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Abstract

In a standard model of earnings dynamics, we allow earnings risk to depend in an

arbitrary way on the unobserved level of past permanent earnings. We show the non-

parametric identification of earnings risk, as well as of the densities of the permanent and

transitory components of earnings. Applying our model to the Panel Survey of Income

Dynamics (PSID), we find that earnings dispersion depends in a nontrivial way on the

past level of permanent earnings. During the three recent recessions we analyze, we find

that workers with lower pre-recession permanent earnings have higher earnings risk. One

important implication of our findings is heterogeneous consumption growth rates in a

standard buffer-stock savings model.

Keywords: heteroskedasticity, nonparametric identification, earnings risk
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1 The Background and the Objectives

The earnings process is a key element in models of incomplete markets with heterogeneous

agents as used in labor and macroeconomics.1 The process for (log) earnings has been tradi-

tionally specified as the sum of two random unobserved components: a permanent component

and a transitory component.2 Empirical work has mostly focused on estimating the variances

of these two components since the variances not only determine the equilibrium distributions of

consumption and savings but also have important implications for policy design, see e.g. Daly,

Hryshko, and Manovskii (2014). Despite their importance, there has been little theoretical

work attempting to model the dynamics of these variances.3

In a recent empirical study, Guvenen, Ozkan, and Song (2014) find that earnings risk

depends on the quantile of the five-year average of past earnings. Since averages of past earnings

are commonly used as proxies for the permanent component,4 their findings suggest that the

variance of the permanent shock may depend on past permanent earnings (see also their footnote

15).5 This finding is at odds with standard modeling assumptions in the earnings dynamics

literature.

In this paper, we introduce a model which allows for the variance of the permanent shocks

to change with both time and the level of permanent earnings.6 Specifically, we consider the

following model of earnings dynamics. For individuals i = 1, ..., n, and time periods t = 1, ..., T :

Yit = Uit + Vit (1.1)

Uit = Uit−1 + ηit (1.2)

= Uit−1 + σt (Uit−1)Wit, (1.3)

where Yit is the only observed variable. Equation (1.1) follows the standard permanent-

transitory decomposition, where Yit is the residual of log-earnings on observed covariates, Uit

1See e.g. Deaton (1991), Carroll (1997), Blundell, Pistaferri, and Preston (2008), and Heathcote, Storeslet-

ten, and Violante (2009) among many others.
2The permanent component includes those factors that affect the life-cycle earnings ability of the worker,

while the transitory component includes all other factors that are treated by the worker as accidental, see e.g.

Friedman (1957), Neal and Rosen (2000).
3Notable exceptions include Meghir and Pistaferri (2004), Browning, Alvarez, and Ejrnaes (2010), Jensen

and Shore (2011), and Arellano, Blundell, and Bonhomme (2014).
4See e.g. Flemming (1973), Hall (1979), Hayashi (1982), and Sullivan and Von Wachter (2009).
5We note here that in the econometric specification of Guvenen, Ozkan, and Song (2014) the variances of

the shocks are not allowed to depend on the average of past earnings, see page 652 in their paper.
6We can also allow for the variance of the permanent shocks to depend on observed characteristics, such as

age and education. Then our results will hold conditional on the observables.
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is the permanent component, Vit is the transitory shock, and ηit is the permanent shock. In

our main framework, the permanent shock is further specified as the product of two elements:

the skedastic function σt and the idiosyncratic shock Wit modeled as an independent random

variable, see equation (1.3). Normalizing the variance of Wit to unity, we interpret

σ2
t (Uit−1) = Var(ηit|Uit−1) (1.4)

as the volatility of the permanent shock conditional on the level of past permanent earnings.

Our goal is the nonparametric identification and estimation of the skedastic function σ2
t as well

as of the density functions of Uit, Vit, and Wit. These functions are important ingredients in the

calibration of structural models of life-cycle savings and consumption.7

Using data from the Panel Survey of Income Dynamics (PSID), we provide empirical ev-

idence that the volatility of the permanent shock depends on the unobserved past level of

the permanent earnings. Additionally, we show that this dependence varies with the business

cycle.8 For example, we find that during the three recessions we study, those entering with

higher levels of permanent earnings have lower earnings risk than those with lower levels of

pre-recession permanent earnings. On the other hand, we find that during non-recession years

the variance of earnings varies non-monotonically with past permanent earnings.

Although we do not attempt to model possible underlying causes for our findings, we offer

the following interpretation. In line with Friedman (1957), we interpret permanent earnings as

the value of skills.9 It is known in the literature that the value of skills rises during recessions,

see e.g. Keane and Prasad (1993), Wiczer (2013) and references therein. This translates

into those with higher value of skills having a smaller probability of either being laid off or of

switching jobs voluntarily. For example, Keane and Prasad (1993) finds that the employment

probability for the highly skilled is countercyclical (in the aggregate). Thus, our findings are

in line with the view that those with high permanent earnings have a high value of skills and

so have higher job security during bad times.10

Our conditional heteroskedasticity specification has important implications to models of

7See Low, Meghir, and Pistaferri (2010), Guvenen (2007), Heathcote, Storesletten, and Violante (2009),

and references therein.
8This is in line with papers in the quantitative macroeconomics literature that allow the variances of the

shocks to vary with the business cycle – see Storesletten, Telmer, and Yaron (2004).
9Independently of our work, Lochner and Shin (2014) analyze how earnings dispersion varies with the initial

(time-invariant) skill level. We focus on the value of skills rather than on the initial skill level since the value

of skills contains information about both the supply and the demand for skills. According to Schultz (1961),

Becker (1964), and Nelson (2005), it is the value of skills that is relevant for economic analysis.
10We thank Chris Carroll for this interpretation.
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consumption and savings.11 Using the buffer-stock savings framework of Carroll (1997), our

model implies that consumption growth varies across the levels of permanent earnings. For

example, during recessions (when earnings dispersion is decreasing in the permanent compo-

nent), households with lower levels of pre-recession permanent earnings are expected to reduce

their consumption at higher rates than households with higher pre-recession permanent earn-

ings, even if they have identical ex-ante growth rates of permanent earnings. This feature of

our model complements the implications of the ARCH specification of Meghir and Pistaferri

(2004). Unlike theirs, however, our model allows for the rates of consumption growth to respond

asymmetrically to negative and positive permanent shocks.

Independently of our work and to the best of our knowledge, the only other paper in this

literature that addresses the identification of an earnings model in the presence of heteroskedas-

ticity is the recent working paper of Arellano, Blundell, and Bonhomme (2014).12 Although

similar in spirit, their analysis differs from ours in a few ways. First, Arellano, Blundell, and

Bonhomme (2014) considers a more general quantile-based non-separable model for the dy-

namics of the permanent component. To deal with a general model, their identification requires

more data (at least four periods of data) and stronger identification assumptions, such as com-

pleteness - a non-testable high-level assumption.13 Second, their analysis does not allow for

the transitory component to be serially correlated. Third, their identification does not entail a

constructive closed-form estimator. In contrast, we show that our model is identified without

the completeness assumption and with at least two time periods, we construct closed-form iden-

tification results, and we present extensions that accommodate a moving average process for

the transitory component. Under this tradeoff, our results and the results of Arellano, Blundell,

and Bonhomme (2014) are complementary.

We stress a few important aspects of our paper. First, we treat the permanent component

as an unobserved variable, without proxying for it with the average of past observed earnings

11Papers in macroeconomics have stressed the importance of heteroskedasticity in income. For example,

Caballero (1990) mentions that “in the presence of precautionary motives,” a conditionally heteroskedastic

income will “affect the marginal propensity to consume even when the predisposition to risk does not change

with wealth.” Wang (2006) shows that by allowing the conditional variance of changes in income to depend

on the level of income, the consumption rule obtained is “consistent with empirical regularities such as excess

sensitivity, excess growth, and excess smoothness of consumption.”
12Bonhomme and Robin (2010) show that the distributions of the two income shocks can be nonparametrically

identified when the innovation variances are either known or estimated outside of the model – see Remark 4

in their paper. In their framework, the variances are not modeled to be endogenously affected by the latent

components.
13See Canay, Santos, and Shaikh (2013).
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or with observed instruments for human capital or consumption as it is customary in the labor

earnings dynamics literature, see e.g. Meghir and Pistaferri (2011). Second, we do not impose

any restrictions on the way the variance of earnings depends on both time and the permanent

component. This is different from the specification usually employed in the labor literature.

