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Abstract

We develop a novel state-space model that identifies both a persistent conditional mean

and a time-varying volatility component in consumption growth. We utilize a mixed-frequency

approach that allows us to augment post-1959 monthly data with annual observations dating

back to 1930. The use of monthly data is important for identifying the stochastic volatility

process; yet the data are contaminated, which makes the inclusion of measurement errors essen-

tial for identifying the predictable component. Once dividend growth and asset return data are

included in the estimation, we find even stronger evidence for the persistent component. The

estimated cash flow dynamics in conjunction with recursive preferences generate asset prices in

an endowment economy that are largely consistent with the data. The model with asset prices

identifies three volatility processes. The one for the predictable cash flow component is crucial

for asset pricing, whereas the other two are important for tracking the data. To estimate this

model we use a particle MCMC approach that exploits the conditional linear structure of the

approximate equilibrium in the endowment economy.
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1 Introduction

The dynamics of aggregate consumption play a key role in business cycle models, tests of the perma-

nent income hypothesis, and asset pricing. Perhaps surprisingly, there is a significant disagreement

about the basic time series properties of consumption. First, while part of the profession holds

a long-standing view that aggregate consumption follows a random walk and its growth rates are

serially uncorrelated, e.g., Hall (1978) and Campbell and Cochrane (1999), the recent literature on

long-run risks (LRR), e.g., Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008), emphasizes

the presence of a small persistent component in consumption growth.1 Second, while time-varying

volatility was a feature that until recently was mainly associated with financial time series, there

is now a rapidly growing literature stressing the importance of stochastic volatility in macroeco-

nomic aggregates, e.g., Bansal and Yaron (2004), Bloom (2009), and Fernández-Villaverde and

Rubio-Ramı́rez (2011), and the occurrence of rare disasters, e.g., Barro (2009) and Gourio (2012).

Studying consumption growth dynamics leads to the following challenge. On the one hand, it

is difficult to identify the time-varying volatility based on time-aggregated data, e.g., Drost and

Nijman (1993), which favors the use of high-frequency monthly data. On the other hand, monthly

consumption growth data are contaminated by measurement error, e.g., Slesnick (1998) and Wilcox

(1992), which mask the dynamics of the underlying process. We address this challenge by developing

a novel Bayesian state-space model with a measurement error component that allows us to identify

both a persistent component of consumption growth as well as its time-varying volatility. The

model is tailored toward monthly data, but a mixed-frequency approach allows us to accommodate

annual consumption growth data up to the Great Depression era.

When the dynamics of consumption growth are estimated jointly with dividend growth data

and asset returns, we find even stronger evidence (tighter credible intervals) for the persistent

component and are able to identify three separate volatility components: one governing dynamics of

the persistent cash flow growth component, and the other two controlling temporally independent

shocks to consumption and dividend volatility. We show that these consumption and dividend

dynamics in conjunction with recursive preferences with early resolution of uncertainty generate

asset prices in a representative agent endowment economy that are largely consistent with the data.

The stochastic volatility process for the persistent component is important for asset prices, while

the other two volatility processes only have a small impact on asset prices but are important for

tracking the data.

1The literature on robustness, e.g., Hansen and Sargent (2007), highlights that merely contemplating low-frequency

shifts in consumption growth can be important for macroeconomic outcomes and asset prices.
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The first part of our empirical analysis starts with the estimation of a state-space model according

to which consumption growth is the sum of an iid and an AR(1) component, focusing on the

persistence ρ of the AR(1) component. We show that once we include monthly measurement errors

that average out at the annual frequency, the fit of the model improves significantly, and we obtain

an estimate of ρ around 0.92.2 While according to our estimates more than half of the variation

in monthly consumption growth is due to measurement errors, we verify that the estimation of

the monthly model with measurement errors leads to a more accurate estimate of ρ than the

estimation with time-aggregated data. Importantly, adding stochastic volatility leads to a further

improvement in model fit, a reduction in the posterior uncertainty about ρ, and an increase in the

point estimate of ρ to 0.95. Next, we augment the state-space model to include a measurement

equation for dividend growth. The joint estimation based on consumption and dividend growth

based on post-1959 data leads to a ρ of 0.97. The point estimate falls slightly if the sample is

extended to the Great Depression era.

The second part of the empirical analysis examines the economic implications of the estimated

consumption and dividend growth processes by embedding them into an representative agent en-

dowment economy as in Bansal and Yaron (2004). This model is referred to as long run risks

(LRR) model. Our model distinguishes itself from the existing LRR literature in several important

dimensions. First, as previously discussed, our model for the cash flows includes measurement

errors and three volatility processes to improve the fit. Second, we specify an additional process for

variation in the time rate of preference as in Albuquerque, Eichenbaum, Luo, and Rebelo (2016),

which generates risk-free rate variation that is independent of cash flows and leads to an improved

fit for the risk-free rate.

To incorporate market returns and the risk-free rate into our state-space model we solve for

the asset pricing implications of the LRR model to obtain measurement equations for these two

series.3 Bayesian inference in the model with asset prices is considerably more difficult than in the

cash-flow-only specification and requires the following technical innovation. The posterior sampler

requires us to evaluate the likelihood function of our state-space model with a nonlinear filter. Due

to the high-dimensional state space that arises from the mixed-frequency setting, this nonlinear

filtering is a seemingly daunting task. We show how to exploit the partially linear structure of

the state-space model to derive a very efficient sequential Monte Carlo (particle) filter. Unlike the

2Without accounting for measurement errors, the estimate of ρ using monthly consumption growth data is in-

significantly different from 0 which can partly account for some view that consumption growth is an iid process.
3In order to solve the model, we approximate the exponential Gaussian volatility processes by linear Gaussian

processes such that the standard analytical solution techniques that have been widely used in the LRR literature can

be applied. The approximation of the exponential volatility process is used only to derive the coefficients in the law

of motion of the asset prices.
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generalized method of moments (GMM) approach that is common in the long-run-risks literature,

our sophisticated state-space approach lets us track the predictable component xt as well as the

stochastic volatilities over time. In turn, this allows us to construct period-by-period decompositions

of risk premia and asset price variances.

The estimation of the LRR model delivers the following important empirical findings. First, the

estimate of ρ, i.e., the autocorrelation of the persistent cash flow component, is 0.987, somewhat

higher than what we obtained based on the cash-flow-only estimation. Importantly, we show that

the time path of the persistent component looks very similar with and without asset price data.

Second, as we previously mentioned, all three stochastic volatility processes display significant time

variation yet behave distinctly over time. The volatility processes partly capture heteroskedasticity

of innovations, and in part they break some of the tight links that the model imposes on the

conditional mean dynamics of asset prices and cash flows. This feature significantly improves

the model implications for consumption and return predictability. As emphasized by the LRR

literature, the volatility processes have to be very persistent in order to have significant quantitative

effects on asset prices.

An important feature of our estimation is that the likelihood focuses on conditional correlations

between the risk-free rate and consumption — a dimension often not directly targeted in the

literature. We show that because consumption growth and its volatility determine the risk-free rate

dynamics, one requires another independent volatility process to account for the weak correlation

between consumption growth and the risk-free rate. The independent time rate of preference shocks

mute the model-implied correlation further and improve the model fit in regard to the risk-free rate

dynamics.

Third, it is worth noting that the median posterior estimate for risk aversion is 8-9 while it

is around 1.9 for the intertemporal elasticity of substitution (IES). These estimates are broadly

consistent with the parameter values highlighted in the LRR literature (see Bansal, Kiku, and Yaron

(2012), and Bansal, Kiku, and Yaron (2014)). Fourth, at the estimated preference parameters and

those characterizing the consumption and dividend dynamics, the model is able to successfully

generate many key asset-pricing moments, and improve model performance relative to previous

LRR models along several dimensions.4 In particular, the posterior median of the equity premium

is 8%, while the model’s posterior predictive distribution is consistent with the observed large

volatility of the price-dividend ratio at 0.45, and the R2s from predicting returns and consumption

growth by the price-dividend ratio.

4 It is worth noting that the model is able to generate reasonable asset pricing implications even when it is

estimated based only on cash flow data.
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Our paper is connected to several strands of the literature. In terms of the LRR literature, Bansal,

Kiku, and Yaron (2014) utilize data that are time-aggregated to annual frequency to estimate the

LRR model by GMM and Bansal, Gallant, and Tauchen (2007) pursue an approach based on the

efficient method of moments (EMM). Both papers use cash flow and asset price data jointly for

the estimation of the parameters of the cash flow process. Our likelihood-based approach provides

evidence which is broadly consistent with the results highlighted in those paper and other calibrated

LRR models, e.g., Bansal, Kiku, and Yaron (2012). Our likelihood function implicitly utilizes a

broader set of moments than earlier GMM or EMM estimation approaches. These moments include

the entire sequence of autocovariances as well as higher-order moments of the time series used in

the estimation and let us measure the time path of the predictable component of cash flows as well

as the time path of the innovation volatilities. Rather than asking the model to fit a few selected

moments, we are raising the bar and force the model to track cash flow and asset return time series.

Finally, it is worth noting that our paper distinguishes itself from previous LRR literature in showing

that even by just using monthly consumption growth data with an appropriate measurement error

structure, we are able to estimate the highly persistent predictable component. In complimentary

research Nakamura, Sergeyev, and Steinsson (2015) show that an estimation based on a long cross-

country panel of annual consumption data also yields large estimates of the autocorrelation of the

persistent component.

To implement Bayesian inference, we embed a particle-filter-based likelihood approximation into

a Metropolis-Hastings algorithm as in Fernández-Villaverde and Rubio-Ramı́rez (2007) and An-

drieu, Doucet, and Holenstein (2010). This algorithm belongs to the class of particle Markov chain

Monte Carlo (MCMC) algorithms. Because our state-space system is linear conditional on the

volatility states, we can use Kalman-filter updating to integrate out a subset of the state variables.

The genesis of this idea appears in the mixture Kalman filter of Chen and Liu (2000). Particle

filter methods are also utilized in Johannes, Lochstoer, and Mou (2016), who estimate an asset

pricing model in which agents have to learn about the parameters of the cash flow process from

consumption growth data. While Johannes, Lochstoer, and Mou (2016) examine the role of pa-

rameter uncertainty for asset prices, which is ignored in our analysis, they use a more restrictive

version of the cash flow process and do not utilize mixed-frequency observations.5

Our state-space setup makes it relatively straightforward to utilize data that are available at

different frequencies. The use of state-space systems to account for missing monthly observations

dates back to at least Harvey (1989) and has more recently been used in the context of dynamic

5Building on our approach, Creal and Wu (2015) use gamma processes to model time-varying volatilities and

estimate a yield curve model using particle MCMC. Doh and Wu (2015) estimate a nonlinear asset pricing model in

which all the asset prices and the consumption process are quadratic rather than linear function of the states.
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factor models (see, e.g., Mariano and Murasawa (2003) and Aruoba, Diebold, and Scotti (2009))

and VARs (see, e.g., Schorfheide and Song (2015)). Finally, there is a growing and voluminous

literature in macro and finance that highlights the importance of volatility for understanding the

macroeconomy and financial markets (see, e.g., Bansal, Khatacharian, and Yaron (2005), Bloom

(2009), Fernández-Villaverde and Rubio-Ramı́rez (2011), Bansal, Kiku, and Yaron (2012), and

Bansal, Kiku, Shaliastovich, and Yaron (2014)). Our volatility specification that accommodates

three processes further contributes to identifying the different uncertainty shocks in the economy.

The remainder of the paper is organized as follows. Section 2 describes the measurement error

models for consumption and dividend growth, the data set, and Bayesian inference for the cash-flow-

only estimation. Section 3 presents the empirical findings based on the consumption and dividend

growth data. Section 4 introduces the LRR model environment, describes the model solution

and the particle MCMC approach used to implement Bayesian inference. Section 5 discusses the

empirical findings obtained from the estimation of the LRR model and Section 6 provides concluding

remarks.

2 Modeling Consumption and Dividend Growth

The first step of our analysis is to develop an empirical state-space model for consumption and

dividend growth, focusing mostly on the measurement equations of the state-space model. We take

the length of the period to be one month. The use of monthly data is important for identifying

stochastic volatility processes. Unfortunately, consumption data are less accurate at monthly fre-

quency than at the more widely-used quarterly or annual frequencies. In this regard, the main

contribution in this section is a novel specification of a measurement error model for consumption

growth, which has the feature that monthly measurement errors average out under temporal ag-

gregation. While dividend data are available at monthly frequency from 1930 onwards, monthly

consumption data have only been published since 1959. Thus, we adapt the measurement equation

to the data availability.

In terms of notation, we will distinguish between observed consumption and dividend growth,

denoted by goc,t and god,t, from “true” (or model-implied) consumption and dividend growth, denoted

by gc,t and gd,t. The measurement equations for observed consumption and dividend growth are

developed in Sections 2.1 and 2.2, respectively. We provide a brief discussion of the data used in the

empirical analysis in Section 2.3. We present a benchmark state-transition equation in Section 2.4

and summarize the Bayesian techniques used to estimate the cash flow model.
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2.1 A Measurement Equation for Consumption

In our empirical analysis we use annual consumption growth rates prior to 1959 and monthly

consumption growth rates subsequently.6 The measurement equation for consumption in our state-

space representation has to be general enough to capture two features: (i) the switch from annual to

monthly observations in 1959, and (ii) measurement errors that are potentially larger at a monthly

frequency than an annual frequency. To describe the measurement equation for consumption growth

data, we introduce some additional notation. We use Cot and Ct to denote the observed and the

“true” level of consumption, respectively. Moreover, we represent the monthly time subscript t as

t = 12(j− 1) +m, where m = 1, . . . , 12. Here j indexes the year and m the month within the year.

We proceed in two steps. First, we derive a measurement equation for consumption growth at the

annual frequency, which is used for pre-1959 data. Second, we specify a measurement equation for

consumption growth at the monthly frequency, which is used for post-1959 data.

Measurement of Annual Consumption Growth. We define annual consumption as the sum

of monthly consumption over the span of one year, i.e.:

Ca(j) =
12∑
m=1

C12(j−1)+m.

Log-linearizing this relationship around a monthly value C∗ and defining lowercase c as percentage

deviations from the log-linearization point, i.e., c = logC/C∗, we obtain

ca(j) =
1

12

12∑
m=1

c12(j−1)+m.

Thus, monthly consumption growth rates can be defined as

gc,t = ct − ct−1

and annual growth rates are given by

gac,(j) = ca(j) − c
a
(j−1) =

23∑
τ=1

(
12− |τ − 12|

12

)
gc,12j−τ+1. (1)

Finally, we assume a multiplicative iid measurement-error model for the level of annual consump-

tion, which implies that, after taking log differences,

ga,oc,(j) = gac,(j) + σaε
(
εa(j) − ε

a
(j−1)

)
. (2)

6In principle we could utilize the quarterly consumption growth data from 1947 to 1959, but we do not in this

version of the paper.
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Measurement of Monthly Consumption Growth. Consistent with the practice of the Bu-

reau of Economic Analysis, we assume that the levels of monthly consumption are constructed by

distributing annual consumption over the 12 months of a year. This distribution is based on an ob-

served monthly proxy series zt that is assumed to provide a noisy measure of monthly consumption.

