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Most policy changes generate winners and losers. Political economy and optimal
policy suggest questions such as: Who wins, who loses? How much? Given a choice
of welfare weights, what is the impact of the policy change on social welfare? This
paper proposes a framework to empirically answer such questions. The framework
is grounded in welfare economics and allows for arbitrary heterogeneity across in-
dividuals as well as for endogenous prices and wages (general equilibrium effects).
The proposed methods are based on imputation of money-metric welfare impacts for
every individual in the data.

The key contribution of this paper are new identification results for marginal causal
effects conditional on a vector of endogenous outcomes. These identification results
are required for imputation of individual welfare effects. Based on these identification
results, we propose methods for estimation and inference on disaggregated welfare
effects, sets of winners and losers, and social welfare effects. We furthermore provide
results relating aggregation with social welfare weights to the distributional decom-
position literature. We apply our methods to analyze the distributional impact of
the introduction of the Earned Income Tax Credit (EITC), using variation in state
supplements to the federal EITC and the CPS-IPUMS data.

KEYWORDS: Social welfare, distributional decomposition, nonparametric identifi-
cation.

1. INTRODUCTION

Economists usually evaluate the welfare impact of policy changes based on
their impact on individuals. To evaluate a policy change based on its impact on
individuals, we need to (i) define how we measure individual gains and losses, (ii)
estimate them, and (iii) take a stance on how to aggregate them. To understand
the political economy of a policy change (who would oppose it and who would
support it, based on economic self-interest), we need to characterize the sets of
winners and losers of this policy change.

The answers to these questions are important to the extent that few changes
of economic policy result in Pareto improvements; most policies, in particular
controversial ones, do generate winners and losers. Some examples help to illus-
trate. Trade liberalization opposes net producers and net consumers of goods
with rising / declining prices subsequent to liberalization. Progressive income
tax reform opposes high and low income earners. Skill biased technical change
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opposes suppliers of substitutes and complements to new technologies. A de-
crease of barriers to migration opposes would-be migrants as well as suppliers of
complements to migrant labor to suppliers of substitutes to migrant labor.

The goal of this paper is to provide a general set of tools for empirical re-
searchers who wish to analyze the distributional impact of policy changes or
historical changes in settings such as these. The framework we propose is charac-
terized by the following features: (i) We consider individual welfare as measured
by utility. (ii) We allow for endogenous prices and wages. (iii) We allow for un-
restricted heterogeneity across individuals in terms of preferences and in terms
of policy impacts on wages, labor supply, etc. Within this framework, we devise
procedures to answer various questions regarding the distributional impact of
policy changes: What is the expected welfare impact on individuals conditional
on their initial income and exogenous covariates? In particular, which income
groups win or lose as a consequence of the policy change, and by how much?
Given a choice of welfare weights, what is the impact of the policy change on
social welfare? Should we support or oppose the policy change?

The procedures proposed here impute a money-metric expected welfare im-
pact of the policy change under consideration to each individual. Based on this
imputed impact, and given a choice of welfare weights, we can estimate aggregate
welfare impacts. We can also estimate sets of winners and losers and their char-
acteristics. The central econometric difficulty is identification of expected welfare
impacts of the form w-[ (change in wage times baseline labor supply) conditional
on baseline income w - [. Welfare impacts differ from impacts on income by the
behavioral effect w - [ (wage times change in labor supply). More generally, we
need to identify the expected causal impact & of a policy change on x, conditional
on initial 2 and policy level «, E[z|z, «]. We provide conditions under which such
conditional causal effects, and in particular expected welfare impacts, are iden-
tified by the slopes of nonparametric quantile regressions with control functions,
generalizing insights of [Hoderlein and Mammen| (2007) and Imbens and Newey
(2009). Based on these identification results, we propose to estimate individual
welfare impacts using local linear quantile regressions. These estimated expected
welfare effects are then used to derive estimators for a variety of objects, in par-
ticular (i) average expected welfare impacts as a function of initial income, and
(ii) descriptive statistics, such as covariate means and population shares, for the
sets of winners and losers.

We furthermore provide results relating social welfare evaluations (as in op-
timal tax theory) to distributional decompositions (as in labor economics). We
show that welfare weights in social welfare analysis are formally analogous to
the derivatives of influence functions as introduced to the decomposition litera-
ture by [Firpo et al|(2009). We further show that, given welfare weights, policy
impacts on social welfare differ from impacts on distributional statistics by a
“behavioral correction” term.

There are several literatures in economics aiming to empirically evaluate the
distributional impact of policies or historical changes, including the empirical
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optimal tax literature in public finance (eg. |Saez, 2001; (Chettyl 2009), the labor
economics literature on determinants of the wage distribution (eg. |Autor et al.

2008} |Card), 2009), and the distributional decomposition literature (eg.
et al., (1996} Firpo et al.,[2009). Our proposed methods build on these literatures
and generalize them in the following ways: (i) In contrast to most of the empirical
(income) taxation literature, we allow for endogenous prices and in particular
wages. (ii) In contrast to the wage distribution and decomposition literatures,
we are interested in (unobserved) realized utility rather than observed wages or
incomes. (iii) In contrast to more structural approaches estimating demand sys-
tems for the labor market, we allow for arbitrary heterogeneity across individuals
in terms of policy impacts on their wages and on their labor supply.

The tools developed in this paper build on the insights of various literatures
in- and outside economics. Several literatures in (empirical) economics consider
distributional impacts of policies or historical changes. This includes the optimal
taxation literature in public finance, where utilitarian social welfare functionsﬂ
were introduced by [Samuelson| (1947) and the canonical model of redistributive
income taxation was proposed by [Mirrlees| (1971]). More recent references that
this paper draws on include Saez| (2001), (Chetty| (2009), Hendren! (2013), and
[Saez and Stantcheval (2013). A large literature in labor economics analyzes the
role of various determinants of the wage distribution (technology, migration,
minimum wages, ...) in causing historical changes in wage inequality; partial
reviews can be found in [Autor et al.|(2008) and |Card| (2009). An important and
popular empirical tool for analyzing distributional impacts on observed outcomes
are distributional decompositions. These originate in the work of (Oaxacal (1973));
standard references are [DiNardo et al| (1996) and [Firpo et al. (2009). Recent
contributions to the econometrics of such decompositions are and
|Chernozhukov et al| (2013)). The objects of interest we consider are inspired by
questions central to the sociological analysis of social classes (cf. .
Disaggregated distributional analysis, in particular, allows to study both impacts
of policies on inequality and antagonisms of interest. These are two of the main
consequences of the class structure underlying the economy emphasized by class
analysis. Dis-aggregated impacts allow us to study questions of political economy,
following the research agenda proposed by [Acemoglu and Robinson| (2013). They
also allow readers to reach aggregate conclusions based on their own choice of
welfare weights. They finally allow to recognize when policies generate both
winners and losers. conducted a disaggregated analysis similar to
the one proposed here for the case of a homogenous good (rice).

The main econometric challenge we face is the identification of policy effects
conditional on multidimensional outcomes. The one-dimensional case has been
elegantly characterized by Hoderlein and Mammen| (2007); we derive identified
sets in the multidimensional case and discuss conditions sufficient for point iden-

1The term “utilitarian” is used in this paper to describe methods evaluating welfare based
on individual realized utilities. It is not used here to imply a comparison across individuals
based on some notion of cardinal utility.
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tification, drawing on tools from continuum mechanics (fluid dynamics) and the
theory of differential forms (cf. Rudin, 1991, chapter 10). The estimators we pro-
pose build on the large literatures on quantile regression and nonparametric re-
gression; important references include Koenker| (2005), [Newey| (1994a), Matzkin
(2003)), |Altonji and Matzkinl (2005)), and |Chernozhukov et al.| (2013).