For example, Meghir and Pistaferri (2004) model the conditional variances of the shocks as

ARCH(1) processes, such that earnings risk is an affine function of the size of past shocks.14

Third, in our specification permanent shocks can have an asymmetric effect on the variance of

earnings. That is, negative and positive shocks that have the same absolute value are allowed

to have different effects on the dispersion of earnings. This type of asymmetry is not possible in

standard earnings dynamics modeling conditional heteroskedasticity via an ARCH specification

– see e.g. footnote 20 in Meghir and Pistaferri (2004). Finally, our model allows for part of

the heterogeneity in earnings dispersion to be predictable. This is in line with the literature on

predictable heterogeneity in life-cycle income, see e.g. Primiceri and van Rens (2009), Guvenen

(2007), Lillard and Weiss (1979), Cuhna and Heckman (2007), and Cuhna, Heckman, and

Navarro (2005). The main difference with our paper is that we use only earnings data and do

not require an instrument such as the education level, consumption choices, or absolute changes

in past earnings.

The rest of the paper is organized as follows. We present our identification results in Section

2. We first assume that Vit is serially independent and that the permanent component is a unit

root process. Since these are not necessarily uncontroversial modeling choices, we extend our

results in two different directions. First, we allow Vit to follow a general nonparametric MA

process in Section 3.2. Second, the permanent component is modeled as a general AR(1) process

in Section 3.3. We also present identification results for the case of conditionally heterogeneous

skewness in Section 3.1. Skewness has been recently shown to be an important property of

the earnings process, see Arellano, Blundell, and Bonhomme (2014) and Guvenen, Ozkan, and

Song (2014). We propose estimators in Section 4.1, discuss their large-sample properties in

Section 4.2, and show a Monte Carlo study in Section 4.3. Finally, we apply our method to

PSID data for the years 1977-1989, 1991, and 2008.15 We show the results of our application

and we discussion implications of our findings to consumption dynamics in Section 5. All proofs

and figures are collected in the appendix.

14Jensen and Shore (2011) specify a Markov model for the dynamics of the conditional variance restricting

both the range and the probability distribution of the conditional variance to match those of past observed

conditional variances.
15We thank Stéphane Bonhomme for sharing with us the data used by Bonhomme and Robin (2010).
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2 Identification

In this section, we show the nonparametric identification of the skedastic function and of the

three densities of interest. For succinct notations, we omit the i subscript hereafter. Identifi-

cation results are sequentially derived and presented, in the order of 1. the density function of

Ut, 2. the density function of Vt, 3. the skedastic function σt, and 4. the density function of

Wt. We introduce the following assumptions on (1.1) and (1.3).

Assumption 1 (Independence). Ut, Vt, Vt+1, and Wt+1 are mutually independent.

This assumption does not require the future permanent shocks to be independent of the

current permanent component. Note that ηt+1 depends on Ut in equation (1.3) by construction.

In this way, Assumption 1 is weaker than the mutual independence assumption usually made in

the deconvolution literature, which would require the permanent shock ηt+1 and the permanent

component Ut to be independent.

Assumption 2 (Moments). For all t, (i) E[Wt] = 0, (ii) E[W 2
t ] = 1, and (iii) E[Vt] = 0.

Part (i) of this assumption defines the permanent earnings dynamics as a Martingale process.

Given σt > 0 for all t and Assumption 1, Assumption 2 (i) is equivalent to the traditional zero-

mean assumption on the permanent shock usually made in the earnings dynamics literature,

see e.g. Meghir and Pistaferri (2004). Part (ii) is a scale normalization, defining σ2
t as the

conditional volatility function. Finally, part (iii) normalizes the location of the distribution

of the transitory earnings to zero for simplicity. This assumption can be relaxed to allow the

mean of the transitory shock to be time-varying.

Assumption 3 (Regularity). (i) The marginal characteristic functions of Ut and Vt do not

vanish on the real line. (ii) The marginal characteristic functions of Ut and Vt are absolutely

integrable. (iii) The marginal distributions of Ut, Vt and Wt are absolutely continuous.

Part (i) of this assumption is usually made in the deconvolution literature (e.g. Bonhomme

and Robin , 2010).16 Part (ii) is a sufficient condition for applying Fourier transform and

inversion. Part (iii) allows the marginal distributions of the shocks to be represented by their

respective probability density functions.

Lemma 1 (Distribution of the Permanent Earnings). Suppose that Assumptions 1, 2 and 3 are

satisfied for the model described by (1.1) and (1.3). Then, for each u ∈supp(Ut), the marginal

16Evdokimov and White (2012) introduce alternative weak assumptions.
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distribution of Ut is identified and given by the following formula:

fUt(u) =
1

2π

∫
e−isuφUt (s) ds, where φUt (s) = exp

{∫ s

0

iE
[
Yt+1 · eis

′Yt
]

E [eis′Yt ]
ds′

}
.

Remark 1. Lemma 1 shows that the marginal density of the permanent earnings Ut can be

identified by exactly the same formula as the one that would be obtained under the traditional

mutual independence assumption in a linear model for earnings dynamics with no heteroskedas-

ticity. This is not surprising given the multiplicative specification of ηt and Assumption 1.

Schennach (2012) mentions that the traditional mutual independence assumption is indeed

unnecessary, a particular example of which is Cuhna, Heckman, and Schennach (2010).

Lemma 2 (Distribution of the Transitory Earnings). Suppose that Assumptions 1, 2 and 3 are

satisfied for the model (1.1) and (1.3). Then, for each v ∈supp(Vt), the marginal distribution

of Vt is identified and given by:

fVt(v) =
1

2π

∫
e−isvφVt (s) ds, where φVt (s) =

E
[
eisYt

]
φUt (s)

where the identifying formula for φUt is given in Lemma 1.

Remark 2. A similar statement to Remark 1 applies to Lemma 2.

Proofs of Lemmas 1 and 2 are given in Sections A.1 and A.2, respectively, in the appendix.

We show next the identification of the skedastic function σt. To this goal, we first show the

following auxiliary lemma.

Lemma 3 (Conditional Moments of Measured Earnings on Permanent Earnings). Suppose

that Assumptions 1, 2 and 3 are satisfied for the model (1.1) and (1.3). If E[|Yt+1|p | Ut] is

uniformly bounded on the support of Ut and E
[
|Yt+1|p · eisUt

]
is absolutely integrable with respect

to s, then the conditional p-th moment of Yt+1 given Ut is identified by the following formula

for each u ∈ supp(Ut).

E
[
Y p
t+1 | Ut = u

]
=

1

2π

1

fUt(u)

∫
e−isuKp (s)φUt (s) ds, where Kp (s) =

E
[
Y p
t+1 · eisYt

]
E [eisYt ]

for p ≥ 1, and the identifying formulas for fUt and φUt are given in Lemma 1.

Remark 3. This auxiliary result provides a closed-form expression for the conditional p-th

moment of observed Yt+1 on unobserved Ut. The analog estimator corresponds to a version of

the Nadaraya-Watson estimator proposed by Schennach (2004), and the closed-form identifying

formula corresponds to a version of Hu and Sasaki (2014).
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For the identification of the skedastic function σt, we use this auxiliary result with p = 2.

The following assumptions are the assumptions made in the statement of Lemma 3 for the case

of p = 2.

Assumption 4 (Regularity). (i) E[V 2
t+1] < ∞. (ii) E[Y 2

t+1 | Ut] is uniformly bounded on the

support of Ut. (iii) E
[
Y 2
t+1 · eisUt

]
is absolutely integrable with respect to s.

Given Assumption 2 (iii), part (i) of the above assumption requires the transitory shock to

have finite variance. Parts (ii) and (iii) are high level regularity assumptions. Given Assumption

3 (ii), a primitive sufficient condition for Assumption 4 (ii) and (iii) is that the residual log-

earnings Yt+1 have bounded support.

Theorem 1 (Skedastic Function). Suppose that Assumptions 1, 2, 3, and 4 are satisfied for

the model (1.1) and (1.3). The skedastic function σt+1 for the permanent earnings shocks is

identified by the following formula for each u ∈ supp(Ut).

σ2
t+1(u) = E

[
Y 2
t+1 | Ut = u

]
+ φ′′Vt+1

(0)− u2

where E
[
Y 2
t+1 | Ut = u

]
is identified by the formula in Lemma 3 with p = 2, i.e.,

E
[
Y 2
t+1 | Ut = u

]
=

1

2π

1

fUt(u)

∫
e−isu

E
[
Y 2
t+1 · eisYt

]
E [eisYt ]

(s)φUt (s) ds,

and the identifying formulas for fUt, φUt and φVt are given in Lemmas 1, 1 and 2, respectively.

A proof of this theorem is given in Section A.4 in the appendix. We identify next the

nonparametric distribution of the normalized permanent earnings shocks Wt.

Assumption 5 (Regularity). (i) The skedastic function σt+1 is strictly monotone. (ii) The

marginal characteristic functions E
[
eisσt+1(Ut)·Wt+1

]
, E
[
eis log σt+1(Ut)

]
, and E

[
eis logWt+1

]
are ab-

solutely integrable with respect to s. (iii) The marginal characteristic function of log σt+1(Ut)

does not vanish on the real line.

Assumption 5 (i) is satisfied by either a strictly increasing or decreasing σt+1. Notice that

this assumption is needed only for the identification of the density function of Wt+1. Also

notice that this assumption is testable in the sense that one first identifies (and estimates) the

skedastic function σt+1, and then one checks whether indeed this function is strictly monotone.

Parts (ii) and (iii) of this assumptions play similar roles to the regularity conditions stated in

Assumption 3 (i) and (ii).
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Corollary 1 (Distribution of the Normalized Permanent Earnings Shock). Suppose that As-

sumptions 1, 2, 3, 4, and 5 are satisfied for the model (1.1) and (1.3). The marginal distribution

of Wt+1 is identified. The marginal density function of Wt+1 is given by the following identifying

formula for each w ∈ supp(Wt+1).

fWt+1(w) =
1

2π

∫
w−(is+1)

∫ ∫
e−is

′eξeξ(is+1)
E
[
eis
′Yt

]
E
[
eis
′(Yt+1−Yt)

]
E[eis

′Yt+1 ]
φUt+1

(s′)

φUt (s
′)
ds′dξ∫ ∫

e−isσ
−1
t+1(e

ζ)eζ(is+1) φUt (s
′)

|σ′t+1(σ
−1
t+1(e

ζ))|ds
′dζ

ds

where the identifying formula for the skedastic function σt+1 is given in Theorem 1.

A proof of this Corollary is given in Section A.5 in the appendix.

In summary, we derived constructive identification results for all parameters of interest:

fUt , fVt , fWt , and σt of the model (1.1) and (1.3). We note here that Arellano, Blundell,

and Bonhomme (2014) do not provide such closed-form identifying formulas, although they

consider a more general model for the dynamics of the permanent component. Further, their

identification results require the completeness assumption, which is a high-level non-testable

assumption. To expand the generality of our framework, we show below that our basic results

also extend to higher-order conditional moments, in particular to the conditional skewness.

3 Extensions to the Baseline Identification Results

3.1 Identifying the Conditional Skewness in Permanent Shocks

For the baseline results, the variance of the permanent shock ηi,t is heteroskedastic as in (1.3).

In this section, we extend our baseline results to allow for heterogeneous conditional skewness

in the permanent shocks. This may be of interest to applied work, see e.g. Arellano, Blundell,

and Bonhomme (2014) and Guvenen, Ozkan, and Song (2014) who show that left-skewness

is an important property of the earnings process.

First, we note that the conclusions of Lemmas 1, 2 and 3 remain to hold for the model (1.1)

and (1.2) even after replacing Assumptions 1 and 2 by the following assumption.17

Assumption 6. (i) (Ut, ηt+1, Vt+1) ⊥⊥ Vt. (ii) ηt+1 ⊥⊥ Vt+1 | Ut. (iii) Vt+1 ⊥⊥ Ut. (iv)

E[ηt+1 | Ut, Vt] = 0. (v) E[Vt+1 | Ut, Vt] = 0

17We introduced Assumptions 1 and 2 in the baseline model only to clarify the roles of σt and Wt using more

primitive assumptions (Assumptions 1 and 2) than Assumption 6.
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Part (i) states that the current permanent component and future shocks are independent of

the current transitory shock. Part (ii) states that the future permanent and transitory shocks

are independent given the current permanent component. Part (iii) states that the future

transitory shock is independent of the current permanent component. Parts (iv) and (v) state

the conditional mean independence of the future shocks as well as their location normalization.

The assumption above may replace Assumptions 1 and 2 as shown by the following proposition.

Proposition 1. Suppose that Assumptions 3 and 6 are satisfied for the model (1.1) and (1.2).

Then, the conclusions of Lemmas 1, 2 and 3 hold.

We now show that the third conditional moment of the permanent earnings shocks ηt+1

given Ut = u is identified in a similar manner to Theorem 1.

Assumption 7 (Regularity). (i) E[|Vt+1|3] <∞. (ii) E[Y 3
t+1 | Ut] is uniformly bounded on the

support of Ut. (iii) E
[
Y p
t+1 · eisUt

]
is absolutely integrable with respect to s for each p ∈ {1, 2, 3}.

Corollary 2 (Conditional Skewness). Suppose that Assumptions 3, 6 and 7 are satisfied for

the model (1.1) and (1.2). In addition, assume ηt+1 ⊥⊥ Vt+1 | Ut. The third conditional moment

of the permanent earnings shocks ηt+1 given Ut = u is identified by the following formula for

each u ∈ supp(Ut).

E
[
η3t+1

∣∣Ut = u
]

= E
[
Y 3
t+1 | Ut = u

]
− iφ′′′Vt+1

(0)− 3uE
[
Y 2
t+1 | Ut = u

]
+ 2u3

where E
[
Y p
t+1 | Ut = u

]
is identified by the formula in Lemma 3, i.e.,

E
[
Y p
t+1 | Ut = u

]
=

1

2π

1

fUt(u)

∫
e−isu

E
[
Y p
t+1 · eisYt

]
E [eisYt ]

(s)φUt (s) ds

for each p ∈ {1, 2, 3}, and the identifying formulas for fUt, φUt and φVt are given in Lemmas

1, 1 and 2, respectively.

Taking the ratio of E
[
η3t+1

∣∣Ut = u
]
, identified in this Corollary, to the 1.5-th power of

E
[
η2t+1

∣∣Ut = u
]
, identified in Theorem 1, we obtain the closed-form identification of the con-

ditional skewness of ηt+1 given Ut = u. Note that the identifying formula for E
[
η2t+1

∣∣Ut = u
]

provided in Theorem 1 remains to hold even after we replace Assumptions 1 and 2 by Assump-

tion 6 – see Proposition 1.

3.2 Extension to Nonparametric MA(q) Transitory Earnings

The arguments developed in the previous sections relied on Assumption 1, which excludes serial

dependence of the transitory earnings Vt. Serial independence may not always be a satisfactory
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assumption. In this section, we extend our results to allow the transitory shock to follow a

nonparametric MA(q) process:

Vt = ν(ηt, ηt−1, · · · , ηt−q)

where {ηt} is a sequence of independent shocks. Under this setting, Assumption 1 no longer

holds, but the following assumption remains consistent.

Assumption 8 (Independence). For any t, the random variables Ut, Vt, Vt+q+1, Wt, and

Wt+1,Wt+2, · · · are mutually independent.

In contrast to Assumption 1, this assumption allows the transitory earnings Vt to be serially

dependent up to order q. Namely, Vt can be arbitrarily correlated with Vt+1, · · · , Vt+q, but we

require that it be independent of Vt+q+1. Under this extended setting, we derive counterparts

to Lemma 1 and Lemma 2, respectively.

Lemma 4 (Distribution of the Permanent Earnings). Suppose that Assumptions 2, 3 and 8

are satisfied for the model (1.1) and (1.3). The marginal distribution of Ut is identified. The

marginal density of Ut is given by the following identifying formula for each u ∈ supp(Ut).

fq,Ut(u) =
1

2π

∫
e−isuφq+1,Ut (s) ds, where φq+1,Ut (s) = exp

{∫ s

0

iE
[
Yt+q+1 · eis

′Yt
]

E [eis′Yt ]
ds′

}
.

Lemma 5 (Distribution of the Transitory Earnings). Suppose that Assumptions 2, 3 and 8

are satisfied for the model (1.1) and (1.3). The marginal distribution of Vt is identified. The

marginal density of Vt is given by the following identifying formula for each v ∈ supp(Vt).

fq,Vt(v) =
1

2π

∫
e−isvφq+1,Vt (s) ds, where φq+1,Vt (s) =

E
[
eisYt

]
φq+1,Ut (s)

and the identifying formula for φq+1,Ut is given in Lemma 4.

Proofs for Lemmas 4 and 5 are given in Sections A.7 and A.8 in the appendix, respectively.

Notice that the identifying formulas presented in Lemma 4 and Lemma 5 are similar to those

presented in Lemma 1 and Lemma 2, respectively, except that the (q + 1)-st time difference of

observed earnings is used instead of just the first difference.

To identify the skedastic function for the extended setup, we make the following additional

assumptions.

Assumption 9 (Regularity). (i) E[V 2
t+q+1] < ∞. (ii) E[Y 2

t+q+1 | Ut] is uniformly bounded on

the support of Ut. (iii) E
[
Y 2
t+q+1 · eisUt

]
is absolutely integrable with respect to s.
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Similar discussions to those followed Assumption 4 are in order, except that higher-order

dynamic counterparts concern us here.

Theorem 2 (The (q + 1)-st Order Skedastic Function). Suppose that Assumptions 2, 3, 8

and 9 are satisfied for the model (1.1) and (1.3). The (q + 1)-st order skedastic function,

Var(Ut+q+1 | Ut = u), for the permanent earnings shocks is given by the following formula for

each u ∈ supp(Ut).

Var(Ut+q+1 | Ut = u) = E
[
Y 2
t+q+1 | Ut = u

]
+ φ′′q+1,Vt+q+1

(0)− (E [Yt+q+1 | Ut = u])2 ,

where the identifying formulas for E [Yt+q+1 | Ut = u] and E
[
Y 2
t+q+1 | Ut = u

]
are given by

E
[
Y p
t+q+1 | Ut = u

]
=

∫
e−isu

E[Y pt+q+1·eisYt ]
E[eisYt ]

(s)φq+1,Ut (s) ds

2πfq,Ut(u)
for each p = 1, 2,

and the identifying formula for φVt+q+1 is given in Lemma 5.

A proof is given in Section A.10 in the appendix. The identified skedastic function Var(Ut+q+1 |
Ut = u) is generally a long-run skedastic function of the (q+ 1)-st order as opposed to the first

order. It can be used to predict how initial permanent earnings can affect the long-run variance

of the permanent earnings. Notice that the identifying formula for σt+1 displayed in Theorem

1 is a special case of the identifying formula shown in Theorem 2 with q = 0. If the skedastic

function σt+1 in the model (1.3) is constant (i.e., permanent earnings shocks are homoskedastic),

then the (q + 1)-st order skedastic function identified in this theorem is also constant.

3.3 Extension to AR(1) Permanent Earnings

The baseline model (1.3) assumes a random-walk process for the permanent component. In the

literature, the permanent component is sometimes modeled by the AR(1) process of the form

Ut+1 = ρ0,t+1 + ρ1Ut + σt+1(Ut) ·Wt+1 (3.1)

Notice that the intercept parameter ρ0,t+1 depends on time t, which effectively allows for

common time effects in the permanent component. However, the AR parameter ρ1 is time-

invariant.18 We show below the identification of the AR parameters (ρ0,t, ρ1), after which we

show the identification of the skedastic function and of the shock density functions. To this

goal, we consider the following set of assumptions.

18The baseline model can be of course considered as a special case based on the restriction (ρ0,t, ρ1) = (0, 1)

for each t.
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Assumption 10 (Independence). (i) Ut ⊥⊥ Vτ for some τ 6= t. (ii) {Uτ}τ<t ⊥Wt.

Assumption 11 (Covariance-Stationary Transitory Earnings). (i) Cov(Vt, Vt+1) = Cov(Vt+1, Vt+2).

(ii) Cov(Vt, Vt+2) = Cov(Vt+1, Vt+3).

Assumption 12 (Non-Degenerate Permanent Shocks). Var(σt+1(Ut) ·Wt+1) > 0.

The independence conditions in Assumption 10 extend the original conditions in Assump-

tion 1. The covariance stationarity in Assumption 11 is trivially satisfied under the serial

independence of the baseline model, but can also be satisfied under serial dependence. The

non-degeneracy of the permanent shocks in Assumption 12 is not a strong restriction. With

these restrictions, we can identify the AR parameters (ρ0,t, ρ1).

Proposition 2. Suppose that Assumptions 2, 10, 11, and 12 are satisfied for the model (1.1)

and (3.1). The inequality Cov(Yt+1, Yt+2) − Cov(Yt, Yt+1) 6= 0 is true, and the AR parameters

ρ0,t and ρ1 are identified by

ρ1 =
Cov(Yt+1, Yt+3)− Cov(Yt, Yt+2)

Cov(Yt+1, Yt+2)− Cov(Yt, Yt+1)
and ρ0,t = E [Yt − ρ1Yt−1] for each t.

A proof of this proposition is given in Section A.11 in the appendix. After ρ0,t+1 and ρ1

are identified, if ρ1 6= 0, then the model (1.1) and (3.1) can be transformed into the repeated-

measurement expression

Ỹt = Ut + Ṽt,

Ỹt+1 = Ut + σ̃t+1(Ut) ·Wt+1 + Ṽt+1, (3.2)

Ỹt+2 = Ut + σ̃t+1(Ut) ·Wt+1 + σ̃t+2(Ut) ·Wt+2 + Ṽt+2,

and so on, where Ỹt+s, σ̃t+s and Ṽt+s are respectively defined by

Ỹt+s :=
Yt+s −

∑s
r=1 ρ

s−r
1 ρ0,t+r

ρs1
, σ̃t+s(u) :=

σt+s(u)

ρs1
, and Ṽt+s :=

Vt+s
ρs1

for each s = 1, 2, 3, · · · . The repeated measurement expression (3.2) for the transformed model

can be represented in terms of the primitive model

Ỹt = Ut + Ṽt (3.3)

Ut+1 = Ut + σ̃t+1(Ut) ·Wt+1 (3.4)

Relative to the baseline model (1.1) and (1.3), the only differences arise in the replacement of

Yt, σt+1 and Vt by Ỹt, σ̃t+1 and Ṽt, respectively. We can now apply our baseline identification
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results to the transformed model (3.3) and (3.4), particularly because the relevant moment and

independence assumptions are maintained after the transformation, i.e., Assumptions 1 and 2

are still valid after replacing Vt+1 by Ṽt+1. Under the regularity conditions in Assumptions 3

and 4, Theorem 1 yields nonparametric identification of σ̃t+1 for the transformed model. The

identification of σ̃t+1 in turn yields identification of the true skedastic function σt+1 = ρ1σ̃t+1.

We state this formally below.

Assumption 13 (Regularity). (i) The marginal characteristic functions of Ut and Ṽt do not

vanish on the real line. (ii) The marginal characteristic functions of Ut and Ṽt are absolutely

integrable. (iii) The marginal distributions of Ut, Ṽt and Wt are absolutely continuous.

Assumption 14 (Regularity). (i) E[V 2
t+1] < ∞. (ii) E[Ỹ 2

t+1 | Ut] is uniformly bounded on the

support of Ut. (iii) E
[
Ỹ 2
t+1 · eisUt

]
is absolutely integrable with respect to s.

Corollary 3 (Skedastic Function). Suppose that Assumptions 1, 2, 11, 12, 13, and 14 are

satisfied for the transformed model (3.3) and (3.4) of (1.1) and (3.1). The transformed skedastic

function σ̃t+1 is given by following formula for each u ∈ supp(Ut).

σ̃2
t+1(u) = E

[
Ỹ 2
t+1 | Ut = u

]
+ φ′′

Ṽt+1
(0)− u2,

where E
[
Ỹ 2
t+1 | Ut = u

]
and φ′′

Ṽt+1
(s) are identified by

E
[
Ỹ 2
t+1 | Ut = u

]
=

1

2π

1

fUt(u)

∫
e−isu

E
[
Ỹ 2
t+1 · eisỸt

]
E
[
eisỸt

] φUt (s) ds and φ′′
Ṽt+1

(s) =
d2

ds2

E
[
eisỸt+1

]
φUt+1 (s)

 ,
respectively. Given σ̃t+1 identified above, the true skedastic function σt+1 is in turn identified

by σt+1 = ρ1σ̃t+1, where ρ1 is identified in Proposition 2 under the stated assumptions.

4 Estimation

4.1 Analog Estimators

All the identification results presented in this paper entail closed-form identifying formulas.

Taking sample counterparts yields closed-form estimators. To simplify the exposition, we focus

on the baseline model, although the results straightforwardly extend to the skewness case, the

case of MA(q) transitory shocks, and AR(1) permanent earnings.

The marginal characteristic functions for the permanent earnings Ut and transitory earnings

Vt are identified in Lemmas 1 and 2, respectively. Their empirical counterparts are respectively:

φ̂Ut (s) = exp

∫ s

0

i
∑n

j=1 Yj,t+1e
is′Yj,t∑n

j=1 e
is′Yj,t

ds′ and φ̂Vt (s) =
1
n

∑n
j=1 e

is′Yj,t

φ̂Ut (s)
.
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Likewise, the sample counterpart estimators of the marginal densities can be constructed as

f̂Ut (u) =
1

2π

∫ hn

−hn
e−isuφ̂Ut (s)φK

(
s

hn

)
ds and f̂Vt (v) =

1

2π

∫ hn

−hn
e−isvφ̂Vt (s)φK

(
s

hn

)
ds

with hn →∞ as n→∞, where φK is the Fourier transform of a compactly supported kernel.

Next, following the closed-form identifying formula for the skedastic function σ2
t provided in

Theorem 1, we propose the following empirical counterpart estimator:

σ̂2
t (u) =

∫ hn
−hn e

−isuK̂ (s) φ̂Ut (s)φK

(
s
hn

)
ds

f̂Ut (u)
+ φ̂′′Vt+1

(0)− u2,

where K̂ (s) =

∑n
j=1 Y

2
j,t+1e

isYj,t∑n
j=1 e

isYj,t
.

The direct estimators for fUt , fVt and σ2
t+1 introduced above are easy to implement in

practice. On the other hand, the direct estimator for fWt+1 may have practical difficulties due

to the presence of the inverse function σ−1t+1. This is due to the fact that estimates based on

Fourier transforms tend to wave and thus the estimated function σ̂t+1 is not likely to exhibit

monotonicity even if the true σt+1 is monotone. For this practical limitation, we develop an

alternative sieve-based estimation of fWt+1 as follows.

By Assumption 1, the marginal density of the observed state Yt+1 can be decomposed into

mixture components as follows.

fYt+1(y) =

∫ ∫
fYt+1|Ut,Wt+1(y | u,w) · fUt(u) · fWt+1(w) dudw

=

∫ ∫
fVt+1(y − u− σt+1(u) · w) · fUt(u) · fWt+1(w) dudw.

We can then write the log likelihood function as

Q
(
fUt , fVt+1 , σt+1, fWt+1

)
= E

[
log

∫ ∫
fVt+1(Yj,t+1 − u− σt+1(u) · w) · fUt(u) · fWt+1(w) dudw

]
.

By the identification results of Section 2, the triple (fUt , fVt+1 , σt+1, fWt+1) of the true structural

functions is the unique maximizer (up to L1 equivalence classes) of this likelihood function.

The sample-counterpart criterion function reads

Q̂n

(
fUt , fVt+1 , σt+1, fWt+1

)
=

1

N

N∑
j=1

log

∫ ∫
fVt+1(Yj,t+1−u−σt+1(u)·w)·fUt(u)·fWt+1(w) dudw.

Since fUt , fVt+1 and σt+1 are easily estimated via the direct estimators provided above, we can

estimate fWt+1 by the following nonparametric maximum likelihood:

f̂Wt+1 = arg max
fWt+1

Q̂n

(
f̂Ut , f̂Vt+1 , σ̂t+1, fWt+1

)
(4.1)

over a sieve space, where f̂Ut , f̂Vt+1 and σ̂t+1 are preliminary estimates.
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4.2 Asymptotics

Large sample properties for f̂Ut and f̂Vt have been extensively studied in the literature – see e.g.

Bonhomme and Robin (2010). Likewise, the large sample properties for the sieve maximum

likelihood estimators like (4.1) are established in the literature – see Chen (2007). On the other

hand, our skedastic function estimator σ̂2
t is new. We derive in this section the upper bound

on the uniform convergence rate for σ̂2
t . Our result is based on the following assumptions.

Assumption 15 (Uniform Convergence of the Skedastic Function Estimator).

(i) Let fUt be a density function such that fUt (u) ≥ mu > 0 for all t and u ∈ U ⊂ R.
(ii) Let gu : R+ → [0, 1] be an integrable function such that for all |s| and t, |φUt (s)| ≤ gu (|s|)
(iii) Let gy : R+ → [0, 1] be an integrable, decreasing function such that |φYt (s)| ≥ gy (|s|) for

|s| large enough and for all t, with lim|s|→∞ gy (|s|) = 0.

(iv) The moment generating functions of Y 2
t , Y

4
t , |Yt|, and

∣∣YtY 2
t+1

∣∣ exist and are differentiable

in a neighborhood of zero

(v) Let var (Vt) be finite and let σ2
t (u) be uniformly bounded for all t and u ∈ U , and let U ⊂ R

be a bounded set.

(vi) Define s2n =
∑n

j=1 var
(
V 2
jt

)
= n·var (V 2

t ). Let E (V 4
t ) and s2n be finite, and let the following

Lindeberg condition hold: for all ε > 0

lim
n→∞

1

s2n

n∑
j=1

E
[(
V 2
jt − var (Vt)

)2
1{|V 2

jt−var(Vt)|>εsn}
]

= 0

Assumption 15 (v) is needed in order to guarantee that E
(
Y p
t+1|Ut = u

)
, p ∈ {1, 2} is

uniformly bounded. Notice that we have

E
(
Y 2
t+1|Ut = u

)
= u2 + σ2

t+1 (u) + var (Vt+1)

Thus, in order for the conditional second moment of Yt+1 to be uniformly bounded, each of the

elements entering on the right hand side need to be uniformly bounded. Assumption 15 (vi)

is needed in order to apply the Lindeberg CLT to the second moment of V 2
t+1. Notice that for

each t,
{
V 2
jt

}n
j=1

are independent random variables. However,
{
V 2
jt

}n
j=1

need not be identically

distributed across t.

Theorem 3. Let Assumption 15 hold, and let K be a kernel function of even order q ≥ 2

with its Fourier transform φK satisfying φK (s) = 0 for |s| > 1. Additionally let εn = lnn√
n

and

hn = Bnδ/2, for B, δ > 0. Then there exist constants c1, c2 > 0 such that:

sup
u

∣∣σ̂2 (u)− σ2 (u)
∣∣ ≤ 1

m2
ug

2
y (hn)

(
h2nOp (εn) + c1

1

hqn

∫ hn

−hn
sqgu (|s|) ds+ c2

∫ ∞
hn

gu (|s|) ds
)

(4.2)
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A proof is provided in Section B.1 in the appendix. The exact rate thus depends on the tail

behaviors of gy and gu functions defined in Assumption 15, which concern smoothness of the

distributions of Y and U . This is a standard result in the deconvolution literature.

4.3 Monte Carlo Simulations

Our Monte Carlo design is as follows. The permanent and transitory components of log earnings

in the initial time period are generated independently by

U1 ∼ N(0, 22) and V1 ∼ N(0, 12)

The permanent component of log earnings in the subsequent time period is generated by

U2 = U1 + σ2(U1) ·W2 W2 ∼ N(0, 12)

where, letting Φ denote the standard normal cdf, the skedastic function σ2 is specified as

σ2(u) = 2

√
Φ
(
−u

2

)
The transitory component of log earnings in the second time period is generated by V2 ∼
N(0, 12). Then the observed log earnings, Y1 and Y2, are produced by the arithmetic sums

Y1 = U1 + V1 and Y2 = U2 + V2

Using the proposed estimators, we estimate fU1 , fU2 , fV1 , fV2 , fW2 and σ2
2 for artificial

panel data (Y1, Y2) of cross-sectional sample size N using different choices of the bandwidth

parameter h. One possible way of choosing the bandwidth optimally in terms of the mean

integrated squared errors (MISE) is the plug-in method of Delaigle and Gijbels (2004). See

also Diggle and Hall (1993) for another practical approach. However, as a rule-of-thumb in the

nonparametric density estimation literature, Hall (1992, 1993) recommends undersmoothing,

which is what we attempt in our implementation.

Figures 1–3 show simulation results based on 500 Monte Carlo iterations with N = 500.

First, focus on Figure 1, which shows results based on the bandwidth parameter h−1 = 1/4. Dis-

plays (a)–(e) illustrate the functions fU1 , fU2 , fV1 , fV2 and σ2
2, respectively. In each display, the

solid curve draws the true function, and dashed curves draw MC quartiles. The inter-quantile

ranges capture the true function well, with the medians in particular following the true function

fairly closely. Similarly, Figures 2 and 3 showing results based on the bandwidth parameters

h−1 = 1/16 and 1/64, respectively, confirm the robust performance of the estimators.
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5 Earnings Dynamics in the U.S.

5.1 Heteroskedastic Permanent Shocks

In this section, we analyze the extent of heteroskedasticity in permanent earnings by applying

our method to data from the PSID for the years 1977-1989. This is the same data as that used

in Bonhomme and Robin (2010). Our data is a balanced panel with a cross-sectional sample

size is N = 659. We first focus on the recession year 1982 since,19 from a policy perspective,

earnings dynamics are of particular interest for years of macroeconomic downturn. We are

interested in the first-order skedastic function

σ2
1982( · ) = Var (U1982 | U1981 = · )

Following Bonhomme and Robin (2010), the measured component of earnings, Yt, is the

OLS residual of log wages on education, age, geographic characteristics, and year dummies.

Following Meghir and Pistaferri (2004) and Bonhomme and Robin (2010), we assume that

the permanent component follows the unit root process (1.3).20 Using the same code as the one

that produced the Monte Carlo results in Section 4.3, we estimate σ2
1982 with the PSID data.

Since we are interested in presenting results that are as unbiased as they reasonably can be

given our relatively small sample size, we use small bandwidths h−1 = 1/8, 1/12 and 1/16.21

Figure 4 (a) shows the estimated first-order skedastic function σ2
1982 = Var (U1982 | U1981 = · ).

The domain of the estimated function is the interval [−0.366, 0.366], with the length of the inter-

val corresponding to two estimated standard deviations of U1981 using h−1 = 1/8.22 The three

displayed curves show the inter-quartile bands of 500 bootstrap resamples.23 For the purpose of

19Table 1 shows the annual GDP growth rates and the unemployment rates in the US for years 1977–1989.

Observe that 1982 is the worst year both in terms of the GDP growth rate, which is −1.9, and the unemployment

rate, which is 10.8%.
20We conducted a test of the null hypothesis that ρ1 = 1 using the entire panel data, and failed to reject it

at the 5% level of significance (p-value = 0.168).
21As mentioned in the Monte Carlo section, the bandwidth could be derived optimally via cross-validation.

We chose not to do this here since our results seem robust across the three different specifications we picked for

the bandwidth. As per the rule of thumb in nonparametric estimation, we chose to undersmooth in order to

reduce the bias, at the expense of a larger standard error.
22The standard deviation of the unobserved permanent component Ut is estimated by the square root of∫ Ū

−Ū u
2 · f̂Ut

(u)du, where we use Ū = 1 and f̂Ut
is the analog estimator given in Section 4.1.

23It is well known that the rates of convergence for nonparametric estimators are rather slow and, hence, that

the resulting confidence bands perform rather poorly in terms of coverage probability. As a result, bootstrapping

is a popular alternative. Bissantz, Dumben, Holzmann and Munk (2007) show the consistency of the bootstrap

assuming an ordinary smooth density and a known error density. The results could be extended to the case of
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comparison, we draw a horizontal gray dotted line to indicate the estimated variance of the tran-

sitory shocks. To argue that our results are not the artifacts of biased nonparametric estimates,

we show three other sets of estimates using even smaller bandwidths h−1 ∈ {1/12, 1/16, 1/20}.
The results are displayed in Figure 4 (b), (c) and (d). The shape patterns remain fairly robust

across alternative values of the tuning parameter.

Observe that all these figures exhibit clearly decreasing conditional variances of the perma-

nent earnings component in the level of the lagged permanent earnings component. Specifically,

individuals with higher negative levels of permanent earnings in 1981 are subject to a larger

permanent earnings volatility in the recession year 1982. The non-constant skedastic function

implies that earnings risk is determined by the level of past permanent earnings. In particu-

lar, this result implies that the traditional assumption of exogenous permanent earnings shock

usually made in the literature using deconvolution techniques is not innocuous.

For robustness, we also obtain estimates for more recent recession years in Figure 5. Since

1982 until today, there are two periods of negative GDP growth rates in the U.S. The first

one is 1991 and the second is the great recession 2008-2009. Graph (a) shows an estimated

first-order skedastic function σ2
1991 for the transition into the recession year 1991. Graph (b)

shows an estimated second-order24 skedastic function Var(U2008 | U2006 = · ) for the transition

into the great recession year 2008. Both figures show that the skedastic function is robustly

decreasing. The volatility is relatively flat for the 2008 recession.25

We have thus far focused on the transition into the recessions for the importance of its

analysis from a policy perspective. Figure 6 shows estimates for the other years covered by

our panel data. The bandwidth h−1 = 1/12 is used to obtain these estimates. Observe that

our estimates of the first-order skedastic functions σ2
t take smaller values during the late 1970s

(Figure 6 (a)–(c)) and late 1980s (Figure 6 (i)–(k)), while they take large values during the

early 1980s around the recession year (Figure 6 (d)–(h)). This pattern parallels the results

obtained by Meghir and Pistaferri (2004).26 On the other hand, based on the assumption of

independent volatilities, Bonhomme and Robin (2010) show graphical evidences of an increase

in kurtosis in the marginal density of the permanent shocks for the same years, but they also

mention that their density shapes are not well estimated to be conclusive.27

unknown error density similar to Delaigle and Meister (2008), but we leave this for future work.
24PSID switches from annual to biennial interviews after 1996, and the first-order skedastic function is thus

impossible to estimate for the great recession period.
25This suggests that a higher proportion of individuals took a bigger hit in terms of risk in 2008 than in the

other past recessions.
26See Table A4 in Meghir and Pistaferri (2004).
27See Table 5 and Section 7.3 in Bonhomme and Robin (2010)
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While the overall scale pattern across years is the same as that of Meghir and Pistaferri

(2004), our results and theirs are not necessarily comparable due to the fundamental differences

in the underlying models. Based on the ARCH(1) model for the evolution of the permanent

earnings component, Meghir and Pistaferri (2004) obtain that a larger shock in squared value

induces a larger volatility. In our analysis, we obtain that it is those with large negative pre-

recession shocks who have a higher volatility in the recession years (Figures 4, 5, and 6 (e)),

while it is those with large positive pre-recessoin shocks who have a higher volatility in 1983

(Figure 6 (f)). We also see that there are years, such as 1984 to 1986, that have non-monotonic

conditional volatilities (Figures 6 (g)–(i)).28

Lastly, we present our nonparametric estimates of the density functions for the permanent

component Ut and the transitory component Vt in Figures 7 and 8, respectively. The solid curves

represent our nonparametric estimates. The dashed curves are Gaussian probability densities

that have the same variances as those of our estimated densities. For the nonparametric esti-

mates, the bandwidth h−1 = 1/6 is used for all years to smooth rugged curves. Note that our

nonparametric density estimates for the permanent component Ut are more peaked than the

corresponding Gaussian densities for all the covered years based on Figure 7, suggesting heavy

tailed distributions for the permanent earnings component. On the other hand, the relation

between our nonparametric estimates for the transitory component Vt and the corresponding

Gaussian densities varies from year to year, see Figure 8.

5.2 Implications for Precautionary Savings

The empirical evidence of heteroskedastic permanent shocks has important implications for

consumption dynamics.29 The link between heteroskedastic permanent shocks and consump-

tion dynamics comes through precautionary savings: when insurance markets are incomplete,

households save against uncertainties about future earnings. In this section, we illustrate im-

plications of our findings for heterogeneous consumption growth in a similar manner to Meghir

and Pistaferri (2004; Section 5.2).

In his work that reconciles Friedman’s permanent income hypothesis and the observed house-

hold behavior of savings against uncertainties, Carroll (1997) shows that the expected con-

sumption growth rate for the population of ex ante identical buffer-stock consumers, who as of

28For this reason, we desist from nonparametrically estimating the density of Wt for these years, the identi-

fication of which requires strict monotonicity of the skedastic function (Assumption 5 (i)).
29The analysis by Meghir and Pistaferri (2004) of the ARCH effects on permanent earnings shocks is, in fact,

motivated by this implication.
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period t have achieved the steady-state gross wealth ratio, ω∗, is approximated by

E [∆ logCi,t+1 | ωi,t = ω∗] ≈ gt+1 + c(ω∗) · σ2
t+1 (5.1)

where gt+1 is the baseline growth factor of the permanent earnings, c(ω∗) is a strictly negative

number, and σ2
t+1 is the conditional variance of the log permanent shocks, i.e., Vart(ηi,t+1)

in our notation from the introduction. Thus, it is the magnitude of this variance σ2
t+1 that

determines the extent to which actual consumption growth deviates from that predicted by

Friedman’s hypothesis in the steady state. Effective prediction of consumption changes would

require knowing not only the expected earnings growth rate but also the structure of permanent

earnings volatilities.

Our empirical result that this variance σ2
t+1 is heterogeneous across the levels of lagged

permanent earnings implies that the extent to which actual consumption growth deviates from

Friedman’s hypothesis varies across the levels of permanent earnings. For instance, as we

show that the skedastic function σ2
t+1 is a decreasing function for the transition years into

recession, the households with lower pre-recession permanent earnings are expected to reduce

their consumption at higher rates than those households with higher pre-recession permanent

earnings even if both of them have the same ex ante growth rate of permanent earnings, gt+1.

More concrete numbers can be produced in the following manner. In view of Figure 4, we

can see that σ2
1982(−0.3) ≈ 0.06 and σ2

1982(+0.3) ≈ 0.02. Thus, (5.1) yields the expected residual

consumption growth rate of gt+1 + c(ω∗) · 0.03 for those households with U1981 = −0.3, and the

expected consumption growth rate of gt+1 + c(ω∗) ·0.01 for those households with U1981 = +0.3.

Given that c(ω∗) is strictly negative, the former subpopulation experiences a lower consumption

growth rate than the latter.

In this way, the skedastic function may be useful for a more detailed study of consumption

dynamics under precautionary savings in incomplete markets. This feature of our results com-

plements the analogous discussion by Meghir and Pistaferri (2004; Section 5.2) on implications

of the ARCH effects of permanent shocks for consumption dynamics. They also conclude a

higher degree of heterogeneity in saving behavior. Our results further add implications for

asymmetry in the heterogeneity across levels of permanent earnings.

6 Summary

In the standard model for earnings dynamics, we introduce conditional heteroskedasticity in

earnings dispersion by specifying the volatility of the permanent shock as a function of the
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level of the past permanent component. Interpreting the permanent component as the value

of human capital, our specification allows for earnings risk to depend in a nonparametric way

on the past unobserved value of human capital. Introducing this type of heteroskedasticity is a

novelty in the empirical literature that employs statistical models to characterize earnings risk.

We show the nonparametric identification for both the heteroskedastic volatility of the per-

manent component and the densities of the permanent and transitory components. We further

present extensions of our identification results to other standard specifications in the earnings

dynamics literature, particularly we allow for the permanent component to be an AR(1) pro-

cess and for the transitory component to be an MA(q) process. We also allow for conditional

skewness in the permanent shock and show that our nonparametric identification results extend

to the measure of the conditional skewness. Our identification strategy is constructive and it

relaxes the mutual independence assumption typically made in the deconvolution literature.

Since our identification is constructive, we propose sample analogue estimators in closed form.

We derive the upper bound on the uniform rate of convergence of the skedastic function, and

we show Monte Carlo simulations for our proposed estimators.

Finally, we apply our methods to the PSID. We find heterogeneous degrees of volatility

in earnings risk. Specifically, during recession years, individuals with lower pre-recession per-

manent earnings are subject to larger earnings risk, suggesting that perhaps those with higher

levels of permanent earnings benefit from job security. In a standard buffer-stock savings model,

our findings imply asymmetric heterogeneity in consumption growth rates.
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A Proofs for Identification

A.1 Proof of Lemma 1

Proof. First, we note that

E
[
σt+1(Ut) ·Wt+1 · eis(Ut+Vt)

]
= E

[
σt+1(Ut) · E[Wt+1 | Ut, Vt] · eis(Ut+Vt)

]
= 0 (A.1)

follows from Assumption 1 and Assumption 2 (i). Second,

E
[
Vt+1 · eis(Ut+Vt)

]
= E

[
E[Vt+1 | Ut, Vt] · eis(Ut+Vt)

]
= 0 (A.2)

similarly follows from Assumption 1 and Assumption 2 (iii). Given these auxiliary equalities,

we obtain

d

ds
ln E

[
eisUt

]
=

iE
[
Ut · eisUt

]
E [eisUt ]

=
iE
[
Ut · eis(Ut+Vt)

]
E [eis(Ut+Vt)]

=
iE
[
(Ut + σt+1(Ut) ·Wt+1 + Vt+1) · eis(Ut+Vt)

]
E [eis(Ut+Vt)]

=
iE
[
Yt+1 · eisYt

]
E [eisYt ]

under Assumption 3 (i), where the second equality follows from Assumption 1, the third equality

follows from a substitution of (A.1) and (A.2), and the fourth equality follows from a substitu-

tion of (1.1) and (1.3). Solving this differential equation with the trivial initial condition yields

the marginal characteristic function of Ut by

E
[
eisUt

]
= exp

{∫ s

0

iE
[
Yt+1 · eis

′Yt
]

E [eis′Yt ]
ds′

}
(A.3)

Under Assumption 3 (ii) and (iii), we can apply the Fourier transform to this identifying formula

to obtain the marginal density of Ut by

fUt(u) =
1

2π

∫
exp

{∫ s

0

iE
[
Yt+1 · eis

′Yt
]

E [eis′Yt ]
ds′ − isu

}
ds (A.4)

for each u ∈ supp(Ut).
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A.2 Proof of Lemma 2

Proof. Under Assumption 3(i), the marginal characteristic function of Vt can be identified by

E
[
eisVt

]
=

E
[
eisYt

]
E [eisUt ]

=
E
[
eisYt

]
exp

{∫ s
0

iE[Yt+1·eis′Yt ]
E[eis′Yt ]

ds′
} (A.5)

where the first equality follows from (1.1) and Assumption 1, and the second equality follows

from a substitution of (A.3) in the proof of Lemma 1. Under Assumption 3 (ii) and (iii), we

can apply the Fourier transform to this identifying formula to obtain the marginal density of

Vt by

fVt(v) =
1

2π

∫
E
[
eisYt

]
exp

{∫ s
0

iE[Yt+1·eis′Yt ]
E[eis′Yt ]

ds′ + isv

}ds
for each v ∈ supp(Vt).

A.3 Proof of Lemma 3

Proof. Since the statement of the lemma requires that E[|Yt+1|p | Ut] is uniformly bounded, we

can write

E
[
Y p
t+1 · eisUt

]
= E

[
(Ut + σt+1(Ut) ·Wt+1 + Vt+1)

p · eisUt
]

=
E
[
(Ut + σt+1(Ut) ·Wt+1 + Vt+1)

p · eis(Ut+Vt)
]

E [eisVt ]
(A.6)

=
E
[
Y p
t+1 · eisYt

]
E [eisVt ]

=
E
[
Y p
t+1 · eisYt

]
E [eisYt ]

exp

{∫ s

0

iE
[
Yt+1 · eis

′Yt
]

E [eis′Yt ]
ds′

}

under Assumption 3 (i), where the first equality follows from (1.1) and (1.3), the second equality

follows from Assumption 1, the third equality follows from (1.1) and (1.3) again, and the last

equality follows from a substitution of (A.5).

We next focus on the following auxiliary function Ψ defined by

Ψ(u) := E[Y p
t+1 | Ut = u] · fUt(u)

By the assumption of the lemma that E[|Yt+1|p | Ut] is uniformly bounded, Ψ is absolutely

integrable. Furthermore, E
[
|Yt+1|p · eisUt

]
is absolutely integrable with respect to s by the

assumption of the lemma. Thus, we take the Fourier inverse of Ψ as follows∫
eisu ·Ψ(u)du =

∫ ∫
eisu · yp · fYt+1Ut(y, u)dydu = E[Y p

t+1 · eisUt ].
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With this equality, the Fourier transform yields the following alternative expression for Ψ.

Ψ(u) =
1

2π

∫
e−isu · E

[
Y p
t+1 · eisUt

]
ds.

Therefore, we identify the conditional moment E[Y p
t+1 | Ut] by the closed form

E
[
Y p
t+1 | Ut = u

]
=

1
2π

∫
e−isu · E

[
Y p
t+1 · eisUt

]
ds

fUt(u)

=

∫ E[Y pt+1·eisYt ]
E[eisYt ]

exp

{∫ s
0

iE
[
Yt+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isu

}
ds

∫
exp

{∫ s
0

iE[Yt+1·eis′Yt ]
E[eis′Yt ]

ds′ − isu
}
ds

(A.7)

for each u ∈ supp(Ut), where the second equality follows from a substitution of (A.4) and

(A.6).

A.4 Proof of Theorem 1

Proof. Due to Assumption 4 (i), we can identify the unconditional variance of Vt+1 by taking

derivative of the identifying formula (A.5) under Assumption 2 (iii) as follows.

E[V 2
t+1] = − d2

ds2
E
[
eisVt+1

]
s=0

= − d2

ds2

 E
[
eisYt+1

]
exp

{∫ s
0

iE[Yt+2·eis
′Yt+1 ]

E[eis
′Yt+1 ]

ds′
}

s=0

. (A.8)

Now observe that the equality

E
[
σ2
t+1(Ut) ·W 2

t+1 | Ut
]

= σ2
t+1(Ut) (A.9)

follows from Assumption 1 and Assumption 2 (ii).

Lastly, by (1.1) and (1.3), we can write

E
[
Y 2
t+1 | Ut

]
= E

[
(Ut + σt+1(Ut) ·Wt+1 + Vt+1)

2 | Ut
]
.

Expand the right-hand side of this equation, and substitute (A.9) to obtain

E
[
Y 2
t+1 | Ut

]
= U2

t + σ2
t+1(Ut) + E[V 2

t+1] + 2 (E [Ut · σt+1(Ut) ·Wt+1 | Ut]

+ E [Ut · Vt+1 | Ut] + E [σt+1(Ut) ·Wt+1 · Vt+1 | Ut])

= U2
t + σ2

t+1(Ut) + E[V 2
t+1]

where the second equality follows from Assumption 1 and Assumption 2 (i) and (iii). Therefore,

with Assumption 4 (ii) and (iii) as well as Assumptions 1–3, substituting (A.7) with p = 2 and
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(A.8), the skedastic function σt+1 is identified by

σ2
t+1(u) = E

[
Y 2
t+1 | Ut = u

]
− Var(Vt+1)− u2

=

∫ E[Y 2
t+1·eisYt ]

E[eisYt ]
exp

{∫ s
0

iE
[
Yt+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isu

}
ds

∫
exp

{∫ s
0

iE[Yt+1·eis′Yt ]
E[eis′Yt ]

ds′ − isu
}
ds

+
d2

ds2

 E
[
eisYt+1

]
exp

{∫ s
0

iE[Yt+2·eis
′Yt+1 ]

E[eis
′Yt+1 ]

ds′
}

s=0

− u2

for each u ∈ supp(Ut).

A.5 Proof of Corollay 1

Proof. Using (1.1) and (1.3) with Assumption 1, we can write

E
[
eisσt+1(Ut)·Wt+1

]
= E

[
eis(Yt+1−Yt)

] φVt(s)

φVt+1(s)
(A.10)

under Assumption 3 (i), where the right-hand side is identified as φVt(s) := E
[
eisVt

]
is identified

in (A.5) by the formula

φVt(s) =
E
[
eisYt

]
exp

{∫ s
0

iE[Yt+1·eis′Yt ]
E[eis′Yt ]

ds′
} .

Note that Assumption 3 (iii) and Assumption 5 (i) imply that the composite random variable

σt+1(Ut) ·Wt+1 is absolutely continuous. By Assumption 5 (ii), apply the Fourier transform to

(A.10) to get the density function of σt+1(Ut) ·Wt+1.

fσt+1(Ut)·Wt+1(x) =
1

2π

∫
e−isx E

[
eis(Yt+1−Yt)

] φVt(s)

φVt+1(s)
ds.

Since log is a strictly monotone transformation, this density function yields the density function

of the transformed random variable log σt+1(Ut) + logWt+1 as follows.

flog σt+1(Ut)+logWt+1(ξ) =
1

2π

∫
exp

{
−iseξ + ξ

}
E
[
eis(Yt+1−Yt)

] φVt(s)

φVt+1(s)
ds.

Now, by Assumption 1 and Assumption 5 (ii), apply the Fourier inversion to the above equation

to get the auxiliary characteristic function

E
[
eis(log σt+1(Ut)+logWt+1)

]
=

1

2π

∫ ∫
E
[
eis
′(Yt+1−Yt)

] φVt(s
′)

φVt+1(s
′)

exp
{
−is′eξ + isξ + ξ

}
ds′dξ

=
1

2π

∫ ∫ E
[
eis
′(Yt+1−Yt)

]
· exp

{∫ s′
0

iE
[
Yt+2·eis

′′Yt+1
]

E[eis
′′Yt+1 ]

ds′′ − is′eξ + isξ + ξ

}
E[eis

′Yt+1 ]
E[eis′Yt ]

· exp

{∫ s′
0

iE[Yt+1·eis′′Yt ]
E[eis′′Yt ]

ds′′
} ds′dξ. (A.11)
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Next, given the marginal density function fUt identified in (A.4), the density function for

the transformed random variable σt+1(Ut) can be written as

fσt+1(Ut)(z) =
fUt(σ

−1
t+1(z))∣∣σ′t+1(σ
−1
t+1(z))

∣∣ =
1

2π

∫
exp

{∫ s
0

iE
[
Yt+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isσ−1t+1(z)

}
ds∣∣σ′t+1(σ

−1
t+1(z))

∣∣
by Assumption 5 (i). By similar arguments, the density function for the transformed random

variable log σt+1(Ut) can be written as

flog σt+1(Ut)(ζ) =
eζ · fUt(σ−1t+1(e

ζ))∣∣σ′t+1(σ
−1
t+1(e

ζ))
∣∣ =

1

2π

eζ
∫

exp

{∫ s
0

iE
[
Yt+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isσ−1t+1(e

ζ)

}
ds∣∣σ′t+1(σ

−1
t+1(e

ζ))
∣∣ .

Furthermore, by Assumption 5 (ii), apply the Fourier inversion to the above equation to get

the auxiliary characteristic function

E
[
eis log σt+1(Ut)

]
=

1

2π

∫ ∫ exp

{∫ s′
0

iE
[
Yt+1·eis

′′Yt
]

E[eis′′Yt ]
ds′′ − isσ−1t+1(e

ζ) + isζ + ζ

}
∣∣σ′t+1(σ

−1
t+1(e

ζ))
∣∣ ds′dζ. (A.12)

Lastly, given Assumption 5 (iii), the marginal characteristic function of logWt+1 can be

decomposed by Assumption 1 as

E
[
eis logWt+1

]
=

E
[
eis(log σt+1(Ut)+logWt+1)

]
E [eis log σt+1(Ut)]

Next, by Assumption 5 (ii), apply the Fourier transform to recover the density function of

logWt+1 by

flogWt+1(ω) =
1

2π

∫
e−isω

E
[
eis(log σt+1(Ut)+logWt+1)

]
E [eis log σt+1(Ut)]

ds.

Since exp is a strictly monotone function, the density function of Wt+1 thus is written as

fWt+1(w) =
1

2π

∫
w−is−1

E
[
eis(log σt+1(Ut)+logWt+1)

]
E [eis log σt+1(Ut)]

ds.

Substituting (A.11) and (A.12) in this equation yields

fWt+1(w) =
1

2π

∫
w−is−1

∫ ∫ E
[
eis
′(Yt+1−Yt)

]
·exp

∫ s′
0

iE

[
Yt+2·e

is′′Yt+1
]

E

[
e
is′′Yt+1

] ds′′−is′eξ+isξ+ξ


E

[
e
is′Yt+1

]
E[eis′Yt ]

·exp
{∫ s′

0

iE[Yt+1·eis
′′Yt ]

E[eis′′Yt ]
ds′′

} ds′dξ

∫ ∫ exp

{∫ s′
0

iE[Yt+1·eis
′′Yt ]

E[eis′′Yt ]
ds′′−isσ−1

t+1(e
ζ)+isζ+ζ

}
|σ′t+1(σ

−1
t+1(e

ζ))| ds′dζ

ds.

for each w ∈ Wt+1.
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A.6 Proof of Corollary 2

Proof. From (1.1) and (1.2), we can write

Y 3
t+1 = U3

t + 3U2
t (ηt+1 + Vt+1) + 3Ut(ηt+1 + Vt+1)

2 + (ηt+1 + Vt+1)
3.

Projecting both sides of this equality on σ(Ut) and using Assumption 6, we obtain

E[η3t+1 | Ut] = E[Y 3
t+1 | Ut]− E[V 3

t+1 | Ut]− 3Ut E[η2t+1 | