .., L

Θ
j

) xθj
ψ (Pj , Rj)

, (9)

where ψ (P,R) is the price index associated with U . Since workers are homogeneous within each

type, their utility is equalized. In equilibrium, all type-θ workers attain the same utility uθ. Workers’

location choice implies that

uθj ≤ uθ, (10)

with equality if Lθj > 0.

Firms Producers of traded and non-traded commodities solve:

ΠY
j = max

NY
j ,I

Y
j

pjYj
(
NY
j , I

Y
j

)
−WjN

Y
j − PjIYj , (11)

ΠH
j = max

NH
j ,I

H
j

RjHj

(
NH
j , I

H
j

)
−WjN

H
j − PjIHj , (12)

where pj is the domestic price of the tradeable commodity produced in j and Wj is the wage per

efficiency unit of labor. Given a distribution of wages per worker
{
wθj

}
, the wage per efficiency

unit is the solution to a standard cost-minimization problem,

Wj = min
{Lθj}

∑
j

wθjL
θ
j s.t. N

(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
= 1.

This labor hiring decision takes the efficiency zθj as given, ignoring its dependence on the employ-

ment distribution. As a result, the wage of type-θ workers in location j equals the value of its

marginal product given the efficiency distribution
{
zθj

}
:

wθj = Wj

∂N
(
z1
jL

1
j , .., z

Θ
j L

Θ
j

)
∂Lθj

. (13)

We assume a no-arbitrage condition, so that the price in location i of the traded good from j

equals djipj . Free entry of intermediaries who can buy and resell goods between regions ensures

this condition holds. Given these prices, the trade flows are:

Pi
∂Q (Q1i, .., QJi)

∂Qji
= djipj . (14)

In the competitive equilibrium the prices of consumption goods, Pj and Rj , adjust so that the

corresponding goods markets clear.
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Expenditure Per Worker The only component of the competitive allocation left to define is

the per capita expenditure for a type-θ worker who lives in j, xθj . By definition, xθj includes labor

and non-labor income as well as, potentially, government taxes and transfers. Each type-θ worker

in location j earns the wage wθj and owns a fraction bθ of the national returns to fixed factors

Π ≡
∑

j ΠY
j + ΠH

j , so that
∑
bθLθ = 1. We assume that each individual’s portfolio is type- but

not place-specific, meaning that individuals of a given group hold the same portfolio regardless of

where they locate.20 In addition, we allow for flexible government policies that tax and transfer

income across locations. As a result, expenditure per capita is

xθj = wθj + bθΠ + tθj , (15)

where tθj is the net transfer to a type-θ worker living in j. Net government transfers equal zero,

implying that expenditure equals net income:∑
j

∑
θ

Lθjx
θ
j =

∑
j

∑
θ

Lθjw
θ
j + Π. (16)

Definition 1. A competitive allocation consists of quantities cθj , h
θ
j , L

θ
j , Qij , N

Y
j , I

Y
j , N

H
j , I

H
j , utility

levels uθ, prices Pj , Rj, pj , wages per efficiency unit Wj, and wages per worker wθj such that

(i) the consumption choices cθj , h
θ
j are a solution to (8) for expenditures xθi satisfying (15), and

employment Lθj is consistent with the spatial mobility constraint (10);

(ii) the labor and intermediate input choices NY
j , I

Y
j , N

H
j , I

H
j are a solution to (11) and (12),

labor demand is given by (13), and trade flows Qji are given by (14);

(iii) the government budget constraint is satisfied; i.e. (16) holds, and

(iv) all markets clear, i.e. (2) to (7) hold.

3.3 Planning Problem

We characterize a planning problem where the planner chooses the endogenous margins of the

competitive allocation: a distribution of workers over locations and types
{
Lθj

}
, consumption of

traded and non-traded commodities
{
cθj , h

θ
j

}
, trade flows {Qij}, and an allocation of efficiency

units and intermediate inputs,
{
NY
j , I

Y
j , N

H
j , I

H
j

}
. The planner implements policies that treat in

the same way all individuals within a type θ, and is bound by the spatial mobility constraint (10).

Along with that constraint, the market clearing conditions (2) to (7) define a set U of attainable

20This assumption rules out cases considered in the trade and economic geography literature in which individuals
are assumed to own part of the fixed factors where they choose to live, as in Caliendo et al., (forthcoming). These
cases introduce an additional distortion in the competitive allocation, therefore creating an additional role for optimal
policy besides correcting spillovers. Empirically, that assumption has been made to match trade imbalances across
regions. In our model, that distribution can be fully explained by a combination of policies that tax and redistribute
income across locations and sorting of heterogeneous workers types with type-specific ownership. In Section 4.3 we
formally show the implications of assuming local ownership.
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utility levels
{
uθ
}

. The optimal planning problem consists of reaching the frontier of that set,

max uθ

s.t.: uθ
′

= uθ
′

for θ′ 6= θ

uθ
′ ∈ U for all θ′

The set of solutions of this problem given an arbitrary θ for all feasible values of uθ
′ ∈ U for θ′ 6= θ

defines the utility frontier. Competitive equilibria according to Definition 1 may not correspond

to a point on the frontier due to spatial inefficiencies: workers do not internalize the impact of

their location choice on amenities through aθj and firms do not internalize the impact of their hiring

decisions on efficiency through zθj . In the next section we turn to the solution of the planning

problem.

4 Optimal Transfers

To understand what policies may remedy the market inefficiencies we first characterize a nec-

essary efficiency condition, and then use it to determine the set of transfers that must hold in any

efficient allocation. We then move to inspecting the labor subsidies that would implement these

transfers in well-known models nested in our framework. Furthermore, we demonstrate how to

extend our approach to accommodate additional forces considered in recent studies. We conclude

this section by showing how to bring the framework to the data. Formal derivations are detailed

in Appendix A.1.

4.1 Efficiency Condition and Optimal Transfers

To characterize efficiency, it is useful to note that the competitive allocation can be determined

given an arbitrarily chosen expenditure distribution of xθj ≥ 0 satisfying (16), without imposing

the requirement that xθj satisfies its definition (15). In other words, we can modify Definition 1 to

treat expenditure per capita xθj as primitive, leaving aside how it is determined. Using the wages

and profits arising at the resulting equilibrium allocation, we can then compute the transfers tθj
consistent with (15) given the arbitrarily chosen xθj .

This logic suggests that we can first obtain a condition over the expenditure distribution xθj that

must hold in any efficient allocation, regardless of what particular policy tools are used to achieve

it. Comparing a decentralized allocation given expenditures xθj to the outcomes of the planning

problem, detailed in Definition 2 of Appendix (A.1), we reach the following result.

Proposition 1. If a competitive equilibrium is efficient, then

Wj
dNj

dLθj
+
∑
θ′

xθ
′
j L

θ′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθj + Eθ if Lθj > 0, (17)
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for all j and θ and some constants
{
Eθ
}

. If the planner’s problem is globally concave and (17)

holds for some specific
{
Eθ
}

, then the competitive equilibrium is efficient.

Condition (17) defines a relationship between expenditure per capita and the labor allocation

that must hold in any efficient allocation. This condition shows the equalization of the marginal

benefits and costs of type-θ workers across all inhabited locations. The first term on the left is the

value of the marginal product of labor, including both the direct output effect and the productivity

spillovers.21 The second term is the marginal benefit (or costs if negative) through amenity spillovers

on each group of workers living in j, measured in expenditure equivalent terms.

These marginal benefits from allocating a type θ worker to location j are equated to the marginal

costs on the right. The first term, xθj , results from the non-separability between a worker’s location

and consumption: each type-θ worker in j requires xθj units of expenditures in that particular

location. From a social planning perspective this is a cost, because each additional worker in j

translates into lower consumption of traded and non-traded commodities for other workers in that

location. The last term, Eθ, measures the opportunity cost of employing a worker elsewhere, and

is not place-specific.22

We can draw several useful implications from this result. First, it implies that market ineffi-

ciencies can be fully tackled through policies acting only on xθj to reach (17). This is because the

set of equations defining the competitive allocation coincides with the set defining the planner’s

allocation, except potentially for the expenditure distribution.23 Therefore, asking whether the

spatial allocation is efficient is equivalent to asking whether the expenditure distribution in the

market allocation lines up with (17). Despite the multiple general-equilibrium ramifications of the

spillovers, no other margin but the expenditure distribution requires policy intervention.24 We

construct policies that implement the optimal expenditure distribution in the next section.

Second, Proposition 1 extends a familiar efficiency condition from the misallocation literature

to spatial environments. In our economy, “space” enters through trade costs, non-traded goods,

congestion and amenities. In the absence of these forces,25 there would be no compensating dif-

ferentials across locations and, as a result, the equilibrium would exhibit the same expenditure

per capita xθj for each type θ across locations. In that case, the model would be equivalent to

21 dNj

dLθj
denotes the total differential of Nj = N

(
z1
j

(
L1
j , .., L

Θ
j

)
L1
j , .., z

Θ
j

(
L1
j , .., L

Θ
j

)
LΘ
j

)
with respect to Lθj .

22The constant Eθ is the multiplier of the national market clearing constraint (2) in the planner’s problem. It is
the marginal welfare impact of adding an additional type-θ worker in the economy.

23In the planner’s allocation, xθj coincides with the shadow value of the local goods assigned to each θ-worker in j.
The market allocation of efficiency units

{
NH
j , N

Y
j

}
, intermediates

{
IHj , I

Y
j

}
, trade {Qij} and relative consumption

per capita

{
cθj

hθj

}
is efficient if the equilibrium prices {Wj , Rj , Pj , pj} equal the multipliers of the constraints on

efficiency units, non-traded goods, traded goods, and exports faced by the planner, respectively. See the proof of
Proposition 1.

24This compartmentalization of the inefficiencies in few margins reflects a broader “principle of targeting” noted
by Bhagwati and Johnson (1960) in trade-policy contexts and by Sandmo (1975) and Dixit (1985) in economies with
external effects.

25I.e., assuming away trade frictions (dij = 1, implying Pj = P ), non-traded goods (U
(
cθj , h

θ
j

)
= cθj ), congestion

(
∂aθj

∂Lθ
′
j

= 0) and preferences for location (aθj = aj).
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one describing the allocation of workers across firms selling differentiated products as in Hsieh and

Klenow (2009), and (17) would collapse to the familiar condition that the marginal value-product

of labor, Wj

(
dNj/dL

θ
j

)
, is equalized across locations.

Third, information about the distribution of expenditure per capita xθj is needed to assess

the economy’s efficiency. In studies of misallocation across firms, the absence of compensating

differentials justifies the common practice of inferring allocative inefficiencies from differences in

income and number of workers. In our spatial environment with compensating differentials, the

non-separability of consumption and production means that the net marginal benefit of reallocating

a worker includes the local expenditure of that worker. As a result, assessing the efficiency of the

allocation requires data on the distribution of expenditure per capita xθj . This property motivates

an efficiency check of the observed allocation derived in the next section, and it drives the data

requirements for the quantitative implementation of the model.

Finally, we note that (17) is a necessary but not sufficient condition for efficiency. Even if it

holds, inefficient market equilibria could exist. However, the inefficient allocations consistent with

(17) can be ruled out if the planner’s problem is globally concave. In that case, there is only one

allocation that satisfies the first order conditions of the planner’s problem. Because these first order

conditions correspond to the definition of a competitive equilibrium given expenditures, it must be

that only one competitive equilibrium exists and is efficient. In Section 4.5 we introduce conditions

for global concavity of the planner’s problem.

We move on now to deriving the set of transfers implied by the efficiency condition presented

above. These transfers will deliver the efficient allocation if the market equilibrium is unique, an

issue we come back to in Section 4.5. To that end, we define the productivity spillover elasticity

γP,jθ,θ′ ≡
Lθj

zθ
′
j

∂zθ
′
j

∂Lθj
, (18)

and the amenity spillover elasticity

γA,jθ,θ′ ≡
Lθj

aθ
′
j

∂aθ
′
j

∂Lθj
. (19)

These elasticities capture the marginal spillover of a type θ worker on the efficiency and utility of

each type θ′ worker in city j. The case without spillovers corresponds to γP,jθ,θ′ = γA,jθ,θ′ = 0. So far

we have not imposed functional forms, so that these elasticities can be variable. Combining these

definitions with (1) and labor demand (13), we obtain the optimal transfers.

Proposition 2. The optimal allocation can be implemented by the transfers

tθ∗j =
∑
θ′

(
γP,jθ,θ′w

θ′∗
j + γA,jθ,θ′x

θ′∗
j

) Lθ′∗j
Lθ∗j
−
(
bθΠ∗ + Eθ

)
, (20)

where the terms
(
xθ∗j , w

θ∗
j , L

θ∗
j ,Π

∗
)

are the outcomes at the efficient allocation, and
{
Eθ
}

are

constants equal to the multipliers on the resource constraint of each type in the planner’s allocation.
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We highlight that the optimal transfers tθ∗j take care of both inefficiencies in the market allo-

cation due to spillovers and of distributional concerns across types. In the absence of spillovers

(γP,jθ,θ′ = γA,jθ,θ′ = 0 for all θ, θ′, j), we would still have tθ∗j = −
(
bθΠ∗ + Eθ

)
, so that these transfers

would still be present for redistribution across types (as implied by the second welfare theorem).

Therefore, the burden of dealing with the spatial inefficiencies falls on the spatial component of the

optimal transfers, corresponding to the first term in (20). Along with the definition of expenditures

in (15), condition (20) can be used to diagnose the efficiency of an observed allocation using only

data on wages, expenditures and employment, in addition to the spillover elasticities.26

4.2 Optimal Subsidies under Constant Elasticity Spillovers

So far we have not imposed functional forms, but a predominant assumption in the related

literature is that the spillover functions zθj (·) and aθj (·) adopt the constant-elasticity forms, γP,jθ,θ′ =

γPθ,θ′ and γA,jθ′,θ = γAθ′,θ. From now on we adopt these constant-elasticity formulations. We will

also adopt them for the quantitative application (as defined in (37) and (38) below). Under these

assumptions, the optimal transfers simplify to tθj = sθjwj + T θ, where

sθj =
γPθ,θ + γAθ,θ

1− γAθ,θ
+
∑
θ′ 6=θ

γPθ,θ′w
θ′
j + γAθ,θ′x

θ′
j

1− γAθ,θ

Lθ
′
j

wθjL
θ
j

(21)

and T θ = bθΠ + Eθ

1−γAθ,θ
. This representation readily implies that the optimal transfers can be

implemented by labor income subsidies sθ (·) coupled with lump-sum transfers T θ. The labor

income subsidy function sθ (·) may be type specific and vary over space as a function of outcomes

such as wages or population..27 These policies are defined such that the labor subsidies tackle spatial

inefficiencies due to spillovers, and the lump-sum transfers take care of distributional concerns. We

now draw the implications of this formula in special cases.

No Spillover Across Types We consider first a case with several worker types, but with γPθ′,θ =

γAθ′,θ = 0 for θ′ 6= θ, so that there are no spillovers across types. The optimal subsidy 21 becomes:

sθ =
γPθ,θ + γAθ,θ

1− γAθ,θ
. (22)

In the special case of a single worker type, the policy is further simplified to (s, T ) with s = γP+γA

1−γA

and T which ensures that the aggregate budget condition (16) holds. This case corresponds to the

26Specifically, an observed allocation is efficient only if the the function of these variables in the left hand side of
(A.14) in Appendix A.1 is constant over space for each type θ.

27The policy rules
(
sθ (·) , T θ

)
are type-specific but defined independently from space. Alternatively, optimal

transfers could also be implemented with type-independent but place-specific labor income subsidies sj (w) defined

as step functions satisfying sj
(
wθ∗j

)
≡ tθ∗j

wθ∗j
, except in knife-edge cases where different types earn identical wages in

a given location.
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majority of studies on place-based policies and quantitative economic geography reviewed in the

introduction. Hence, our discussion in this section applies to that case as well.

We point out a few important implications of this result. First, the optimal policy scheme(
sθ, T θ

)
does not vary over space. So, somewhat paradoxically, optimal transfers can be imple-

mented by a “place-based” policy that turns out to be independent from space. In spite of this, the

policy does impact the spatial allocation. To see why, we must consider the role of the compensat-

ing differentials implied by the spatial dimensions (trade costs, non-traded goods, and amenities).

From the mobility constraint (10), indifference across populated locations j and j′ implies:

ψ
(
Pj′ , Rj′

)
/aθj′

(
Lj′
)

ψ (Pj , Rj) /aθj (Lj)
=

(
1 + sθ

)
Wj′z

θ
j′
(
Lj′
)

+ T θ + bθΠ

(1 + sθ)Wjzθj (Lj) + T θ + bθΠ
. (23)

The left hand side is the relative compensating differential (amenity-adjusted cost of living) and the

right hand side is the relative expenditure (equal to relative after-tax income) between locations

j′ and j for type θ. In the presence of amenities, non-traded goods and trade costs, the relative

compensating differentials vary across space. As a result, changes to the policy scheme (sθ, T θ)

lead to changes in the employment distribution of type θ. In the absence of these compensating

differentials, these policies would cease to impact the spatial allocation of workers of type θ.

Second, the formula (22) for the optimal subsidy has a simple interpretation. Under negative

congestion spillovers for type θ (γAθ,θ < 0), if the agglomeration spillover of that type is not too

strong (γPθ,θ < −γAθ,θ), then all workers of type θ should pay as tax the same fraction of their income

everywhere (a negative subsidy, sθ < 0). In this case, the net transfer tθj received by type-θ workers

is smaller, and potentially negative, in cities where the wage of these workers is higher.

Third, the decentralized allocation without intervention is not efficient (i.e., optimal transfers are

non-zero) even though the spillover elasticities are constant. This would be true even if workers were

homogeneous, in which case there would exist aggregate gains from implementing the policy scheme

(s, T ) relative to a laissez-faire allocation. This result runs a against the notion, suggested by several

studies of placed-based policies, that there can be no gains from policy interventions that reallocate

workers across space, unless externalities are different across cities. This notion is present for

instance in Glaeser and Gottlieb (2008), Kline and Moretti (2014a) and the review of the literature

on place-based policies by Neumark et al. (2015). Intuitively, when the spillover elasticities are

the same everywhere, externalities in locations that grow following the implementation of a policy

could be expected to be exactly offset by decreases in locations that shrink. However, our previous

results show that this intuition does not hold up.

We emphasize that compensating differentials due to spatial forces are the key margin leading

to inefficiencies when the spillover elasticities are the same everywhere. To highlight this property,

in Appendix A.2 we inspect an even more restricted case with homogeneous workers, no trade costs,

no intermediate inputs in production, exogenous amenities and no valuation for non-traded goods.

In this simpler case, differences in amenities are the only source of compensating differentials,

the laissez-faire allocation is generically inefficient and there are gains from implementing the
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optimal subsidy-cum-lump sum transfer scheme. However, if differences in amenities across cities

are eliminated, the policies (s, T ) do not distort the allocation and the laissez-faire allocation turns

out to be efficient.

Spillovers Across Types Spillovers across types create a rationale for place-specific labor subsi-

dies for each labor type. To see how, consider a polar case without any amenity spillover (γAθ,θ′ = 0

for all θ, θ′) and without efficiency spillover on one’s own type (γPθ,θ = 0). Assume, furthermore,

that there are only two types, θ = U, S. Then, the optimal t subsidy to type-θ workers located in

j simplifies to sθj = sθ
({

wθjL
θ
j

}
θ=U,S

)
, where

sθ
({

wθLθ
}
θ=U,S

)
= γPθ,θ′

(
wθ
′
Lθ
′

wθLθ

)
. (24)

In this special case, the optimal subsidy for workers in group θ varies across locations according

to the distribution of relative wage bills, wθjL
θ
j . A positive efficiency spillover of type θ on type

θ′ (γPθ,θ′ > 0) implies a higher marginal gain from attracting type-θ workers to locations where

the economic size of the population of type θ′ workers is relatively larger. The result is a higher

optimal subsidy for θ-workers where they are more scarce. Relative to a laissez-faire equilibrium,

this policy is likely to temper the degree of sorting across cities.28 Condition (24) also implies
dsSj
dsUj

< 0←→ γPS,Uγ
P
U,S > 0, so that subsidies of high and low skill workers are negatively correlated

across cities if both types generate positive efficiency spillovers. In Section 6 we will return to

these basic intuitions, as they will help us rationalize the quantitative findings about the spatial

efficiency of the current transfer scheme across cities and workers with different levels of skill in the

U.S. economy.

4.3 Economic Geography Frameworks and Monopolistic Competition

The environment laid out in Section 3 includes standard economic geography models, such as

Helpman (1998), Allen and Arkolakis (2014) and Redding (2016) including either perfect com-

petition or monopolistic competition with free entry. Our presentation so far has assumed that

each location sells a different product under perfect competition. In Appendix A.3 we show that

the normative implications would be the same assuming free entry of producers of differentiated

varieties under monopolistic competition as in the standard Krugman (1980) model.29

These models are the backbone of a growing body of quantitative research studying the spatial

implications of regional shocks such as infrastructure investments and regional productivity changes,

28For example, if only skilled workers generate positive productivity spillovers on the other type, with a CES
aggregator of skills and γPS,U < 1 then the optimal subsidy to high skill workers is higher where the population of low
skill workers is larger.

29In particular, under a single worker type, the normative implications of a differentiated-products model with
elasticity of substitution κ > 1 across varieties and no productivity spillovers are equivalent to those of a homogeneous-
product model with spillover elasticity equal to γP = 1

κ−1
. Therefore, our normative analysis encompasses the models

in Helpman (1998) and Redding (2016), who assume free entry of monopolistically competitive firms.
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summarized by Redding and Turner (2015) and Redding and Rossi-Hansberg (2017). However, to

the best of our knowledge, their normative implications have barely been explored. We now apply

the previous results to shed light on the optimal transfers and policies in these models.

To specialize the physical environment to these models we need to impose a number of assump-

tions. First, we assume a single worker type with Cobb-Douglas preferences with weight αC on

the traded goods and with a constant amenity spillover elasticity γA. The common component of

utility (1) then becomes uj = AjL
1+γA

j cαCj h1−αC
j . Production only uses labor and the efficiency

spillover has a constant elasticity γP , so that tradeable output in region j is Yj = ZjL
1+γP

j . Supply

of non-traded goods in location j is inelastic and equal to Hj . In a competitive allocation, workers

in j receive a gross wage wj equal to tradeable output per worker. We still remain more general

than in the previous economic geography models in that the trade-flows aggregator Q (Q1i, .., QJi)

is not restricted to the constant-elasticity of substitution (CES) form. Therefore, we do not impose

a constant trade elasticity.

Applying these functional form assumptions to Proposition 1, we find that the expenditure of

workers in j in the optimal allocation must be:

xj = (1− η)wj + ηw̄, (25)

where w̄ is the average wage across workers in the economy and η ≡ 1 − αC(1+γP )
1−γA is a constant

combining the spillover elasticities and the expenditure share in traded goods. So, we find that a

simple linear relationship between expenditure and wages implements the efficient allocation. The

corresponding optimal transfers are simply linear in wages: tj = η (w̄ − wj).30 Micro heterogeneity

in amenities, productivity, and trade costs does not affect the shape of this relationship. Moreover,

barring knife-edge cases on the parameters (η = 0) or the fundamentals (such that wj = w), the

efficient allocation generically features trade imbalances equal to Ljtj . In particular, under the

empirically consistent case of η < 0, efficiency requires net trade deficits in high-wage regions.

Should the optimal policy that implements (25) redistribute towards or away from high-wage

locations? The answer depends on the distribution of income in the market allocation, absent policy

intervention. This distribution is shaped by how the returns to the fixed factor Hj are distributed

across workers in different locations. The existing applications in this literature make different

assumptions in this regard, ranging from no transfers to equal ownership. To nest these cases we

can assume, as in Caliendo et al., (forthcoming), that a fraction ω of the returns to Hj is distributed

locally to the Lj workers in j and the remainder is evenly split across all workers.31 Then, the

optimal policy can again be expressed as a constant labor subsidy s coupled with a lump-sump

30Net transfers equal the difference between value added and expenditure per capita of a region, which in turn
equal the difference between value added and expenditure in the tradeable sector.

31After imposing these assumptions on the framework laid out in Section 3, and further imposing that the aggre-
gator Q (Q1i, .., QJi) is CES, the model becomes equivalent to Helpman (1998) when γA = ω = 0 < γP , to Allen and
Arkolakis (2014) when αC = 1, and to Redding (2016) when γA = 0 < γP and ω = 1. The pattern of ownership
assumed in (15) in our benchmark model is equivalent in this context to ω = 0.
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payment T . The optimal subsidy is common across locations and equal to

s =
1 + γP

1− γA
[1− (1− αC)ω]− 1, (26)

with lump-sum transfer of T = −sw̄. The optimal policy redistributes income away from low-wage

regions under a labor subsidy (s > 0), and into low-wage regions under a labor tax (s < 0).

We can now identify the optimal policy in different models. We consider again the case with

η < 0. In Helpman (1998), who assumes common ownership of the national portfolio (ω = 0),

the default transfers to low-income regions in the competitive equilibrium are too large from the

perspective of spatial efficiency; therefore, the optimal policy redistributes income to regions with

above-average wage (s > 0). In contrast, in Allen and Arkolakis (2014) and Redding (2016),

who assume away trade imbalances, the default transfers to low-income regions in the competitive

equilibrium are too small; as result, the optimal policy redistributes income to low-wage regions

(s < 0).

In sum, in this application of our more general model, we have shown that several details of

the microeconomic structure and the country’s economic geography (represented by bilateral trade

costs) do not impact the relationship between optimal trade imbalances and wages in economic

geography models, nor the policies that implement them. We have also shown how the specific

assumptions about ownership of fixed factors, and therefore about trade imbalances, in the laissez-

faire allocation of these models impact whether the optimal policies should redistribute income

towards or away from high-wage regions.

4.4 Extensions

Spillovers Across Locations So far we assumed that efficiency and amenities are a function of

the distribution of workers within each location. In the spirit of Lucas and Rossi-Hansberg (2002)

and Rossi-Hansberg (2005), recent quantitative studies in urban economics, such as Ahlfeldt et al.

(2015), and in economic geography, such as Desmet and Rossi-Hansberg (2014), emphasize spillovers

at different spatial scales, such that economic activity in one location may generate spillovers in

other locations. We now derive the optimal transfers in this case. To simplify the exposition, we

consider a special case of our model with homogeneous workers and constant-elasticity spillovers

in amenities. However, we now extend our model to allow for the efficiency of location j to be an

arbitrary function of the number of workers in every location: zj = zj
({
Lj′
})

. This formulation

accommodates a commonly used specification where spillovers decay with distance between spatial

units.32 We define the efficiency spillover elasticity across locations,

γP,j,j
′

=
∂zj′

∂Lj

Lj
zj′
, (27)

32For instance, this nests the formulation in Ahlfeldt et al. (2015) where zj′ =
(∑

j Lje
−δtjj′

)α
where tjj′ is travel

time between j and j′ and δ is a decay parameter.
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as the elasticity of the efficiency of workers at j′ with respect to the number of workers located in

j. Following similar steps to propositions 1 and 2, the optimal transfers now are:

tj =
γP,j,j + γA

1− γA
wj +

∑
j′ 6=j

γP,j,j
′

1− γA
Lj′wj′

Lj
+ T, (28)

where T is a constant that ensures goods market clearing. Hence we find that, as before, the

optimal transfers can be characterized as a function of spillover elasticities and outcomes such as

wages and employment, regardless of micro heterogeneity in fundamentals. In particular, non-

localized spillovers lead to the intuitive implication that the optimal transfers should be higher in

places that generate strong spillovers to larger locations, as measured by their total wage bill.

Preference Draws within Types A standard assumption in the urban economics literature is

that workers differ in their individual tastes for location. Our theory accommodates this margin,

as θ may index preferences. For example, two workers who are identical in every dimension except

for their preference for location can be represented as belonging to two different θ’s. However, for

broad definitions of the types (e.g., if θ defines high and low skill workers), preference heterogeneity

within types may be relevant.

This margin can be incorporated into our analysis. Letting Lθ index the set of type-θ workers,

the utility of a worker l ∈ Lθ is now uθjε
l
j , for uθj defined in (1). Now, εlj captures the worker’s

idiosyncratic preference for location j. We make the standard assumption that the preference draw

εlj of a type-θ worker is i.i.d. across workers and locations according to a Fréchet distribution,

Pr
(
εlj < x

)
= e−x

−1/σθ . The parameter σθ ∈ [0, 1] indexes workers’ immobility. The individual

preference draws are eliminated when σθ = 0, in which case we return to the original formulation

of the model. Under this assumption, every aspect of the model environment and competitive

allocation described in sections 3.1 and 3.2 remains unchanged except for the spatial mobility

constraint (10), which is is now replaced with the following labor-supply equation:

Lθj
Lθ

=

(
uθj
uθ

)1/σθ

. (29)

We can compute the optimal allocation and construct optimal policies using the same definition

of the planner’s problem as in 3.3, replacing constraint (10) with (29). In this formulation, the

planner still conditions outcomes on location j and type θ, but not on the individual preference

draws εθj . I.e., the planner’s objective function weighs symmetrically every individual within a

group, without knowledge of the draw received by each particular individual. Propositions 1 to 4

then go through with minor modifications. In particular, the optimal transfers shown in Proposition

2 take the same form as before, with only one difference: instead of γA,jθ,θ , the relevant amenity

spillover elasticity on the own type becomes γ̃A,jθ,θ ≡ γ
A,j
θ,θ − σθ.

Preference draws that are unobserved by the planner create a reason for intervention. Specif-
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ically, even without spillovers (γA,jθ′,θ = γP,jθ′,θ = 0), this force leads to a labor tax sθ = − σθ
1+σθ

< 0

coupled with a lump-sum subsidy T θ > 0, resulting in redistribution towards low-wage locations.

Hence, under σθ > 0, a utilitarian planner has incentives to redistribute income across cities for

reasons other than spillovers. These incentives arise because different individuals within a group θ

receive the same planner’s weight, but vary in their marginal utilities from expenditures in traded

and non-traded commodities depending on where they sort.33 In particular, individuals have higher

draws on average conditional on sorting into lower-wage locations, creating the incentive to redis-

tribute income towards low-wage locations.

Public Spending So far we have focused the spatial policies on pure transfers. However, place-

based policies often take the form of funding of government spending in public goods that are valued

by consumers and firms. Our previous results can be easily generalized to this case. Relative to the

previous framework we can allow for government spending valued by workers (GUj ) to enter as an

additional shifter in the amenity valuation for location j, aθj = aθj

(
GUj , L

1
j , .., L

Θ
j

)
, and government

spending in public goods that impact productivity (GYj ) to enter as an additional shifter in the

efficiency units of labor, Nj = Nj

(
GYj , z

1
jL

1
j , .., z

Θ
j L

Θ
j

)
. We can also allow for a production function

of public goods Gj = Gj

(
IGj , H

G
j

)
that takes as inputs the bundle of traded commodities (IGj )

and non-traded services (HG
j ). This formulation encompasses standard representations of public

spending, including classic studies such as Flatters et al. (1974) and recent quantitative analyses

such as Fajgelbaum et al. (2015).

Following the same steps as in Section 3.2, we define a decentralized allocation under the

assumption that, for any given Gj , the government uses inputs efficiently. Focusing for simplicity

on the case with a single type of worker, the efficiency condition (17) here becomes:

xj =

[(
1 + γA,G

) 1 + γP

1 + γA
+
εN,G
εN,L

]
wj −

1 + γA,G

1 + γA
E, (30)

where xj ≡ xPj + xGj is the sum of public and private expenditure per capita. In addition to the

standard spillover elasticities, (30) includes the elasticities of labor efficiency Nj with respect to

government spending (εN,G) and the services of labor (εN,L), as well as the elasticity of amenities

with respect to spending (γA,G), all of which are here assumed to be constant. Therefore, here too

we obtain that a simple linear relationship between total expenditure per capita and wages must

hold in an efficient allocation. In addition to this necessary condition, efficiency now also requires

an optimal breakdown of total expenditure into its private and public components:

xGj = γA,GxPj +
εN,G
εN,L

wj . (31)

33More precisely, the conditional distributions of εlj are not the same across locations after sorting:
Pr
[
εlj < x | j=arg maxj′u

θ
j′ε

l
j′
]

will vary by j. Shourideh and Hosseini (2018) study optimal redistribution when
workers have idiosyncratic utility shocks for working in different sectors in a small open economy.
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The efficiency conditions (30) and (31) can be implemented as before through a policy scheme

of the form (s, T ), now coupled with inter-governmental transfers. Importantly, under any such

scheme, the optimal subsidy s remains the same as in the absence of public spending, as implied

by (22). The investment in public goods does not modify the planner’s incentives to assign workers

according to the trade-off between marginal product and private expenditure cost. As a result, the

same labor subsidy s derived before targets the spillovers. Simultaneously, the optimal government

expenditure in j is attained by an inter-governmental grant equal to xGj Lj . Hence, as long as

transfers across regions are flexible, bringing in government spending to the picture does not change

the optimal spatial policy designed to deal with the spillovers.

4.5 Quantitative Implementation

We now return to the main model and show how to bring it to the data. First, we impose the

functional-form assumptions that will be used in the quantitative implementation. Second, under

those functional forms, we identify conditions that guarantee concavity of the planner’s problem

and, in the light of Proposition 1, uniqueness of the competitive allocation under the optimal spatial

policies. Then, we identify a set of data that suffices to identify the fundamentals of the model and

compute the allocation under the optimal spatial policies.

Functional Forms On the demand side, we assume that preferences for traded and non-traded

goods are Cobb-Douglas:

U (c, h) = cαCh1−αC , (32)

while the aggregator of traded commodities is CES,

Q (Q1i, .., QJi) =

(∑
i

Q
σ−1
σ

ji

) σ
σ−1

, (33)

where σ > 0 is the elasticity of substitution across products from different origins.

On the supply side, the production functions of traded and non-traded goods are Cobb-Douglas

in labor and intermediate inputs:

Yj
(
NY
j , I

Y
j

)
= zYj

(
NY
j

)1−bIY,j (IYj )bIY,j , (34)

Hj

(
NH
j , I

H
j

)
= zHj

((
NH
j

)1−bIH,j (IHj )bIH,j) 1
1+dH,j

, (35)

where dH,j ≥ 0 and
{
zYj , z

H
j

}
are TFP shifters. We note that traded goods are produced under

constant returns to scale, but we allow for decreasing returns in the housing sector. In particular,

the coefficient dH,j plays the role of the inverse housing supply elasticity of location j, and is allowed

to vary across regions.34

34I.e., optimization of producers of non-traded goods implies that housing supply is lnHj ∝ 1
dH,j

lnRj .
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The aggregator of labor types is CES,

Nj

(
z1
jL

1
j .., , z

Θ
j L

Θ
j

)
=

[∑
θ

(
zθjL

θ
j

)ρ] 1
ρ

, (36)

where 1
1−ρ > 0 is the elasticity of substitution across types of workers.

Finally, we impose constant-elasticity forms for the spillovers:

zθj
(
L1
j , .., L

Θ
j

)
= Zθj

∏
θ′

(
Lθ
′
j

)γP
θ′,θ

, (37)

aθj
(
L1
j , .., L

Θ
j

)
≡ Aθj

∏
θ′

(
Lθ
′
j

)γA
θ′,θ

. (38)

These functional forms are consistent with studies that estimate spillover elasticities, allowing us

to draw from existing estimates. The Zθj capture exogenous comparative advantages in produc-

tion across types and Aθj capture preferences for location across types. We refer to
{
Zθj , A

θ
j

}
as

fundamental components of productivity or amenities in location j.

Concavity Condition To ease the notation, we introduce the following composite elasticities of

efficiency and congestion spillovers:

ΓP = max
θ

{∑
θ′

γPθ′,θ

}
,

ΓA = min
θ

{
−
∑
θ′

γAθ′,θ

}
.

Also, we let D = minj {dH,j} be the lowest inverse elasticity of housing supply. Under the functional

form assumptions (32) to (38) we have the following property.

Proposition 3. The planning problem is concave if

ΓA > ΓP , (39)

ΓA ≥ 0 and γAθ,θ′ > 0 for θ 6= θ′. Under a single worker type (Θ = 1), the planning problem is

quasi-concave if:

1− γA >
(
1 + γP

)(1− αC
1 +D

+ αC

)
. (40)

Condition (39) ensures that congestion forces are at least as large as agglomeration forces.

Specifically, the congestion from the type that generates the weakest congestion, measured by ΓA,

dominates the agglomeration from the type that generates the strongest agglomeration, measured

by ΓP . Condition (39) may also apply when there is a single type, in which case it simplifies to

−γA > γP . With a single type, further assuming Cobb-Douglas preferences over traded and non-
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traded goods we obtain the weaker restriction (40). These cases apply to the economic-geography

models we reviewed in the introduction, which typically assume a single worker type.35

Proposition 3 establishes conditions under which the market allocation is unique given the

optimal spatial policies. It extends existing uniqueness results in two dimensions. First, we com-

plement results that characterize uniqueness of the spatial equilibrium under no policy intervention

and trade balance (Allen et al., 2014). Second, our result holds in a context with heterogeneous

workers and cross-groups spillovers. We note that our uniqueness condition applies under the opti-

mal expenditure distribution. Multiplicity is still possible under sub-optimal policies or no policy

intervention, but this poses no limitation for our approach.

Implementation in Changes and Data Requirements We bring the model to the data

by assuming that the observed allocation is generated by a decentralized equilibrium consistent

with Definition 1 under the functional form assumptions (32) to (38). To compute the optimal

allocation, we solve for a planner’s problem that optimizes over the the expenditure of each type of

worker relative to the observed equilibrium, x̂θj , as well as over the remaining endogenous variables{
P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

relative to the observed equilibrium.36 The planner controls these

variables to maximize the welfare of one arbitrarily chosen group, ûθ, relative to the observed

allocation, subject to lower bounds for the welfare changes of the remaining groups. We can then

trace the utility frontier by solving the problem under different lower bounds for the remaining

groups.

The solution to this problem in changes is equivalent to the solution to the problem in levels

from Section (3.3), assuming that the same parameters and fundamentals underlie the observed

equilibrium and the planning problem in levels. In the spirit of Dekle et al. (2008), as shown in

Section A.7, this strategy allows us to identify the data that is sufficient to back out fundamentals

and solve for the optimal allocation, as stated in the following proposition.

Proposition 4. Assume that the observed data is generated by a competitive equilibrium consistent

with Definition 1 under the functional forms (32) to (38). Then, relative to the initial equilibrium,

the optimal allocation can be fully characterized as function of:

i) the distributions of wages, employment and expenditures across labor types and locations;

ii) the distribution of bilateral import and export shares across locations;

iii) the utility and production function parameters
{
αC , σ, ρ, b

I
Y,j , b

I
H,j , dH,j

}
; and

iv) the spillover elasticities
{
γAθ′,θ, γ

P
θ′,θ

}
.

35The CES restriction (33) on the aggregator of trade flows Q (· ) is not needed for any of these results. Therefore,
these condition holds regardless of product differentiation across locations. We also note that these conditions are
sufficient but not necessary for uniqueness.

36As shown in Appendix A.7, given an arbitrary change in expenditure per capita
{
x̂θj

}
, an equilibrium in changes

relative to the observed allocation consists of
{
P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

such that the system of equations (A.51)

to (A.60) hold.
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The proposition establishes data requirements that are sufficient, in the light of our model, to

characterize the optimal allocation. In particular, it is sufficient to observe the data in i) and ii)

and the elasticities in iii) and iv).

Importantly, this implementation does not impose restrictions on the distributional policies

across locations in the observed equilibrium. These policies, entering the model through the trans-

fers tθj defined in (15), manifest themselves empirically through the expenditure distribution xθj .

As a result, we do not impose that the observed allocation is inefficient: the efficiency of the ob-

served allocation depends on whether the distribution of expenditures lines up with condition (17)

in Proposition 1. It could be that the empirical relationship between expenditures, wages and

employment is not far from that relationship, in which case our implementation of the planner’s

problem would predict small welfare gains from implementing optimal policies.

We also highlight that, by following this approach, we ensure that the model is initially

parametrized in a way that exactly matches the observed outcomes enumerated in items i) and

ii) of the proposition. In particular, the fundamentals
{
Zθj , A

θ
j

}
, TFP shifters

{
zYj , z

H
j

}
, and bi-

lateral trade costs {dij} are chosen such that the equilibrium from Definition 1 generates these

outcomes.

5 Data and Calibration

To take the model to the data, we use as an empirical setting the distribution of economic

activity across Metropolitan Statistical Areas (MSAs) in the United States in the year 2007. We

focus on the spatial allocation of two skill groups, high skill (college) and low skill (non college)

workers. In section 5.1 we first describe the data sources used to fulfill the data requirements in

points i) and ii) of Proposition 4. Then, in Section 5.2 we describe the strategy to set the parameters

required in points iii) and iv) of the proposition. The broad steps are described here while more

details are given in Appendix B. We conclude with basic stylized facts that set the stage for the

quantitative analysis in the next section.

5.1 Data

As established in point i) of Proposition 4, we need data on income and expenditures by group

and MSA. To that end, we rely on the BEA’s Regional Accounts, which report labor income, capital

income and welfare transfers by MSA. A complementary BEA dataset for the years 2000 to 2007

reports total taxes paid by individuals and MSA (Dunbar, 2009). Taken together, these sources

give us a dataset at the MSA level. We then apportion each of these MSA-level totals into two

labor groups: high skill, defined as workers who have completed at least four years of college, and

low skill, defined as every other working age individual. To implement this apportionment, we use

shares of labor income, capital income, taxes and transfers corresponding to each group in each

MSA from the March supplement of the Current Population Survey (IPUMS-CPS, Flood et al.,

2017) collected by the Census. Since the March CPS supplement is not available for the smallest
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MSAs, our dataset covers 245 MSAs in the continental US.37

An important concern when measuring these variables is that the model does not include het-

erogeneity across individuals within each group of skill θ, whereas in reality these groups are het-

erogeneous across cities. If we did not control for this heterogeneity, our procedure to implement

the model would interpret the observed variation in net individual transfers across MSAs within a

group as place-based transfers, when they reflect, in part, differences in the types of workers within

each group across MSAs. In principle, this concern can be mitigated by allowing for several θ

groups corresponding to the fine individual characteristics observed in the CPS. While potentially

feasible, such an approach would increase the dimension of the problem and the number of elastic-

ities to calibrate. Alternatively, we choose to purge the observed measures of income, expenditure,

taxes and transfers by skill and MSA from compositional effects using a set of socio-demographic

controls at the MSA-group level built from individual level Census data (IPUMS) on age, educa-

tional attainment, sector of activity, race, and labor force participation status of individuals in a

given MSA-group. In the quantification we then use measures of income, expenditures, taxes and

transfers that are net of variation in socio-demographic composition within groups across MSAs.38

We discuss the details of this step in Appendix B.

We use the variables above to construct expenditure per capita, xθi , using its definition (15) as

labor plus capital income net of taxes and transfers, which also corresponds to the BEA’s definition

of disposable income. In the model we assume no variation in capital income across cities for each

type. Therefore, we use a group-specific measure of capital income consistent with the fact that

59% of non-labor income is owned by high skill workers according to the BEA/CPS data.39

As implied by ii) of Proposition 4, quantifying the model also requires data on trade flows

between MSAs. The Commodity Flow Survey (CFS) reports the flow of manufacturing goods

shipped between CFS zones in the US every five years. The CFS zones correspond to larger

geographic units than our unit of observation, the MSA. To overcome this data limitation, we adapt

the approach in Allen and Arkolakis (2014) and Monte et al. (2015), who use estimates of trade

frictions as function of geography to project CFS-level flows to the MSA level. In our context, we

use the gravity equation predicted by the model to find the unique estimates of trade flows between

MSAs that are consistent with actual distance between MSAs, existing estimates of trade frictions

with respect to distance, and observed trade imbalances, computed as the difference between income

in the traded sector and expenditure on traded goods (for both final and intermediate use) in each

MSA.

Finally, to calibrate the labor shares in production in part iii) of Proposition 4, we use CPS

data on employment in traded and non-traded sectors by MSA.40 We also adjust this measure to

37These areas correspond to 97% of the population and 98% of income of all US urban areas. Urban areas in the
US in turn cover 83% of the population, and 87% of personal income.

38Following this procedure, we have a dataset of 225 MSAs for which information on socio-demographic charac-
teristic is available.

39This step involves setting a national share of profits in GDP consistent with the general equilibrium of the model.
See Appendix B for details.

40We define employment in the following NAICS sectors as corresponding to the non-traded sector in the model:
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remove variation from compositional effects following a similar approach to the one described above

for income, expenditure, taxes and transfers.

5.2 Calibration with Heterogeneous Workers

Our model is consistent with Diamond (2016) and generates similar estimating equations to

those used in her analysis. We use the same definition of geographic units (MSA) and skill groups

(College and Non College), and we rely on similar data sources for quantification. Therefore, her

estimates constitute a natural benchmark to parametrize the model. In what follows, we discuss

these elasticities and several alternative specifications that are also used in the quantitative section.

Utility and Production Function Parameters
{
αC , σ, ρ, b

I
Y,j , b

I
H,j , dH,j

}
We use the Dia-

mond (2016) estimate of the Cobb-Douglas share of traded goods in expenditure (αC = 0.38),

of the inverse housing supply elasticity (dH,j in (35)) for each MSA,41 and of the elasticity of

substitution between high and low skill, estimated at 1.6 and implying ρ = 0.392.

We calibrate the Cobb-Douglas share of intermediates in traded good production (bIY,j = 0.468

for all j in (34)) using the share of material intermediates in all private good industries production

in 2007 from the U.S. KLEMS data. Having calibrated the previous parameters, the Cobb-Douglas

share of labor in non-traded production in each city (1− bH,j in (35)) can be chosen to match the

share of workers in the non-traded sector of each MSA, as detailed in Section B.2. We assume an

elasticity of substitution σ among traded varieties in (33) equal to 5, corresponding to a central

value of the estimates reported by Head and Mayer (2014).

Efficiency Spillovers
{
γPθ′,θ

}
Previous empirical studies, such as Ciccone and Hall (1996),

Combes et al. (2008), and Kline and Moretti (2014a), estimate elasticities of labor productiv-

ity with respect to employment density. Across specifications, these studies find elasticities in the

range of (0.02, 0.2).42 Hence, we set a a properly weighted average of the elasticities γPθ′,θ, cor-

responding to what the empirical specifications of these previous studies would recover in data

generated by our model, to match the benchmark value for the U.S. economy of 0.06 from Ciccone

and Hall (1996). In addition, Diamond (2016) estimates an elasticity of MSA wages with respect

to population by skill group. As detailed in Appendix B.2, under the previous normalization, these

estimates can be mapped to the relative values of our γPθ,θ′ parameters using the wage equation (13)

and the elasticity of substitution between skilled and unskilled workers ρ.

This approach has the advantage of preserving an aggregate elasticity of labor productivity

with respect to density that is consistent with standard estimates from the literature, as well as

heterogeneity in spillover elasticities across skill types that is consistent with Diamond (2016). As

a result we obtain
(
γPUU , γ

P
SU , γ

P
US , γ

P
SS

)
= (.003, .044, .02, .053). These parameters imply stronger

retail, real estate, construction, education, health, entertainment, hotels and restaurants.
41For MSAs that we cannot match to Diamond (2016) we use the average housing supply elasticity across MSAs.
42Most of the related studies reviewed by Combes and Gobillon (2015) and Melo et al. (2009) also fall in this

range.
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efficiency spillovers generated by high skill workers, and close to zero spillovers from low skill

workers.

Amenity Spillovers
{
γAθ′,θ

}
Diamond (2016) estimates elasticities of labor supply by skill group

with respect to real wages and with respect to an amenity index that summarizes forces such

as congestion in transport, crime, environmental indicators, supply per capita of different public

services, and variety of retail stores. She estimates a positive elasticity for the the supply of this

MSA level amenity index with respect to the relative supply of college workers, as well as a higher

marginal valuation for these amenities for college than for non-college workers. As detailed in

Appendix B.2, we can directly map her estimates to both the level and distribution of our amenity

spillovers γAθ′,θ using the labor-supply equation implied by the spatial mobility constraint (10). As a

result we obtain
(
γAUU , γ

A
SU , γ

A
US , γ

A
SS

)
= (−.43, .18, −1.24, .77).43 These parameters imply positive

amenity spillovers generated by high skill workers, and negative spillovers generated by low skill

workers.44

Alternative Parametrizations of the Spillover Elasticities We implement all our coun-

terfactuals under different parametrizations of the spillover elasticities. The alternatives deviate

from the benchmark described so far in terms of the efficiency or amenity spillover elasticities.

In particular, we implement the model under: i) a more conservative parametrization that scales

down the amenity spillover elasticities γAθ,θ′ by 50% (referred to as the “Low amenity spillover”

parametrization); ii) mappings of the amenity spillovers γAθ,θ′ assuming values of the elasticity of

city amenities to the share of college workers that are either one standard deviation above or be-

low Diamond (2016) point estimates (referred to “High cross amenity spillover” and “Low cross

amenity spillover” parametrizations, respectively); and iii) a less conservative parametrization that

scales up the efficiency spillover elasticities γPθ,θ′ to 0.12, i.e., twice the benchmark of 0.06 from

Ciccone and Hall (1996) (referred to “High efficiency spillover” parametrization). The values of

these alternative parametrizations are reported in Appendix B.2.

5.3 Calibration with Homogeneous Workers

We will start the quantitative section with a special version of our model that assumes a single

worker type. Proposition 4 establishes the data requirements of that restricted model as well. To

43If our model was specified with Fréchet-distributed idiosyncratic preference draws for MSAs across individu-
als within types, as discussed in Section 4.4, the welfare-relevant coefficient γ̃Aθ,θ derived in that section would be
parametrized to be the same as γAθ,θ in a specification without preference draws. Therefore, given the definition of
the planner’s problem in Section 4.4, whether or not idiosyncratic preference draws are included in our model does
not matter for the quantification, once we condition on the moments from the data reported by Diamond (2016). See
Appendix B.2 for details.

44At these values, all but one of the concavity conditions implied by Proposition 3 are satisfied. Specifically,
the conditions that ΓA > ΓP , ΓA > 0, and γPθ,θ′ > 0 for θ 6= θ′ are all satisfied, as well as the condition that

γASU > 0. However, our parametrization sets γAUS < 0. In principle, therefore, concavity of the planner’s problem
is not guaranteed. However, in the quantitative exercise we check for the possibility of multiple local maxima by
repeating the welfare maximization algorithm starting from 100 spatial allocations taken at random. Reassuringly,
we fail to find any alternative local maximum.
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implement that version, we use the aggregate MSA-level variables constructed above. To determine

the spillover elasticities, we compute one-group elasticities that are consistent with the two-groups

spillovers parametrized in the previous section. Specifically, we set one-group elasticities
(
γA, γP

)
to the value that would be estimated through the lens of the labor supply and demand equations

of the single-group model, if one were to use an MSA-level dataset generated by the model with

heterogeneous groups and elasticities
{
γPθ′,θ

}
and

{
γPθ′,θ

}
calibrated above. This procedure by

construction delivers γP = 0.06, equal to the value drawn from Ciccone and Hall (1996). The last

subsection of Appendix B.2 shows that this procedure delivers an aggregate amenity elasticity of

γA = −0.19.

5.4 Stylized Facts

Figure 1 revisits standard stylized facts on spatial disparities and sorting in the data, as well

as a relatively less known fact on the spatial structure of trade imbalances. These facts will serve

as a benchmark to evaluate the impact of optimal spatial policies.

Panels A to C show the standard facts about spatial disparities and sorting as function of city

size, or “urban premia”. Panel A documents the urban wage premium, defined as the increase in

average nominal wages with city size. The elasticity of wages to city size is 7.4%. Panel B shows

spatial sorting, in terms of the share of high-skill workers. The semi-elasticity of the share of high

skill workers with respect to city size is 2.2%. I.e., doubling population increases the skill share by

2.2 percentage points.45 Panel C shows the urban skill premium, defined as the increase in the ratio

of high- to low-skill wage as city size increases. The slope of 0.11 means that larger cities feature

a more unequal nominal wage distribution. The first fact suggests differences in productivity and

cost of living across cities, while the last two suggest complementarities between city size and skill.

Panel D shows a somewhat less known fact, the relationship between city size and net imbal-

ances. For each city we construct the net imbalance as the difference between expenditures and

total income (from labor and non-labor sources). The graph shows net imbalance relative to la-

bor income at the MSA level across MSAs. Given our construction of the expenditure variable,

these differences in imbalances across cities result purely from the government policies that we

measure (taxes and transfers). The negative slope reflects that government policies redistribute in-

come from larger, high wage, high skill cities to smaller, low wage, low skill cities. These transfers

are net of compositional effects according to detailed demographic characteristics in IPUMS, as

mentioned above. Therefore, distributive government policies that vary with these characteristics

across individuals do not underlie these patterns across cities.

45This spatial sorting has been increasing over time. Cities with initially higher shares of high skill workers have
seen that increase. This trend, often referred to as “Great Divergence”, is at the heart of the analyses of Moretti
(2013) and Diamond (2016) on real wage inequality.
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Figure 1: Urban Premia

(a) Urban Wage Premium (b) Sorting

(c) Urban Skill Premium (d) Imbalances

Note: each figure shows data across MSAs. All the city level outcomes reported on the vertical axis are adjusted by
socio-demographic characteristics of each city, as detailed in Appendix B.1.

6 Optimal Spatial Policies in the U.S. Economy

We now inspect the optimal spatial policies using the parametrized model. To tease out the

role of skill heterogeneity in driving results, we first solve for the optimal allocation in a version

of the model that assumes homogeneous workers. Then, we move to the main case with skilled

and unskilled workers. As a final exercise, to understand which key elasticity drive our results, we

use the model to infer what spillover elasticities would rationalize the observed data as an efficient

equilibrium, and compare them to our benchmark calibration.
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6.1 Homogeneous Workers

We first solve the planner’s problem in relative changes described in Section 4.5 assuming that

the economy is populated by a homogeneous group of workers, under the parametrization described

in Section 5.3. In this case the welfare gains from implementing the optimal allocation are negligible,

equal to 0.06%.46

Why are the gains from optimal spatial policies with homogeneous workers tiny? This result

follows from the optimal transfers being close to the measured ones. Figure A.1 in Appendix C

shows transfers relative to wages across MSAs in the optimal allocation and in the data. As implied

by our discussion in Section 4.2, under homogeneous workers the optimal net transfer per worker

relative to the wage in city j takes the form
tj
wj

= s+ T
wj

for s = γP+γA

1−γA . The figure shows that the

best empirical fit to this relationship is quite close to the optimal.

We can also demonstrate that this result is not a feature of our model but a feature of the data.

Varying the productivity and amenity spillover elasticities
(
γA, γP

)
over a range from 0 to 4 times

their baseline values, the welfare gains from optimal reallocations are below 0.2%. If we instead

randomly modify the observed net transfers relative to wages keeping their mean and variance at

the level in the data, the welfare gains vary between 0.02% and 0.5%.47 Perturbing the data in

other dimensions leads to even larger welfare gains. We simulate data corresponding to equilibria

without government policies under counterfactual vectors of exogenous fundamentals such that the

variance of wages across MSAs is larger than in the observed U.S. data equilibrium. Figure A.2 in

Appendix C shows that the welfare gains can be substantial given artificial data with high wage

dispersion.

Hence, through the lens of a model with homogeneous workers, the observed spatial allocation

and transfers in the U.S. economy seem to be close to efficient. However, the model does not deliver

small gains by design, as larger gains are possible under counterfactual configurations of transfers

or the fundamentals.

6.2 Heterogenous Workers

We now explore the implications of optimal spatial policies using the full model with two groups

of workers, skilled (S) and unskilled (U). Here again we solve the planner’s problem in changes

relative to the observed equilibrium. Specifically, we solve the problem of maximizing the change in

utility of skilled workers, ûS , subject to a lower bound for the change in utility of unskilled worker,

ûU . Varying this lower bound allows us to trace the Pareto frontier.

Aggregate Welfare Gains The left panel of Figure 2 shows the utility frontier of the U.S.

economy in the benchmark parametrization, expressed in changes relative to the observed equilib-

46Eeckhout and Guner (2017) also find very small welfare gains in a numerical optimization over the income tax
schedule.

47Specifically, we compute the welfare gains for 100 random draws of the distribution of transfer rates (xi − wi) /wi
across cities, where the draws are taken from a normal distribution that matches the mean and variance of the
distribution of transfer rates in the data.
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Figure 2: Utility Frontier of the U.S. Economy between High and Low Skill Workers

(a) Benchmark (b) Alternative Parametrizations

The figure shows the optimal welfare changes
(
ûL, ûH

)
between the optimal and observed allocation, corresponding

to the solution of the planner’s problem in relative changes described in Appendix A.7. Each point corresponds to
a maximization of ûH subject to a different lower bound on ûL. The benchmark parametrization on the left panel
corresponds to the black line on the right panel. The circles in the right panel represent intersections with the 45
degree line where the welfare of skilled and unskilled workers increase by the same amount.

rium. The point (1,1) represented with a red diamond corresponds to allocations where the welfare

of skilled and unskilled workers is unchanged compared to the calibrated equilibrium. When the

welfare gain of unskilled and skilled workers is restricted to be the same, optimal transfers lead to

a 5.5% welfare gain for both types of workers. When only the welfare of one group is maximized

subject to a constant level of welfare for the other group, we find gains of 12.9% for high skill

workers and of 9.5% for low skill workers.

The right panel of Figure 2 shows the utility frontier under each of the alternative parametriza-

tions discussed at the bottom of Section 5.2, including the benchmark. Under these parametriza-

Table 1: Welfare gains under different levels of the spillovers

Spillovers Welfare Gain (%)

Benchmark 5.5
High efficiency spillover 5.9
Low amenity spillover 3.6

High cross-amenity spillover 7.8
Low cross-amenity spillover 4.0

The table reports the common welfare gains for skilled and unskilled workers under alternative parametrizations
described in Section 5.2. The second row corresponds to γPθ′θ that are twice as large as in the benchmark. The third
row corresponds to γAθ′,θ that are 50% lower than the benchmark. The last two rows correspond to configurations
that assume higher or lower cross-amenity spillovers corresponding to the plus or less one standard deviation of the
estimates in Diamond (2016). See appendix B.2 for details on these parametrizations.
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tions, the frontier shifts up and down with little change in its slope. The welfare gains from im-

plementing optimal policies are larger in the two frontiers in red, corresponding to high efficiency

spillovers and high amenity spillovers across workers. The gains are lower under low amenity

spillovers. Table 1 shows the welfare gains corresponding to the points at the intersection between

these frontiers and the 45 degree line, such that skilled and unskilled workers gain the same. Across

these specifications, the common welfare gains range from roughly 4% to 8%. Lowering the amenity

spillover by 50% brings the common welfare gain down to 3.6%, while multiplying the efficiency

spillovers by 2 increases the gain to 5.9%. Hence, in contrast to the one-group case, we now find

sizable welfare gains from the optimal spatial reallocation.

Actual versus Optimal Transfers The optimal allocation is implemented through net transfers

by worker type and city. How does the optimal spatial redistribution implied by the quantified

model compare to the data? To guide the answer to this question we can return to the optimal

policies. Let tθj be the optimal transfers received by type θ according to (20) in Proposition 2.

Figure 3 shows the net transfers per capita relative to (gross) wages tθj/w
θ
j by MSA and worker

type on the vertical axis, against the average wage wθj of each MSA in both the data (blue circles)

and the optimal allocation (red diamonds), for low skill workers (hollow markers) and high skill

workers (solid markers). The optimal allocation corresponds to the point on the Pareto frontier in

the left panel of Figure 2 where welfare gains are equal for both types of workers.

The transfers in the data present a clear pattern of redistribution from high skill workers and

high-wage cities towards low skill workers and low-wage cities. Net average transfers are positive

for low skill workers and negative for high skill workers in most MSAs. Within skill groups, net

transfers decrease with the average wage of the MSA.48 The observations in red show the efficient

allocation, which satisfies the optimality condition from Proposition 1. Across cities, the optimal

transfers relative to labor income decrease more steeply with wages than in the data for both labor

types, implying a stronger redistribution towards low-wage cities than what is observed empirically.

Moreover, this increase in redistribution is sharper for high-skill workers, as seen in the greater

difference between the slopes in the data and in the optimal allocation for that group.

The optimal transfers are implemented with a labor tax (a negative subsidy, sθj < 0) for both

groups, coupled with lump-sum transfers T θ. Moreover, the tax is higher in larger, high-wage

cities. To understand the source of this spatial variation, we return to the expression for optimal

subsidies (21). The first term of (21) is driven by own spillovers, while the second term is shaped

by cross spillovers. In our parametrization of spillovers for low skill workers, both of these terms are

negative. The negative cross-spillovers through amenities lead to the higher tax of low skill workers

in large, high-wage cities where a larger share of expenditures accrues to high skill workers. The

logic that rationalizes a higher labor tax in high-wage cities is different for high skill workers. In

48On average across MSAs, they equal 1.9 thousand dollars for low-skill workers, or 13% of their average wage.
For high skill workers, the corresponding numbers are -3 thousand dollars or -7% of the average wage. In cities where
high skill workers earn on average more than $50k per year, net transfers of high skill workers are -6.9 thousand
dollars or -12% of wages.
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Figure 3: Per Capita Transfers by Skill Level and MSA, Data and Optimal Allocation

Note: each point in the figure corresponds to an MSA-skill group combination. The vertical axis show the difference
between average expenditure and wage relative to wage and the horizontal axis shows the average wage. For details
of how the data is constructed see Appendix B. The slopes of each linear fit (with SE) are: Low Skill, Data: -0.02
(0.001); Low Skill, Optimum: -0.052 (0.005); High Skill, Data: -0.003 (0.0004); High Skill, Optimum: -0.05 (0.001).
The figure corresponds to planner’s weights such that both types of workers experience the same welfare gain in
Figure 2.

our parametrization, high skill workers generate positive own spillovers. According to the first term

in (21), these positive spillovers would call for a labor income subsidy. However, this force is more

than offset by strong positive cross spillovers onto low skill workers. A higher tax in high-wage

cities directs skilled workers into small, low-wage cities where low skill workers are relatively more

prevalent.49

Optimal Reallocation and Sorting The optimal transfers change the spatial distribution of

economic activity compared to the data. By changing the location incentives of workers, they

affect spatial sorting and the city size distribution. These reallocations in turn impact the spatial

distributions of labor productivity and wages through agglomeration spillovers, and the distribution

of urban amenities through amenity spillovers. These effects feed back to location choices, changing

the spatial pattern of skill premia and inequality. We now describe the spatial equilibrium resulting

from this process.

Figure 4 shows the pattern of reallocation. Panel (a) shows the initial total population of

49Figure A.3 in Appendix C replicates the figure for alternative Pareto weights for high and low skill workers. The
main impact of a different Pareto weight is to shift the transfer schedules up and down depending on the Planner’s
preference for each group, without changing the qualitative patterns we have discussed.
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Figure 4: Changes in Population, Skill Shares, and Skill Premium across MSAs

(a) Change in Total Population (b) Change in Population by Skill Group

(c) Histogram of High-Skill Shares across MSAs (d) Change in Skill Premium

Note: Panel (a) shows the change in population between the optimal allocation and the initially observed equilibrium
and the linear fit. Slope (SE): -0.19 (0.04); Rˆ2=0.1. Panel (b) displays the same outcomes for high and low skill
workers. Slopes (with SE): High Skill: -0.22 (0.03); Low Skill: -0.11 (0.03). Panel (d) displays in the vertical axis
the difference in the skill premium between the optimal and initial allocation. Slope (SE): -0.25 (0.04). The figures
correspond to planner’s weights such that both types of workers experience the same welfare gain in Figure 2.

each MSA on the horizontal axis and the percentage change in population implied by the optimal

allocation on the vertical axis, defined as L̂j − 1. The stronger redistribution to low-wage locations

discussed in the previous section implies that, on average, there is reallocation from large to small

cities. However, there is also considerable heterogeneity in growth rates over the size distribution,

including middle- and small-MSAs that shrink alongside large MSA’s that grow. In other words,

due to the multiple sources of spatial heterogeneity and spillovers, initial city size is a poor predictor

of whether a city is too large or too small in the observed allocation (the R2 of the linear regression

is 10%). Panel (b) shows the same figure within skill groups alongside the linear fit from Panel

(a). The sharper increase in tax progressivity for high skill workers implies that the reallocations
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towards initially smaller places is also stronger within that group.

These differential patterns of reallocation by skill lead to less segregation of worker by skill

across cities. Panel (c) shows the histogram of skill shares across MSAs in the initial and optimal

allocation, implying a concentration of skill shares. An additional implication of these reallocations,

shown in panel (d), is that the skill premium tends to decrease in cities that are initially more

unequal. The loss of agglomeration spillovers in productivity among high skill workers implies that

the optimal spatial transfers reduce inequality within cities that are more unequal in the observed

allocation.

Figure 5: Urban Premia, Data and Optimal Allocation

(a) Urban Wage Premium (b) Sorting

(c) Urban Skill Premium (d) Imbalances

Note: each panel reports outcomes across MSAs in the data and in the optimal allocation. Each linked pair of
observations corresponds to the same MSA.
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The Urban Premia in the Optimal Allocation We now revisit the stylized facts about urban

premia presented in Section 5. Figure 5 reproduces Figure 1. Each pair of linked observations

corresponds to the same MSA, in the data and in the optimal allocation. As expected from the

previous discussion, the optimal allocation features a higher absolute value of the imbalances at

the city level (panel (d)), since redistribution to smaller MSAs is stronger in the optimal allocation

than in the data. The optimal allocation features more mixing of high and low skills in large cities

(panel (b)), resulting from the larger increase in implicit taxes for high skill workers than for low

skill workers discussed above. The urban skill premium vanishes (panel (c)), implying that the

sorting pattern from panel (b) ends up being detached from the urban skill premium. Instead, it

is driven by stronger preferences for urban amenities among high skill workers. As seen in panel

(a), the wage premium in the large cities is still noticeable, but lower than in the data. It is driven

by an average productivity advantage across both skill groups in larger cities, rather than by a

relatively higher productivity of high-skill workers in these places.

In addition to the average patterns of urban premia, these figures also demonstrate the rich

patterns of optimal reallocation resulting from heterogeneity in the many different fundamentals

across cities. In panels (b) and (d) we encounter cities that may either increase or decrease their

share of high skill workers and skill premium conditional on either growing or shrinking in size.

In particular, some of the smallest cities in the optimal allocation are also relatively small in the

initial allocation, and they shrink along with a reduction in the skill share. Similarly, we can find

that some initially large cities should grow even more and increase their skill share. Therefore, our

model does not predict that all currently small cities should grow and increase their skill share at

the expense of large cities.

6.3 Optimal Urban Premia under Alternative Parametrizations

Pareto Weights Throughout our discussion in the previous section we compared the data to an

optimal allocation corresponding to the same welfare gains to all workers (i.e., the welfare gains(
ûU , ûS

)
= (1.05, 1.05) in Figure 2). Different planner’s weights are implemented through the

lump-sum transfers across types, which turn out to have little effect on the optimal urban premia.

To highlight this property, Figure A.4 in Appendix C shows the same outcomes as in Figure 5 but

assuming planner weights that are either 10 times larger for high skill workers (case labeled “low

weight on U”) or 10 times larger for low skill workers (case labeled “high weight on U”). As we

should expect, the optimal welfare changes relative to the observed allocation under these weights

are different from the benchmark case. However, we find similar patterns of optimal urban premia.

Amenity and Efficiency Spillover Elasticities We revisit the main results on spatial real-

location under different values of the spillovers. In particular we consider two of the alternative

parametrizations from Table 1: low amenity spillovers, where γAθ,θ′ is 50% below the benchmark

parametrization; and high efficiency spillover, where we set the efficiency spillovers γPθ,θ′ to twice

the benchmark. Figure A.5 replicates the optimal patterns of urban premia from Figure 5 under
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the benchmark and under these alternative parametrizations. The key qualitative patterns of op-

timal reallocation and spatial premia discussed in the benchmark are similarly present under these

alternative parametrizations.

6.4 Contrast of the Results under Homogeneous and Heterogeneous Workers

Why are the welfare gains so much larger under multiple worker types relative to a single

worker type? To answer this question, we note that the quantification with heterogeneous workers

would deliver the exact same MSA-level outcomes and welfare gains (common to all workers)

as the quantification with homogeneous workers if, under heterogeneous workers: (i) the data

exhibited no spatial sorting by skill (a constant share of workers of type θ over space), no urban

skill premium (a constant skill wage premium wSj /w
U
j over space), and no relative differences in

expenditures (a constant expenditure ratio xSi /x
U
i over space); (ii) high and low skill workers were

perfectly substitutable in production (ρ = 1); and (iii) spillovers across types were absent, with

own spillovers equal to the calibration in the one-group case, i.e.: γAθ,θ′ = γPθ,θ′ = 0 if θ 6= θ′,

γAθ,θ = γA, and γPθ,θ = γP . We can investigate the role played by different forces by releasing each

of the restrictions (i)-(iii). As we do so, we move from a “one-group calibration” of the model with

heterogeneous workers to the full two-groups case calibration we have previously implemented.50

Table 2 reports the results. Each of the columns allows for a different relaxation of (i), (ii), or

(iii). The first row corresponds to the welfare gain under homogeneous workers reported in Section

6.1, and the last row corresponds to the welfare gains from model with heterogeneous workers in

Section 6.2, when the gains are common to all workers.

Starting from a case with perfect substitution across workers, bringing in the full matrix of

heterogeneous spillovers considerably increases the welfare gains, both without sorting (comparing

rows 1 and 2) and with it (comparing rows 4 and 5). Therefore, heterogeneous spillovers across

workers play a key role. The sorting observed in the data also plays a relevant role, and particu-

larly so under heterogeneous spillovers. We conclude that accounting for heterogeneity in skills is

important for the implied benefits of implementing optimal spatial policies, and that dispersion in

spillovers across different types of workers play a substantial role.

Table 2: Welfare gains under different model specifications

(i) Data (ii) Elasticity ρ (iii) Heterogeneous spillovers Welfare Gain (%)

(1) No Sorting 1 No 0.06
(2) No Sorting 1 Yes 0.36
(3) No Sorting 0.39 Yes 0.25
(4) Sorting 1 No 0.29
(5) Sorting 1 Yes 6.21
(6) Sorting 0.39 Yes 5.47

50This “one-group calibration” is not the calibration of the model with homogeneous workers, but rather a cali-
bration of a model with heterogeneous workers which, by design, delivers the same welfare effects for all workers and
MSA-level reallocation as the model with homogeneous workers.
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6.5 Inferring the Spillover Elasticities assuming Efficiency in the Data

Our logic so far was to discipline the model with existing estimates of the spillover elasticities,

and then use it to compute the efficient allocation. In this final section we invert this logic, and

instead ask: what spillover elasticities would be consistent with assuming that the observed spatial

allocation is efficient? By comparing these inferred spillover elasticities with those used in the

calibration, this exercise allows us to identify the key elasticities behind our results.

Assuming that the observed equilibrium with transfers is optimal, the condition on optimal

transfers (20) must hold. Combined with the definition of expenditure per worker in (15), we

obtain an optimal relationship between transfers, wages, expenditures, and employment of the

form

tθj = aθ0 + aθ1w
θ
j + aθ2

(
wθ
′ 6=θ
j Lθ

′ 6=θ
j

Lθj

)
+ aθ3

(
xθ
′ 6=θ
j Lθ

′ 6=θ
j

Lθj

)
+ εθj (41)

for θ ∈ {U, S}, where εθj is a measurement error term, and the reduced-form parameters have

the following structural interpretations: aθ0 ≡ −bθΠ∗ − Eθ

1−γAθ,θ
, aθ1 ≡

γPθ,θ+γAθ,θ
1−γAθ,θ

, aθ2 ≡
γP
θ,θ′

1−γAθ,θ
, and

aθ3 =
γA
θ,θ′

1−γAθ,θ
. We estimate the parameters

{
aθi
}

by running (41) as a regression in the cross-section,

and then infer the spillover elasticities
{
γAθ,θ′ , γ

P
θ,θ′

}
up to a normalization for each type.51 We

normalize the own-spillover elasticity for productivity to the benchmark level for the U.S. used in

Section 5.2.

This exercise yields
(
γAUU , γ

A
SU , γ

A
US , γ

A
SS

)
= (−.26, −.08, −.09, −.33) and (γPUU , γ

P
SU , γ

P
US , γ

P
SS) =

(.003, .11, .07, .053) . The average level of both types of spillovers are similar to the parameters

implied by the empirical estimates used in the calibration. In both these inferred elasticities and

the calibrated ones, the amenity spillovers are larger than the agglomeration spillovers, and high-

skill workers generate stronger efficiency spillovers than low-skill workers. However, the assumption

that the observed allocation is optimal implies negative amenity spillovers both across and within

skill groups, whereas the calibrated elasticities imply positive amenity spillovers generated by high

skilled workers. Therefore, we find that heterogeneity in spillovers across groups is key for spatial

policies, as previously suggested by the contrast between the quantified model under homogeneous

and heterogeneous workers.

7 Conclusion

In this paper we study optimal spatial policies in quantitative geography frameworks with

spillovers and sorting of heterogeneous workers. Our framework nests recent strands of quantitative

spatial research and includes many key determinants of the spatial distribution of economic activity

51This normalization is needed because from (41) the own-spillover elasticities for productivity and amenities are
not separately identified. Assuming values for γPθ,θ we can then infer the remaining elasticities as follows: γAθ,θ =
aθ1−γ

P
θ,θ

1+aθ1
, γPθ,θ′ = aθ2

(
1− γAθ,θ

)
, and γAθ,θ′ = aθ3

(
1− γAθ,θ

)
.
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such as geographic frictions and asymmetric spillovers across heterogeneous workers. We generalize

these models to allow for arbitrary policies that transfer resources across agents and regions.

We first derive the set of transfers across workers and regions that must hold in an efficient

allocation. Furthermore, we provide conditions on the distributions of spillover and housing supply

elasticities such that these transfers are also sufficient for efficiency. Under constant-elasticity

spillovers and either homogeneous workers or no spillovers across different types of workers, constant

labor subsidies and lump-sum transfers over space implement the efficient allocation, regardless of

micro heterogeneity in fundamentals. When workers are heterogeneous and there are spillovers

across different types of workers, spatial efficiency may require place-specific taxes or subsidies to

attain optimal sorting.

We then show how to use the framework to assess the efficiency of the observed spatial allocation.

The distributions of fundamentals needed to compute the optimal allocation can be backed out from

data on the distribution of wages, employment, and expenditures across worker types and regions.

We apply the model to data on the distribution of economic activity across MSAs using spillover

elasticities in a range around existing estimates. Our results suggest that spatial efficiency calls for

more redistribution to low-wage cities and weaker sorting by skill relative to the data, leading to

lower wage inequality in larger cities. Under the assumption of homogeneous workers, our approach

delivers negligible gains. However, under heterogeneous workers, the gains are considerably larger.

Overall, we find that accounting for skill heterogeneity and spillovers across different types of

workers is important for the design and aggregate welfare effects of spatial policies. The results

suggest that nudging current U.S. policies towards generating a greater mixing of high and low skill

workers in low-wage cities could be socially desirable.
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A Appendix to Section 4

A.1 Planning Problem and Proofs of Propositions 1 to 3

The planning problem can be described as follows.

Definition 2. The planning problem is

maxLθuθ

subject to (i) the spatial mobility constraints

Lθju
θ ≤ Lθjaθj

(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

)
for all j;

Lθ
′
j u

θ′ ≤ Lθ
′
j a

θ
j

(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

)
for all j and θ′ 6= θ;
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(ii) the tradable and non-tradable goods feasibility constraints∑
i

djiQji ≤ Yj
(
NY
j , I

Y
j

)
for all j, i;∑

θ

Lθjc
θ
j + IYj + IHj ≤ Q (Q1j , .., QJj) for all j;

∑
θ

Lθjh
θ
j ≤ Hj

(
NH
j , I

H
j

)
for all j;

(iii) local and national labor-market clearing,

NY
j +NH

j = N
(
zθ1

(
L1
j , .., L

Θ
j

)
L1
j , .., z

Θ
j

(
L1
j , .., L

Θ
j

)
LΘ
j

)
for all j;∑

j

Lθj = Lθ for all θ; and

(iv) non-negativity constraints on consumption, trade flows, intermediate inputs, and labor.

Proposition 1. If a competitive equilibrium is efficient, then

Wj
dNj
dLθj

+
∑
θ′

xθ
′
j L

θ′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθj + Eθ if Lθj > 0, (A.1)

for all j and θ and some constants
{
Eθ
}

. If the planner’s problem is globally concave and (A.1) holds for some

specific
{
Eθ
}

, then the competitive equilibrium is efficient.

Proof. First we present the system of necessary first order conditions in the planner’s problem. Then we contrast

it with the market allocation. The Lagrangian of the planning problem is:

L = uθ

−
∑
j

ωθjL
θ
j

(
uθ − aθj

(
L1
j , .., L

Θ
j

)
U
(
cθj , h

θ
j

))
−
∑
θ′ 6=θ

∑
j

ωθ
′
j L

θ′
j

(
uθ
′
− aθ

′
j

(
L1
j , .., L

Θ
j

)
U
(
cθ
′
j , h

θ′
j

))

−
∑
j

p∗j

(∑
i

djiQji − Yj
(
NY
j , I

Y
j

))

−
∑
j

P ∗j

(∑
θ

Lθjc
θ
j + IYj + IHj −Q (Q1j , .., QJj)

)
−
∑
j

R∗j

(∑
θ

Lθjh
θ
j −Hj

(
NH
j , I

H
j

))

−
∑
j

W ∗j

(
NI
j +NH

j −N
(
z1
j

(
L1
j , .., L

Θ
j

)
L1
j , .., z

Θ
j

(
L1
j , .., L

Θ
j

)
LΘ
i

))

−
∑
θ

Eθ
(∑

j

Lθj − Lθ
)

+ ... (A.2)

where we omit notation for the non-negativity constraints. The first-order conditions with respect to trade flows,

labor services and intermediate inputs are:

[Qji] P ∗i
∂Q (Q1i, .., QJi)

∂Qji
≤ p∗j τji, (A.3)[

NY
j , N

H
j

]
p∗j

∂Yj
∂NY

j

≤W ∗j ;R∗j
∂Hj
∂NH

j

≤W ∗j , (A.4)[
IYj , I

H
j

]
p∗j
∂Yj
∂IYj

≤ P ∗j ;R∗j
∂Hj
∂IHj

≤ P ∗j , (A.5)
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each holding with equality in an interior solution. The first-order conditions with respect to individual consumption

of traded and non-traded goods can be written:

[
cθj

]
ωθj a

θ
j

∂U
(
cθj , h

θ
j

)
∂cθj

cθj = P ∗j c
θ
j

[
hθj

]
ωθj a

θ
j

∂U
(
cθj , h

θ
j

)
∂hθj

hθj = R∗jh
θ
j

Adding up the last two expressions and using degree-1 homogeneity of U gives

ωθj a
θ
jU
(
cθj , h

θ
j

)
= xθ∗j , (A.6)

where

xθ∗j ≡ R∗jhθj + P ∗j c
θ
j . (A.7)

Therefore, we can write

[
cθj

]
cθj =

αC
(
cθj , h

θ
j

)
P ∗j

xθ∗j (A.8)

[
hθj

]
hθj =

1− αC
(
cθj , h

θ
j

)
R∗j

xθ∗j (A.9)

where αC (c, h) ≡ ∂U(c,h)
∂c

c
U(c,h)

is the elasticity of U with respect to c.

Using (A.7) and the slackness condition on the spatial mobility constraint, the first-order condition of the planning

problem with respect to Lθj is:

∑
θ′

ωθ
′
j L

θ′
j

∂aθ
′
j

(
L1
j , .., L

Θ
j

)
∂Lθj

U
(
cθ
′
j , h

θ′
j

)
+W ∗j

dNj
dLθj

≤ xθ∗j + Eθ, (A.10)

with equality if Lθj > 0. Further using (A.6), if Lθj > 0 then:

W ∗j
dNj
dLθj

+
∑
θ′

(
xθ∗j
)′
Lθ
′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθ∗j + Eθ. (A.11)

An optimal allocation is given by quantities
{
Qji, N

Y
j , N

H
j , I

Y
j , I

H
j , c

θ
j , h

θ
j , L

θ
j , u

θ
}

and multipliers
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j , ω

θ
j

}
such that the first-order conditions (A.3)-(A.11) and the constraints enumerated in (i) to (iii) in Definition 2 hold.

It is straightforward to show that (A.3) to (A.9) coincide with the optimality conditions of producers and

consumers (i) and (ii) in the competitive equilibrium from Definition 1 given competitive prices {Pj , pj , Rj ,Wj}
equal to the multipliers

{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
and decentralized expenditure xθj equal to xθ∗j . In addition, the restrictions

(i) to (iii) from definition 2 of the planning problem are the same as restriction (iii) from the competitive equilibrium.

Therefore, the system characterizing the competitive solution for
{
Qji, N

Y
j , N

H
j , I

Y
j , I

H
j , c

θ
j , h

θ
j , L

θ
j

}
given the prices

{Pj , pj , Rj ,Wj} and the expenditure xθj is the same as the system characterizing the planner allocation for those same

quantities given the multipliers
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
and xθ∗j . As a result, if the competitive allocation is efficient, then

xθj = xθ∗j where xθ∗j is given by (A.11). Conversely, if xθj = xθ∗j for xθ∗j defined in (A.1) given the W θ that solves the

planner’s problem, there is a solution for the competitive allocation such that {Pj , pj , Rj ,Wj} =
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
. If

the planning problem is concave then there is a unique solution to the system characterizing the planner’s allocation,

in which case {Pj , pj , Rj ,Wj} =
{
P ∗j , p

∗
j , R

∗
j ,W

∗
j

}
is the only competitive equilibrium.

Proposition 2. The optimal allocation can be implemented by the transfers

tθ∗j =
∑
θ′

(
γP,jθ,θ′w

θ′∗
j + γA,jθ,θ′x

θ′∗
j

) Lθ′∗j
Lθ∗j

−
(
bθΠ∗ + Eθ

)
, (A.12)
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where the terms
(
xθ∗j , w

θ∗
j , L

θ∗
j ,Π

∗) are the outcomes at the efficient allocation, and
{
Eθ
}

are constants equal to the

multipliers on the resource constraint of each type in the planner’s allocation.

Proof. The result follows from combining (1) with the expressions for labor demand (13) and expenditure per capita

(15). Using the labor demand condition (13) and the fact that the aggregator of efficiency units N (·) has constant

returns to scale, we obtain that the value of the marginal product of labor can be written as function of wages,

employment and elasticities:

Wj
dNj
dLθj

= wθj

(
1 + γP,jθ,θ

)
+
∑
θ′ 6=θ

wθ
′
j

(
Lθ
′
j

Lθj

)
γP,jθ,θ′ . (A.13)

Combining this expression with the definition of γA,jθ,θ′ , we can re-write (17) as follows:

wθj − xθj +
∑
∀θ′

(
γP,jθ,θ′w

θ′
j + γA,jθ,θ′x

θ′
j

) Lθ′j
Lθj

= Eθ. (A.14)

Combining this last expression with (15) gives the result.

Proposition 3. The planning problem is concave if ΓA > ΓP , ΓA ≥ 0 and γAθ,θ′ > 0 for θ 6= θ′. Under a single

worker type (Θ = 1), the planning problem is quasi-concave if 1 + γA >
(
1 + γP

) [
1−αC
1+D

+ αC
]
.

Proof. We consider the following planning problem defined in section 3.3:

max uθ

s.t.: uθ
′

= uθ
′

for θ′ 6= θ

uθ
′
∈ U for all θ′

where θ is a given type, U is the set of attainable utility levels
{
uθ
}

and uθ
′

for θ′ 6= θ is an arbitrary attainable

utility level for group θ′. U is characterized by a set of feasibility constraints which are defined in the main text, and

which we come back to below. We show here that this problem, noted P, can be recast as a concave problem, under

the condition stated in proposition 2. Therefore, a local maximum of P is necessarily its unique global maximum.

The planning problem P can be recast as the following equivalent problem P ′, after simple algebraic manipulations:

max
{vθ,Uθj ,Cθj ,Hθj ,L̃θj ,Ñkj ,Ikj ,Qij ,Mj ,Sj}

vθ (A.15)

subject to the set of constraints C:

v
θ − F


Uθj

∏
θ′ 6=θ

(
L̃θ
′
j

) γAθ′,θ
1+ΓP

(
L̃θj

) 1−γA
θ,θ

1+ΓP

 ≤ 0 for all j; (A.16)

v
θ′ − F


Uθ
′
j

∏
θ′′ 6=θ′

(
L̃θ
′′
j

) γAθ′′,θ′
1+ΓP

(
L̃θ
′
j

) 1−γA
θ′,θ′

1+ΓP

 ≤ 0 for all j and θ′ 6= θ; (A.17)

U
θ
j − U

(
C
θ
j , H

θ
j

)
≤ 0 (A.18)

∑
i

djiQji −
(
b
N
Y

(
N
Y
j

)βY + b
I
Y

(
I
Y
j

)βY ) 1
βY ≤ 0 for all j, i; (A.19)

∑
θ

C
θ
j +

(
I
Y
j

)
+
(
I
H
j

)
−Q

(
Q1j , .., QJj

)
≤ 0 for all j; (A.20)
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∑
θ

H
θ
j −

(
b
N
H

(
N
H
j

)βH + b
I
H

(
I
H
j

)βH) 1
βH ≤ 0 (A.21)

Mj −

∑
θ

Zθj ∏
θ′

(
L̃
θ′
j

) γP
θ′,θ

1+ΓP
(
L̃
θ
j

) 1
1+ΓP .


ρ

1
ρ

≤ 0 for all j; (A.22)

N
Y
j +N

H
j −Mj ≤ 0 (A.23)

∑
j

(
L̃
θ
j

) 1
1+ΓP − Lθ = 0 for all θ (A.24)

To reach these expressions, we have introduced the auxiliary variables Mj , Sj , and Uθj we have used the following

change of variables

vθ = F
(
uθ
)

Hθ
j = Lθjh

θ
j

Cθj = Lθjc
θ
j

L̃θj =
(
Lθj

)1+ΓP

for all j ∈ 1, ..., N and θ,

where the function F(.) is defined by F(x) = −xb for b = 1+ΓP

ΓP−ΓA
. Problems P and P ′ are equivalent: any solution

to P ′ is a solution to P and vice-versa. We then consider the relaxed problem P ′′ that is identical to P ′ except that

the last constraint of P ′ is relaxed into an inequality constraint:

Lθ −
∑
j

(
L̃θj

) 1
1+ΓP ≤ 0 for all θ. (A.25)

We now show that problem P ′′ has a concave objective and convex constraints under the assumptions of proposition

2. To that end, we show that under these assumptions, each constraint of P ′′ is convex.

Consider first constraints (A.16) and (A.17), and examine specifically the expression:

fθj (Uθj ,
{
Lθ
}
,
{
Lθ
′}

) =
Uθj
∏
θ′ 6=θ

(
L̃θ
′
j

) γA
θ′,θ

1+ΓP

(
L̃θj

) 1−γA
θ,θ

1+ΓP

(A.26)

This expression is a multivariate function of the form f(y, z) =
∏k
i=1 y

ai
i

zb
where ai > 0, b > 0 and

∑k
i=1 ai < b.

By proposition 11 of Khajavirad et al. (2014), such functions are G-concave, meaning that the function G(f(y, z))

is concave in (y, z), for functions G(x) that are concave transforms of −x
1∑
ai−b . Assumptions made on parameter

values in Proposition 3 ensure that γAθ′,θ ≥ 0 for all θ′ 6= θ and 1 +
γA
θ′,θ

1+ΓP
<

1−γAθ,θ
1+ΓP

, which follows from ΓA > ΓP .

Therefore, by Proposition 11 of Khajavirad et al. (2014), the transformation Gθ(x) = −x
1+ΓP

ΓP−
(
σθ+

∑
θ′ γ

A
θ′,θ

)
ensures

that Gθ(f
θ
j (.)) is concave. Finally, given the definition of ΓA, F(.) is a concave transform of Gθ(.). Therefore, (A.16)

and (A.17) are convex for all θ.

Second, functions of the form f(x1, ..., xn) =
[∑

aix
β
i

]ρ
are concave whenever β ∈ (0, 1) and ρβ ≤ 1. Therefore,

constraints (A.19), (A.21) and (A.25) are convex.

The constraint (A.18) is convex because U(.) is concave. The constraint (A.20) is convex because the aggregator

Q(.) is concave.

Next, consider the constraint (A.22). The second term is the negative of a composition of an increasing CES

function with exponent ρ ≤ 1, which is concave, and a series of functions of the form

f(x1, ..., xΘ) =
∏
θ′

(
xθ
′) γP

θ′,θ
1+ΓP

(
xθ
) 1

1+ΓP .
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As concave transforms of a geometric mean, these functions are concave, whenever
1+
∑
θ′ γ

P
θ′,θ

1+ΓP
∈ (0, 1). This restriction

holds by definition of ΓP . We finally invoke that the vector composition of a concave function that is increasing in

all its elements with a concave function is concave. Therefore, constraint (A.22) is convex. Finally, constraint (A.23)

is linear hence convex.

It follows that the relaxed problem P ′′ is a maximization problem with concave objective and convex inequality

constraints. It admits at most one global maximum, and a vector satisfying its first order conditions is necessarily

the global maximum. If at this unique optimal point for P ′′ the relaxed constraint (A.25) binds, so that (A.24) holds,

we guarantee that the solution to P ′′ is also the unique global maximizer of P’ and the unique global maximizer of

the equivalent problem P.52

We now specialize to the case of a single type of workers (Θ = 1) where the decreasing returns to scale in the

production of housing help make the problem concave. The relaxed planner’s problem P ′′ can be further simplified

in this case to:

max
{vθ,Uθj ,Cθj ,Hθj ,L̃θj ,Ñkj ,Ikj ,Qij ,Mj ,Sj}

minj

(
Cθj
)αC (H̃θ

j

) 1−αC
1+dH,j

(
L̃θj

) 1−γA
θ,θ

1+ΓP

subject to the constraints (A.19), (A.20), (A.22), (A.23) and (A.25), which are unchanged except that they now hold

for only one group. The modified constraint for housing production is:

H̃θ
j −

(
bNH

(
ÑH
j

)βH (1+D)

+ bIH

(
ĨHj

)(1+D)βH
) 1
βH

1
1+D

≤ 0 (A.27)

where we have used the following change of variable H̃θ
j =

(
Hθ
j

)1+d′H,j . The modified housing market constraint

(A.27) is convex. The objective of the planner is quasi-concave as the minimum of a ratio of a concave and a convex

function, as long as (1− αC) 1
1+d′H,j

+αC ≤
1−γAθ,θ
1+ΓP

in each city. The constraints are convex. Therefore, the problem

is a quasi-concave maximization problem as long as the parameter restriction in (ii) holds.

A.2 Inefficiency in a Simple Case with Homogeneous Workers and Constant

Elasticities

We consider a special case of our model with homogeneous workers (|Θ| = 1), homogeneous products (Q (·) =∑
j Qji), no trade costs (dij = 1), no intermediate inputs in production (Yj = F

(
NY
j

)
), exogenous amenities (aj

exogenously given), and no valuation for non-traded goods (u (c, h) = c). We assume further that productivity

spillovers have constant elasticity: zj (Lj) = Lγ
P

j so that NY
j = zj (Lj)Lj . Finally, we assume that tradable good

production features decreasing returns to scale: F
(
NY
j

)
=
(
NY
j

)1−β
where 0 ≤ β ≤ 1. In equilibrium, all efficiency

units of labor are employed in the production of tradeable goods, so Yj = (zj (Lj)Lj)
1−β .

Consider first the market allocation, possibly with a constant labor subsidy s and lump sum transfer T , so that

the transfer to workers in location j is tj = swj +T . The definition of expenditure (A.7) gives expenditure per worker

in location j equal to xj = wj + tj + π, where π = Π
L

is the share of profits owned by each worker. In the market

allocation, ajxj = u for all populated locations. Normalizing the price of the tradeable good to 1, the wage in (13)

is wj = (1− β)
Yj
Lj

. As a result, a market allocation is given by {{Lj} , u, π} such that:

aj

(
(1 + s) (1− β)

Yj
Lj

+ T + π

)
= u for all j (A.28)

52We have not proven that (A.25) necessarily binds at the optimal solution for P ′′. Therefore, we verify that this
is indeed the case in the solution to P ′′ in the implementation.
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and the goods and labor markets clear. In turn, the planner’s problem can be stated as

maxu =
Y ({Lj})∑ Lj

aj

, (A.29)

where Y ({Lj}) ≡
∑
Yj (Lj) is aggregate output, subject to the labor market clearing constraint with multiplier λ.53

The solution to the planner’s problem consists of {{Lj} , u, λ} such that

aj

((
1 + γP

)
(1− β)

Yj
Lj
− λY

u

)
= u for all j (A.30)

and the goods and labor markets clear.

Comparing (A.28) and (A.30), it follows that the market allocation is generically inefficient if there is dispersion

in amenities and non-zero productivity spillovers α, and efficient otherwise. To see why, note that in the absence of

government policies (s = T = 0), equating (A.28) and (A.30) leads to the condition that π + λY
u

= (1− β) γP
Yj
Lj

,

i.e. the planner and market solution can only coincide only if either there are no spillovers (γP = 0) or if income per

worker
Yj
Lj

is equalized across locations. But if s = T = 0, a constant income per worker cannot be a solution to (A.30)

as long as there is dispersion in amenities. However, a constant policy scheme over space (s, T ) with s = γP and

T = −π − λY
u

restores efficiency.54 Without differences in amenities, a constant income per worker across locations

is a solution to both the planner’s and the market allocation, in which case the decentralized allocation is efficient.

A.3 Equivalence with Monopolistic Competition

Consider the economic geography environment from Section 4.3. As a reminder, that environment starts from

the general model from Section 3 and imposes only one labor type, inelastic housing supply (Hj
(
NH
j , I

H
j

)
= Hj is a

constant), and only labor used in production of traded goods (Yj
(
NY
j , I

Y
j

)
= NY

j = Nj = zj (Lj)Lj). Now suppose

that, in addition, the production structure in the traded sector is the same as in Krugman (1980): in each location

j, Mj homogeneous plants produce differentiated varieties with constant elasticity of substitution κ across them, and

setting up a plant in location j requires Fj units of labor. The resulting environment corresponds to the Redding

(2016) or to Helpman (1998) in the absence of individual preference shocks (σ = 0).

We now show that the competitive allocation of such an extended model, as well as their normative implications,

are equivalent to the model with homogeneous products analyzed in Section 4.3 under an aggregate production

function equal to:

Ỹj (Lj) = Kj (zj (Lj)Lj)
κ
κ−1 , (A.31)

where Kj ≡ κ−1
κ

(κFj)
1

1−κ is a constant. Therefore, a monopolistic competition model with no productivity spillovers

is equivalent to a homogeneous-product model with perfect competition and spillover elasticity equal to γP = 1
κ−1

.

This property relates to the result, dating back to at least Abdel-Rahman and Fujita (1990) and also shown by Allen

and Arkolakis (2014) within their model, that CES product differentiation with monopolistic competition has the

same aggregate implications as a constant-elasticity aggregate production function with increasing returns. In our

context, we must also demonstrate that the equivalence extends to the welfare implications summarized in Proposition

1.

The key reason why this equivalence holds is that under CES preferences the number of producers Mj and the

bilateral trade flows are efficient given the allocation of labor {Lj}, as it is well known. Therefore, the labor allocation

remains the only inefficient margin and our propositions and results from Section 4.3 go through. We note that these

properties would not go through under monopolistic competition outside of CES. In that case, the entry and bilateral

pricing decisions would be inefficient.

53The planner maximizes u subject to u = ajcj for all j, the goods market clearing constraint
∑
Ljcj =

∑
Yj ,

and the labor market clearing constraint. Combining these constraints leads to u =
∑
Yj∑ Lj
aj

, corresponding to (A.29).

54Note that this formula is a direct application of proposition 2.
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Environment We start by describing how the physical environment of this model differs from the environments

from Section 3. Now, the input to the aggregator Q ({Qji}) is Qji = M
κ
κ−1

j qji, where Mj is the number of plants

in j and qji is the quantity exported by each of these from j to i. The feasibility constraint for traded goods (4)

becomes zj (Lj)Lj = Mj

(∑
i τjiqji + Fj

)
to account for the use of labor in setting up plants. Combining these two

expressions, that constraint can be further expressed:

M
1

κ−1

j (zj (Lj)Lj − FjMj) =
∑
i

τjiQji. (A.32)

Competitive Equilibrium Now we describe how the market allocation differs from the baseline environments.

First, the optimization conditions (11) is replaced by:

max
∑
i

(p̃ji − τjiWj) qji (A.33)

subject to qji = Qji
(

˜pji
pji

)−κ
, where pji = M

1
1−κ
j p̃ji is the price index corresponding to the exports from j to i and

p̃ji is the price at which each firm from j sells in i. The solution to this problem yields the standard constant markup

rule, p̃ji = τji
κ
κ−1

Wj . We have as before that the price in location i of the aggregate traded good from j, pji, can

be expressed according to the “mill pricing” rule as τjipj , where now the price index corresponding to the domestic

sales of traded goods in j is:

pj ≡M
1

1−κ
j

κ

κ− 1
Wj . (A.34)

As a result, condition (14) still determines the flows in the competitive equilibrium. Combining these pricing rules

with (A.33), imposing zero profits and using (4) we obtain the number of producers in a competitive allocation:

Mj =
zj (Lj)Lj
κFj

. (A.35)

And further combining with (A.32), we can write

Ỹj (Lj) =
∑
j

τijQij (A.36)

for Ỹj given in (A.31).

We conclude that the competitive allocation can be represented as in the model without product differentiation

from Definition 1 under the restrictions from Section 4.3 and assuming the aggregate production function Ỹj (Lj).

I.e., it is given by quantities {cj , hj , Lj , Qij , Lj} and prices Pj , Rj , pj , such that: (i) consumers optimize (i.e., cj , hj

are a solution to (8) given expenditures xi); (ii) trade flows are given by (14); (iii) employment Lj is consistent with

the spatial mobility constraint (10); and (iv) all markets clear, i.e. (2), (3) and (A.36) hold.55

Planning Problem In turn, the planning problem from Definition (2) is now associated with the Lagrangian

L = u−
∑
j

ωj

(
u− aj (Lj)U (cj , hj)

(
Lj
L

)−σ)

−
∑
j

p∗j

(∑
i

djiQji −M
1

κ−1

j (zj (Lj)Lj − FjMj)

)

−
∑
j

P ∗j (Ljcj −Q (Q1j , .., QJj))−
∑
j

R∗j (Ljhj −Hj)−W

(∑
j

Lj − L

)
+ ... (A.37)

55Note that the definition of the competitive allocation can dispense with the wage Wj , which can be determined
residually from (A.34).
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Relative to Definition 2, now the planner also chooses the number of firms Mj in each location and faces the constraint

(A.32) instead of (4). We readily see that entry is efficient by noting that the first-order condition with respect to

Mj implies (A.35). As a result, the market clearing constraint in the second line of (A.37) can be replaced by (A.36).

The resulting planning problem is equivalent to Definition 2 applied to the economic geography model in Section 4.3

under the production function Ỹj (Lj).

A.4 Spillovers Across Locations

The Lagrangian of the planning problem described in the extension to spillovers across locations in Section 4.4 is

a special case of (A.2), except that now the the supply of efficiency units in j is Nj ({Lj′}) = zj ({Lj′})Lj . Compared

to our derivation of Proposition 1, the only difference is the first-order condition with respect to employment. Now,

instead of (A.11) we reach:

∑
j′

W ∗j′
dNj′

dLj
+ x∗j

Lj
aj

∂aj
∂Lj

= x∗j + E. (A.38)

In addition, instead of (A.13) we now have:

Wj
dNj
dLj

=

wj′
Lj′
Lj
γP,j,j

′
if j′ 6= j,

wj
(
γP,j,j + 1

)
if j′ = j.

(A.39)

Combining the last two expressions with (15) gives (28).

A.5 Preference Heterogeneity within Groups

The Lagrangian of planning problem described in the extension to preference draws in Section 4.4 is a special

case of (A.2), except that now the spillover function aθ
′
j

(
L1
j , .., L

Θ
j

)
is replaced by aθ

′
i

(
Lθi
)−σθ . Following the same

steps as in the proof of Proposition 1, we find that condition (17) is extended to

Wj
dNj
dLθj

+
∑
θ′

xθ
′
j L

θ′
j

aθ
′
j

∂aθ
′
j

∂Lθj
= xθj (1 + σθ) + Eθ if Lθj > 0. (A.40)

Following the same steps as in the proof of Proposition 2, we find that (20) is extended to

tθj = γP,jθ,θ +
(
γA,jθ,θ − σθ

)
+
∑
θ′ 6=θ

(
γP,jθ,θ′w

θ′∗
j + γA,jθ,θ′x

θ′∗
j

) Lθ′∗j
Lθ∗j

−
(
bθΠ∗ + Eθ

)
. (A.41)

The general-equilibrium structure underlying propositions 3 and 4 under the assumptions of the quantitative model

can be expressed exactly as in the proof of Proposition 3 and as in the planning problem in relative changes from

Section A.7 below, the only modification being that the term γAθ,θ is replaced by γAθ,θ − σθ.
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A.6 Public Spending

The Lagrangian of the planning problem described in the extension to public spending in Section 4.4 is

L = u−
∑
j

ωjLj
(
u− aj

(
GUj , Lj

)
U (cj , hj)

)
−
∑
j

p∗j

(∑
i

djiQji − Yj
(
NY
j , I

Y
j

))

−
∑
j

P ∗j

(
IGj + Ljcj + IYj + IHj −Q (Q1j , .., QJj)

)
−
∑
j

R∗j

(
HG
j + Ljhj −Hj

(
NH
j , I

H
j

))
−
∑
j

PG∗j

(
GYj +GUj −Gj

(
IGj , H

G
j

))
−
∑
j

W ∗j

(
NI
j +NH

j −Nj
(
GYj , zj (Lj)Lj

))

− E

(∑
j

Lj − L

)
+ ... (A.42)

Letting xPj ≡ P ∗j cj +R∗jhj be private expenditure, following the same steps as in the proof of Proposition 1 we find

xPj =
1 + γP

1− γAwj −
E

1− γA . (A.43)

Combining the first order condition over cj with optimization over government spending gives[
GUj

]
: Ljx

P
j γ

A,G = PG∗j GUj[
GYj

]
: W ∗j NjεN,G = PG∗j GYj

where γA,G ≡ ∂aj
∂Gj

Gj
aj

and εN,G = ∂N
∂Gj

Gj
Nj

are elasticities of amenities and labor efficiency to government spending.

Adding up the two previous equations, using the first-order conditions over IGj and HG
j , and applying homogeneity

of the the production function of government spending Gj
(
IGj , H

G
j

)
we reach condition (31) in the text. Further

combining (31) with (A.43) gives (30) in the text. In terms of the efficient implementation, under constant labor

subsidies with a lump sum transfer individuals earn xPj = wj (1 + s) + Π
L

+ T . Hence, the optimal subsidy must still

be s = γP+γA

1−γA , as discussed in Section 4.2 when there is no government spending. Given the value of s, the lump-sum

transfer T is such that
∑
j

[(
wjs+ xGj

) Lj
L

+ T
]

= 0, which ensures that each local government can finance spending

per capita xGj .

A.7 Planning Problem in Relative Changes and Proof of Proposition 4

We show how to express the solution for the competitive allocation under an optimal new policy relative to an

initial equilibrium consistent with Definition 1, and then define the planning problem that optimizes over the policy

space.

Preliminaries We adopt the functional forms from Section 4.5. From the optimization problems (11) and (12)

and market clearing in the housing market we obtain the following conditions:

WiN
Y
i =

(
1− bIY,i

)
piYi, (A.44)

WiN
H
i =

1− bIH,i
1 + dH,i

(1− αC)Xi. (A.45)

These terms imply the non-traded labor share,
NHi
Ni

, as function of the share of gross expenditures over tradeable

income Xi
piYi

:

NH
i

Ni
=

1−bIH,i
1+dH,i

1−αC
1−bI

Y,i

(
Xi
piYi

)
1−bI

H
1+dH,i

1−αC
1−bI

Y,i

(
Xi
piYi

)
+ 1.

. (A.46)
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Using (A.44) and (A.45) along with labor-market clearing (A.4), we can further express gross expenditures over

tradeable income as a function the shares of wages in expenditures:

Xi
piYi

=
1− bIY,i

WiNi
Xi
−

1−bI
H,i

1+dH,i
(1− αC)

. (A.47)

We now re-formulate some of the equilibrium from Definition 1 conditions to include prices. Consider first

the market clearing condition (5). Multiplying both sides by the price of the traded bundle Pj , letting EYj =

PjQj = PjQ (Q1j , .., QJj) be the gross expenditures in tradeable goods in j (used both as intermediate and for final

consumption), using equilibrium in the housing market, and using optimality condition for the choice of intermediate

inputs in the traded sector, we can re-write that condition as

EYj =

(
αC + (1− αC)

bIH,j
dH,j + 1

)
Xj + bIY (pjYj) , (A.48)

where Xj =
∑
θ′ L

θ′
j x

θ′
j are the aggregate expenditures in region j. This condition says that aggregate expenditures

in traded goods results from the aggregation of expenditures by consumers and final producers. Second, consider the

market condition (4) for traded commodities. Multiplying both sides by the price of traded commodities at j, pj ,

this condition is equivalent to ∑
i

sXji = 1, (A.49)

where sXji ≡
(

Ei
pjYj

)
sMji is region i’s share of j’s sales of tradeable goods (i.e., the export share of i in j) and

sMji ≡
pjiQji
Ei

is region j′s share of i’s purchases of tradeable goods (i.e., the import share of region j in i). Finally,

aggregating the budget constraints of individual consumers gives∑
j

sMji ≡ 1. (A.50)

Equilibrium in Relative Changes We now express the solution for the competitive allocation from Defi-

nition 1 under the new policy relative to an initial equilibrium. Consider a policy change that affects the equilibrium

expenditure distribution
{
xθi
}

. We now show that the outcomes in the new equilibrium relative to the initial equi-

librium are given by a set of changes in prices
{
P̂i, p̂i, R̂i

}
, wages

{
Ŵi

}
, employment by group

{
L̂θi

}
, supply of

efficiency units
{
N̂i
}

, production of tradeable goods
{
Ŷi
}

, and utility levels
{
ûθ
}

that satisfy a set of conditions

given the change in expenditure per capita by group and location
{
x̂θi

}
. The planner’s problem in relative changes

will then choose the optimal
{
x̂θi

}
.

From the previous expressions we obtain the following system in relative changes:

∑
j

sXij

(
p̂i

P̂j

)1−σ

ÊYj = p̂iŶi for all i, (A.51)

∑
j

sMji

(
p̂j

P̂i

)1−σ

= 1 for all i, (A.52)

(
1− NH

i

Ni

)
p̂iŶi +

NH
i

Ni
X̂i = ŴiN̂i for all i, (A.53)

Ŵi
1−bIY,i P̂i

bIY,i = p̂i for all i, (A.54)

where X̂j =
∑
θ s

X,θ
j x̂θj L̂

θ
j is the change in aggregate expenditures by region and sX,θj is group θ’s share in the

consumer expenditures in j in the initial equilibrium. Equations (A.51) and (A.52) follow from expressing (A.49)

and (A.50) in relative changes and using the CES functional for Q (·) form (33). In condition (A.51), using (A.48)
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implies that the change in expenditures in tradeable commodities is:

ÊYj = X̂j +
bIY(

αC + (1− αC)
bI
H

dH,j+1

)(
Xj
pjYj

)
+ bIY

p̂j Ŷj . (A.55)

Condition (A.53) follows from expressing labor-market clearing (7) in relative changes together with (A.44) and

(A.45), where the non-traded labor share
NHi
Ni

is defined in (A.46). Condition (A.54) follows from optimization of

producers of tradeable commodities.

The system (A.51) to (A.54) defines a solution for
{
P̂j , p̂j , Ŷj , Ŵj

}
given the change in the number of efficiency

units N̂i and expenditures in each region X̂i, and independently from heterogeneity across groups or spillovers.

Heterogeneous groups and spillovers enter through N̂i.

To reach an explicitly expression for N̂i, we first note that the labor demand expression in the market allocation

(13) allows us to back out the efficiency of each group:

zθi =
wθi
Wi

(
Lθi
Ni

)1−ρ

. (A.56)

Expressing the CES functional form for the aggregation of labor types in (36) in relative changes and using (A.56)

we obtain:

N̂i =

(∑
θ

sW,θi

(
L̂θi

)ρ∏
θ′

(
L̂θ
′
i

)γP
θ′,θ

) 1
ρ

, (A.57)

where sW,θj =
wθjL

θ
j∑

θ′ w
θ′
j L

θ′
j

is group θ share of wages in city j. This expression relates the total change in efficiency

units in a location to the distribution of wage bills in the observed allocation, the changes in employment by group,

and the production function and spillover elasticity parameters.

The change in the number of workers
{
L̂θi

}
of each type in every location that is initially populated must also

be consistent with the spatial mobility constraint, (10),

ûθ =
∏
θ′

(
L̂θ
′
i

)γA
θ′,θ x̂θi

P̂i
αC
R̂i

1−αC
. (A.58)

In this expression, R̂i is the change in the price of non-traded goods in location i. Solving for the equilibrium in the

market for non-traded goods, after some manipulations this relative price can be expressed as solely a function of the

price of the own traded good, the price index of traded commodities, of aggregate expenditures in i:

R̂i =

p̂i 1−bIH,i
1−bI

Y,i P̂i
bIH,i−b

I
Y,i

1−bIH,i
1−bI

Y,i X̂i
dH,i


1

1+dH,i

. (A.59)

Finally, the national labor market must clear for each labor type is∑
j

sL,θj L̂θj = 1 for all θ, (A.60)

where sL,θj =
Lθj∑
θ′ L

θ′
j

is group θ’s share of employment in city j.

In sum, an equilibrium in changes given a change in expenditure per capita
{
x̂θj

}
consists of

{
P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

such that equations (A.51) to (A.60) hold. These equations conform a system of 5J + ΘJ + Θ equations in equal

number of unknowns, where J is the number of locations and Θ is the number of types.

Planner’s Problem in Relative Changes In the implementation, we solve an optimization over
{
x̂θj

}
subject to

{
P̂i, p̂i, Ŷi, Ŵi, N̂j , L̂θj , R̂i, û

θ
}

consistent with (A.51) to (A.60) in order to maximize the utility of a given
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group θ, ûθ, subject to a lower bound for the change in utility of the other groups (ûθ′ ≥ ûθ′ for θ′ 6= θ). This

problem (call it P ′′2 ) differs formally from the baseline problem in Definition 2 (call it P2) for two reasons. First, it

features prices, expenditures and incomes rather than being expressed in terms of quantities alone, as in conditions

(A.44) to (A.50). We denote by P ′2 an intermediary problem expressed in terms of income and expenditure rather

than quantities, but still in levels. Second, P ′′2 is expressed in changes relative to an initial equilibrium rather than in

levels. We show here that the two problems are nevertheless equivalent. Therefore, the problem that we implement

has a unique maximizer under the conditions of Proposition 2.

To see that the two problems have the same solutions, we first focus on the first order conditions of problem P2

and compare them to the problem in levels P ′2 expressed in income and expenditures terms rather than in quantities.

Conditions (A.3) and (A.5) define the Lagrange multipliers corresponding to good and factor prices for P2. They are

identical to the price index definition constraint of problem P ′2. Furthermore, manipulating these equations together

with the constraints expressed in quantities leads to the constraints expressed in terms of income and expenditure.

Therefore, a vector satisfies the first order conditions for P2 if and only if it satisfies the first order conditions for P2’.

Then, note that the problem in relative changes stated here is simply the problem P ′2 modified through the changes of

variable x→ xox̂ for all variables, where xo is a constant corresponding to the observed data and x̂ the optimization

variable in P ′2. The problem in relative changes considered here and the problem P ′2 , and in turn problem P2, have

therefore the same solutions, subject to the appropriate change of variables. In particular, a point that satisfies the

first order conditions under the conditions of Proposition 3 is the (unique) global maximizer for both problems.

Proof of Proposition 4 Proposition 4 follows from inspecting (A.51) to (A.60) under the planner’s problem

in relative changes defined above. Note that, given the elasticities
{
αC , ρ, b

I
Y,j , b

I
H,j , dH,j

}
, and as long as bIY > 0,

computing the change in tradeable expenditures requires information about gross expenditures over tradeable income,
Xj
pjYj

. This information is also needed to compute the non-traded labor share
NHi
Ni

in (A.53). However, as shown in

(A.46) and (A.47),
Xj
pjYj

can be constructed from the elasticities
{
αC , b

I
Y , b

I
H , dH,j

}
and the share of wages in gross

expenditures, WiNi
Xi

.

B Data Appendix

We detail the construction of the variables used to implement the counterfactuals. We rely on three primary

data sources: i) BEA regional economic accounts, CA4 Personal Income and Employment by Major Component

(https://www.bea.gov/regional/downloadzip.cfm); ii) estimates of disposable income by MSA from Dunbar (2009)

based on BEA regional economic accounts;56 iii) March CPS based on the IPUMS-CPS, ASEC 2007 sample.57

B.1 Appendix to Section 5.1 (Data)

MSA-Level Outcomes We first extract from Dunbar (2009) the following information: population, personal

income, and personal taxes paid by MSA, in 2007. To split personal income by source of income, we merge this data

with the BEA Regional Economic Accounts. We compute the share of personal income corresponding to each possible

source: labor income, capital income, and transfers. Specifically, we measure labor income as BEA’s earning by place

of work ;58 capital income as the sum of proprietor’s income, and dividends, interests and rents; and transfers as

current transfer receipts.59 Combining these shares with the total personal income and taxes by MSA from Dunbar

(2009) provides us with a measure of labor income, capital income, transfers and taxes at the MSA level.

56https://www.bea.gov/papers/xls/dpi msa working paper 2001 2007 results.xls
57https://cps.ipums.org/cps/index.shtml
58The BEA’s earning by place of work is comprised of: wages and salaries, supplements to wages and salaries,

proprietor’s income, net of contributions for government social insurance, plus adjustment for residence.
59Current transfer receipts is defined as the sum of government social benefits and net current transfer receipts

from business (https://www.bea.gov/glossary/glossary p.htm).
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Break-Down By Skill Group We split these totals at the MSA level into two groups, high skill and low

skill. To that end, we use March CPS data, part of the Integrated Public Use Microdata Series (Flood et al., 2017).

The March CPS reports, at the individual level, income by source (labor, capital and transfers), MSA of residence

and level of education. Consistent with Diamond (2016), we define as high skill those workers who have completed

4 years of college, or more; and as low skill those who have completed less than 4 years of college, or have not gone

to college. We aggregate individual level data from the March CPS at the MSA-group level, to get an MSA-level

estimate of capital income, labor income, transfers and taxes by group, as well as the population of both groups.60 We

do not use this information directly, as the MSA aggregates from individual-level data might be noisy, in particular

for smaller MSAs. Instead, we use this information to construct the shares of the MSA-level outcomes from the BEA

described above corresponding to each group of workers. That is, for each MSA i, we compute sLi =
X̃Li

X̃Li +X̃Hi
where

X̃θ
i denotes total MSA i-group θ level capital income, labor income, transfers, taxes or population in the march CPS

data. We use this share sLi , together with the MSA-level dataset for income described above, to build our measure

Xθ
i = Xis

θ
i of MSA-group level population, labor income, capital income, transfers and taxes. We also compute the

corresponding per-capita measures for each MSA-group: xθi =
Xθi
Lθi

.

Controlling for Heterogeneity within Groups Before applying it in the quantification we purge the

raw data described above from compositional effects across MSAs. We use Census data (IPUMS) to obtain the

share of individuals with the following characteristics for each MSA-skill group: age by bins :<20, 20-40, 40-60, >60;

detailed level of educational attainment: less that 8th grade, grade 9-12, some college (those are relevant for the low

skill group) and bachelor, masters or professional degree (for the high skill group); share black; share male ; share

unemployed, share out of the labor force; and share working in manufacturing, services, agriculture. We then proceed

as follows: denoting by xθi the per-capita measure
Xθi
Lθi

(where Xθ
i can stand for labor income, capital income, transfers

or taxes) in MSA i and group θ, we run the following MSA level regression, separately for each group θ:

xθi = xθ0 +
∑
j

βθjDEM
θ
ij + εθi , (A.61)

where DEMθ
ij is the demographic variable j enumerated above in MSA i and for group θ. The coefficients βθj measures

how demographic characteristic j correlates with xθi across cities within group θ. We then adjust the observed xθi

from compositional differences across cities measured as deviations from the population mean:

x̂θi ≡ xθi −
∑
j

β̂θj

(
DEMθ

ij −DEMθ
j

)
(A.62)

where β̂θj is the estimate from (A.61) and DEMθ
j ≡ 1

I

∑
iDEM

θ
ij .

61 The corresponding MSA-level variable is

X̂θ
i = x̂θiL

θ
i . The resulting data (X̂θ

i , x̂
θ
i , L

θ
i ) is our MSA-group level dataset, where X stands for labor income,

capital income, transfers and taxes.

Expenditure per Capita We construct expenditure by group and by MSA, xθi in the model, as disposable

income by group. Disposable income is

xθi = wθi (1 + τθi ) + T θi + bθΠH . (A.63)

60Specifically, we aggregate the following categories to measure capital income: income from interest, from divi-
dends, from rents. We aggregate the following categories to measure labor income: wage and salary income, non-farm
business income, farm income, income from worker’s compensation, alimony and child support. We aggregate the
following categories to measure transfers: welfare income, social security income, income from SSI, income from
unemployment benefits, income from veteran’s, survivor’s, disability benefit, income from educational assistance. We
aggregate the following categories to measure taxes paid: federal income tax liability, after all credits, and state
income tax liability, after all credits.

61I.e., we define x̂θi ≡ x̂θ0 +
∑
j β̂

θ
jDEM

θ
j + ε̂θi , where ε̂θi is the estimated residual from (A.61).
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The variables
{
wθi , τ

θ
i , T

θ
i

}
, respectively labor income per capita, tax paid per capita (where τθi < 0 is a tax), and

transfer received per capita, are directly taken from the BEA/CPS dataset constructed above. We measure bθ as

the average fraction of national capital income owned by each type θ worker in BEA/CPS dataset. This step gives

bSLS = 0.59 and bULU = 0.41. Finally, we set a value for national profits and returns to land ΠH that is consistent

with the general equilibrium of the model. Using profit maximization in the housing sector and market clearing in the

non-tradeable sector we obtain the following expression for ΠH as function of calibrated elasticities and observable

outcomes:

ΠH =
(1− αC)

∑
i

dH,i
dH,i+1

∑
θ L

θ
i

(
wθi (1 + τθi ) + T θi

)
1− (1− αC)

∑
i

dH,i
dH,i+1

∑
θ b
θLθi

. (A.64)

Using xθi we then construct Xi (aggregate expenditure by MSA) as Xi =
∑
Lθix

θ
i and sX,θj (share of expenditures by

type within MSA). Following these adjustments, we need to ensure that the sum of transfers paid by the government

equal the sum of taxes levied. To that end, we scale all transfers uniformly so that they add up to the sum of taxes.

This ensures that the government budget constraint holds.62

Traded and Non-Traded Sectors We need data on the relative size of the non-traded sector in each city

to calibrate the labor shares by sector. The CPS data also reports the sector of activity of workers. We measure at

the MSA level the share of workers who work in the non traded sector by counting all workers in the following NAICS

sectors: retail, real estate, construction, education, health, entertainment, hotels and restaurants. This measure is

not group-specific. To remove unmodeled heterogeneity in this measure, we compute a series of MSA-level socio-

demographic characteristics, as above, and regress the share of workers in the non-traded sector on these demographic

characteristics. We compute, as above, the predicted share of workers in the non-traded sector in each city, assuming

that demographic characteristics of the city are at the nationwide mean.

Trade Shares We need data on trade shares between MSAs, sMij and sXij (import and export shares). These

flows are observed in the CFS data, but not at the finer geographic level that we consider here (MSA). Therefore,

we adapt the procedure in Allen and Arkolakis (2014) and Monte et al. (2015), whereby the import shares from the

CFS data are used to parametrize the elasticity of trade with respect to distance. In particular, the model implies

the following expression for share of location i’s imports originating from j:

sMji =

dji
Pi

W
1−bIY
j P

bIY
j

zj

1−σ

≡
(
djiδ

D
j δ

O
i

)1−σ
, (A.65)

where δOi and δDj are origin and destination fixed effects. We assume that trade costs have the form ln dji =

ψ ln distji + eji, where distji is the great circle distance between MSAs j and i. We the use Allen and Arkolakis

(2014) estimate for ψ and set trade costs to dji = distψji. We then construct the smoothed import shares sMji between

MSAs using (A.65). To that end we must obtain the values of {δDj , δOi }, which are uniquely pinned down, up to a

normalization, by considering the identity that sales equals income,

pjYj =
∑
i

sMjiEi, (A.66)

together with equation (A.65) and the definition of the price index, leading to:(
δOi

)σ−1

=
∑
j

(
djiδ

D
j

)1−σ
. (A.67)

62This step implies that transfers are uniformly scaled down by 35%. The fact that total taxes and transfers do
not match in our dataset comes in part from having removed heterogeneity that is not place-specific from the data
and from our treatment of capital to be consistent with the sources of capital income (profits from housing rents),
which scales down its share in income relative to the data.
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Plugging (A.65) and (A.67) in (A.66), we get a system N equations in N unknowns, which we solve to recover

{δDj , δOi } and in turn sMji . The export shares are then constructed using sXji ≡
(

Ei
pjYj

)
sMji , where spending Ei and

traded income pjYj .

B.2 Appendix to Section 5.2 (Calibration)

Intermediate Input Shares We provide details about the calibration of the intermediate input share in

non-traded goods. We use the following equilibrium relationship from the market clearing condition in the non

traded sector in city j:

1− bIH,j =
WjN

H
j

(1− αC)Xj
(1 + dH,j) . (A.68)

We compute this expression using the observed wage bill of workers in non-traded sectors WjN
H
j and total expenditure

Xj described in the previous subsection, and our calibrated values for αC and dH,j described in Section 5.2. In

practice, this step requires observing
WjN

H
j

(1−αC)Xj
(1 + dH,j) ∈ [0, 1) in all cities. However, for some cities we find

WjN
H
j

(1−αC)Xj
(1 + dH,j) > 1. In these cases, we recalibrate the housing supply elasticity in the non-traded sector dH,j such

that
WjN

H
j

(1−αC)Xj
(1 + dH,j) = 1, and set bIH,j = 0.63 For four MSAs where

WjN
H
j

(1−αC)Xj
> 1, we set WjN

H
j = (1−αC)Xj .

This corresponds in practice to scaling down WjN
H
j by less than 2 % in these cities.

Efficiency Spillover Elasticities The standard estimate of city-level spillovers reviewed by Combes and

Gobillon (2015) are obtained from a regression of average city wages wj on city population Lj . In log-changes, such

an equation would take the form: ŵj = γP L̂j +ψj , where ψj is a city effect and γP is the city-level spillover elasticity.

In our environment, city-level wages are wjLj = NjWj . Under the assumptions of the quantitative model, applying

(A.57), an exogenous shift in the total population of city j keeping its composition across groups constant would then

imply:

ŵj =
[
sW,Sj

(
γPS,S + γPU,S

)
+
(

1− sW,Sj

)(
γPS,U + γPU,U

)]
L̂j + Ŵj , (A.69)

where sW,Sj is the share of skilled workers in wages in city j. Hence, through the lens of our model, the coefficient γP es-

timated at the city level in the empirical literature would correspond to sW,S
(
γPS,S + γPU,S

)
+
(

1− sW,S
) (
γPS,U + γPU,U

)
,

where sW,S is the average skilled worker share across cities. Therefore, we uniformly normalize the distribution of the

γPθ,θ′ coefficients such that, under their scaled values, sW,S
(
γPS,S + γPU,S

)
+
(

1− sW,S
) (
γPS,U + γPU,U

)
= γP . We set

γP = 0.06, which is consistent with the standard estimate for the U.S. from Ciccone and Hall (1996), and sW,S = 0.49

as observed in our data.

Having chosen the level of the γPθ,θ′ coefficients, we must still choose their distribution. Under the assumptions

of the quantitative model, the labor demand condition (13) gives the following expression for the log wage of type-θ

worker:

lnwθj =
[
ρ
(

1 + γPθ,θ

)
− 1
]

ln
(
Lθj

)
+ ργPθ′,θ ln

(
Lθ
′
j

)
+ lnWj − (ρ− 1) lnNj + ln εθj , (A.70)

where ln εθj = ρ lnZθj captures productivity shocks at the worker-city level. In data generated by this model and

expressed in differences over time, we would have

∆ lnwθj =
[
ρ
(

1 + γPθ,θ

)
− 1
]

∆ ln
(
Lθj

)
+ ργPθ′,θ∆ ln

(
Lθ
′
j

)
+ ∆κj + ∆ ln εθj , (A.71)

where ∆κj = ∆ lnWj − (ρ− 1) ∆ lnNj is a city effect. We can use (A.71) to map estimates from Diamond (2016).

Specifically, she estimates equations (27) and (28) in her paper using Bartik shocks as instruments. The only difference

between these equations in her paper and (A.71) is the fixed effect ∆κj here. Assuming that the inclusion of the fixed

63This step affects the profits generated in the economy, in practice reducing slightly the implied values of ΠH and
Xj whose construction we described in the previous subsection of the appendix, which in turn modifies (A.68). We
iterate to find the unique fixed point of the procedure.
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effect ∆κj would not alter Diamond (2016) estimates, we can directly map her estimates from Column 3 of Table 5,

i.e. ρ
(
1 + γPS,S

)
− 1 = 0.229, ργPU,S = 0.312, ρ

(
1 + γPU,U

)
− 1 = −0.552, ργPS,U = 0.697.

The elasticities resulting from this procedure are reported in the first row of Table A.1. The second row reports

the coefficients from an alternative parametrization used in the quantitative section where we target γP = 0.12

instead of γP = 0.06.

Parametrization γPUU γPSU γPUS γPSS

Benchmark 0.003 0.044 0.020 0.053

High Efficiency Spillover 0.007 0.087 0.039 0.106

Table A.1: Alternative Parametrizations of Efficiency Spillovers

Amenity Spillover Elasticities Diamond (2016) reports estimates for equation (31) in her paper, which

(using our notation for the variables in common with her analysis) has the form:

∆ lnLθj = aθ0∆ ln

(
wθj
Pj

)
+ aθ1∆ ln

(
Rj
Pj

)
+ aθ2∆ ln

(
aDj

)
+ ∆ξθj , (A.72)

where aDj ≡
(
LSj /L

U
j

)γa
is the endogenous component of amenities in her analysis64 and (a0, a1, a2) are estimated

coefficients. Column (3) of Table 5 of Diamond (2016) reports the following estimates:
(
aU0 , a

S
0 , a

U
2 , a

S
2 , γ

a
)

=

(4.026, 2.116, 0.274, 1.012, 2.6). We generate equation (A.72) in our setup and match the coefficients from our model

to these estimates. For generality, we do so allowing for idiosyncratic preference draws within each type as in Section

4.4 (i.e., assuming σθ > 0). The labor-supply equation implied by (29) is

σθ lnLθj = ln

(
xθj
Pj

)
− (1− αC) ln

(
Rj
Pj

)
+ ln

(
aθj

)
+
(
σθ lnLθ − lnuθ

)
. (A.73)

Let ζA,S = γa and ζA,U = −γa, and then redefine our amenity index aθj for θ = U, S in (38) as a function of

the amenity index aDj from Diamond (2016) as follows: aθj = Aθj
(
Lθj
)γAθ,θ−βa,θζA,θ aDj , where βa,θ ≡

γA
θ′,θ
ζA,θ

′ is by

construction constant over θ′. Using this equivalence in (A.73), re-arranging and expressing that equation in changes

we obtain

∆ lnLθj =
1(

σθ − γAθ,θ
)

+ βa,θζA,θ
∆ ln

(
xθj
Pj

)
− 1− αC(

σθ − γAθ,θ
)

+ βa,θζA,θ
∆ ln

(
Rj
Pj

)

+
βa,θ(

σθ − γAθ,θ
)

+ βa,θζA,θ
∆ ln

(
aDj

)
+ ∆ξθj , (A.74)

where ∆ξθj ≡ 1(
σθ−γAθ,θ

)
+βa,θζA,θ

(
lnAθj + σθ lnLθ − lnuθ

)
. Comparing (A.72) with (A.74) readily allows us to map

Diamond (2016) estimates to our parameters as follows:

γAθ,θ − σθ =
aθ2
aθ0
ζA,θ − 1

aθ0
, (A.75)

γAθ′,θ =
aθ2
aθ0
ζA,θ

′
(A.76)

for θ = U, S. Conditional the estimates of
(
aU0 , a

S
0 , a

U
2 , a

S
2 , γ

a
)
, we back out the value of γAθ,θ − σθ but are unable to

64This index captures congestion in transport, crime, environmental indicators, supply per capita of different
public services, and variety of retail stores. See Table 4 of Diamond (2016).
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distinguish γAθ,θ from −σθ. Our benchmark model is presented assuming σθ = 0. However, as discussed in Section

4.4, γAθ,θ − σθ is the relevant combination of parameters to characterize optimal allocations and policies under the

definition of the planner problem with idiosyncratic preference draws defined in that section.

The resulting numbers are reported in the first row of Table A.2. The second row reports the coefficients from

an alternative parametrization used in the quantitative section where we scale all amenity spillovers down by 50%

relative to the benchmark. The third and fourth rows report parametrizations that, instead the coefficient γa = 2.6

reported in Column (3) of Table 5 of Diamond (2016), use that point estimate plus or minus the standard deviation

reported in that table, respectively.

γAUU γASU γAUS γASS

Benchmark -0.43 0.18 -1.24 0.77

Low amenity spillover -0.21 0.09 -0.62 0.38

High cross-amenity spillover -0.46 0.22 -1.51 1.04

Low cross-amenity spillover -0.39 0.14 -0.97 0.50

Table A.2: Alternative Parametrizations of Amenity Spillovers

Equivalence of Amenity Spillovers Between Multiple and Single Worker Types In the

quantitative section we implement a version of the model with a single type of worker, using a single amenity spillover

elasticity γA. To find this elasticity, we note that, under a single worker type, the labor-supply equation implied by

(10) expressed in time differences becomes

∆ lnLj = − 1

γA

(
∆ ln

(
xj
Pj

)
− (1− αC) ∆ ln

(
Rj
Pj

))
+ ∆ξj (A.77)

where ∆ξj includes changes in aggregate labor supply and exogenous components of amenities, Aj . In turn, under

multiple worker types, the labor supply equation at the city level results from aggregating the supply of multiple

workers:

∆ lnLθj = −
∑
θ

sL,θj

γAθ,θ

(
∆ ln

(
xθj

Pj

)
− (1− αC) ∆ ln

(
Rj

Pj

))
−
∑
θ

sL,θj

∑
θ′ 6=θ

γA
θ′,θ

γAθ,θ
∆ lnLθ

′
j + ∆ξθj (A.78)

where ∆ξθj includes changes in the labor supply of type-θ workers and in the exogenous component of amenities,

Aθj . We can draw an equivalence between the aggregate elasticity that would be estimated assuming homogeneous

workers (i.e., using (A.77)) when the true model includes heterogeneous workers, so that the data is generated by

(A.78). In the latter, assuming a shock that exogenously changes population and expenditure per capita in the same

proportion for every worker, aggregating the labor supplies by skill we obtain:

L̂j =

−
∑
θ

s
L,θ
j

γA
θ,θ

1 +
∑
θ

∑
θ′ 6=θ

s
L,θ
j γA

θ′,θ
γA
θ,θ

(x̂j − P̂j − (1− αC)
(
R̂j − P̂j

))
+ ∆ξj . (A.79)

where sL,θj is the share of type θ workers in j and ∆ξj ≡
∑
θ s

L,θ
j ∆ξθj . Comparing (A.77) with (A.79), we obtain that,

at the average share of type-θ workers in the economy sL,θ = 1
J

∑
j s
L,θ
j , the coefficient that would be recovered is:

γA =
1 +

∑
θ

∑
θ′ 6=θ

s
L,θ
j γA

θ′,θ
γA
θ,θ∑

θ

s
L,θ
j

γA
θ,θ

. (A.80)

When implementing the model with a single worker type we use this expression to determine γA.
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C Appendix Figures to Section 6

Figure A.1: Optimal Transfers and Reallocation under Homogeneous Workers

Note: This figure shows the transfer per worker relative to the wage in the optimal allocation and in the data. As

implied by Section 4.2, the optimal net transfer relative to the wage takes the form
tj
wj

= s+ T
wj

for s = γP+γA

1−γA . The

solid lines shows the relationship
tj
wj

= a+ b 1
wj

under parameters a and b that correspond to the best fit in an OLS

regression.

Figure A.2: Gains from Optimal Policies given Different Initial Equilibria under Homogeneous
Workers

Note: We simulate laissez-faire equilibria with no government transfers under different fundamentals such that the
joint distribution of wages and city sizes differs from the data in terms of the variance of the wage distribution across
MSAs and the correlation between wages and city sizes across MSAs. In all the equilibria the distribution of city
sizes has the same variance as in the data. Correlation and variances are reported in relative terms compared to
the data. For each variance-correlation combination we draw 400 random distributions of wages and city sizes, and
report the mean welfare gains from implementing optimal policies across these simulations.
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Figure A.3: Transfers relative to Wage by Skill Level and MSA under Different Pareto Weights

(a) High weight on U

(b) Low Weight on U

Note: The panels replicates Figure 3 under alternative weights for each skill group in the planning problem. In the

case “high weight on U”, the weight is 10 times larger for low skill workers and the welfare changes are
(
ûU , ûS

)
=

(1.18, 0.88). In the case “low weight on U”, the weight is 10 times larger for high skill workers and the welfare changes

are
(
ûU , ûS

)
= (0.88, 1.28).
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Figure A.4: Urban Premia under Different Pareto Weights

(a) Urban Wage Premium (b) Sorting

(c) Urban Skill Premium (d) Imbalances

Note: Each panel reports outcomes across MSAs in the optimal allocation under alternative weights for each skill
group in the planning problem. In the case “high weight on U”, the weight is 10 times larger for low skill workers

and the welfare changes are
(
ûU , ûS

)
= (1.18, 0.88). In the case “low weight on U”, the weight is 10 times larger for

high skill workers and the welfare changes are
(
ûU , ûS

)
= (0.88, 1.28). The case “equal weight” corresponds to the

optimal allocation in Figure 3.
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Figure A.5: Urban Premia under Different Spillover Elasticities

(a) Urban Wage Premium (b) Sorting

(c) Urban Skill Premium (d) Imbalances

Note: Each panel reports outcomes across MSAs in the optimal allocation under alternative parametrizations of
the spillovers. “Low A spillovers” corresponds to the “Low Amenity Spillover” parametrization and “High P
spillovers” corresponds to the “High Efficiency Spillover” parametrization. The welfare effects under these alter-
native parametrizations are reported in Table 1.
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