The monthly levels of consumption are determined such that the growth rates of monthly consump-

tion are proportional to the growth rates of the proxy series and monthly consumption adds up

to annual consumption. A measurement-error model that is consistent with this assumption is the

following:

goc,12(j−1)+1 = gc,12(j−1)+1 + σε
(
ε12(j−1)+1 − ε12(j−2)+12

)
(3)

− 1

12

12∑
m=1

σε
(
ε12(j−1)+m − ε12(j−2)+m

)
+ σaε

(
εa(j) − ε

a
(j−1)

)
goc,12(j−1)+m = gc,12(j−1)+m + σε

(
ε12(j−1)+m − ε12(j−1)+m−1

)
, m = 2, . . . , 12.

The term ε12(j−1)+m can be interpreted as the error made by measuring the level of monthly con-

sumption through the monthly proxy variable, that is, in log deviations c12(j−1)+m = z12(j−1)+m +

ε12(j−1)+m. The summation of monthly measurement errors in the second line of (3) ensures that

monthly consumption sums up to annual consumption. It can be verified that converting the

monthly consumption growth rates into annual consumption growth rates according to (1) aver-

ages out the measurement errors and yields (2).

2.2 A Measurement Equation for Dividends

Dividend data are available at monthly frequency for our entire estimation period. There is a

consensus in the finance literature that aggregate dividend series for a broad cross section of stocks

exhibit a strong seasonality. This seasonality is generated by payout patterns which are not uniform

over the calendar year. Much of this seasonality, in particular its deterministic component, can be

removed by averaging observed dividend growth over the span of a year. To do, we utilize the same

“tent” function as for consumption growth in (1):

ga,od,t+1 =

23∑
j=1

(
12− |j − 12|

12

)
god,t−j+2. (4)

In order to relate ga,od,t+1 to the model-implied dividend growth data, we apply the same tent-shaped

transformation to gd,t+1, that is,

gad,t+1 =

23∑
j=1

(
12− |j − 12|

12

)
gd,t−j+2. (5)
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The measurement equation then takes the form

ga,od,t+1 = gad,t+1 + σad,εε
a
d,t+1. (6)

To be chary, we allow for some additional measurement errors, which we assume to be iid across

periods. Note that even for σad,ε = 0 the measurement equation (6) does not imply that god,t+1 =

gd,t+1 (note the absence of the tent transformation and the a superscript here). For instance, there

could be a deterministic seasonal pattern in the observed monthly dividend growth data god,t+1

that is not part of the model-implied process gd,t+1. The tent-shaped transformation would remove

the seasonal component from observed data such that we are effectively equating the non-seasonal

component of the observed data to the model-implied data.

2.3 Data

We use the per capita series of real consumption expenditure on nondurables and services from the

NIPA tables available from the Bureau of Economic Analysis. Annual observations are available

from 1929 to 2014, quarterly from 1947:Q1 to 2014:Q4, and monthly from 1959:M1 to 2014:M12.

Growth rates of consumption are constructed by taking the first difference of the corresponding log

series. In addition, we use monthly observations of dividends of the CRSP value-weighted portfolio

of all stocks traded on the NYSE, AMEX, and NASDAQ. Dividend series are constructed on the

per share basis as in Campbell and Shiller (1988b) and Hodrick (1992). Following Robert Shiller,

we smooth out dividend series by aggregating 3 months values of the raw nominal dividend series.7

We then compute real dividend growth as log difference of the adjusted nominal dividend series

and subtract CPI inflation. Details are provided in the Online Appendix.

2.4 State-Space Representation and Bayesian Inference

Thus far, we have focused on the measurement equations that related observed cash flow growth to

“true” or model implied cash flow growth. To complete the specification of the state-space model,

we need to specify a law of motion for gc,t and gd,t. In our empirical analysis we consider several

specifications. The most comprehensive one, which is then also embedded in the asset pricing

7We follow Shiller’s approach despite the use of the annualization in (6) because we found that the annualization

did not remove all the anomalies in the data.
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model, in Section 5 is the following:

gc,t+1 = µc + xt + σc,tηc,t+1 (7)

xt+1 = ρxt +
√

1− ρ2σx,tηx,t+1

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1,

σi,t = ϕiσ exp(hi,t), hi,t+1 = ρhihi,t + σhiwi,t+1, i = {c, x, d}.

We assume that the innovations are distributed according to

ηi,t+1, wi,t+1 ∼ iidN(0, 1)

and we normalize ϕc = 1.

Specification (7) is based on Bansal and Yaron (2004) and decomposes consumption growth,

gc,t+1, into a persistent component, xt, and a transitory component, σc,tηc,t+1. The dynamics for

the persistent conditional mean follow an AR(1) with its own stochastic volatility process. Dividend

streams have levered exposures to both the persistent and transitory component in consumption

which is captured by the parameters φ and π, respectively. We allow σd,tηd,t+1 to capture idiosyn-

cratic movements in dividend streams. Relative to Bansal and Yaron (2004), the volatility dynamics

contain three separate volatility processes. More importantly, the logarithm of the volatility process

is assumed to be normal, which ensures that the standard deviation of the shocks remains positive

at every point in time.

We now have a complete state-space representation. It comprises the measurement equations for

consumption growth, (2) and (3), the measurement equation for dividend growth (6), and the state-

transition equation (7). The state variables are model-implied monthly consumption and dividend

growth and the latent volatility processes hi,t. As econometricians who are estimating the model, we

have to rely on the statistical agency to release the consumption growth data. While the statistical

agency may have access to the monthly proxy series zt in real time, it can only release the monthly

consumption series that is consistent with the corresponding annual consumption observation at

the end of each year. The fact that not all variables are observed in every period leads to a fairly

elaborate state-space representation that is presented in the Online Appendix.

The model parameters and the latent stochastic volatilities can be summarized as follows:

Θ =
(
Θc,Θd,Θh

)
, HT =

(
hTc , h

T
d

)
, (8)

where

Θc =
(
µc, ρ, ϕx, σ, σε, σ

a
ε

)
, Θd =

(
µd, φ, ϕd, π, σ

a
d,ε

)
, Θh =

(
ρhc , σ

2
hc , ρhd , σ

2
hd

)
.
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Initially, when using only consumption and dividend growth data, we restrict hx,t = hc,t because it

is not feasible to sharply identify three separate volatility processes based on cash flow data only.

Throughout this paper, we will use a Bayesian approach to make inference about Θ and the latent

volatilities HT . While the law of motion of the volatilities HT is part of the model specification

(7), Bayesian inference requires a prior distribution p(Θ). According to Bayes’ Theorem, the joint

posterior density of parameters and latent volatilities is proportional (∝)

p(Θ, HT |Y ) ∝ p(Y |HT ,Θ)p(HT |Θ)p(Θ). (9)

We use MCMC methods to generate a sequence of draws {Θ(s), (HT )(s)}nsims=1 from the posterior

distribution.

The MCMC algorithm iterates over three conditional distributions: First, a Metropolis-Hastings

step is used to draw from the posterior of
(
Θc,Θd

)
conditional on

(
Y, (HT )(s),Θ

(s−1)
h

)
Second,

we draw the sequence of stochastic volatilities HT conditional on
(
Y,Θ

(s)
c ,Θ

(s)
d ,Θ

(s−1)
h

)
using the

algorithm developed by Kim, Shephard, and Chib (1998). It consists of transforming a nonlinear

and non-Gaussian state space form into a linear and approximately Gaussian one, which allows

the use of simulation smoothers such as those of Carter and Kohn (1994) to recover estimates of

the residuals ηi,t. Finally, we draw from the posterior of the coefficients of the stochastic volatility

processes, Θh, conditional on
(
Y,HT (s),Θ

(s)
c ,Θ

(s)
d

)
.

3 Empirical Results Based on Cash Flow Data

The subsequent analysis is divided into two parts. In Section 3.1 we use only consumption data.

We estimate the persistent component in consumption growth. We highlight the need for modeling

measurement errors and the benefits of time aggregation in identifying this component. In Section

3.2 we show the additional information that is gained by using dividends data in conjunction

with consumption in estimating the persistent component in the conditional mean and volatility

dynamics of cash flows.

3.1 Estimation with Consumption Data Only

In this subsection we show the importance of accounting for measurement errors in identifying a

persistent component in consumption growth. We also illustrate the informational gain through

using high-frequency information and allowing for stochastic volatility. Finally, we explore a mixed-

frequency approach based on a sample that contains annual consumption growth data from 1930

to 1959 and monthly data from 1960:M1 to 2014:M12.
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Figure 1: Sample Autocorrelation
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Notes: Monthly data available from 1959:M2 to 2014:M12, quarterly from 1947:Q2 to 2014:Q4, annual from 1930 to

2014.

The Role of Measurement Errors. Figure 1 displays the sample autocorrelation of consump-

tion growth for monthly, quarterly and annual data respectively. The figure clearly demonstrates

that at the annual frequency consumption growth is strongly positively autocorrelated while at the

monthly frequency consumption growth has a negative first autocorrelation. These autocorrela-

tion plots provide prima facie evidence for a negative moving average component at the monthly

frequency, which is consistent with the measurement error model described in Section 2.1. Our

measurement error model can reconcile the monthly negative autocorrelation with a strongly pos-

itive autocorrelation for time aggregated annual consumption. The right panel in Figure 1 also

shows that the strong positive autocorrelation in annual consumption growth is robust to using the

long pre-war sample as well as the post war data. Given these features of the data, we focus our

analysis of measurement errors in consumption using the post 1959 monthly series.

We simplify the law of motion of cash flows in (7) by omitting dividends and assuming that

the innovations are homoskedastic. Thus, the dynamics of consumption growth are reduced to the

following state-space specification:

goc,t+1 = µc + xt + σηc,t+1 + measurement error (10)

xt+1 = ρxt +
√

1− ρ2(ϕxσ)ηx,t+1.

We will now document the effect of the measurement error specification on the estimate of ρ. Before

conducting a Bayesian analysis, we examine some important features of the likelihood function. To

isolate the role of measurement errors for inference about ρ, we set µc to the sample mean and fix

σ and σε to their respective maximum likelihood estimates, while varying the two parameters, ρ
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Figure 2: Log-Likelihood Contour
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Notes: We use maximum likelihood estimation to estimate the simplified model (10) with and without allowing

for measurement errors. We then fix σ = σ̂ and σε = σ̂ε at their point estimates and vary ρ and ϕx to plot the

log-likelihood function contour. Without measurement errors, we find that the log-likelihood function is bimodal at

positive and negative values of ρ. Therefore, we obtain two sets of σ̂.

and ϕx, that govern the dynamics of xt.

In Figure 2 we plot likelihood function contours with and without allowing for measurement

errors. In the absence of measurement errors the log-likelihood function is bimodal. The first mode

is located at ρ = −0.23 which matches the negative monthly sample autocorrelation (see Figure 1).

The location of the second mode is at ρ = 0.96, but the log-likelihood function is flat across a

large set of values of ρ between -1 and 1. Importantly, when we allow for monthly measurement

errors according to (3), setting σaε = 0, the log likelihood function has a very sharp peak, displaying

a very persistent expected consumption growth process with ρ = 0.92. Measurement errors at

the monthly frequency help identify a large persistent component in consumption by allowing the

model to simultaneously match the negative first-order autocorrelation observed at the monthly

frequency and the large positive autocorrelation at the annual frequency.

We now proceed with the Bayesian estimation of (10) under various assumptions on the measure-

ment error process. Table 1 reports quantiles of the prior distribution8 as well as posterior median

estimates of the model parameters. The prior for the persistence of the predictable consumption

growth component is uniform over the interval (−1, 1) and encompasses values that imply near

8In general, our priors attempt to restrict parameter values to economically plausible magnitudes. The judgment

of what is economically plausible is, of course, informed by some empirical observations, in the same way the choice

of the model specification is informed by empirical observations.
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Table 1: Posterior Median Estimates of Consumption Growth Processes

Prior Distribution Posterior Estimates

State-Space Model / Measurement Error Spec. IID ARMA

M&A No ME M M M (1,2)

ρε > 0 NoAveOut

Distr. 5% 50% 95% (1) (2) (3) (4) (5) (6) (7)

µ N -.007 .0016 .0100 .0016 .0016 .0016 .0016 .0016 .0016 .0016

ρ U -.90 0 .90 .917 -.229 .917 .916 .914 - .915

ϕx U .1 1.0 1.9 .740 1.67 .707 .714 .753 - -

σ IG .0008 .0019 .0061 .0017 .0017 .0018 .0018 .0017 .0033 .0032

σε IG .0008 .0019 .0061 .0018 - .0018 .0018 .0019 - -

σaε IG .0007 .0029 .0386 .0014 - - - - - -

ρε U -.90 0 .90 - - - .013 - - -

ζ1 N -8.2 0 8.2 - - - - - - -1.14

ζ2 N -8.2 0 8.2 - - - - - - .301

ln p(Y ) 2898.4 2878.2 2897.8 2894.5 2898.5 2871.0 2891.3

Notes: The estimation sample is from 1959:M2 to 2014:M12. We denote the persistence of the growth component

by ρ and the persistence of the measurement errors by ρε. We report posterior median estimates for the following

measurement error specifications of the state-space model: (1) monthly and annual measurement errors (M&A); (2)

no measurement errors (no ME); (3) monthly measurement errors (M); (4) serially correlated monthly measurement

errors (M, ρε > 0); (5) monthly measurement errors that do not average out at annual frequency (M, NoAveOut).

In addition we report results for the following models: (6) consumption growth is iid; (7) consumption growth is

ARMA(1,2).

iid consumption growth as well as values for which xt is almost a unit root process. The con-

sumption growth process (10) implies that the parameter ϕx can be interpreted as the square root

of a “signal-to-noise ratio,” meaning the ratio of the variance of xt over the variance of the iid

component σηc,t+1. We use a uniform prior for ϕx that allows for “signal-to-noise ratios” between

0 and 1. At an annualized rate, our a priori 90% credible interval for σ and σε ranges from 0.3%

to 2.1% and the prior for the σaε covers the interval 0.07% to 3.9%. For comparison, the sample

standard deviations of annualized monthly consumption growth and annual consumption growth

are approximately 1.1% and 2%.

Our posterior estimates confirm the graphical pattern in Figure 2. With monthly measurement

errors the posterior median of ρ is approximately 0.92. In the absence of measurement errors, it

drops to -0.23. We conclude from Table 1 that allowing for measurement errors reveals a very

persistent component in consumption growth. This conclusion is by no means an artifact of tight
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priors since priors for both persistence and the standard deviation ratio are flat. At first glance, the

large estimate of ρ may appear inconsistent with the negative sample autocorrelation of monthly

consumption growth reported in Figure 1. However, the sample moment confounds the persistence

of the “true” consumption growth process and the dynamics of the measurement errors. Our state-

space framework is able to disentangle the various components of the observed monthly consumption

growth, thereby detecting a highly persistent predictable component xt that is hidden under a layer

of measurement errors.

Our inference about ρ is robust to the choice of measurement error model. We consider (1) our

benchmark specification of monthly and annual measurement errors; (3) only monthly measurement

errors; (4) serially correlated monthly measurement errors; and (5) monthly measurement errors

that do not cancel out at annual frequency. The posterior median estimates of ρ are essentially

the same for these four specifications. To provide formal support for our choice of benchmark

specification, we also report log marginal data densities in the bottom row of the table. Accounting

for numerical approximation errors specification (1) is essentially at par with specification (5) and

these two specifications dominate all alternatives. We find specification (1) conceptually more ap-

pealing than (5). In the last two columns of Table 1 we report results for a model that assumes that

consumption growth is iid and for an ARMA(1,2) model. The latter nests the no-measurement

error specification (2) and specification (5) in which monthly measurement errors do not average

out at the annual frequency. A log marginal data density differential of 27.4 between specifications

(1) and (6) indicates that monthly consumption growth is clearly not iid. Moreover, our bench-

mark measurement error specification also dominates the ARMA(1,2) model in terms of fit, again

highlighting the importance of measurement errors. The log marginal data density differential is

7.1.

In order to examine the degree to which measurement errors contribute to the variation in

the observed consumption growth, we conduct variance decomposition of monthly and annual

consumption growth using measurement error specification of column (1) in Table 1. We find

that more than half of the observed monthly consumption growth variation is due to measurement

errors. For annual consumption growth data, this fraction drops below 1%. On the other hand,

the opposite pattern holds true for the persistent growth component. While the variation in the

persistent growth component only accounts for 13% of the monthly consumption growth variation,

this fraction increases to 87% for annual consumption growth data.

Informational Gain Through Temporal Disaggregation and Stochastic Volatility. The

observation that monthly consumption growth data are strongly contaminated by measurement

errors which to a large extent average out at quarterly or annual frequency, suggests that one
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Table 2: Informational Gain Through High-Frequency Observations

Data Posterior of ρ

Frequency 5% 50% 95% 90% Intv. Width

Without Stochastic Volatility

Monthly .847 .917 .963 .116

Quarterly .783 .891 .958 .175

Annual .539 .803 .928 .389

With Stochastic Volatility

Monthly .904 .951 .980 .076

Quarterly .856 .921 .963 .107

Notes: The estimation sample ranges from 1959:M2 to 2014:M12. The model frequency is monthly. For monthly

data we use both monthly and annual measurement errors (specification (1) in Table 1). For quarterly (annual) data

we use quarterly (annual) measurement errors only. The specifications of the models without and with stochastic

volatility are given in (10) and (11), respectively.

might be able to estimate ρ equally well based on time-aggregated data. We examine this issue in

Table 2. The first row reproduces the ρ estimate from Specification (1) of Table 1. However, we

now also report the 5% and 95% quantile of the posterior distribution. Keeping the length of a

period equal to a month in the state-space model, we change the measurement equation to link it

with quarterly and annual consumption growth data. As the data frequency drops from monthly

to annual, the posterior median estimate of ρ falls from 0.92 to 0.80. Moreover, the width of the

equal-tail probability 90% credible interval increases from 0.11 to 0.39, highlighting that the use of

high-frequency data sharpens inference about ρ.

The original cash flow model in (7) assumes that the innovations are heteroskedastic. Thus, we

now re-estimate the state-space model for consumption growth, allowing for a common stochastic

volatility process for ηc,t and ηx,t in (10):

goc,t+1 = µc + xt + σc,tηc,t+1 + measurement error (11)

xt+1 = ρxt +
√

1− ρ2ϕxσc,tηx,t+1

σc,t = σ exp(hc,t), hc,t+1 = ρhchc,t + σhcwc,t+1.

In view of (7) we are imposing hx,t = hc,t, which facilitates the identification of the volatility process

and its parameters. Our prior interval for the persistence of the volatility processes ranges from
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0.27 to 0.999. The prior for the standard deviation of the consumption volatility process implies

that the volatility may fluctuate either relatively little, over the range of 0.7 to 1.2 times the average

volatility, or substantially, over the range of 0.4 to 2.4 times the average volatility.

The width of the 90% credible interval for ρ shrinks from 0.116 to 0.076 for monthly data and from

0.175 to 0.107 for quarterly data.9 At the same time the posterior median of ρ increases from 0.917

to 0.951 for monthly data and from 0.891 to 0.921 for quarterly data. Without stochastic volatility

sharp movements in consumption growth must be accounted for by large temporary shocks reducing

the estimate of ρ; however, the presence of stochastic volatility allows the model to account for

these sharp movements by fluctuations in the conditional variance of the shocks enabling ρ to be

large. We conclude that allowing for heteroskedasticity reduces the posterior uncertainty about ρ

and raises the point estimate.

As a by-product, we also obtain an estimate for the persistence, ρhc , of the stochastic volatility

process in (11). The degree of serial correlation of the volatility also has important implications

for asset pricing. Starting from a truncated normal distribution that implies a 90% prior credible

set ranging from 0.27 to 0.99, based on monthly observations the posterior credible set ranges from

0.955 to 0.999, indicating that the data favor a highly persistent volatility process hc,t. Once the

observation frequency is reduced from monthly to quarterly the sample contains less information

about the high frequency volatility process and there is less updating of the prior distribution. Now

the 90% credible interval ranges from 0.41 to 0.97.

Hansen, Heaton, and Li (2008) estimate a cointegration model for log consumption and log

earnings to extract a persistent component in consumption. The length of a time period in their

reduced-rank vector autoregression (VAR) is a quarter and the model is estimated based on quar-

terly data. The authors find that the ratio of long-run to short-run response of log consumption

to a persistent growth shock, ηx,t in our notation, is about two, which would translate into an

estimate of ρ of approximately 0.5 for a quarterly model. As a robustness check, we estimate three

quarterly versions of the state-space model (11): without quarterly measurement errors and with

homoskedastic innovations, with quarterly measurement errors and homoskedastic innovations, and

with quarterly measurement errors and stochastic volatility. The posterior median estimates of ρ

are 0.649, 0.676, and 0.735, respectively. These results are by and large consistent with the low

value reported in Hansen, Heaton, and Li (2008) as well as the estimate in Hansen (2007) under

the “loose” prior. Using a crude cube-root transformations, the quarterly ρ estimates translate

into 0.866, 0.878, and 0.903 at monthly frequency and thereby somewhat lower than the estimates

9We found that the state-space model with stochastic volatility is poorly identified if the observation frequency is

annual, which is why we do not report this case in Table 1.
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obtained by estimating a monthly model on quarterly data.

Estimation Based on Mixed-Frequency Data. Thus far, we have utilized data starting in

1960. However, to measure the small persistent component in consumption growth, one would

arguably want to use the longest span of data possible. Thus, we now extend the sample to include

data going back to 1930. Unfortunately, prior to 1959:M2 monthly consumption growth data are

unavailable. Thus, we adopt a mixed-frequency approach that utilizes annual data from 1930 to

1959 and then switches to monthly data afterwards.

It is well known from Romer (1986) and Romer (1989) that prewar data on consumption are

known to be measured with significantly greater error that exaggerates the size of cyclical fluc-

tuations. To cope with the criticism, we allow for annual measurement errors during 1930-1948

but restrict them to be zero afterwards. This break in measurement errors is also motivated by

Amir-Ahmadi, Matthes, and Wang (2016) who provide empirical evidence for larger measurement

in the early sample before the end of World War II. Importantly, we always account for monthly

measurement errors whenever we use monthly data.

Prior credible intervals and posterior estimates are presented in Table 3. Note that the ρ estimate

reported under the 1959:M2-2014:M12 posterior is the same as the estimate reported in Table 2

based on monthly data and the model with stochastic volatility. Extending the sample period

reduces the posterior median estimate of ρ slightly, from 0.95 to 0.94. We attribute this change to

the large fluctuations around the time of the Great Depression. The width of the credible interval

stays approximately the same. Note that at this stage we are adding 30 annual observations to a

sample of 671 monthly observations (and we are losing 11 monthly observations from 1959). The

standard deviation of the monthly measurement error σε is estimated to be about half of σ and

is robust to different estimation samples because it is solely identified from monthly consumption

growth data. The standard deviation of the annual measurement error is larger than that of

monthly measurement error by a factor of 4 (recall that to compare σε and σaε one needs to scale

the latter by
√

12). This finding is consistent with Amir-Ahmadi, Matthes, and Wang (2016) who

find significant presence of measurement errors in output growth during 1930 and 1948.

3.2 Estimation with Consumption and Dividend Data

We now include dividend growth data in the estimation of the cash flow model. We proceed with

the mixed-frequency approach and combine the monthly dividend growth data with annual con-

sumption growth data from 1930 to 1959 and monthly data from 1960:M1 to 2014:M12. Table 4

provides percentiles of the prior distribution and the posterior distribution for the post 1959 es-

timation sample and for the mixed frequency sample starting in 1930. The priors for φ and π,
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Table 3: Posterior Estimates: Consumption Only

Prior Posterior Posterior

1930-1959

1959:M2-2014:M12 1960:M1-2014:M12

Distr. 5% 50% 95% 5% 50% 95% 5% 50% 95%

Consumption Growth Process

µc N -.007 .0016 .0100 .0009 .0016 .0019 .0010 .0016 .0018

ρ U -.9 0 .9 .904 .951 .980 .891 .940 .971

ϕx U .05 .50 .95 .357 .509 .778 .369 .535 .759

σ IG .0008 .0019 .0061 .0017 .0021 .0025 .0017 .0022 .0028

ρhc NT .27 .80 .999 .955 .988 .999 .949 .984 .996

σ2hc IG .0011 .0060 .0283 .0007 .0014 .0030 .0022 .0054 .0242

Consumption Measurement Error

σε IG .0008 .0019 .0061 .0010 .0013 .0016 .0010 .0013 .0016

σaε IG .0007 .0029 .0386 .0010 .0015 .0020 .0010 .0198 .0372

Notes: We report estimates of model (11). We adopt the measurement error model of Section 2.1. N , NT , G,

IG, and U denote normal, truncated (outside of the interval (−1, 1)) normal, gamma, inverse gamma, and uniform

distributions, respectively. We allow for annual consumption measurement errors εat during the periods from 1930 to

1948. We impose monthly measurement errors εt when we switch from annual to monthly consumption data from

1960:M1 to 2014:M12.

parameters that determine the comovement of dividend and consumption growth, are uniform dis-

tributions on the interval [0, 10]. The parameter ϕd determines the standard deviation of the iid

component of dividend growth relative to consumption growth. Here we use a prior that is uniform

on the interval [0, 10], thereby allowing for dividends to be much more volatile than consumption.

The prior for the standard deviation of the dividend volatility process implies that the volatility

may fluctuate either relatively little, over the range of 0.5 to 2.1 times the average volatility, or sub-

stantially, over the range of 0.1 to 13 times the average volatility. Finally, we fix the measurement

error standard deviation σd,ε at 10% of the sample standard deviation of dividend growth.

The most important finding is that the posterior median ρ increases as we add dividend growth

data in the estimation. In addition, we find significant reduction in our uncertainty about ρ captured

by the distance between 95% and 5% posterior quantiles. The posterior median of ρ is around 0.97

for the post 1959 sample and is 0.95 for the longer sample, both of which are higher than those
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Table 4: Posterior Estimates: Consumption and Dividend Growth

Prior Posterior Posterior

1930-1959

1959:M2-2014:M12 1960:M1-2014:M12

Distr. 5% 50% 95% 5% 50% 95% 5% 50% 95%

Consumption Growth Process

ρ U -.90 0 .90 .935 .968 .991 .913 .950 .978

ϕx U .05 .50 .95 .282 .439 .636 .267 .435 .624

σ IG .0008 .0019 .0061 .0019 .0022 .0025 .0022 .0026 .0034

ρhc NT .27 .80 .999 .948 .983 .997 .974 .991 .998

σ2hc IG .0011 .0060 .0283 .0017 .0062 .0225 .0010 .0042 .0104

Dividend Growth Process

φ U .50 5.0 9.50 1.66 2.77 4.26 1.81 2.94 4.80

π U .50 5.0 9.50 .033 .317 .991 .027 .286 .849

ϕd U .50 5.0 9.50 3.14 4.62 6.21 2.85 4.98 6.91

ρhd NT .27 .80 .999 .943 .976 .993 .943 .973 .989

σ2hd IG .015 .0445 .208 .0188 .0453 .1061 .0229 .0476 .1229

Consumption Measurement Error

σε IG .0008 .0019 .0062 .0010 .0012 .0015 .0009 .0012 .0014

σaε IG .0042 .0120 .0564 - - - .0065 .0129 .0218

Notes: We utilize the mixed-frequency approach in the estimation: For consumption we use annual data from 1930

to 1959 and monthly data from 1960:M1 to 2014:M12; we use monthly dividend annual growth data from 1930:M1 to

2014:M12. For consumption we adopt the measurement error model of Section 2.1. We allow for annual consumption

measurement errors εat during the periods from 1930 to 1948. We impose monthly measurement errors εt when we

switch from annual to monthly consumption data from 1960:M1 to 2014:M12. We fix µc = 0.0016 and µd = 0.0010

at their sample averages. Moreover, we fix the measurement error standard deviation σad,ε at 10% of the sample

standard deviation of dividend growth. N , NT , G, IG, and U denote normal, truncated (outside of the interval

(−1, 1)) normal, gamma, inverse gamma, and uniform distributions, respectively.

in Table 3. The 5-95% distance dropped from 0.075 to 0.055 as we include dividend growth in

the estimation (compare with Table 3). The posterior median of the standard deviation of the

unconditional volatility of the persistent component ϕx is around 0.44, slightly lower than before.

The dividend leverage ratio on expected consumption growth φ is estimated to be around 2.8

and the standard deviation of the idiosyncratic dividend shocks ϕd is around 5. The estimation
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results also provide strong evidence for stochastic volatility. According to the posteriors reported

in Table 4, both σc,t and σd,t exhibit significant time variation. The posterior medians of ρhc and

ρhd range from 0.97 to 0.99. Overall, the magnitude of parameter estimates are quite close to the

values used in the LRR literature (see Bansal, Kiku, and Yaron (2012)).

4 The Long-Run Risks Model

We now embed the cash flow process (7) into an endowment economy, which allows us to price

financial assets. The preferences of the representative household are described in Section 4.1.

Section 4.2 describes the model solution. Section 4.3 presents the state-space representation of the

asset-pricing model and its Bayesian estimation.

4.1 Representative Agent’s Optimization

We consider an endowment economy with a representative agent that has Epstein and Zin (1989)

recursive preferences and maximizes her lifetime utility,

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

,

subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion,

θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution. As highlighted in Albuquerque,

Eichenbaum, Luo, and Rebelo (2016), we also allow for a preference shock, λt, to the time rate of

preference. The endowment stream is given by the law of motion for consumption and dividend

growth in (7), and the growth rate of the preference shock, denoted by xλ,t, follows an AR(1)

process with shocks that are independent of the shocks to cash flows:

xλ,t+1 = ρλxλ,t + σληλ,t+1, ηλ,t+1 ∼ iidN(0, 1). (12)

The Euler equation for any asset ri,t+1 takes the form

Et [exp (mt+1 + ri,t+1)] = 1, (13)

where mt+1 = θ log δ− θ
ψgc,t+1 + (θ−1)rc,t+1 is the log of the real stochastic discount factor (SDF),

and rc,t+1 is the log return on the consumption claim. We reserve rm,t+1 for the log market return

– the return on a claim to the market dividend cash flows.10

10Formally, markets are complete in the sense that all income and assets are tradable and add up to total wealth

for which the return is Rc,t. In particular, let Rj,t+1 = (dj,t+1 + pj,t+1)/pj,t be the return to a claim that pays the
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4.2 Solution

Given the cash flow dynamics in (7) and the Euler equation (13), we derive asset prices using

the approximate analytical solution described in Bansal, Kiku, and Yaron (2012) which utilizes

the Campbell and Shiller (1988a) log-linear approximation for returns. However, because the

volatility processes in (7) do not follow normal distributions, an analytical expression to (13) is

infeasible.11 To accommodate an analytical solution, we utilize a linear approximation to (7) and

express volatility in (14) as a process that follows Gaussian dynamics:

σ2i,t − (ϕiσ)2 = 2(ϕiσ)2hi,t +O(|h2i,t|), hi,t+1 = ρhihi,t + σhiwi,t+1

σ2i,t+1 ≈ (ϕiσ)2(1− ρhi) + ρhiσ
2
i,t + (2(ϕiσ)2σhi)wi,t+1

= (ϕiσ)2(1− νi) + νiσ
2
i,t + σwiwi,t+1, i = {c, x, d}. (14)

The analytical solution afforded via this pseudo-volatility process is important since it facilitates

estimation (see details below).

The solution to the log price-consumption ratio follows, pct = A0 + A1xt + A1,λxλ,t + A2,cσ
2
c,t +

A2,xσ
2
x,t. As discussed in Bansal and Yaron (2004), A1 =

1− 1
ψ

1−κ1ρ
, the elasticity of prices with respect

to growth prospects, will be positive whenever the IES, ψ, is greater than 1. A1,λ = ρλ
1−κ1ρλ

,

the elasticity of prices with respect to the growth rate of the preference shock, is always positive.

Further, the elasticity of pct with respect to the two volatility processes σ2c,t and σ2x,t is θ
2

(1− 1
ψ
)2

1−κ1νc

and θ
2
(κ1A1)2

1−κ1νx
respectively; both will be negative — namely, prices will decline with uncertainty —

whenever θ is negative. A condition that guarantees a negative θ is that agents have a preference

for early resolution of uncertainty. The innovation to the log stochastic discount factor (SDF) are

linear in the shocks to consumption growth (ηc, ηx, ηλ, wc, wx), with λs denoting their respective

market prices of risk (the derivation given in Appendix C). It is instructive to note that λc = −γ,

λx =
−(γ− 1

ψ
)κ1

1−κ1ρ
, λλ = θ−κ1ρλ

1−κ1ρλ
(and λwc and λwx) are negative (positive) whenever preferences

exhibit early resolution of uncertainty γ > 1/ψ. Furthermore the λs (except λc) will be zero when

preferences are time separable, namely, when θ = 1.

dividend stream {dj,τ}∞τ=t and has the price pj,t. Let qj,t be the number of shares. Then Wt−Ct =
∑
j pj,tqj,t. Wealth

next period, Wt+1, equals
∑
j pj,tqj,tRj,t+1, and it follows that Rc,t+1 =

∑
j pj,tqj,tRj,t+1∑

j pj,tqj,t
. As in Lucas (1978), we

normalize all shares qj,t to one and the risk free asset to be in zero net supply such that in equilibrium Ct = Dm+Do,

where Dm are the dividends to all tradable financial assets and Do are dividends on all other assets (e.g., labor,

housing etc.). Rm, the return we utilize in our empirical work, is the return on the claims that pay dividends Dm.
11Strictly speaking, to guarantee the existence of conditional moments involved in key equilibrium conditions, the

exponential function σi,t = ϕiσ exp(hi,t) in (7) needs to be spliced together with a non-exponential function, e.g.,

a square-root function, for volatilities hi,t exceeding some large threshold h̄i. See Chernov, Gallant, Ghysels, and

Tauchen (2003) and Andreasen (2010).
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Risk premia are determined by the negative covariation between the innovations to returns and

the innovations to the SDF. It can be shown that the risk premium for the market return, rm,t+1,

is

Et(rm,t+1 − rf,t) +
1

2
vart(rm,t+1) = −covt(mt+1, rm,t+1) (15)

= βm,cλcσ
2
c,t︸ ︷︷ ︸

short-run risk

+ βm,xλxσ
2
x,t︸ ︷︷ ︸

long-run growth risk

+ βm,λλλσ
2
λ︸ ︷︷ ︸

preference risk

+βm,wxλwxσ
2
wx + βm,wcλwcσ

2
wc︸ ︷︷ ︸

volatility risks

,

where the βs are given in Appendix C and reflect the exposures of the market return to the

underlying consumption risks. Equation (15) highlights that the conditional equity premium can

be attributed to (i) short-run consumption growth, (ii) long-run growth, (iii) preference shocks,

(iv) short-run and long-run volatility risks.

A key variable for identifying the model parameters is the risk-free rate. Under the assumed

dynamics in (7), the risk-free rate is affine in the state variables and follows

rf,t = B0 +B1xt +B1,λxλ,t +B2,cσ
2
c,t +B2,xσ

2
x,t,

where the Bs are derived in the Online Appendix. It is worth noting that B1 = 1
ψ > 0 and the

risk-free rate rises with good economic prospects, while B1,λ = −ρλ < 0 and the risk-free rate

falls with positive preference shock. Under ψ > 1, γ > 1 and whenever preferences exhibit early

resolution of uncertainty, B2,c and B2,x are negative so the risk-free rate declines with a rise in

economic uncertainty.

4.3 State-Space Representation and Bayesian Inference

The vector of model parameters now also encompasses the parameters that characterize the pref-

erences of the representative household. Morever, we are utilizing the third stochastic volatility

process, hx,t. Thus, we define

Θ =
(
Θc,Θd,Θh,Θm

)
, (16)

where

Θc =
(
µc, ρ, ϕx, σ, σε, σ

a
ε

)
, Θd =

(
µd, φ, ϕd, π, σ

a
d,ε

)
,

Θh =
(
ρhc , σ

2
hc , ρhd , σ

2
hd
, ρhx , σ

2
hx

)
, Θm =

(
δ, ψ, γ, ρλ, σλ, σ

rf
ε

)
.

Here Θc and Θd are the same as in (8), Θh is augmented by ρhx and σ2hx , and Θm collects the

preference parameters, including those of the law of motion of the shock process λt in the generalized

model, and the measurement error for the real rate.
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Compared to the cash flow model, the state-space representation of the LRR model is significantly

more elaborate. In addition to consumption and dividend growth, the vector of observables yt now

also contains the observed market return rom,t and the risk-free rate rof,t. At a general level, the

measurement equation takes the form

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1(ht+1, ht) + Σuut+1

)
, ut+1 ∼ iidN(0, I). (17)

The vector st+1 essentially consists of the persistent cash flow component xt (see (7)) as well as

xλ,t. However, in order to express the observables yt+1 as a linear function of st+1 and to account

for potentially missing observations, it is necessary to augment st+1 by lags of xt and xλ,t as well

as the innovations for the cash flow process. Because the details are cumbersome and at this stage

non essential, a precise definition of st+1 is relegated to the Online Appendix.

The vector svt+1(·) is a function of the log volatilities of cash flows, ht+1 and ht, in (7). Finally,

ut+1 is a vector of measurement errors and At+1 is a selection matrix that accounts for deterministic

changes in the data availability. The solution of the LRR model sketched in Section 4.2 provides

the link between the state variables and the observables yt+1. The state variables themselves follow

vector autoregressive processes of the form

st+1 = Φst + vt+1(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ iidN(0, I), (18)

where vt+1(·) is an innovation process with a variance that is a function of the log volatility pro-

cess ht and wt+1 is the innovation of the stochastic volatility process. Equations (17) and (18)

define a nonlinear state-space system in which the size of the vector of observables yt changes in a

deterministic manner.

Because in (17) the volatility states svt affect the conditional mean of the observables yt, the

Metropolis-within-Gibbs sampler described in Section 2.4 cannot be used for posterior inference

in the LRR model. Instead, we construct a Metropolis-Hastings sampler that generates draws

from p(Θ|Y ). The challenging aspect of this sampler is the evaluation of the likelihood function

p(Y |Θ) associated with the nonlinear state-space model given by (17) and (18). We exploit the fact

that our state-space model is linear and Gaussian conditional on the volatility states (ht+1, ht) to

construct a computationally efficient particle filter approximation p̂(Y |Θ) of the likelihood function

(see Online Appendix for details).12 The key feature of the algorithm is that particle values for

the high-dimensional vector st are replaced by the mean and covariance matrix of the conditional

distribution of st|(ht, ht−1, Y1:t) which is Gaussian. The general idea has been previously used,

12 Andrieu, Doucet, and Holenstein (2010) have shown that the use of p̂(Y |Θ) in MCMC algorithms can still deliver

draws from the actual posterior p(Θ|Y ) because these approximation errors essentially average out as the Markov

chain progresses.
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for instance, in Chen and Liu (2000) and Shephard (2015). It reduces the variance of p̂(Y |Θ)

considerably, making it possible to embed the likelihood approximation into a fairly standard

random-walk Metropolis algorithm that is widely used in the DSGE model literature; see Herbst

and Schorfheide (2015).

5 Empirical Results Based on the Long-Run Risks Model

Section 5.1 describes the data set used in the empirical analysis. Section 5.2 describes our estimation

results and Section 5.3 describes the asset pricing implications.

5.1 Data

In addition to the consumption and dividend data used in Section 3 we now also use financial market

data from 1930:M1 to 2014:M12. This includes monthly observations of returns and prices of the

CRSP value-weighted portfolio of all stocks traded on the NYSE, AMEX, and NASDAQ. Prices

are also constructed on the per share basis as in Campbell and Shiller (1988b) and Hodrick (1992).

The stock market data are converted to real using the consumer price index (CPI) from the Bureau

of Labor Statistics. Finally, the ex-ante real risk-free rate is constructed as a fitted value from a

projection of the ex-post real rate on the current nominal yield and inflation over the previous year.

To run the predictive regression, we use monthly observations on the three-month nominal yield

from the CRSP Fama Risk Free Rate tapes and CPI series. Data sources and summary statistics

are available in the Online Appendix.

5.2 Model Estimation

Parameter Estimates. The prior distribution for the parameters associated with the exogenous

cash flow process are the same as the ones used in Section 3.2. Thus, we focus on the preference

parameters that affect the asset pricing implications of the model. Percentiles for the prior are

reported in the left-side columns of Table 5. The prior for the discount rate δ reflects beliefs about

the magnitude of the risk-free rate. For the asset pricing implications of our model, it is important

whether the IES is below or above 1. Thus, we choose a prior that covers the range from 0.3 to 3.5.

The 90% prior credible interval for the risk-aversion parameter γ ranges from 3 to 15, encompassing

the values that are regarded as reasonable in the asset pricing literature. We use the same prior

for the parameters of the cash flow processes and their measurement errors as in Section 3. The

prior for the persistence and the innovation standard deviation of the preference shock is identical
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Table 5: Prior and Posterior Estimates

Prior Posterior

Distr. 5% 50% 95% 5% 50% 95%

Household Preferences

δ B .995 .9975 .9999 - .999 -

ψ G .30 1.30 3.45 1.13 1.93 3.42

γ G 2.75 7.34 15.46 5.44 8.60 12.97

Preference Risk

ρλ U -.90 0 .90 .916 .956 .982

σλ IG .0001 .0003 .0007 .0003 .0005 .0007

Consumption Growth Process

ρ U -.90 0 .90 .949 .987 .999

ϕx U .05 .50 .95 .139 .232 .506

σ IG .0008 .0019 .0061 .0020 .0032 .0044

ρhc NT .27 .80 .999 .973 .991 .996

σ2hc IG .0011 .0060 .0283 .0074 .0088 .0100

ρhx NT .27 .80 .999 .987 .994 .999

σ2hx IG .0011 .0060 .0283 .0027 .0039 .0061

Dividend Growth Process

φ N .50 5.0 9.5 2.82 4.15 5.44

π N .50 5.0 9.5 .204 1.54 4.31

ϕd U .50 5.0 9.5 3.56 5.02 7.83

ρhd NT .28 .80 .999 .948 .967 .984

σ2hd IG .015 .0445 .208 .0174 .0393 .0833

Consumption Measurement Error

σε IG .0008 .0019 .0062 .0006 .0010 .0016

σaε IG .0042 .0120 .0564 .0061 .0231 .0423

Notes: The estimation results are based on annual consumption growth data from 1930 to 1960 and monthly con-

sumption growth data from 1960:M1 to 2014:M12. We allow for annual consumption measurement errors εat during

the periods from 1930 to 1948. We impose monthly measurement errors εt when we switch from annual to monthly

consumption data from 1960:M1 to 2014:M12. For the other three series we use monthly data from 1930:M1 to

2014:M12. We fix µc = 0.0016 and µd = 0.0010 at their sample averages. Moreover, we fix the measurement error

standard deviations σad,ε and σf,ε at 10% of the sample standard deviation of dividend growth and the risk-free rate,

respectively. B, N , NT , G, and IG are beta, normal, truncated (outside of the interval (−1, 1)) normal, gamma, and

inverse gamma distributions, respectively.
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Figure 3: Posterior Distribution of ρ
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Notes: We plot posterior densities of ρ from the estimation with cash flow data only from post-1930 (red-dashed)

and from post-1959 samples (red-dotted), respectively, and from the estimation with cash flow and asset return data

from post-1930 sample (black).

to the prior for the cash flow parameters ρ and σ. Finally, we fix the standard deviation σf,ε of the

measurement error of the risk free rate at 10% of the risk-free rate’s sample standard deviation.

The remaining columns of Table 5 summarize the percentiles of the posterior distribution for the

model parameters. While the estimated cash flow parameters are, by and large, similar to those

reported in Table 4 when asset prices are not utilized, a few noteworthy differences emerge. First,

the estimate of ρ, the persistence of the predictable cash flow component, increases from 0.950 to

0.987 to better capture the equity premium and persistence of the price-dividend ratio. Figure 3

overlays the posterior densities of ρ obtained with (post-1930 sample) and without asset prices

(post-1930 and post-1959 samples, respectively).13 Interestingly, the figure shows that although

the mode of the posterior increases and shifts to the right when asset prices are used in estimation,

the 90% credible interval ranging from 0.949 to 0.999 contains the posterior medians of ρ from

the cash-flow-only estimations. Second, the time variation in the volatility of the long-run risk

innovation, σhx , also increases, reflecting the information in asset prices about growth uncertainty.

Third, the estimate of ϕx drops from 0.435 to 0.232, which reduces the model-implied predictability

of consumption growth by the price-dividend ratio and brings it more in line with the data. Finally,

the estimate of σ increases somewhat from .0026 to .0032 to explain the highly volatile asset prices

data.

13Results from the post-1959 sample with asset prices are virtually identical to the results from the post-1930

sample. For this reason, they are not plotted separately in Figure 3.
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Figure 4: Smoothed States
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Notes: Black lines represent posterior medians of smoothed states and gray-shaded areas correspond to 90% credible

intervals. Shaded bars indicate NBER recession dates. In the top panel, we overlay the smoothed state xt obtained

from the estimation without asset prices (red dashed line) and monthly consumption growth data (blue solid line).

Overall, the information from the market returns and risk-free rate reduces the posterior un-

certainty about the cash flow parameters and strengthens the evidence in favor of a time-varying

conditional mean of cash flow growth rates as well as time variation in the volatility components.

Table 5 also provides the estimated preference parameters. The IES is estimated above 1 with a

relatively tight credible band, while risk aversion is estimated at 8.6.

Smoothed Mean and Volatility States. Figure 4 depicts smoothed estimates of the predictable

growth component xt. Because the estimate of xt is, to a large extent, determined by the time

path of consumption, the 90% credible bands are much wider prior to 1960, when only annual

consumption growth data were used in the estimation. Post 1959, xt tends to fall in recessions
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Table 6: Marginal Data Densities for Consumption Growth Model

Estimation Fixed ρ Estimated ρ

Sample 0.90 0.94 0.95 0.97 0.99

1959-2014 2925.9 2935.9 2935.5 2934.8 2927.5 2930.1 (ρ̂ = 0.95)

1930-2014 2912.7 2914.2 2913.3 2912.1 2909.3 2909.9 (ρ̂ = 0.94)

Notes: We estimate the consumption-only model (11) conditional on various choices of ρ (“Fixed ρ”) and compute

marginal data densities. We also report the marginal data densities for the estimated values of ρ (“Estimated ρ”)

based on the posterior mean estimates (in parentheses) from Table 3.

(indicated by the shaded bars in Figure 4), but periods of falling xt also occur during expansions.

We overlay the smoothed estimate of xt obtained from the estimation without asset price data (see

Section 3.2). It is very important to note that the two estimates are similar, which highlights that xt

is, in fact, detectable based on cash flow data only. We also depict the monthly consumption growth

data post 1959, which confirms that xt indeed captures low-frequency movements in consumption

growth.

The smoothed volatility processes are plotted in Figure 4. Recall that our model has three

independent volatility processes, hc,t, hd,t, and hx,t, associated with the innovations to consumption

growth, dividend growth, and the predictable component, respectively. The most notable feature of

hc,t is that it captures a drop in consumption growth volatility that occurred between 1930 and 1960.

In magnitude, this drop in volatility is much larger than a subsequent decrease around 1984, the

year typically associated with the Great Moderation. The stochastic volatility process for dividend

growth shows a drop around 1955, but it also features an increase in volatility starting in 2000,

which is not apparent in hc,t. Overall, the smoothed hd,t seems to exhibit more medium- and high-

frequency movements than hc,t. Finally, the volatility of the persistent component, hx,t, exhibits

substantial fluctuations over our sample period, and it tends to peak during NBER recessions.

Misspecification Test. Comparing the estimates of ρ from Table 4 based on cash flow data only

to the estimate obtained in Table 5 by estimating the LRR model based on cash flow and asset

return data, we observed that the posterior mean increases from 0.94 and 0.95, respectively, to 0.99

once asset returns are included. To assess the extent to which the increase in ρ leads to a decrease

in fit of the consumption growth process, we re-estimate model (11) conditional on various choices

of ρ between 0.90 and 0.99 and re-compute the marginal data density for consumption growth. The

results are summarized in Table 6. The key finding is that the drop in the marginal data density

by changing ρ from ρ̂ to 0.99 is small, indicating that there essentially is no tension between the
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Figure 5: Model-Implied Risk-Free Rate
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Notes: Blue line depicts the actual risk-free rate, and black line depicts the smoothed, model-implied risk-free rate

without measurement errors. Red dashed line depicts the model-implied risk-free rate with xλ,t = 0.

parameter estimates obtained with and without asset prices.14

5.3 Asset Pricing Implications

Risk-Free Rate Estimate and Preference Shock. Figure 5 overlays the actual risk-free rate,

which is assumed to be subject to measurement errors, and the smoothed “true” or model-implied

risk-free rate. We find that the measurement errors are fairly small. To highlight the importance of

the preference shock, we also plot a counterfactual risk-free rate that would prevail in the absence of

λt. It turns out, that ex-post much of the risk-free rate fluctuations are explained by the preference

shock. In the absence of the preference shock the process for the expected stochastic discount

factor implied by the predictable component of cash flow growth and the stochastic volatilities is

too smooth relative to the observed risk-free rate. The preference shock can generate additional

fluctuations in the expected discount factor without having a significant impact on asset returns

(as we will see below).

Determinants of the Equity Risk Premium. Figure 6 depicts the contribution of short-run

risk, σ2c,t, the long-run growth risk, σ2x,t, the preference risk, σ2λ, and the volatility risks, σ2wc and

σ2wx , to the risk premium; see Equation (15). We compute βs and λs based on the median posterior

parameter estimates and multiply them by the median volatility state estimates to construct the risk

premium. The total (annualized) equity risk premium is around 8.2%.15 The two major sources

14Marginal data densities include a penalty for model dimensionality. For this reason the values with fixed ρ = ρ̂

are slightly larger than the ones reported in the “Estimated ρ” column.
15The gross equity premium E[rm,t+1 − rf,t] + 1/2σ2

rm ≈ 0.062 + 0.5 ∗ 0.222 − 0.06 = 8.2%.
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Figure 6: Decomposition of the Equity Risk Premium
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Notes: We provide the decomposition of the risk premium (15). We compute βs and λs based on the median posterior

parameter estimates and multiply with the median volatility state estimates σ̂2
c,t and σ̂2

x,t to construct the model-

implied risk premium. On average, the risk premium is accounted for by the short-run risk (0.25%), long-run growth

risk (4.87%), preference risk (1.14%), and volatility risk (2.0%), respectively. Put together, the total in-sample market

risk premium (annualized) is around 8.2%.

of the risk premium are the long-run growth risk and the volatility risks and when combined

they account for 83% of the risk premium. More specifically, the 8.2% equity premium can be

decomposed as follows. On average, the long-run growth risk generates a premium of 4.9%, the

volatility risks account for 2.0%, the preference shock generates 1.1%, and the short-run volatility

risk contributes 0.3%.

Determinants of Asset Price Volatility. Figure 7 depicts the contribution of the variation in

growth prospects, xt, the preference shock, xλ,t, and the conditional variability of growth prospects,

σx,t, to asset price volatility. We generate counterfactual volatilities by shutting down the estimated

xt, xλ,t, and σx,t processes, respectively. The ratios of the counterfactual and the actual volatilities

measure the contribution of the non-omitted risk factors. We subtract this ratio from 1 to obtain

the relative contribution of the omitted risk factor shown in Figure 7. Because the volatilities are

time-varying, so is their relative contribution to asset price volatility.

While the preference shocks are important for the risk-free rate, they contribute very little to

the variance of the price-dividend ratio and the market return. The figure shows that most of the

variability of the price-dividend ratio is, in equal parts, due to the variation in xt and σx,t. We

formally show in the Online Appendix that the risk premium on the market return is barely affected

by the preference shocks and consequently its variation is almost entirely attributable to the time
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Figure 7: Variance Decomposition for Market Returns and Risk-Free Rate
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(b) Log Price-Dividend Ratio: pd
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(c) Risk-Free Rate: rf
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Notes: Fraction of volatility fluctuations (in percent) in the market returns, the price-dividend ratio, and the risk-free

rate that is due to xt, xλ,t, and σ2
x,t, respectively. We do not present the graphs for σ2

c,t, σ
2
d,t since their time-varying

shares are less than 1% on average. See the main text for computational details.
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variation in the stochastic volatility σ2x,t and the growth prospect xt. The remaining risk factors

σ2c,t and σ2d,t have negligible effects (less than 1% on average) on asset price volatilities. However, in

our likelihood-based estimation they are very important for tracking the consumption and dividend

growth data.

We assumed that in our endowment economy the preference shock is uncorrelated with cash flows.

In a production economy this assumption will typically not be satisfied. Stochastic fluctuations in

the discount factor generate fluctuations in consumption and investment, which in turn affect cash

flows. To assess whether our assumption of uncorrelated shocks is contradicted by the data, we

computed the correlation between the smoothed preference shock innovations ηλ,t and the cash flow

innovations ηc,t and ηx,t. We can do so for every parameter draw Θs from the posterior distribution.

The 90% posterior predictive intervals range from -0.09 to 0.03 for the correlation between ηλ,t and

ηc,t and from 0 to 0.2 for the correlation between ηλ,t and ηx,t. Based on these results we conclude

that there is no strong evidence that contradicts the assumption of uncorrelated preference shocks.

Matching Asset Price Moments. While asset pricing moments implicitly enter the likelihood

function of our state-space model, it is instructive to examine the extent to which sample moments

implied by the estimated state-space model mimic the sample moments computed from our actual

data set. To do so, we report percentiles of the posterior predictive distribution for various sample

moments based on simulations from the posterior distribution of the same length as the data.16

While the posterior predictive distribution captures both parameter and sampling (or shock) un-

certainty, we confirmed through simulation with fixed parameters that the effect of parameter

uncertainty is an order of magnitude smaller than the sampling uncertainty.

Results are summarized in Table 7. Means and standard deviations refer to annualized asset

prices. We first focus on the results from estimating the full model based on cash flow data and

asset returns (full model estimation). It is noteworthy that all of the “actual” sample moments

are within the 5th and the 95th percentile of the corresponding posterior predictive distribution.17

The model generates a sizable mean log market return with median value of 6.2%, and a sizeable

equity risk premium with a median value of about 8.2%. Consistent with the data, the model’s

return variability is about 20%. The high volatility of the market returns translates into a large

variability of the sample moments. The autocorrelation of the market return is very small. The

16This is called a posterior predictive check; see Geweke (2005) for a textbook treatment. Specifically, the percentiles

are obtained using the following simulation: draw parameters Θs from the posterior distribution; for each Θs simulate

a trajectory Y s (same number of observations as in the actual sample) and compute the sample statistics S(Y s) of

interest.
17Although not reported in the table this is also the case for the mean, standard deviation and first autocorrelation

moments of consumption and dividend growth.
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Table 7: Asset Return Moments

Parameter Estimates are Based On

Data Cash Flows Cash Flows Only

& Asset Returns

5% 50% 95% 5% 50% 95%

Mean (rm) 6.06 3.18 6.20 10.53 1.08 3.53 5.92

StdDev (rm) 19.8 11.7 22.7 52.4 10.1 15.0 27.3

AC1 (rm) -0.01 -0.27 -0.05 0.19 -0.30 -0.03 0.20

Corr (∆c, rm) 0.11 -0.10 0.11 0.28 -0.08 0.12 0.34

Mean (rf ) 0.37 -0.34 0.60 1.43 1.48 1.83 2.10

StdDev (rf ) 2.85 1.81 2.29 2.90 0.64 0.88 1.28

AC1 (rf ) 0.64 0.33 0.53 0.66 0.23 0.44 0.63

Mean (pd) 3.40 2.58 3.14 3.41 3.70 3.78 3.83

StdDev (pd) 0.45 0.14 0.31 0.98 0.09 0.15 0.27

AC1 (pd) 0.87 0.55 0.79 0.90 0.23 0.53 0.73

Notes: We present descriptive statistics for log returns of the aggregate stock market (rm), its correlation with

consumption growth (∆c), the log risk-free rate (rf ), and the log price-dividend ratio (pd). We report means (Mean),

standard deviations (StdDev), first-order sample autocorrelations (AC1), and correlations (Corr). Market returns,

the risk-free rate, and the price-dividend ratio refer to 12-month averages (in percent). Computing asset pricing

implications for the cash-flow-only estimates requires calibration of the preference parameters. We set δ, ψ, γ to

median posterior estimates from Table 5.

model, partly through the preference shocks, generates a risk-free rate that reproduces the strong

positive serial correlation found in the data. As in the data, the model generates both a highly

variable and persistent price-dividend ratio. It is particularly noteworthy that the median and 95th

percentile of the price-dividend volatility distribution are significantly larger than in other LRR

calibrated models with Gaussian shocks. This feature owes in part to the fact that the models

contain three volatility components with underlying log-volatility dynamics, thus accommodating

some non-Gaussian features.

In Section 5.2 we noted that the parameter estimates for the cash flow processes change a bit once

asset pricing data are included. To assess the economic implications of the parameter differentials

we conduct the following experiment. We combine the posterior median estimates of the preference

parameters from the full estimation with the cash flow process parameter estimates reported in

Table 4 (1930-2014 sample). Because the cash-flow-only model was estimated without the preference
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shock xλ,t and the third volatility process σ2x,t we drop these two state-variables from the pricing

equations when re-computing the asset pricing implications of the LRR model. The results are

summarized in the last three columns of Table 7.

Even without the information content of asset prices or of the preference shocks, the cash-flow-

only estimates are able to generate credible bands that are consistent with many moments of the

data.18 The median market return and its volatility are now lower relative to the full estimation

results, yet their 95% percentiles are still as high as 5.9% and 27% respectively (with a gross equity

premium of about 3%). Note that these numbers provide a conservative picture for the performance

of the cash-flow-only estimates because the preference parameters are based on the estimation of

the full model. One noticeable difference between the cash-flow-only estimates and the full-model

estimates is in the risk free rate moments. Unlike the specification based on the cash-flow-only

estimates, the full model incorporates the preference shock which reduces the mean risk free rate

and increases its volatility. Finally, the cash-flow-only estimates generate a price-dividend ratio

that is not as volatile or persistent as the one in the data. The increased persistence in the full

estimation leads to a more volatile and persistent model price-dividend ratio.

Consumption Growth and Excess Return Predictability. One aspect of the data that is

often discussed in the context of asset pricing models — and in particular, in the context of models

featuring long-run risks — is the low predictability of future consumption growth by the current

price-dividend ratio. Another key issue in the asset pricing literature is return predictability by the

price-dividend ratio (e.g., Hodrick (1992)).

We consider two types of predictability checks: multivariate and univariate. In the model, and

possibly in the data, the price-dividend ratio reflects multiple state variables. Consequently, a

VAR-based predictive regression is a natural starting point. As in Bansal, Kiku, and Yaron (2012)

we estimate a first-order VAR that includes consumption growth, the price-dividend ratio, the real

risk-free rate, and the market return. Based on the estimated VAR coefficients we compute R2’s

for cumulative H-step-ahead consumption growth and excess returns:

H∑
h=1

∆ct+h and

H∑
h=1

(rm,t+h − rf,t+h−1).

While the VAR-based predictive checks are appealing from a theoretical perspective, much of the

empirical literature focuses on R2’s from univariate predictive regressions using the price-dividend

ratio as the only regressor.

18Chen, Dou, and Kogan (2015) formalize this comparison by developing a measure of model fragility, roughly

speaking based on the discrepancy between the posterior medians obtained under the cash-flow-only estimation and

the estimation with asset returns.
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The results are presented as posterior predictive checks, similar to those in Table 7, but now

depicted graphically in Figure 9. The sample statistics considered are the R2 values obtained

from the two regressions. The top and bottom ends of the boxes correspond to the 5th and 95th

percentiles, respectively, of the posterior predictive distribution, and the horizontal bars signify the

medians. To facilitate meaningful comparisons of the predictive regressions across models (to be

described below), we condition the predictive analysis on the posterior median estimates of the

LRR model. This is innocuous because, as mentioned previously, the contribution of parameter

uncertainty to the variability of the posterior predictive distribution is small. Thus, the predictive

intervals reflect the fact that we are repeatedly generating data from the model and computing a

sample statistic for each of these simulated trajectories. Finally, the small squares correspond to

statistics computed from “actual” U.S. data.

The top and bottom left panels of Figure 9 depict results for the VAR-based predictability

regressions. The first thing to note is that, with multiple predictive variables, consumption growth

is highly predictable in the data. For instance, at the one-year horizon the R2 is about 52% (see also

Bansal, Kiku, Shaliastovich, and Yaron (2014)). While the predictability diminishes over time, it is

still nontrivial with an R2 of 12% at the 10-year horizon. The key finding is that the model-implied

VAR-based estimates has predictability implications that are very similar to the ones observed in

the actual data. At the one-year horizon the median of the model-implied R2 is somewhat lower

than its data estimate, whereas over horizons of three years or more, it is slightly larger than the

data estimate. Noteworthy, in terms of excess return predictability the medians of the model-based

estimates are almost perfectly aligned with the data-based estimates.

The subplots in Column 2 of Figure 9 provide the results of the univariate predictive regressions.

This column is labeled “Benchmark” because, as for the VAR-based predictability checks, we

simulate the LRR model with all of its five state variables: xt, xλ,t, σ
2
x,t, σ

2
c,t, and σ2d,t. As is well

known, when the price-dividend ratio is used as a single regressor, it produces low R2s for predicting

consumption growth. It is less than 5% for horizons from one to eight years and reaches almost 10%

at the ten-year horizon. The median R2 values obtained from regressions on model-generated data

are between 10% to 15%, slightly higher than in the actual data. However, the posterior predictive

intervals range from 0 to 30% for the one-year horizon and from 0 to about 50% for horizons longer

than three years. Thus, in that sense the model does well in covering the data R2s.

The model also performs very well in terms of the univariate excess return predictability regres-

sions. Specifically, for all horizons the median of the model-implied distribution of R2s are quite

close to actual data R2s and the model-based credible intervals contain the R2 obtained from the

actual data. The good performance is obtained because, according to the model, the price-dividend
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Figure 8: Predictability Checks
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Notes: We fix the parameters at their posterior median estimates. The red squares represent R2 values obtained from

the actual data. The boxes represent 90% posterior predictive intervals and the horizontal lines represent medians.

The “Benchmark” case is based on simulations with all five state variables xt, xλ,t, σ
2
x,t, σ

2
c,t, and σ2

d,t; “Growth and

Volatility Risk” is based on xt and σ2
x,t only; “Growth Risk” is based on xt only. The horizon is measured in years.

The VAR-Based R2s are constructed as in Hodrick (1992).

ratio is the most important predictor of long-horizon excess returns among the observables. Thus,

the results from the univariate regressions are not very different from the VAR-based ones.

In order to understand how individual risk factors affect predictability, we proceed by simulating

two restrictive model specifications that only incorporate a subset of the state variables: “Growth

and Volatility Risks” includes only xt and σ2x,t; and “Growth Risk” includes only xt. In doing so we

continue to use the posterior median parameter estimates reported in Table 5. The results for these

respective specifications are given in Columns 3 and 4 of Figure 9. It is evident that the “Growth

and Volatility Risk” plots are very similar to the “Benchmark” plots for both consumption and
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return predictability as xt and σ2x,t are ultimately the key state variables driving the price-dividend

ratio.19

The credible intervals for the “Growth Risk” predictive regressions do not include the actual data

estimates. This specification generates too much consumption predictability and thereby highlights

that the volatility shocks play an important role in lowering the model-implied predictability to a

more realistic level. Because the time variation in risk premia in the model is exclusively driven by

stochastic volatilities, the “Growth Risk” specification, which excludes all three stochastic volatility

processes, generates relatively small credible intervals for the excess return predictability. These

credible intervals are entirely driven by finite sample properties of the simulations. Because in the

model excess returns do not load on xt, the R2s will converge to zero as the simulation sample

length goes to infinity.

While our model passes the predictive checks, the credible intervals depicted in Figure 9 are

wide, meaning that the sampling distribution of the R2 measures is highly variable. The diffuse

and skewed sampling distributions of the R2 statistics are caused by various non-standard features

of predictive regressions. Due to overlapping time periods, residuals are typically serially correlated

and lagged residuals may be correlated with the predictor. Moreover, the persistent component of

the dependent variable (consumption growth or excess returns) is dominated by iid shocks and the

right-hand-side regressor (price-dividend ratio) is highly persistent – a feature that can render the

predictive regressions spurious (see Hodrick (1992) and Stambaugh (1999)).20

Dividend Growth Predictability. Cochrane (2011) argues that there is very little dividend

growth predictability at all horizons. This view is based on a univariate regression with the price-

dividend ratio as a predictor of future dividend growth. The data feature modest predictability,

with an R2 in the range of 4% to 9%, depicted by the red squares in the left panel of Figure 9.

However, dividend growth is found to be highly predictable both at short and long horizons, once

additional predictors are included in a VAR based predictive regression, with adjusted R2s as large

as 35% at the 10-year horizon (see Column 2 of Figure 9).21 Importantly, in both the univariate

19The R2s in the “Growth and Volatility Risks” are slightly larger than the “Benchmark” for the consumption

predictability regressions. This follows because the price-dividend ratio no longer fluctuates in response to preference

shocks, which have no bearing on consumption growth.
20Valkanov (2003) derived an asymptotic distribution of the R2 under the assumption that the regressor follows

a local-to-unity process. He shows that the goodness-of-fit measure converges to a random limit as the sample size

increases. More recently, Bauer and Hamilton (2015) studied the sampling distribution of R2 measures in predictive

regressions for bond returns, which exhibit similar distortions.
21This evidence is consistent with Lettau and Ludvigson (2005), Koijen and van Binsbergen (2010), and Jagan-

nathan and Liu (2016) who report R2 values from a VAR-based regression that range from 10% to 40%.
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Figure 9: Dividend Growth Predictability and Dividend Yield Variance Decomposition
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Notes: (Predictability) We fix the parameters at their posterior median estimates and simulate the data. The horizon

is measured in years. We run a univariate regression with the price-dividend ratio as predictor of future dividend

growth. For the multivariate regression, we consider a first-order VAR that includes consumption growth, dividend

growth, the price-dividend ratio, and the real risk-free rate. Based on the estimated coefficients we compute R2’s for

cumulative H-step-ahead dividend growth. The red squares represent R2 values obtained from the actual data. The

boxes represent 90% posterior predictive intervals and the horizontal lines represent medians. The VAR-based R2s

are constructed as in Hodrick (1992). (Variance Decomposition, Direct) We regress 15-year ex post returns, dividend

growth, and dividend yield, respectively, on a constant term and the dividend yield. (Variance Decomposition, VAR-

based) We infer long-run coefficients (k → ∞) from 1-year coefficients of the same VAR used for the predictability

analysis. Using the Campbell-Shiller approximation, the fractions of dividend yield variation attributed to each

source are provided as 1 ≈ Cov(dpt,
∑k
j=1 ρ

j−1rt+j)

V ar(dpt)
− Cov(dpt,

∑k
j=1 ρ

j−1∆dt+j)

V ar(dpt)
+

ρkCov(dpt,dpt+k)

V ar(dpt)
. These components are

marked as R, D, and DP respectively.

and VAR-based predictive regressions, the model implications for dividend growth predictability

line up with the data and cover the data R2s.

The strong evidence for dividend growth predictability has important implications for the vari-

ability of the log dividend yield dpt. Based on the Campbell and Shiller (1988a) approximate

present value identity it follows that

dpt ≈
k∑
j=1

ρj−1rt+j −
k∑
j=1

ρj−1∆dt+j + ρkdpt+k, (19)

where ρ is an approximation constant based on the average dividend yield. Multiplying both sides

of (19) by the log dividend yield and taking expectations implies that the variance of the current

dividend yield can be attributed to its covariance with expected future returns, dividend growth

rates, and the expected future dividend yield, respectively, marked as “R”, “D”, and “DP” in

Figure 9 (see figure notes for details). As k approaches infinity, the dividend yield variability is

explained completely by covariation with expected returns and cash flow growth. We compute the

fraction of variability explained by the three covariances via “Direct” regression (setting k equal
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Figure 10: Correlation between Market Return and Growth Rates of Fundamentals
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Notes: We fix the parameters at their posterior median estimates. The “Benchmark” case is based on simulations

with all five state variables xt, xλ,t, σ
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d,t; “Preference Risk” is based on xλ,t only.

to 15 years and separately regressing the “R”, “D”, and “DP” components on the dividend yield)

and “VAR-based” regression (inferring the k = ∞ decomposition from the coefficients of a VAR

estimated based on annual data). The estimates based on the direct regressions attribute much of

the variation in dividend yield to variation in discount rates (although not entirely), whereas the

point estimates of the VAR attribute about half of the variation to discount rates and the other

to dividend growth. Again, it is important to note that in both cases the model credible intervals

contain the data point estimates. Moreover, in both cases the credible intervals around the point

estimates are consistent with a view in which a large portion (about half) of the dividend yield

variability is driven by cash flows.

Long-Horizon Correlations. One additional feature of the data is the long horizon correlation

between consumption growth (dividend growth) and returns –that is the H-th horizon correlation

corr(
∑H

h=1 rm,t+h,
∑H

h=1 ∆ct+h). Our model performs well along this dimension, which is presented

in Figure 10. Several important points emerge. In the “Benchmark” specification, the 10-year con-

sumption growth and 10-year return have a correlation of 0.3, but with a very wide credible interval

that encompass -0.2 to 0.7, which importantly contains the data estimate. The analogous corre-

lation credible interval for dividend growth ranges from 0 to 0.8, with the data at 0.4 and again

very close to the model median estimate. It is also noteworthy that these correlation features are

primarily driven by “Growth and Volatility Risks.” Although not reported, the plots based on the

“Growth and Volatility Risks” specification are very similar to the “Benchmark” specification. Al-

buquerque, Eichenbaum, Luo, and Rebelo (2016) highlight that preference shocks improve the LRR

model-performance for these long horizon correlations. The “Preference Risk” subplots provide the
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correlations when all shocks except xλ,t are shutdown. These plots show that the preference shocks

improve fit by generating lower credible intervals for consumption, yet deteriorate fit by generating

way too large long horizon correlations for dividends.

6 Conclusion

We developed a non-linear Bayesian state-space model that utilizes mixed frequency data to study

the time series dynamics of consumption and its implications for asset pricing. We show that after

accounting for monthly measurement errors there is strong evidence for both a small persistent

predictable component as well as a stochastic volatility component in consumption growth. Impor-

tantly, this evidence emerges when the estimation uses only consumption data, and is reinforced

and sharpened when the estimation uses the joint dynamics of consumption, dividends, and asset

return data. The estimation identifies three volatility processes which control the short run dynam-

ics, variation in economy-wide trend, and independent dividend dynamics, respectively. The model

is able to successfully capture many asset pricing moments and improve upon key predictability

moments of previous LRR models.
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Appendix

A Data Source

A.1 Nominal PCE

We download seasonally adjusted data for nominal PCE from NIPA Tables 2.3.5 and 2.8.5. We

then compute within-quarter averages of monthly observations and within-year averages of quarterly

observations.

A.2 Real PCE

We use Table 2.3.3., Real Personal Consumption Expenditures by Major Type of Product, Quantity

Indexes (A:1929-2014)(Q:1947:Q1-2014:Q4) to extend Table 2.3.6., Real Personal Consumption

Expenditures by Major Type of Product, Chained Dollars (A:1995-2014) (Q:1995:Q1-2014:Q4).

Monthly data are constructed analogously using Table 2.8.3. and Table 2.8.6.

A.3 Real Per Capita PCE: ND+S

The LRR model defines consumption as per capita consumer expenditures on nondurables and

services. We download mid-month population data from NIPA Table 7.1.(A:1929-2014)(Q:1947:Q1-

2014:Q4) and from Federal Reserve Bank of St. Louis’ FRED database (M:1959:M1-2014:M12).

We convert consumption to per capita terms.

A.4 Dividend and Market Returns Data

Data are from the Center for Research in Security Prices (CRSP). The three monthly series from

CRSP are the value-weighted with-, RNt, and without-dividend nominal returns, RXt, of CRSP

stock market indexes (NYSE/AMEX/NASDAQ/ARCA), and the CPI inflation rates, πt. The

sample period is from 1929:M1 to 2014:M12. The monthly real dividend series are constructed as

in Hodrick (1992):

1. A normalized nominal value-weighted price series is produced by initializing P0 = 1 and

recursively setting Pt = (1 +RXt)Pt−1.

2. A normalized nominal divided series, DRaw
t , is obtained by recognizing that DRaw

t = (RNt −
RXt)Pt−1.
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3. Following Robert Shiller we smooth out dividend series by aggregating 3 months values of the

raw nominal dividend series Dt =
∑2

i=0D
Raw
t−i and apply the following quarterly interpolation.

Here, Dt, Dt−3, ... is the last month of the quarter.

Dt−m = Dt −
m

3
(Dt −Dt−3), m ∈ {0, 1, 2} . (A.1)

4. We then compute the real dividend growth gd,t by subtracting the actual inflation from the

interpolated nominal dividend growth

gd,t = log(Dt)− log(Dt−1)− πt. (A.2)

Here inflation rates are computed using the log differences of the consumer price index (CPI)

from the Bureau of Labor Statistics.

Market returns, RNt+1, are also converted from nominal to real terms using the CPI inflation

rates and denoted by rm,t+1.

A.5 Ex Ante Risk-Free Rate

The ex ante risk-free rate is constructed as in the online appendix of Beeler and Campbell (2012).

Nominal yields to calculate risk-free rates are the CRSP Fama Risk Free Rates. Even though our

model runs in monthly frequencies, we use the three-month yield because of the larger volume and

higher reliability. We subtract annualized three-month inflation, πt,t+3, from the nominal yield,

if,t, to form a measure of the ex post (annualized) real three-month interest rate. The ex ante real

risk-free rate, rf,t, is constructed as a fitted value from a projection of the ex post real rate on the

current nominal yield, if,t, and inflation over the previous year, πt−12,t :

if,t − πt,t+3 = β0 + β1if,t + β2πt−12,t + εt+3

rf,t = β̂0 + β̂1if,t + β̂2πt−12,t.

The ex ante real risk-free rates are available from 1929:M1 to 2014:M12.
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B The Measurement-Error Model for Consumption

For expositional purposes, we assume that the accurately measured low-frequency observations are

available at quarterly frequency (instead of annual frequency as in the main text). Correspondingly,

we define the time subscript t = 3(j − 1) +m, where month m = 1, 2, 3 and quarter j = 1, . . .. We

use uppercase C to denote the level of consumption and lowercase c to denote percentage deviations

from some log-linearization point. Growth rates are approximated as log differences and we use a

superscript o to distinguish observed from “true” values.

The measurement-error model presented in the main text can be justified by assuming that the

statistical agency uses a high-frequency proxy series to determine monthly consumption growth

rates. We use Z3(j−1)+m to denote the monthly value of the proxy series and Zq(j) the quarterly

aggregate. Suppose the proxy variable provides a noisy measure of monthly consumption. More

specifically, we consider a multiplicative error model of the form

Z3(j−1)+m = C3(j−1)+m exp(ε3(j−1)+m). (A.3)

The interpolation is executed in two steps. In the first step we construct a series C̃o3(j−1)+m, and

in the second step we rescale the series to ensure that the reported monthly consumption data add

up to the reported quarterly consumption data within the period. In Step 1, we start from the

level of consumption in quarter j − 1, Cq(j−1), and define

C̃o3(j−1)+1 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)
(A.4)

C̃o3(j−1)+2 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)
= Cq,o(j−1)

(
Z3(j−1)+2

Zq(j−1)

)

C̃o3(j−1)+3 = Cq,o(j−1)

(
Z3(j−1)+1

Zq(j−1)

)(
Z3(j−1)+2

Z3(j−1)+1

)(
Z3(j−1)+3

Z3(j−1)+2

)
= Cq,o(j−1)

(
Z3(j−1)+3

Zq(j−1)

)
.

Thus, the growth rates of the proxy series are used to generate monthly consumption data for

quarter q. Summing over the quarter yields

C̃q,o(j) =
3∑

m=1

C̃o3(j−1)+m = Cq,o(j−1)

[
Z3(j−1)+1

Zq(j−1)
+
Z3(j−1)+2

Zq(j−1)
+
Z3(j−1)+3

Zq(j−1)

]
= Cq,o(j−1)

Zq(j)

Zq(j−1)
. (A.5)



Schorfheide, Song, and Yaron (2016): Online Appendix A-4

In Step 2, we adjust the monthly estimates C̃o3(j−1)+m by the factor Cq,o(j)/C̃
q,o
(j) , which leads to

Co3(j−1)+1 = C̃o3(j−1)+1

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+1

Zq(j)
(A.6)

Co3(j−1)+2 = C̃o3(j−1)+2

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+2

Zq(j)

Co3(j−1)+3 = C̃o3(j−1)+3

(Cq,o(j)

C̃q,o(j)

)
= Cq,o(j)

Z3(j−1)+3

Zq(j)

and guarantees that

Cq,o(j) =

3∑
m=1

Co3(j−1)+m.

We now define the growth rates goc,t = logCot − logCot−1 and gc,t = logCt − logCt−1. By taking

logarithmic transformations of (A.3) and (A.6) and combining the resulting equations, we can

deduce that the growth rates for the second and third month of quarter q are given by

goc,3(j−1)+2 = gc,3(j−1)+2 + ε3(j−1)+2 − ε3(j−1)+1 (A.7)

goc,3(j−1)+3 = gc,3(j−1)+3 + ε3(j−1)+3 − ε3(j−1)+2.

The derivation of the growth rate between the third month of quarter j − 1 and the first month of

quarter j is a bit more cumbersome. Using (A.6), we can write the growth rate as

goc,3(j−1)+1 = logCq,o(j) + logZ3(j−1)+1 − logZq(j) (A.8)

− logCq,o(j−1) − logZ3(j−2)+3 + logZq(j−1).

To simplify (A.8) further, we are using a log-linear approximation. Suppose we log-linearize an

equation of the form

Xq
(j) = X3(j−1)+1 +X3(j−1)+2 +X3(j−1)+3

around Xq
∗ and X∗ = Xq

∗/3, using lowercase variables to denote percentage deviations from the

log-linearization point. Then,

xq(j) ≈
1

3
(x3(j−1)+1 + x3(j−1)+2 + x3(j−1)+3).

Using (A.3) and the definition of quarterly variables as sums of monthly variables, we can apply

the log-linearization as follows:

logCq,o(j) − logZq(j) = log(Cq∗/Z
q
∗) + εq(j) −

1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
. (A.9)



Schorfheide, Song, and Yaron (2016): Online Appendix A-5

Substituting (A.9) into (A.8) yields

goc,3(j−1)+1 = gc,3(j−1)+1 + ε3(j−1)+1 − ε3(j−2)+3 + εq(j) − ε
q
(j−1) (A.10)

−1

3

(
ε3(j−1)+1 + ε3(j−1)+2 + ε3(j−1)+3

)
+

1

3

(
ε3(j−2)+1 + ε3(j−2)+2 + ε3(j−2)+3

)
.

An “annual” version of this equation appears in the main text.
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C Solving the Long-Run Risks Model

This section provides solutions for the consumption and dividend claims for the endowment process:

gc,t+1 = µc + xt + σc,tηc,t+1 (A.11)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

xt+1 = ρxt + σx,tηx,t+1

xλ,t+1 = ρλxλ,t + σληλ,t+1

σ2c,t+1 = (1− νc)(ϕcσ̄)2 + νcσ
2
c,t + σwcwc,t+1

σ2x,t+1 = (1− νx)(ϕxσ̄)2 + νxσ
2
x,t + σwxwx,t+1

σ2d,t+1 = (1− νd)(ϕdσ̄)2 + νdσ
2
d,t + σwdwd,t+1

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

The Euler equation for the economy is

Et [exp (mt+1 + ri,t+1)] = 1, i ∈ {c,m} , (A.12)

where

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gc,t+1 + (θ − 1)rc,t+1 (A.13)

is the log of the real stochastic discount factor (SDF), rc,t+1 is the log return on the consumption

claim, and rm,t+1 is the log market return. (A.13) is derived in Section C.6 below. Returns are

given by the approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0 + κ1pct+1 − pct + gc,t+1 (A.14)

rm,t+1 = κ0,m + κ1,mpdt+1 − pdt + gd,t+1.

The risk premium on any asset is

Et(ri,t+1 − rf,t) +
1

2
V art(ri,t+1) = −Covt(mt+1, ri,t+1). (A.15)

In Section C.1 we solve for the law of motion for the return on the consumption claim, rc,t+1. In

Section C.2 we solve for the law of motion for the market return, rm,t+1. The risk-free rate is

derived in Section C.3. All three solutions depend on linearization parameters that are derived in

Section C.4. Finally, as mentioned above, the SDF is derived in Section C.6.
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C.1 Consumption Claim

In order to derive the dynamics of asset prices, we rely on approximate analytical solutions. Specif-

ically, we conjecture that the price-consumption ratio follows

pct = A0 +A1xt +A1,λxλ,t +A2,cσ
2
c,t +A2,xσ

2
x,t (A.16)

and solve for A’s using (A.11), (A.12), (A.14), and (A.16).

From (A.11), (A.14), and (A.16)

rc,t+1 =
{
κ0 +A0(κ1 − 1) + µc + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(A.17)

+
1

ψ
xt +A1,λ(κ1ρλ − 1)xλ,t +A2,x(κ1νx − 1)σ2x,t +A2,c(κ1νc − 1)σ2c,t

+ σc,tηc,t+1 + κ1A1σx,tηx,t+1 + κ1A1,λσληλ,t+1 + κ1A2,xσwxwx,t+1 + κ1A2,cσwcwc,t+1

and from (A.11), (A.12), (A.14), and (A.16)

mt+1 = (θ − 1)
{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
(A.18)

− γµ+ θ log δ − 1

ψ
xt + ρλxλ,t + (θ − 1)A2,x(κ1νx − 1)σ2x,t + (θ − 1)A2,c(κ1νc − 1)σ2c,t

− γσc,tηc,t+1 + (θ − 1)κ1A1σx,tηx,t+1 + {(θ − 1)κ1A1,λ + θ}σληλ,t+1

+ (θ − 1)κ1A2,xσwxwx,t+1 + (θ − 1)κ1A2,cσwcwc,t+1.

The solutions for A’s that describe the dynamics of the price-consumption ratio are determined

from

Et [mt+1 + rc,t+1] +
1

2
V art [mt+1 + rc,t+1] = 0

and they are

A1 =
1− 1

ψ

1− κ1ρ
, A1,λ =

ρλ
1− κ1ρλ

, A2,x =
θ
2(κ1A1)

2

1− κ1νx
, A2,c =

θ
2(1− 1

ψ )2

1− κ1νc
(A.19)

and A0 =
A1

0+A
2
0

1−κ1
, where

A1
0 = log δ + κ0 + µ(1− 1

ψ
) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

A2
0 =

θ

2

{
(κ1A1,λ + 1)2σ2λ + (κ1A2,xσwx)2 + (κ1A2,cσwc)

2
}
.

For convenience, (A.18) can be rewritten as

mt+1 − Et[mt+1] = λcσc,tηc,t+1 + λxσx,tηx,t+1 + λλσληλ,t+1 + λwxσwxwx,t+1 + λwcσwcwc,t+1.
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Note that λs represent the market price of risk for each source of risk. To be specific,

λc = −γ, λx = −(γ − 1

ψ
)

κ1
1− κ1ρ

, λλ =
θ − κ1ρλ
1− κ1ρλ

, (A.20)

λwx = −
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νx)
(

κ1
1− κ1ρ

)2, λwc = −
θ(γ − 1

ψ )(1− 1
ψ )κ1

2(1− κ1νc)
.

Similarly, rewrite (A.17) as

rc,t+1 − Et[rc,t+1] = −βc,cσc,tηc,t+1 − βc,xσx,tηx,t+1 − βc,λσληλ,t+1 − βc,wxσwxwx,t+1 − βc,wcσwcwc,t+1

where

βc,c = −1, βc,x = −κ1A1, βc,λ = −κ1A1,λ, βc,wx = −κ1A2,x, βc,wc = −κ1A2,c. (A.21)

The risk premium for the consumption claim is

Et(rc,t+1 − rf,t) +
1

2
V art(rc,t+1) = −Covt(mt+1, rc,t+1) (A.22)

= βc,xλxσ
2
x,t + βc,cλcσ

2
c,t + βc,λλλσ

2
λ + βc,wxλwxσ

2
wx + βc,wcλwcσ

2
wc .

C.2 Market Return

Similarly, using the conjectured solution to the price-dividend ratio

pdt = A0,m +A1,mxt +A1,λ,mxλ,t +A2,x,mσ
2
x,t +A2,c,mσ

2
c,t +A2,d,mσ

2
d,t (A.23)

the market return can be expressed as

rm,t+1 = κ0,m +A0,m(κ1,m − 1) + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 (A.24)

+ κ1,mA2,c,m(1− νc)(ϕcσ̄)2 + κ1,mA2,d,m(1− νd)(ϕdσ̄)2 + {φ+A1,m(κ1,mρ− 1)}xt

+ (κ1,mρλ − 1)A1,λ,mxλ,t +A2,x,m(κ1,mνx − 1)σ2x,t +A2,c,m(κ1,mνc − 1)σ2c,t

+ A2,d,m(κ1,mνd − 1)σ2d,t + πσc,tηc,t+1 + σd,tηd,t+1 + κ1,mA1,mσx,tηx,t+1 + κ1,mA1,λ,mσληλ,t+1

+ κ1,mA2,x,mσwxwx,t+1 + κ1,mA2,c,mσwcwc,t+1 + κ1,mA2,d,mσwdwd,t+1.
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Given the solution for A’s, Am’s can be derived as follows:

A0,m =
A1st

0,m +A2nd
0,m

1− κ1,m
(A.25)

A1,m =
φ− 1

ψ

1− κ1,mρ

A1,λ,m =
ρλ

1− κ1,mρλ

A2,x,m =
1
2 {(θ − 1)κ1A1 + κ1,mA1,m}2 + (θ − 1)(κ1νx − 1)A2,x

1− κ1,mνx

A2,c,m =
1
2(π − γ)2 + (θ − 1)(κ1νc − 1)A2,c

1− κ1,mνc

A2,d,m =
1
2

1− κ1,mνd
,

where

A1st
0,m = θ log δ + (θ − 1)

{
κ0 +A0(κ1 − 1) + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
− γµ+ κ0,m + µd + κ1,mA2,x,m(1− νx)(ϕxσ̄)2 + κ1,mA2,c,m(1− νc)(ϕcσ̄)2

+ κ1,mA2,d,m(1− νd)(ϕdσ̄)2

A2nd
0,m =

1

2

(
κ1,mA2,x,mσwx + (θ − 1)κ1A2,xσwx

)2

+
1

2

(
κ1,mA2,c,mσwc + (θ − 1)κ1A2,cσwc

)2

+
1

2

(
κ1,mA2,d,mσwd

)2

+
1

2

(
κ1,mA1,λ,mσλ + (θ − 1)κ1A1,λσλ + θσλ

)2

.

Rewrite market-return equation (A.24) as

rm,t+1 − Et[rm,t+1] = −βm,cσc,tηc,t+1 − βm,xσx,tηx,t+1 − βm,λσληλ,t+1 − βm,wxσwxwx,t+1 − βm,wcσwcwc,t+1,

where

βm,c = −π, βm,x = −κ1,mA1,m, βm,λ = −κ1,mA1,λ,m, (A.26)

βm,wx = −κ1,mA2,x,m, βm,wc = −κ1,mA2,c,m.

The risk premium for the dividend claim is

Et(rm,t+1 − rf,t) +
1

2
V art(rm,t+1) = −Covt(mt+1, rm,t+1) (A.27)

= βm,xλxσ
2
x,t + βm,cλcσ

2
c,t + βm,λλλσ

2
λ + βm,wxλwxσ

2
wx + βm,wcλwcσ

2
wc .
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C.3 Risk-Free Rate

The model-driven equation for the risk-free rate is

rf,t = −Et [mt+1]−
1

2
V art [mt+1] (A.28)

= −θ log δ − Et [xλ,t+1] +
θ

ψ
Et [gc,t+1] + (1− θ)Et [rc,t+1]−

1

2
V art [mt+1] .

Subtract (1− θ)rf,t from both sides and divide by θ,

rf,t = − log δ − 1

θ
Et [xλ,t+1] +

1

ψ
Et [gc,t+1] +

(1− θ)
θ

Et [rc,t+1 − rf,t]−
1

2θ
V art [mt+1] (A.29)

From (A.11) and (A.18)

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t,

where

B1 =
1

ψ
, B1,λ = −ρλ, B2,x = −

(1− 1
ψ )(γ − 1

ψ )κ21

2(1− κ1ρ)2
, B2,c = −1

2
(
γ − 1

ψ
+ γ) (A.30)

and

B0 = −θ log δ − (θ − 1)
{
κ0 + (κ1 − 1)A0 + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
+ γµ− 1

2
{(θ − 1)κ1A2,xσwx}

2 − 1

2
{(θ − 1)κ1A2,cσwc}

2 − 1

2

{
((θ − 1)κ1A1,λ + θ)2σ2λ

}
.

C.4 Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the following system

of equations:

p̄di = A0,i(p̄di) +
∑

j∈{c,x,d}

A2,i,j(p̄di)× (ϕj σ̄)2

κ1,i =
exp(p̄di)

1 + exp(p̄di)

κ0,i = log(1 + exp(p̄di))− κ1,ip̄di.

The solution is determined numerically by iteration until reaching a fixed point of p̄di.
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C.5 Zero-Coupon Real Bonds

Let pn,t be the log t-price of an n-period zero-coupon real bond. Conjecture that pn,t is a linear

function of state variables

pn,t = Cn,0 + Cn,1xt + Cn,1λxλ,t + Cn,2xσ
2
x,t + Cn,2cσ

2
c,t. (A.31)

The pricing equation implies

pn,t = Et [pn−1,t+1 +mt+1] +
1

2
V art [pn−1,t+1 +mt+1] . (A.32)

The coefficients of the pricing equation are expressed recursively as

Cn,1 = Cn−1,1ρ−
1

ψ
(A.33)

Cn,1λ = Cn−1,1λρλ + ρλ

Cn,2x = Cn−1,2xνx + (θ − 1)A2,x(κ1νx − 1) +
1

2
{Cn−1,1 + (θ − 1)κ1A1}2

Cn,2c = Cn−1,2cνc + (θ − 1)A2,c(κ1νc − 1) +
1

2
γ2

Cn,0 = θ log δ + (θ − 1)
{
κ0 + (κ1 − 1)A0 + κ1A2,x(1− νx)(ϕxσ̄)2 + κ1A2,c(1− νc)(ϕcσ̄)2

}
−γµ+ Cn−1,0 + Cn−1,2x(1− νx)(ϕxσ̄)2 + Cn−1,2c(1− νc)(ϕcσ̄)2

+
1

2

(
Cn−1,1λ + {(θ − 1)κ1A1,λ + θ}

)2

σ2λ +
1

2

(
(θ − 1)κ1A2,x + Cn−1,2x

)2

σ2wx

+
1

2

(
(θ − 1)κ1A2,c + Cn−1,2c

)2

σ2wc

with initial conditions that C0,1 = C0,1λ = C0,2x = C0,2c = C0,0 = 0. However, in order to develop

economic intuition, it is useful to express them in a non-recursive fashion:

Cn,1 = − 1

ψ

(1− ρn)

(1− ρ)
, n ≥ 1

Cn,1λ = ρλ
(1− ρnλ)

(1− ρλ)
, n ≥ 1

Cn,2x =

(
(θ − 1)A2,x(κ1νx − 1) +

1

2

{
− 1

ψ

(1− ρn−1)
(1− ρ)

+ (θ − 1)κ1A1

}2)
(1− νnx )

(1− νx)
, n ≥ 2

Cn,2c =

(
(θ − 1)A2,c(κ1νc − 1) +

1

2
γ2
)

(1− νnc )

(1− νc)
, n ≥ 1.

Define return on an n-period zero-coupon bond as

rn,t+1 = pn−1,t+1 − pn,t.
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The risk premium for the bond return is

Et(rn,t+1 − rf,t) +
1

2
V art(rn,t+1) (A.34)

= −covt(mt+1, rn,t+1)

= −(θ − 1)κ1A2,cCn−1,2cσ
2
wc − (θ − 1)κ1A2,xCn−1,2xσ

2
wx − {(θ − 1)κ1A1,λ + θ}Cn−1,1λσ2λ

−(θ − 1)κ1A1Cn−1,1σ
2
x,t.

C.6 Deriving the Intertemporal Marginal Rate of Substitution (MRS)

We consider a representative-agent endowment economy modified to allow for time-preference

shocks. The representative agent has Epstein and Zin (1989) recursive preferences and maximizes

her lifetime utility

Vt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

subject to budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion, θ =
1−γ

1−1/ψ , and ψ is intertemporal elasticity of substitution. The ratio λt+1

λt
determines how agents trade

off current versus future utility and is referred to as the time-preference shock (see Albuquerque,

Eichenbaum, Luo, and Rebelo (2016)).

First conjecture a solution for Vt = φtWt. The value function is homogenous of degree 1 in wealth;

it can now be written as

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et[(φt+1Wt+1)

1−γ ]
) 1
θ

] θ
1−γ

(A.35)

subject to

Wt+1 = (Wt − Ct)Rc,t+1.

Epstein and Zin (1989) show that the above dynamic program has a maximum.

Using the dynamics of the wealth equation, we substitute Wt+1 into (A.35) to derive

φtWt = max
Ct

[
(1− δ)λtC

1−γ
θ

t + δ(Wt − Ct)
1−γ
θ
(
Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ

] θ
1−γ

. (A.36)

At the optimum, Ct = btWt, where bt is the consumption-wealth ratio. Using (A.36) and shifting

the exponent on the braces to the left-hand side, and dividing by Wt, yields

φ
1−γ
θ

t = (1− δ)λt
(
Ct
Wt

) 1−γ
θ

+ δ

(
1− Ct

Wt

) 1−γ
θ (

Et[(φt+1Rc,t+1)
1−γ ]

) 1
θ (A.37)
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or simply

φ
1−γ
θ

t = (1− δ)λtb
1−γ
θ

t + δ(1− bt)
1−γ
θ
(
Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ . (A.38)

The first-order condition with respect to the consumption choice yields

(1− δ)λtb
1−γ
θ
−1

t = δ(1− bt)
1−γ
θ
−1(Et[(φt+1Rc,t+1)

1−γ ]
) 1
θ . (A.39)

Plugging (A.39) into (A.38) yields

φt = (1− δ)
θ

1−γ λ
θ

1−γ
t

(
Ct
Wt

) 1−γ−θ
1−γ

= (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t

(
Ct
Wt

) 1
1−ψ

. (A.40)

The lifetime value function is φtWt, with the solution to φt stated above. This expression for φt is

important: It states that the maximized lifetime utility is determined by the consumption-wealth

ratio.

(A.39) can be rewritten as

(1− δ)θλθt
(

bt
1− bt

)− θ
ψ

= δθEt[(φt+1Rc,t+1)
1−γ ]. (A.41)

Consider the term φt+1Rc,t+1:

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
Ct+1

Wt+1

) 1
1−ψ

Rc,t+1. (A.42)

After substituting the wealth constraint, Ct+1

Wt+1
= Ct+1/Ct

Wt/Ct−1 ·
1

Rc,t+1
= Gt+1

Rc,t+1
· bt
1−bt , into the above

expression, it follows that

φt+1Rc,t+1 = (1− δ)
ψ
ψ−1λ

ψ
ψ−1

t+1

(
bt

1− bt

) 1
1−ψ
(
Gt+1

Rc,t+1

) 1
1−ψ

Rc,t+1. (A.43)

After some intermediate tedious manipulations,

δθ(φt+1Rc,t+1)
1−γ = δθ(1− δ)θλθt+1

(
bt

1− bt

)− θ
ψ

G
− θ
ψ

t+1R
θ
c,t+1. (A.44)

Taking expectations and substituting the last expression into (A.41) yields

δθEt[
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1Rc,t+1] = 1. (A.45)

From here we see that the MRS in terms of observables is

Mt+1 = δθ
(
λt+1

λt

)θ
G
− θ
ψ

t+1R
θ−1
c,t+1. (A.46)

The log of MRS is

mt+1 = θ log δ + θxλ,t+1 −
θ

ψ
gt+1 + (θ − 1)rc,t+1, (A.47)

where xλ,t+1 = log(λt+1

λt
).
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D The State-Space Representation of the LRR Model

Below we describe the the state-space representation for the LRR model. The state-space represen-

tation for the cash-flow-only specifications can be obtained by eliminating the asset returns (rm,t+1

and rf,t) from the set of measurement equations.

D.1 Measurement Equations

In order to capture the correlation structure between the measurement errors at monthly frequency,

we assumed in the main text that 12 months of consumption growth data are released at the end

of each year. We will now present the resulting measurement equation. To simplify the exposition,

we assume that the monthly consumption data are released at the end of the quarter (rather than

at the end of the year). In the main text, the measurement equation is written as

yt+1 = At+1

(
D + Zst+1 + Zvsvt+1(ht+1, ht) + Σuut+1

)
, ut+1 ∼ N(0, I). (A.48)

The selection matrix At+1 accounts for the deterministic changes in the vector of observables, yt+1.

Recall that monthly observations are available only starting in 1959:M1. For the sake of exposition,

suppose prior to 1959:M1 consumption growth was available at quarterly frequency. We further

assume that dividend growth data are always available in the form of time-aggregated quarterly

data. Then (we are omitting some of the o superscripts for observed series that we used in the

main text):

1. Prior to 1959:M1:

(a) If t+ 1 is the last month of the quarter:

yt+1 =


gqc,t+1

gqd,t+1

rm,t+1

rf,t

 , At+1 =


1
3

2
3 1 2

3
1
3 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .

(b) If t+ 1 is not the last month of the quarter:

yt+1 =


gqd,t+1

rm,t+1

rf,t

 , At+1 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .
2. From 1959:M1 to present:
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(a) If t+ 1 is the last month of the quarter:

yt+1 =



gc,t+1

gc,t

gc,t−1

gqd,t+1

rm,t+1

rf,t


, At+1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(b) If t+ 1 is not the last month of the quarter:

yt+1 =


gqd,t+1

rm,t+1

rf,t

 , At+1 =


0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .
The relationship between observations and states (ignoring the measurement errors) is given by

the approximate analytical solution of the LRR model described in Section C:

gc,t+1 = µc + xt + σc,tηc,t+1 (A.49)

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

rm,t+1 = {κ0,m + (κ1,m − 1)A0,m + µd}

+ (κ1,mA1,m)xt+1 + (φ−A1,m)xt + (κ1,mA1,λ,m)xλ,t+1 −A1,λ,mxλ,t + πσc,tηc,t+1 + σd,tηd,t+1

+ (κ1,mA2,x,m)σ2x,t+1 −A2,x,mσ
2
x,t + (κ1,mA2,c,m)σ2c,t+1 −A2,c,mσ

2
c,t + (κ1,mA2,d,m)σ2d,t+1 −A2,d,mσ

2
d,t

rf,t = B0 +B1xt +B1,λxλ,t +B2,xσ
2
x,t +B2,cσ

2
c,t

ηi,t+1, ηλ,t+1, wi,t+1 ∼ N(0, 1), i ∈ {c, x, d}.

In order to reproduce (A.49) and the measurement-error structure described in Sections 2.1 and 2.2,

we define the vectors of states st+1 and svt+1 as
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st+1 =



xt+1

xt

xt−1

xt−2

xt−3

xt−4

σc,tηc,t+1

σc,t−1ηc,t

σc,t−2ηc,t−1

σc,t−3ηc,t−2

σc,t−4ηc,t−3

σεεt+1

σεεt

σεεt−1

σεεt−2

σεεt−3

σεεt−4

σqε ε
q
t+1

σqε ε
q
t

σqε ε
q
t−1

σqε ε
q
t−2

σd,tηd,t+1

σd,t−1ηd,t

σd,t−2ηd,t−1

σd,t−3ηd,t−2

σd,t−4ηd,t−3

xλ,t+1

xλ,t



, svt+1 =



σ2
x,t+1

σ2
x,t

σ2
c,t+1

σ2
c,t

σ2
d,t+1

σ2
d,t


. (A.50)

It can be verified that the coefficient matrices D, Z, Zv, and Σe are given by
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Z
=

               0
1

0
0

0
0

1
0

0
0

0
1

−
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

1
0

0
0

0
1

0
0

0
0

1
−

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
1

0
0

0
0

1
0

0
−

1 3
−

1 3
2 3
−

2 3
1 3

1 3
1

0
0
−

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
−

1
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1
−

1
0

0
0

0
0

0
0

0
0

0
0

0
φ 3

2
φ 3

φ
2
φ 3

φ 3
π 3

2
π 3

π
2
π 3

π 3
0

0
0

0
0

0
0

0
0

0
1 3

2 3
1

2 3
1 3

0
0

µ
r,
1

µ
r,
2

0
0

0
0

µ
r,
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

µ
r,
4

0
0

0
0

µ
r,
5

µ
r,
6

0
B

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
B

1
,λ

0

               

Z
v

=

               0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

µ
r,
7

µ
r,
8

µ
r,
9

µ
r,
1
0

µ
r,
1
1

µ
r,
1
2

0
B

2
,x

0
B

2
,c

0
0

               ,
D

=

               µ µ µ µ µ 3µ
d

µ
r,
0

B
0

               ,
Σ
u

=

               0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
σ
a d
,ε

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
σ
f
,ε

               .
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The coefficients µr,0 to µr,12 are obtained from the solution of the LRR model:

µr,0

µr,1

µr,2

µr,3

µr,4

µr,5

µr,6


=



κ0,m +A0,m(κ1,m − 1) + µd

κ1,mA1,m

φ−A1,m

π

1

κ1,mA1,λ,m

−A1,λ,m


,



µr,7

µr,8

µr,9

µr,10

µr,11

µr,12


=



κ1,mA2,x,m

−A2,x,m

κ1,mA2,c,m

−A2,c,m

κ1,mA2,d,m

−A2,d,m


.

D.2 State Transition Equations

Using the definition of st+1 in (A.50), we write the state-transition equation as

st+1 = Φst + vt+1(ht). (A.51)

Conditional on the volatilities ht, this equation reproduces the law of motion of the two persistent

conditional mean processes

xt+1 = ρxt + σx,tηx,t+1 (A.52)

xλ,t+1 = ρλxλ,t + σληλ,t+1

and it contains some trivial relationships among the measurement-error states. The matrices Φ

and vt+1(ht) are defined as

Φ =



ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρλ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


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and

vt+1(ht) =



σx,tηx,t+1

0

0

0

0

0

σc,tηc,t+1

0

0

0

0

σεεt+1

0

0

0

0

0

σqε ε
q
t+1

0

0

0

σd,tηd,t+1

0

0

0

0

σληλ,t+1

0



.

The law of motion of the three persistent conditional log volatility processes is given by

ht+1 = Ψht + Σhwt+1, (A.53)

where

ht+1 =


hx,t+1

hc,t+1

hd,t+1

 , Ψ =


ρhx 0 0

0 ρhc 0

0 0 ρhd



Σh =


σhx

√
1− ρ2hx 0 0

0 σhc

√
1− ρ2hc 0

0 0 σhd

√
1− ρ2hd

 , wt+1 =


wx,t+1

wc,t+1

wd,t+1

 .
We express

σx,t = ϕxσ exp(hx,t), σc,t = ϕcσ exp(hc,t), σd,t = ϕdσ exp(hd,t),

which delivers the dependence on ht in the above definition of vt+1(·). ϕc = 1 is normalized.
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Table A-1: Prior Distributions

Consumption Dividend

Distr. 5% 50% 95% Distr. 5% 50% 95%

µc N -.007 .0016 .0100 µc N -.007 .0016 .0100

ρ U -.90 0 .90 φ U .50 5.0 9.50

ϕx U .05 .50 .95 ϕd U .50 5.0 9.50

σ IG .0008 .0019 .0061 π U .50 5.0 9.50

ρhc NT .27 .80 .999 ρhd NT .27 .80 .999

σ2hc IG .0011 .0060 .0283 σ2hd IG .015 .0445 .208

σε IG .0008 .0019 .0061
σad,ε

σ(ga,od )
U .05 .50 .95

σaε IG .0007 .0029 .0386

Notes: N , NT , G, IG, and U denote normal, truncated (outside of the interval (−1, 1)) normal, gamma, inverse

gamma, and uniform distributions, respectively.

E Posterior Inference

The prior distribution used for the empirical analysis in this paper is summarized in Table A-1.

To construct a posterior sampler for the LRR model, we use a particle-filter approximation of the

likelihood function, constructed as follows. Our state-space representation, given the measurement

equation (A.48) and the state transition equations (A.51) and (A.53). Note that conditional on the

volatility is linear conditional on the volatility states (ht+1, ht). The particle filter uses a swarm of

particles {zjt ,W
j
t }Mj=1 to approximate

E[h(zt)|Y1:t] ≈
1

M

M∑
j=1

W j
t h(zjt ). (A.54)

Throughout this section we omit the parameter vector Θ from the conditioning set. Here h(·) is

an integrable function of zt and the approximation ≈, under suitable regularity conditions, can be

stated formally in terms of a strong law of large numbers and a central limit theorem. In general,

zjt would be composed of hjt , h
j
t−1, and sjt . However, given that the state-space model is linear

conditional on (ht, ht−1), we can replace sjt by[
vec
(
E[st|hjt , h

j
t−1, Y1:t]

)
, vech

(
V ar[st|hjt , h

j
t−1, Y1:t

])]′
,

where vech(·) stacks the non-redundant elements of a symmetric matrix. The use of the vector of

conditional means and covariance terms for st in the definition of the particle zjt leads to a vari-
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ance reduction in the particle filter approximation of the likelihood function. The implementation

of the particle filter is based on Algorithm 13 in Herbst and Schorfheide (2015). The particle-

filter approximation of the likelihood function is embedded into a fairly standard random walk

Metropolis-Hastings algorithm (see Chapter 9 of Herbst and Schorfheide (2015)).
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