The rest of this paper is structured as follows. Section [2 presents our assump-
tions and objects of interest and characterizes the effect of policy changes on
individual welfare. Section [3| presents our results on identification; section 3.1
provides results on the identification of marginal causal effects conditional on
outcomes, and section [3.2] discusses the use of instruments and controls as well
as of panel data for identification of welfare effects in a nonparametric setting.
Section [4] discusses aggregation and the relation between distributional decom-
positions and social welfare effects. Section [5| proposes estimators and inference
procedures based on these identification results. Section [6] applies our results to
analyze the distributional impact of the expansion of the Earned Income Tax
Credit (EITC) using CPS-IPUMS data and identifying variation from state-
level top ups of the EITC which vary over time. Section [7] concludes. Appendix
[A] contains all proofs.

2. SETUP

This section presents the setup studied in this paper. We first discuss notation,
then state the individual’s consumption and labor supply problem, and finally
introduce several empirical objects of interest which we will analyze. The setup
considered is a static labor supply model with nonlinear income taxation and
arbitrary heterogeneity of preferences and wages across individuals. Policies in
this setup might affect prices, wages, and taxes.

2.1. Notation

Throughout, we consider a set of counterfactual policies indexed by o € R, and
a population of individuals i. Potential outcomes under policy « are denoted by
superscripts, so that w® is for instance the potential wage of an individual under
policy 04E| Letters without superscripts denote random variables, so that w is the
wage of an individual as determined by the realized policy a. When we consider
a sample of observations ¢ = 1,..., N in section [5[ (a random subset of all indi-
viduals 7), corresponding draws of random variables are denoted by a subscript 4.

We use several short-hands for derivatives. Partial derivatives are denoted O
with a subscript, so that d,, is the derivative with respect to w. Derivatives of

2Potential outcomes in this paper are “reduced form” objects in the sense that they incor-
porate the impact of any general equilibrium effects of policy changes.
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potential outcomes with respect to v will be denoted by a superscript dot, so that
W = Jpw®

denotes the marginal effect of a policy change on the wage of a given indi-
vidual. Our identification results in section [3| will use the notation VH (z) :=
(0,1 H,...,0,xH) for the gradient of a real valued function H of a k dimensional
vector z, and V - h(z) = Zle 0,k for the divergence with respect to z of a
vector field h.

Probability density functions, conditional or unconditional, are denoted by the
letter f, probabilities and probability distributions by the letter P, cumulative
distribution functions by the letter F', and quantiles by the letter Q. If it is clear
from context which (conditional) distribution an expression refers to, subscripts
will be omitted, so that for instance f(wl|l) denotes the density of w given .

2.2. Individual problem

We discuss distributional policy evaluation in the context of labor markets,
the wage distribution, and earnings taxesﬂ All variables depend on the policy
a, as well as of unobserved individual heterogeneity €, unless otherwise stated.
We denote an individual’s labor supply by [, her pre-tax market wage by w, and
her pre-tax earnings by z = [ - w. She pays earnings tax t = ¢(z) and receives
unearned income yg, so that her net income is y = z — t(2) + yo. Using this
notation, the individual’s problem is given as follows.

Assumption 1 (Individual utility maximization)

o There is a population of individuals indexed by i € &, and a schedule of
counterfactual policies indexed by a € R.

o FEvery individual i chooses ¢ and | to solve
(1) rré%xu(c,l) st. c-p<l-w—t(l-w)+yo,
taking w, p and t(.) as given. The value of u at the mazimizing (c,l) is
denoted v.

e The utility function u(.), wage w, the consumption bundle ¢, and labor
supply | may vary arbitrarily across individuals.

e Prices p, wage w, unearned income Yo, and tazes t(.) may depend on «,
and as a consequence so do ¢, I, and v.

o For all individuals, u is differentiable, increasing in the components of ¢
and decreasing in l, quasiconcave, and does not depend on c.

30Qur arguments apply equally to other markets with heterogeneous goods, however, for
instance to the housing market.
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Remarks:

Assumption [I]states a simple static model of labor supply subject to a bud-
get constraint. We focus on this case for simplicity and specificity, and since
it is similar to the settings considered in the wage distribution literature
and in the income taxation literature. Labor markets are furthermore of
central importance in determining the relative welfare of individuals. They
are also of particular conceptual interest: Heterogeneity in wages and in
wage responses to policy changes poses econometric challenges which are
absent from the analysis of markets with more homogeneous goods.

Our arguments do generalize to models with dynamics and additional con-
straints, and to other markets with heterogenous goods, by arguments sim-
ilar to those discussed in |Chetty| (2009). Of particular interest is the hous-
ing market, since it is also characterized by very heterogeneous supply, and
since most individuals are consumers of housing and many are owners of
houses.

A crucial limitation of the setting we discuss is the assumption that prices,
wages, and taxes are the only constraints of the individual which change as
a function of the policy change. If other constraints are binding and change
as a function of the policy change, this would need to be incorporated
in estimates of welfare effects. An example of such additional constraints
would be involuntary unemployment.

To each individual in the setup of assumption [I] there corresponds a sched-
ule of counterfactual wages w®, counterfactual consumption c® etc., as
well as a realized policy a and corresponding realized wage w, realized
consumption c etc.

In order to relate our model to the canonical model of consumer choice sub-
ject to a linear budget constraint, consider the following linearized version
of the individual’s problem. Define marginal net wage as

n:=0gy=w-(1-0,),
and virtual lump sump taxes as
to:=t—0,t- 2.

Denote leisure L = L —1 and total endowment with time L. We can rewrite
the individual’ s utility maximization problem as

mzixu(c,ffL) st. cop+L-w<L-w—t(l w)+yo.

By quasiconcavity of u, this problem in turn has the same solution as

(2) mzzxu(c,f—L) st. c-p+L-n<L-n—ty+yo,

where n and ¢y are treated as constants by the individual. This problem
has the form of a standard linear consumer problem.
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2.3. Objects of interest

The basic object of interest in this paper is the welfare impact of a pol-
icy change on individuals. All other objects we consider are functions of the
individual-level welfare impact. This welfare impact is given by the impact v on
realized utility v. We shall re-normalize this impact to get the impact on money-
metric utility: Rescaling v by the marginal utility impact of a lump-sum transfer
of money, 9y,v, yields

(3) é:=0/Byv.

¢ is the impact of the policy change on the expenditure function e (at baseline
prices), as defined in (Mas-Colell et al.| {1995, section 3.E).

We are also interested in aggregate welfare functionals which depend on in-
dividuals’ realized utility v. For a finite population of N individuals, aggregate
welfare is simply a function of the vector (vi,...,vn). More generally, welfare
is a functional of (v; : i € #).With these preliminaries, and denoting by W a
vector of covariates which are not affected by «, we can define our main objects
of interest.

Definition 1 (Objects of interest — utility)
1. Ezpected conditional policy effect on welfare:

(4) V(y, W) := Elély, W, o
2. Sets of winners and losers:

W o={(y, W) :~v(y, W) > 0}
(5) L ={(y,W) :v(y, W) <0}

3. Policy effect on social welfare:
(6) SWF
where social welfare SWF maps (v; : i € &) into R.

Remarks:

e The expected conditional policy effect v is the fundamental object of in-
terest; it maps into all other objects we consider. Our proposed meth-
ods are based on imputing an estimate of ~(y;, W;) to every observation
1 =1,..., N in the baseline sample. We propose to plot v or objects such
as E[vyly], the expected welfare impact given initial income. This allows to
immediately visually assess the welfare impact of a policy change across
the income distribution.
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e The sets of winners and losers # and £ are central objects of interest
for political economy considerations. To the extent that individuals’ po-
litical actions reflect their economic self-interest, these sets correspond to
potential coalitions supporting and opposing the policy change under con-
sideration.

e The policy effect on social welfare SWF is the relevant object from an
optimal policy perspective (cf. |Saezl [2001} |Chetty, 2009). If this effect is
positive, the policy change should be implemented. To calculate this effect,
we need to take a stance on the relative weight assigned to the welfare of
different individuals. In fact, we show below that (under certain differen-
tiability conditions) SWF can be written as SWF = E[w - ¢] for welfare
weights w and which measure the relative value assigned to a marginal
dollar for each individual.

e The expected conditional welfare effect pins down aggregate welfare effects
if either (i) the welfare weights implied by SWF (and discussed in section
below) are functions of y, W, or (ii) the policies considered have welfare
effects which are functions of y, W. Both conditions are satisfied in standard
models of optimal taxation such as the [Mirrlees| (1971) model.

e It is worth noting that any aggregate welfare evaluation corresponds to an
implicit or explicit choice of welfare weights; we will elaborate on this point
in section [d Aggregation by summing up money metric utility across indi-
viduals, in particular, corresponds to a particular choice of welfare weights.
The implied weights in that case are proportional to the inverse of marginal
utility of income and are thus presumably larger for richer individuals.

e In this paper, we are mainly interested in welfare evaluations based on in-
dividual realized utility. It is however quite instructive, and provides use-
ful connections to the distributional decomposition literature (cf.|DiNardo
et al., {1996} [Firpo et al. |2009)), to consider analogous objects for realized
incomes rather than realized utility. Section [4| below considers these.

2.4. Welfare effects of marginal policy changes on individuals

We consider the effects of a marginal change in « on individual welfare. In
the context of the model specified by assumption [I} such a change might af-
fect individuals through (i) taxes ¢, (ii) wages w, (iii) unearned income g, and
(iv) prices p. Indirectly, such a change might affect individuals’ labor supply I
and consumption vector c. We first derive the welfare effect on individuals, and
compare it to the effect on net income y. Section [3| discusses identification of
expected individual effects. Section [4] then considers aggregate effects, on social
welfare SWF as well as on statistics of the income distribution 6.

The following lemma characterizes the effect of a marginal policy change on
net income and on money-metric utility. We then discuss the difference between
these two effects.
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Lemma 1 (The effect of marginal policy changes on individuals)
Consider a marginal change in «. The effect of such a marginal change on net
income equals

(7) g=-w+1-w)-(1—08.t) —t+ .
The effect of such a marginal change on welfare (money metric utility) equals

(8) é=1-1-(1—0,t)—t+yo—c-p.

We can decompose the effect ¢ of a marginal policy change on net income into
four components,

1. the behavioral effect b:=1-w- (1 —8.t) =1-n,

2. the wage effect - w - (1 — 0,t),

3. the effect on unearned income vy,

4. and the mechanical effect of changing taxes —t.
The effect ¢ on money metric utility is given by the sum of

1. the wage effect,

2. the effect on unearned income,

3. the mechanical effect of changing taxes

4. and the price effect —c - p.
The difference between g and é is given by the sum of the behavioral effect and
the price effect,

(9) g—é=1-n+c- p.

The empirical application in section [6] assumes p = 0 and 3o = 0, that is, we
ignore the effects of changing prices and of changes in unearned income. In this
simplified case, we get

(10) é=1-(1-0,t) w—t.

Using the linearized form of the consumer problem we can alternatively write
this as

e=y—1I-n

=1-n—t.

We can, in particular, obtain the welfare effect by subtracting the “behavioral
correction” b = [ - n from the effect on realized net income.

Remark:
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e Lemma [I] illustrates the main implication of a utilitarian framework for
welfare economics: whatever choices people make are best for themselves
— by assumption. As a consequence behavioral responses to policy changes
have to be ignored when calculating the marginal impact of policy changes
on individuals’ welfare. This holds true regardless of the specific model
under consideration. Note that behavioral responses can not be ignored
when calculating the effect on other individuals; behavioral responses might
affect other individuals through channels such as their effect on prices, the
effect on the tax base, and externalities.

e The welfare effect é corresponds to the effect of changing prices and wages
holding behavior constant. Defining an empirical counterpart of é requires
us to specify the behavioral margins and associated prices which might
be affected by the policy change, in contrast to the “sufficient statistic”
literature reviewed in |Chetty| (2009). Sufficient statistic arguments rely on
either fixed prices or known price—responsesﬁ In particular, we do need
to observe the relevant labor supply margins if wages are allowed to be
endogenous.

o If w =gy = gy = 0, then equation reduces to Roy’s identity, é = —c - p.
In a precursor to the analysis proposed here and based on this identity,
Deaton| (1989)) considers the distributional welfare impact of changing rice
prices in Thailand.

3. IDENTIFICATION

In this section, we discuss identification of v(y, W) = E[ély, W, a]. We first
assume random (“experimental”) variation of « and consider the case of no
covariates W in section [3.1} The crucial challenge which section addresses
is identification of marginal causal effects conditional on a vector of endogenous
outcomes, that is, identification of E[Z|x,«]. In our context, this is necessary
because y(y, W) involves terms of the form E[l - w|l - w, ], or more general
versions thereof. We provide conditions under which

Eli’|z, 0] = 0aQ(|v", ..., v, a),

where v/ = F(z7|zt,... ;2771 a). In section we then generalize to quasi-
experimental settings, assuming the availability of suitable controls and / or
exogenous instruments.

The results in this section generalize those of the literature on nonparametric

identification for the case dim(x) = 1, in particular [Hoderlein and Mammen
(2007).

4] thank Nathaniel Hendren for discussions on this point.
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3.1. Effects conditional on outcomes

Consider a simplified version of the setting of assumption [I, where we assume
p =1 =19 = 0, so that welfare effects are driven solely by changing wages.
In this case, equation of lemma [1| implies that ¢ = [ - (1 — 9,t) - w. Let us
additionally assume for notational simplicity that 0,t = 0, so that é = [ - W
Then the conditional expected welfare effect v(y, W) is equal to the wage effect
E[l - |l - w,a]. The latter is identified if E[(I,w)|l,w,a] is identified. Let z =
({, w)E| Our problem is to identify E[z|z, a].

Suppose the distribution of ¢ is known for a continuum of values of .. This is
the case in an experimental setting, where « is independent of unobserved het-
erogeneity e. The following series of results explores identification of E[#|x, ] in
this case.

Assumption 2 (Abstract setup)
o = z(q,e¢)
r € R*, a € R, € has support of unrestricted dimension.
ale
The observed data identify f(z|a) for a € (=4,9).
x s continuously distributed given a.
x(a, €) is differentiable in «.
E[&|z, ol - f(z|a) is continuously differentiable in x.
The support of x given « is contained in a compact and convex set X which
1s independent of .

Recall that we are using the following notation: f(x|«) is the conditional den-
sity of  given a. The letter @) denotes (conditional) quantiles. Derivatives with
respect to the policy parameter o are written f = 9, f(z|a), & = daz(a, €) ete.
We further define

(1) Az, @) = Elifz, o] - f(z]a),
and denote the divergence of h by
k
Vehi=> 0uh.
j=1

If h is identified, then so is our object of interest E[i|z,a] by E[t|z,a] =
h(z,a)/f(z|a) for values of (z,a) in their joint support.

Remark:
e The setting of assumption [2 has various analogies in physics, most notably
in fluid dynamics. We can think of « as time, € indexing individual particles,

5In more general settings, = has to include other endogenous, heterogeneous variables such
as yo, and the conditioning arguments might include exogenous covariates W.
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and x the position of a particle in space. The function z(q, €) describes the
trajectory of a particle over time. Then f(z|a) is the density of the gas or
liquid at location z and time «. As shown in theorem [I| below, the change
of this density over time is given by the divergence of the net flow h. The
case V-h = 0 corresponds to the flow of an incompressible fluid, the density
of which is constant over time, which is approximately true for water. The
equation V - h = 0 characterizes the kernel of the identified set for A in
theorem (2] below.

e The source of the identification problem we face is accurately illustrated by
the following analogy: By stirring your coffee (or other beverage of choice),
you can create a variety of different flows g(x, @) which are all consistent
with the same constant density f(z|a) of the beverage being stirred.

We will now develop a series of results characterizing this identification prob-
lem. Theorem [I] shows that the divergence of h is identified from the data via
the identity f = —V . h. Theorem |2[ shows that the reverse is also true: any
flow density h that satisfies this equation is in the identified set, absent any
further restrictions. Theorem [3| characterizes the identified set, formalizing the
“coffee stirring” analogy. Theorem [] imposes the additional exclusion restric-
tions 8,5 E[i|z,a] = 0 for j > i, and shows that under these restrictions h and
g are just-identified by nonparametric quantile regressions with control functions.
Theorem [5] finally, restricts heterogeneity further and obtains just-identification
of the structural functions z(«, €).

The following theorem shows that the data identify the divergence of h under
assumption [2

Theorem 1 Suppose assumption[q holds. Then

(12  f=-V

Figure [1] provides some intuition for this result: Consider the density of ob-
servations in the shaded square. This density changes, as « changes, by (i) the
difference between the outflow to the right and the inflow to the left, 9,1 h' - dz?,
and (ii) the difference between the outflow on the top and the inflow on the

bottom, 0,2h?% - dz2. The sum of these changes is equal to — Z§:1 Oy h7 - dad.

Our next result, theorem 2] shows that the data only identify the divergence of
h. Any h such that f = —V - h is consistent with the observed data and assump-
tion |2 l Theorem I 2| explicitly constructs one particular function h2° which satisfies
the equation f = —V-h. It further shows that the difference h between thls func-
tion and any other function & in the identified set is in the set {h: V -k = 0}.



WHO WINS, WHO LOSES? 13

FIGURE 1.— Divergence of flow and change of density

Th2+dx2h2

-
h' h'+d h'

*

| h2

Notes: This figure illustrates theorem [1} It relates the change of density f (mass in the
square) to the divergence of h (difference in flow on different sides).

Theorem 2 Suppose assumption [q holds.
Let vj be the random variable v = F(z?|zt, ... 2971 «), define

(13) Y (z,0) = f(z]a) - 0,Q(W7 v, ..., v" 71 a),

and let

(14) H ={h: V-h=0, h(z,a) =0 for z ¢ X}.
Then the identified set for h is given by

(15) RO + .

Theorem [2] shows that the identified set for h is equal to h° + .#. Point
identification fails if . has more than one element. Our next result, theorem
characterizes the nature of non-identification if this is the case. This theorem
provides alternative representations of the “kernel” of the identified set which is
given by S = {l~1 :V-h= 0}. This is the set of flows that can be generated by
“stirring the coffee,” leaving the density of z invariant. Theorem [3luses Poincaré’s
Lemma to characterize the set s for dimensions k = 1,2, and 3E|

The case k = 2 is of special interest in the context of this paper — recall that
x = (w,l) in the simplified version of assumption (1| considered at the outset of
this section. For the case k = 2, the characterization takes on a particularly ele-
gant form. In this case, the functions h in the kernel are exactly those functions
which can be written as the gradient of some function H, rotated by 90 degrees.
h is thus a vector field pointing along the lines of constant height of H. Figure

6Similar results can be stated for higher dimensions, but require increasingly cumbersome
notation.
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illustrates.

Theorem 3 Suppose assumption [q holds.
1. Suppose k = 1. Therﬂ

(16) A = {h = 0}.
2. Suppose k = 2. Then
(17) H ={h: h=A-VH, H(z,a) =0 forz ¢ X}.

where

3. Suppose k = 3. Then
(18) A ={h: h=V xG, Gz,a) =0 forz ¢ X}.}.
where

0,2G3 — 9,2G2
VxG=| 0,sG'—0,,G?
01 G2 — 0,2 G

Theorems [2] and [3] characterize the identified set for h if only assumption [2] is
imposed. The following theorem shows that the additional assumption of a “tri-
angular” structure for VE[i!|x,a] (derivatives above the diagonal are 0) yields
just-identification of h. Note that the ordering of the components of z matters
if we assume such a triangular structure! The identified A differs depending on
which ordering the triangular structure is imposed for.

Theorem 4 Suppose assumption [q holds. Assume additionally that
(19) 0y B[z, a] = 0 for j > i.

Then g and h are point identified, and

(20) g(x,a) = 0,Q(vI|vt, ..., 0771 a),

where v/ = F(xd|xt, ... 2971 a). The flow density h is equal to h° as defined in
theorem [2.

"This can be interpreted as a version of the result shown by [Hoderlein and Mammen| (2007)).
Non-identification for the case k = 2 was recognized by Hoderlein and Mammen| (2009).
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We conclude this section by discussing conditions which yield just identifi-
cation of the structural functions x themselves. Such conditions have been ex-
plored by Rosa Matzkin, in particular Matzkin| (2003). Point identification of
structural functions follows under the rather restrictive conditions that (i) the
dimensionality of unobserved heterogeneity is no larger than the dimensionality
of endogenous outcomes y, and (ii) a triangular structure as in theorem 4| is
imposed. Point identification of structural functions is useful in the context of
discrete changes of a.

Theorem 5 Suppose assumption@ holds. Assume additionally that € € R* and

(21) (o, €) = z(a, €. .., é)

is strictly monotonically increasing in € and does not depend on €811, ... €*

Then (e',...,€) is a one-to-one transformation of (vi,... v7) for any j <k,
where

(22) v = F@d|zt,. . 27 o) = F(d]e, ... e
and

23 (€)= QY (W), .. vt o

(

for any a, .

3.2. Controls, instruments, and panel data

In section we considered the problem of identifying E[zZ|x, ] under the
assumption that « is randomly assigned. Most distributional evaluations have to
rely on observational data in settings where this assumption can not plausibly
be maintained. In this section we discuss identification of E[z|z, W, a] if either
(i) « is conditionally random, or (ii) there is a valid instrument Z, or (iii) we
have panel data where changes of a over time are independent of changes of
other factors affecting outcomes. Proposition [I] through [3] are generalizations of
theorem [ to these cases.

The following proposition [I| considers the approach taken by most of the dis-
tributional decomposition literature whenever decompositions are given a causal
interpretation: It is assumed that treatment « is independent of unobserved
heterogeneity ¢ once we condition on a set of available covariates W. This as-
sumption might be a reasonable approximation to the truth when a rich set of
covariates is available. Proposition [I| shows that under this condition policy ef-
fects on x (labor supply | and wage w) can be imputed using a quantile regression
with the appropriate controls W and v7 .
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FIGURE 2.— Incompressible flow and rotated gradient of potential
7 2 2
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Proposition 1 (Controls) Suppose assumption holds, except that instead of
a L e we have oo L e|]W. Assume additionally that

Oy B[ |2, W,a] = 0 for j > i.

Then E[i9|z, W] is point identified for (z, W, «) in the interior of the support
of the data, and equal to

(24)  E[# |z, W,a] = 0aQ 0", ..., 07" W, a),
where vi = F (272, ..., 277, W, ).

In settings where conditional independence of o can not plausibly be main-
tained, we might still have an instrument Z for which conditional independence
holds, and which affects outcomes only through its effects on «. In the spirit of
nonparametric identification, we would like identification not to depend on re-
strictions of functional form or the dimensionality of unobserved heterogeneity.
Kasy| (2014) shows identification of potential outcome distributions for the fully
nonparametric case, assuming monotonicity of the first stage in the instrument
and sufficient support of the data; the following proposition [2] reviews this result.

Proposition 2 (Instruments) Suppose assumption @ holds, except that in-
stead of a L € we have Z L (e,n)|W. Assume additionally that « = «(Z,n),
where «(.,n) is continuous and strictly increasing in Z for all 1. Define the
weighting function

_0:F(alz, W)

(25) ola,z, W) = m,

assuming all derivatives and the ratio are well defined. Assume finally that
F(alz,W) has full support [0,1] given o« and W. Then

(26) fwa(‘ﬂw) :f(x|avW) -go(oz,z, W)v
and proposition[1] applies to the observed data distribution reweighted by .

In practice, the support requirement that F(«|z, W) has full support [0,1]
given o and W might be fairly restrictive. If support is insufficient, we might pro-
ceed using the control function approach (Imbens and Neweyl 2009), using v* :=
F(a|z, W) as additional control in the quantile regression Q (v’ |v?, ..., vI71 v* W, a),
and relying on linearity assumptions to extrapolate outside the support of the
data. For the case of sufficient support, it is shown in [Kasy| (2014)) that the con-
trol function approach yields the same estimates as the reweighting approach of
proposition [2]

The following proposition considers a panel data setup, where « varies as a
function of time within groups s (states or metropolitan areas, for instance).
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Similar to many approaches in the “Difference-in-differences” mould, such as
Chamberlain| (1984)), |/Athey and Imbens| (2006), and |Graham and Powell| (2012)),
we assume that the distribution of heterogeneity € does not vary over time within
states s. Time 7 is allowed to have a causal impact on outcomes x, which is how-
ever assumed to not interact with the level of a.

Proposition 3 (Panel data) Suppose assumption @ holds, except that x =
x(a, 7€), and T L €|s, W, where a = a(s, 7). Assume additionally that

E[il |z, s,W,7,a] = El#7 2, ... 27, W, q]
E0,27|z,s, W,T,a]| = E[0;z%|x, ... 27, W, 7]

for j=1,...,k. Then, for v/ = F(a7|xt, ... 2971 s, W, 1),

0, Qiwt, .. I s WiT) = Ora(s,T) - E[il |z, W, q]
+E[0, 27|z, W, 7]

If, in particular, 0-a(s,T) varies across s given t and o, then E[i7|x, W, a] is
identified.

The crucial identifying assumptions of this proposition are:

1. Heterogeneity is constant over time within states and given covariates. This
assumption is known as “marginal stationarity” in the nonparametric panel
literature.

2. The conditional average causal effects E[(i, d,2%)|x, s, W, 7, a] are the same
for every state s. This is strictly weaker than the “common trends” assump-
tion of Difference-in-difference models. This is also strictly weaker than the
“changes-in-changes” assumption of |Athey and Imbens| (2006).

4. AGGREGATION

Lemma [I| characterizes the effect of a policy change on individual net in-
come y and on money-metric utility e. In this section we discuss the corre-
sponding effect on aggregate statistics 6 of the income distribution and on so-
cial welfare SWF'. Section [3| provided conditions sufficient for identification of
v(y, W) = Elé|ly, W, a]. Under some restrictions on welfare weights to be dis-
cussed below, policy effects on social welfare can be written as S WF =EFE [w- 7],
so that identification of v implies identification of SWF.

We prove the following claims: (i) As long as we consider marginal policy
changes, we can restrict our attention to social welfare functions which are lin-
ear in money metric utility. Policy effects on social welfare are a weighted average
of their effect on individual welfare, SWF = E[wSWF . ¢]. Here wWF is the wel-
fare weight, or marginal value of an additional dollar, assigned to each individual.
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(ii) Effects on social welfare relate to effects on statistics of the income distri-
bution in that a) welfare effects are effects on income net of behavioral effects,
and b) welfare weights correspond to the derivative of the influence function
for distributional statistics. (iii) There are various equivalent ways of calculat-
ing SW F which are based on imputing conditional expected welfare effects ~ or
some counterfactual income to each individual. These equivalent representations
can be used for alternative estimation approaches.

In addition to effects on social welfare, we discuss in this section effects on
aggregate statistics 6 of the income distribution. Typical examples of such dis-
tributional statistics are mean and variance, quantiles, and measures of inequality
such as the Gini coefficient.

Definition 2 (Objects of interest — net income)
1. Expected conditional policy effect on net income: B(y, W) := Elyly, W, o]
2. Policy effect on a distributional statistic: 6,
where the distributional statistic 0 maps P, into R.

In order to elegantly characterize and relate 6 and SWF , we need to impose
additional differentiability conditions on either functional; the following assump-
tion [B] does so. Definition B assumes 6 is a statistic of the income distribution
P,. We can also, however, think of it as a functional of the random variable
(yi:i €I )E| The random variable y has a probability distribution P,, where
the latter “forgets” about the index ¢ — who earns how much. The following
assumption imposes differentiability of 6 for either representation.

Assumption 3 (Differentiability)

1. SWF is Gateaum—dijj‘erentiablﬂ on the set of random variables v, equipped
with the L? norm.
0 is Gateauz-differentiable on the set of random variables y, equipped with
the L? norm.

2. 0 is Gateaux-differentiable on the set of probability distributions Py, equipped
with some norm, so that the influence function IF(y) of 0 exists.

3. The influence function IF(y) of 6 is differentiable in y.

Theorem 6 (Welfare weights and influence functions)

Suppose that assumption[]] holds. Let § and é be the impact of a marginal policy
change on individuals’ income and welfare at « = 0, and consider the corre-
sponding impact on 8 and SWF.

8The random variables y and v map the underlying probability space .# of individuals 3,
endowed with the uniform distribution, into R.

9A functional is “Gateaux-differentiable” if it is differentiable along paths in the spaces
of random variables or probability measures. For finite populations ¢ = 1,..., N, “Gateaux-
differentiability” corresponds to the usual notion of differentiability.
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1. Welfare weights:

WF

Suppose that assumption @.1 holds. Then there exist random variables w®
and w7 such that

(27) SWF = E[wS"VF . ¢]
(28) 0 = B[’ - 9.

2. Influence function:

Suppose that assumption[3 2 holds. Then

(29) 6= 0.E[IF(y")] = 0a / [F(y)dFye(y).

3. Relating the two:

Suppose that assumptions[3 1{3 3 hold. Then

(30) w? = 9,IF(y).

Remarks:

e It is instructive to consider the case of a finite population. In that case,
the welfare weights of equation are equal to

(31) wi = 0y, SWEF(v) - Oyyv;.

This is the relative value attached to a marginal dollar for a given indi-
vidual. [Saez and Stantcheval (2013)) argue for a direct specification of such
weights (without the detour over some social welfare function), in order to
reflect distributional preferences. In the majority of public finance appli-
cations, w*" ¥ is a function of y.

e Differentiability of the influence function of 8, as required for the identity
w? = 9,IF(y) is violated for some distributional statistics of interest, most
notably quantiles. We can think of quantiles as assigning “infinite weight”
to the welfare (income) of individuals right at the quantile. Differentiability
holds for moments of the form v = E[G(y)] for differentiable G, and for
statistics which are locally well approximated by such moments.

e Theorem |§| provides two representations of 6, the first in terms of welfare
weights and the second in terms of the influence function. These two repre-
sentations correspond to the two ways of thinking about 6, as a functional
of the random variable y and as a functional of the distribution P,.

e There are two ways for estimating 6 proposed in the distributional de-
composition literature, reweighting [DiNardo et al.| (1996]) and RIF regres-
sion [Firpo et al.| (2009)). Reweighting corresponds to directly estimating

10More precisely, (wfWF :i € .#) and (Wf : i € F).
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000 (Pye) after constructing the counterfactual distributions Py«. RIF re-
gression corresponds to estimating E [IF(y®)] by suitable regressions of
IF(y) on a and controls.

The following theorem provides alternative representations of SWF under
the assumption that the welfare weights wSWF are a function of y, and that
WIWFE = (0 which allows to relate SWF to 6.

Theorem 7 (Counterfactual income and behavioral correction)
Suppose that assumptions and@ hold. Assume further that w*W¥ = w? = w
and that p = 0. Define the counterfactual income §* = 10 - w® — t*(1° - w®) + y§'.
and the behavioral effect b = [ n.
Then

(32) é=y=19-0b,
and SWF can be rewritten in the following ways.
1. Welfare weights:

SWF = Elw -]
(33) = Elw -]

with v as in definition [1]
2. Counterfactual income distribution:

(34) SWE = 0,0 (Pje).

3. Influence function:
(35 SWF=0.EUFG) =0 [ 1P ().

4. Behavioral correction of distributional decomposition:

6 — SWF = E[w - b]
= 000 (Pye)
(36) =0 E[IF(5%)].

where §* = 1% - w® —t9(1% - w%) +99.

Remarks:
e Theorem [7| defines two counterfactual income variables, §* and §<.
g® is the income an individual would receive given baseline (o = 0) labor
supply and policy a wages, taxes, and unearned income. The derivative of
g™ with respect to a at a = 0 gives the welfare effect é.
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g® is the income an individual would receive given policy « labor supply
and baseline (o = 0) wages, taxes, and unearned income. The derivative of
g with respect to o at a = 0 gives the “behavioral correction” b =1-n.
e The equivalent representations of SW F' in theoremsuggest several alter-
native ways of estimating SW F":
1. We can impute an estimate of y(y, W) = E[é|y, W, ] to every obser-
vation, and then use SWF = Efw - 7|, where welfare weights w are
directly specified. This is the route we will pursue.

2. We can impute 7, based on counterfactual wages, taxes, and un-
earned income to individuals in the baseline sample. Or impute %,
based on counterfactual labor supply to individuals in the policy «
sample. Either way, we can apply distributional decomposition meth-
ods such as reweighting or RIF regression for statistics of the distri-
bution of g<.

3. We can impute ¢, similarly to imputing y“, and apply one of the
decomposition methods to the distribution of §*. We can then use
SWEF =6 — 0,0 (Pye) and thus obtain S W F by applying a “behav-
ioral correction” to a standard decomposition.

The first of these approaches has two important advantages. First, it is
possible to identify vy under weaker conditions then necessary to identify
counterfactual outcomes such as §¢ and §®. Second, this approach allows
to directly construct estimates of the sets of winners and losers, # and .2,
and to plot the conditional expectation of é given baseline income or other
variables.

5. ESTIMATION

This section discusses estimation based on the identification results of section
and the aggregation results of section [df We first consider the baseline case
as discussed in section with random variation in « and no covariates W.
We provide an estimator for g(x,«) = E[&|x,a] in this baseline case, using
the identification-result of theorem 4 The proposed procedure estimates 9,Q
by local linear quantile regression, and replaces the “control-functions” v; by
estimated versions thereof. We then generalize this estimation procedure to the
settings considered in section|3.2] using controls, instrumental variables, or panel
data.

No matter how g is estimated, we can impute estimated values of g for every
individual in a baseline sample. These estimated values can in turn be used to
construct estimates of v, #, £, and SWF. This is discussed in section
In section we discuss estimation of the structural functions z(a,€) under
the more restrictive identifying assumptions of theorem [5| The section concludes
with a brief discussion of inference. Analytic standard errors are complicated
to construct in our setting and require re-derivation of influence functions for
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every object of interest and every identification approach; we opt instead for a
procedure based on the Bayesian bootstrap. This is described in section [5.5

5.1. Estimation of g in the baseline case

Suppose that the assumptions of theorem [ hold. Denote sample averages by
En, so that for instance En[z] = 1/N ) . ;. Then g(z, o) = E[&|x,a] can be

estimated by iterating the following procedure over the components j =1,...,k
of ¢:
1. Fix a point (z,a) and take (v!,...,777!) as given.

2. Define the following local weights around (o, v',... 777 1).

; 1 1 i il
(37) Kg:j-K( Hai—a,@»l—ﬁl,...,vf % 1”)
P P

for a kernel function KIE and a suitably chosen bandwidth pE
3. Let

(38) ¥ = 8
En[K]
4. Let, finally,
(39) 7 = argmin Ey [KZ UL (W - 1(U] < 0))] , where

gJ

(40) Ul =2 —a27 —a-¢°.

Then ¥/ is an estimate of v/ = F(2/|2z',..., 297! a) and §’ is an estimate of
0aQ(vI vt ..., v~ ). The latter is equal to ¢/ (z,a) = E[i7|z,a] under the
assumptions of theorem [

5.2. Estimation of g using controls, instruments, or panel data

In the context of the applications of interest for the procedures considered in
this paper, experimental variation of o will rarely be available. The estimator
just sketched immediately generalizes, however, to the more general settings
considered in The estimator has to be modified as follows to be used in
these settings.

1. Controls

Suppose that the assumptions of proposition [I] hold. Then the estimator

HFor instance the Epanechnikov-kernel K(a) = max(0,1 — a2).
12We use a common bandwidth p for all variables for simplicity of notation; in general
different bandwidth for different variables might be desirable.
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of section can be used to estimate g(x, W, a) = E[i? |z, W, a] once we
replace the local weights by

: 1
J
@) K = s

+6

Suppose that the assumptions of proposition [2] hold. Then the estimator
for the case of controls can be used to estimate g(x, W, a) after reweighting
the data by @(«, z, W), where

. . i1 i
i —a, Wy =W, o =o', ..., 00— IH)

. Instruments

~ 8. F (a2, W)
42 a,z, W) = —————=.
() Pl s W) = = )

We can use a kernel density estimator for the denominator,

Fra < Lo (Glo ) K (1w - w2~ 1)
T S K (e e W wl)

and a local linear regression estimator for the numerator,

0. F(a)z, W) = argmin mamz (L((a—i)/pa) —a—b-(Z; —2))?
(43) K (LW -z )

In the latter expression, L is the cumulative distribution function of a
smooth symmetric distribution with support [—1,1], and p, is a further
bandwidth parameter. The “dependent variable” L ((ov — «;)/pq) in this
regression is a smoothed version of the indicator 1 (o — a; < 0).

. Panel data

Suppose that the assumptions of proposition [3| hold. Then g(z, W, «) can
be estimated using a two-stage approach:

(a) Estimate 9,Q(v7|v, ..., v771 s, W, T) using the exact same estimator
as for the case of estimation with controls, with 7 taking the place of
a.

(b) Then regress 9;Q(v’|v!,... ,vI71 s, W,7) on d,;a(s,T) across values

of s and 7. The slope of this regression provides an estimator of
g(z, W, ).
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5.3. Estimation of v, #, £, and SWF

Ultimately, we are not interested in g(z, W, ) = E[&|z, W, o] itself, but rather
in derived objects such as v, #', £, and SW F as introduced in definition |1} To
estimate v, we need to take a suitable average of the estimated conditional effects
of the policy change on w,y", and t. Assume for simplicity that 0 =¢ =p =0,
and that w = 27. Then é = [ - 1, and we can estimate 7 by

(44) Ay, W) = By [Ki-1-(1-0.t) - &] /En[Ki]

where i = ¢’ is estimated using any of the approaches we discussed (experimen-
tal variation, controls, instruments, panel data), and

1 1
(45) Ki_p2+dim(I/V).K<p ||Oéz'_0,yi_y7Wi_W”>'

We can finally plug our estimate of +y into the definitions of #” and Z, and into
the first characterization of SWF in theorem [7 to obtain

W ={(y, W) : 3y, W) > 0}
Z={(y, W) : 3y, W) < 0}

—

(46) SWF = Enlwi - 3(yi, Wy)].

We can furthermore obtain estimates of objects characterizing the sets of winners
and losers, for instance the moments of covariates for each of these sets,

En[W -1(3(yi, Wi) > 0)]
En[1(5(yi, W;) > 0)]

@7 EW] =

5.4. Estimation of x(.,€) under stronger restrictions of heterogeneity

So far we have discussed estimation of g(x, @) = E[t|z, o, and of objects which
are functions of g. If we are willing to put stronger restrictions on heterogeneity,
as in theorem [5] we can identify and estimate the structural functions z(«,€)
themselves, using nonparametric quantile regressions. Assume that the assump-
tions of theorem [5| hold, and that w.l.o.g. €/ = v7; this is just a normalization of
scale for €. Under the assumptions of theorem [bl, this normalization implies

& =F(d)2t,. ., 277 a) = F(e, ..., &7 ).
We can then estimate xz(a, €) by
(o, e) = Q7 (e}, ... &1, a)

(48) = argmin Ey [Kf Sl =27y (€ —1(a] —2d < 0))}
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where

i 1 1 e )
(49) Kf:pj'K<Hozi—a,@'l—el,...,vi» 1—€J1H>
P

and ¥ is as in section [5.1]

5.5. Standard errors and confidence sets

Inference on all parameters of interest ¥ we consider could proceed using
the standard approach of deriving a linear (first-order) approximation to the
statistic of interest, and estimating the variance of the corresponding “influence-
function,” plugging in estimators of any relevant nuisance-parameters; see for
instance Newey| (1994a)). The asymptotic variance of ¢, - (¥ — E(¢)) (rescaled
by an appropriate diverging sequence ¢,,), in particular, can be consistently es-
timated by c2/n times the sample variance of the influence function of 3, SO
that

Var (3) ~ % Z@f,

where ; = W The derivative in the last expression is to be under-

stood as the derivative of ¥ with respect to the mass p, put by the empirical
distribution on the i*" observation. Details and background can be found in
(van der Vaart], 2000, chapter 20) and Newey| (1994b)).

While possible in principle, such an approach requires a separate derivation of
influence functions for each object of interest and each identification approach.
This is rendered cumbersome, in particular, by the presence of the generated
regressors 0 ; cf. Hahn and Ridder]| (2013).

We opt for an alternative approach, the Bayesian bootstrap introduced by
Rubin| (1981)), and discussed by |[Chamberlain and Imbens| (2003)). This approach
proceeds as follows:

1. Draw i.i.d. exponentially distributed random variables V.

2. Reweight each observation by V;/ ", Vir.

3. Estimate the object of interest for the reweighted distribution.

4. Tterate the entire procedure, to obtain a set of R replicate estimates (9,.)%_;

for the object of interest.
The estimates 1, obtained by this procedure are draws from the posterior distri-
bution for the object of interest when the prior over the joint distribution of all
observables is a Dirichlet process with parameter OE This allows, in particular,

~

13Strictly speaking, this is an improper prior which is the limit of a sequence of proper
Dirichlet processes.
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to construct Bayesian credible sets for the object of interest, using quantiles of
the sampling distribution (J,)_; as boundary values of the credible sets.

The re-sampling distribution of the object of interest can also be considered
as an approximation to the frequentist asymptotic distribution for objects sat-
isfying certain regularity conditions, in particular sample moments and smooth
functions thereof. This allows to interpret the Bayesian credible sets as frequen-
tist confidence sets. All our objects of interest are functions of sample moments,
for given (fixed) bandwidth parameters. In appendix [B| we provide evidence on
the frequentist accuracy of this inference procedure using calibrated Monte Carlo

simulations.

6. APPLICATION

We shall now turn to an application of the proposed methods. This section re-
evaluates the welfare impact of the extension of the Earned Income Tax Credit
(EITC) during the 1990s. A large literature documents that the EITC expansion
increased labor supply, see for instance Meyer and Rosenbaum|(2001) and |Chetty
et al.| (2013). Rothstein| (2010) and |Leigh' (2010) note that these increases in
labor supply are likely to depress wages in the labor markets affected. If this is
s0, the effective incidence of the EITC might be quite different from the nominal
incidence.

Following up on this argument, this section provides a disaggregated welfare-
evaluation of the EITC expansion using the framework introduced in section
We estimate the impact of the EITC expansion using variation across states and
time in state-level supplements to the federal EITC, as in |Leigh! (2010).

6.1. Data and background

Table I which reproduces table 2 from |Leigh| (2010)), shows the variation of
state supplements to federal EITC payments across states and time for those
states that do provide supplements. Effective EITC payments are equal to (fed-
eral EITC payments)(1+state EITC supplement). We use variation of these sup-
plements, interacted with the federal expansion of EITC payments over the pe-
riod considered, in order to identify the impact of the EITC expansion on wages
and welfare conditional on initial incomes.

Table [[I| reports the main estimates from table 4 and 5 of [Leigh| (2010). These
estimates imply that the expansion of the EITC increased labor supply and de-
pressed wages of those without high school diplomas, while only having a smaller
effect on the rest of the population.

[to be continued]
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TABLE I.— State EITC supplements 1984-2002

State: CO DCIA IL KS MA MDME MNMNNJ NY OK OR RI VT WI WI WI
# of

chil- 1+ 0 1+ 1+ 1 2 3+
dren:

1984 30 30 30
1985 30 30 30
1986 22.21

1987 23.46

1988 22.96 23

1989 22.96 25 5 25 75
1990 5 22.96 28 5 25 75
1991 6.5 10 10 275 28 5 25 75
1992 6.5 10 10 275 28 5 25 75
1993 6.5 15 15 275 28 5 25 75
1994 6.5 15 15 7.5 275 25 4.4 20.8 62.5
1995 6.5 15 15 10 275 25 4 16 50
1996 6.5 15 15 20 275 25 4 14 43
1997 6.5 10 15 15 20 5 275 25 4 14 43
1998 6.5 10 10 10 15 25 20 5 27 25 4 14 43
1999 8.5 6.5 10 10 10 25 25 20 5 26.5 25 4 14 43
2000 10 10 6.5 5 10 10 15 5 25 25 10 225 5 26 32 4 14 43
2001 10 25 6.5 5 10 15 16 5 33 33 15 25 5 255 32 4 14 43
2002 0 25 6.5 5 15 15 16 5 33 33 1752755 5 25 32 4 14 43

Notes: This table reproduces table 2 from |Leigh|(2010). It shows the percentage amounts of state supplements to the
federal EITC. These supplements are the source of variation we use for identification of welfare effects.
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TABLE I1
EFrFECT OF EITC EXPANSION ON AVERAGE WAGES AND LABOR SUPPLY
All adults High school High school College

dropouts diploma only graduates
dependent variable: Log real hourly wage
Log maximum -0.121 -0.488 -0.221 0.008
EITC
[0.064] [0.128] [0.073] [0.056]
Fraction EITC- 9% 25% 12% 3%
eligible
dependent variable: whether employed
Log maximum 0.033 0.09 0.042 0.008
EITC
[0.012] [0.046] [0.019] [0.022]
Fraction EITC- 14% 34% 17% 4%
eligible
dependent variable: Log hours per week
Log maximum 0.037 0.042 0.011 0.095
EITC
[0.019] [0.040] [0.014] [0.027]
Fraction EITC- 9% 25% 12% 3%
eligible

Notes: Estimates from Table 4 and 5 of |Leigh| (2010)), for workers with and without children.
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6.2. Results
6.3. Discussion

We conclude this section by discussing, first, the relationship of our approach
to alternative measures of the individual-level welfare impact of the EITC. We
then mention some potential shortcomings of our analysis.

Various measures of the individual-level welfare impact of the EITC expansion
seem possible:

1. Evaluation based on income:

A perspective which is interested in the realized incomes of the poor might
consider the EITC to be desirable both (i) because it provides transfer
income, and (ii) because increased labor supply implies increased earnings.
In our notation, both —¢ > 0 and [-n>0.

2. Evaluation based on utility, assuming fixed wages:

A perspective in the tradition of the Mirrlees model of income taxation
might consider the EITC as less desirable than transfers to the unem-
ployed poor (i) because it does not reach those most in need, and (ii) the
increase in labor supply has a zero first order effect on private welfare, but
a negative effect on public revenues. The induced increases in labor supply
cause “deadweight loss.” This is because marginal taxes are negative for
low incomes due to the EITC.

In our notation, I - n figures in the expression for ¢ given in lemma |1} but
not in the expression for é.

3. Evaluation based on utility, with endogenous wages:

Work in the Mirrleesian tradition has assumed wages to be exogenously
given and unaffected by policy changes. This contrasts with much of the lit-
erature in labor economics, as noted by Rothstein| (2010]) and Leigh| (2010).
Our analysis considers endogenous wages to be an important channel for
the distributional welfare impact of the EITC expansion, while otherwise
adopting the utility-based perspective of optimal tax theory.

In the terminology introduced in our discussion of lemma [I} we expect the
expansion of the EITC to have a positive mechanical effect for the working poor,
a positive labor supply effect for those eligible, and a negative wage effect for
both those eligible, and for those ineligible but competing in the same labor
markets. The three approaches to evaluating the EITC expansion correspond to

1. mechanical + wage + labor supply effect, —f + 1 -1 - (1 — 9,t) + l-n

2. mechanical effect, —¢

3. mechanical + wage effect, — + 1 -1 - (1 — 0.1).

Case 3, which corresponds to our analysis, makes the EITC look worse than both
the income based, and the utility based, fixed-wage evaluation.

Our analysis (like any “sufficient-statistic” type analysis) has an important
limitation — we do not account for the welfare effects of involuntary unemploy-
ment. As mentioned before, the result of lemma [I| relies on the assumption that
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only monetary constraints of individuals are affected by the policy change. Non-
monetary constraints of various kinds can be allowed for, but they may not be
affected by the policy change. The non-monetary constraint which is the biggest
concern in the context of labor markets is involuntary unemployment. Policies
that shift labor supply or demand likely not only impact the wage distribution
but also the degree of involuntary unemployment. Empirical results such as the
ones discussed in this section should be interpreted as only capturing welfare
effects mediated through transfers as well as wages. Effects through involuntary
unemployment, in our context, are likely to make the EITC look less desirable.

7. CONCLUSION
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APPENDIX A: PROOFS
Proof of lemma [1] The expression for y follows by simple differentiation of
y=w-l—t(w-1)+yo.
The expression for é = ©/8y,v follows from a variant of Roy’s identity (cf.
p73); see also : Assuming w.l.o.g. an interior solution, we can obtain it
using
L0 =0 pu- (¢ 1) and ygv = d(c,yu - (Dyoc, yol),

2.

the individual’s first order condition 9. u = A - (p, —n) for some Lagrange multiplier
A, and

Walras’ law (¢-p=1-w — t(l - w) + yo)), which implies
(p,—n)- (&) =1-1w-(1—8:t) —t+19p—c-p,
and (p7 _n) ! (69007 8yol) =1L

Proof of theorem [I} Let
A(a) := Ela(z(a,€))|a] = /a(m(a, €))dP(e)

_ /a(a:)f(a:\a)dac.

for any differentiable a with bounded support. Corresponding to the last two representations

of A(a), there are two representations for A(a). Using the first representation and partial
integration, we get

k
A(a) = E[8za - &|a] = Z E[8,;a- 47|l
j=1

k k
= ZE[azja-hj/ﬂa} = Z/@Ija-hjdw
j=1 j=1

k
:—/a-zazjhjdm:—/a~(V-h)dm.
j=1
We can alternatively write
Aa) = 8a/a(m)f(z\a)dz
:/a(x)f(:c|a)dx.

As these equations hold for any differentiable g with bounded support and h is continuous by
assumption, we get f = —V - h. O

Proof of theorem [2t

1. h satisfies f = —V - h if and only if it is in the identified set:

The “if” part follows from theoremm To show the “only if” part, taking h as given we
need to construct a distribution of € and structural functions x consistent with h, the
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observed data distribution, and assumption 2} Let € = x(0,¢), and thus f(e) = f(z|a =
0), and let z(., €) be a solution to the ordinary differential equation

z = h(z, ), z(0,€) =e.

Such a solution exists by Peano’s theorem. It is easy to check that this solution satisfies
all required conditions.

hO satisfies f =—V_-ho:

Consider the model 27 (a, €) = Qm””z"”’vj_l""(vﬂvl, .07 @) wheree = (vl ... vR).
Then this model implies E[z|x, a]- f(x) = h®(z), where h? is defined as in the statement
of the theorem. This model is furthermore consistent with the observed data distribu-
tion, and thus in particular satisfies f = —V - h0 by theorem

. h satisfies f = —V - hif and only if h € h0 + #:

Foranyhinho—l—%,WehaveV~h:V-h0—tV-ﬁ:—f+0. _
Reversely, for any h such that f = —V - h, let h := h — h?. Then h € 7.

Proof of theorem [3t

1.

2.

k = 1: In this case, V- h = 9;h = 0. Since h has its support contained in X, integration
immediately yields h = 0.

k = 2: This result is a special case of Poincaré’s Lemma, which states that on convex
domains differential forms are closed if and only if they are exact; cf. Theorem 10.39 in

. Apply this lemma to
w = htdz® — h?dz".
Then
dw = (9,1 h' + 8,2h?)dz! Adz? =0
if and only if
w=dH = 8H/dx dx* + OH/dx?da?
for some H.
This follows again from Poincaré’s Lemma, applied to
w = h'da® A da® + hPda® A dzt + h3dzt A da?
and

A= Gldal.
J

Proof of theorem [}

1.

hY is consistent with this assumption:

. . . 31ai -1 . .
Consider again the model @/ (a,e) = Q¥ Iv"-v (pdlvl, L vI7 ) where € =
g b b b b

(v1,...,v%), as in the proof of theorem [2| Then this model implies 0, Blit|z,a] =
0 for j > 4. This model is furthermore consistent with the observed data distribution
and satisfies E[%|z, o] - f(z) = h%(2).
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2. The only h € A consistent with this assumption is & = 0:

As we have already shown h~0 to be consistent with this assumption, it is enough to
show that V - h = 0 implies h = 0 if h is consistent with this assumption. We proceed
by induction in j.

Consider the model where we only observe z!, ...,z and define h accordingly. Suppose
we have shown (El, ey iﬂ’l) = (0,...,0). Applying theorem [If to the j dimensional
model immediately implies 0, hi =o0. Integrating with respect to 27, and using the fact
that the support of P is contained in the support X of z implies R =o0.

Equation (19)) implies
E[i|zt, ..., 2% o] = El@t|at, ..., 27,

for j > i. As a consequence, Rt = 0 in the j dimensional model immediately implies
h* =0 in the j + 1 dimensional model. The claim now follows by induction.

Proof of theorem [Bt

We proceed by induction in j. Assume the statements of the theorem hold for j —1. For j =0
the claims hold trivially. Equation (21)) immediately implies that z7(a,€) < z7(a,€’) if and

only if ¢/ < €I’ when (e!,...,ef71) = (e

. ..,e~). By the induction assumption we get

v =F(@dz,. . 277 a) = F(2l|e,...,é 71 a)

=F(det,..., 7 a)=F(dle, ..., 7Y

independent of «. The claims regarding v follow. As for the second claim, we get

Q" W, . 00T = Q" (WL, ... 71 )
= QZJ(F(xj\xl,...,xjfl,a')\el,...,ejfl,o/)
=2l (€.

Proof of proposition [T}

This is an immediate consequence of theorem El O

Proof of proposition 2}

This is an immediate consequence of proposition 1 in (2014). O

Proof of proposition

This is again an immediate consequence of theorem @ d

Proof of theorem

1. Assumption 1 implies that there exists a linear map df such that § = d(y(.)). This

map is furthermore continuous with respect to the L2 norm of g. Riesz’ representation
theorem then implies existence of w¥ € L2, such that § = E[w? - 9].

For SWF, assumption 1 similarly implies existence of @ such that SWF = El® - ).
We can renormalize and define

(50) WIWE = & (=8yv),
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which immediately implies SWF = E[wSWF . ¢].
2. Assumption [3]2 immediately implies that
0(a) = E[IF(y™)] + o([|[ Pya — Pyoll),

where ||.|| is the appropriate norm on the space of probability distributions; see also (cf.
[van der Vaart), 2000, p291fF). The claim follows.

3. By 2, we have 0% = 6% + E[IF°(y®)] + o(c). Differentiating this expression yields
0 = E [0yIF(y) - y]. Comparing this expression to the first representation of 0 yields

EW’ gl = E[9,IF(y) -]
As this equation holds for any direction of change 9(.), w? = 8,IF(y) follows.
O

Proof of theorem
The equations é = § = y — b follow from simple differentiation and lemma
1. SWF = EJw-4) follows from theorem |§|and the identity é = §. E[w - ¢] = E[w-~] holds
by the law of iterated expectations, since w is a function of y by assumption:

Blw-é& = E[Elw - ély, W]] = Elw - Bl - ély, W] = Efw- ).

2. Note that SWF = E[w - §j]. SWF = 8,0 (Pge) follows by analogy to 6 =Ew g =
0 (Pyo).

3. By theorem @ 6 = 0uE [IF(y®)]. Apply this result to § instead of y.

4. 6 —SWF = Elw - b] holds since y — é = b. The other claims follow analogously to item
2 and 3 of this theorem, once we note that § = b.

APPENDIX B: MONTE CARLO SIMULATIONS
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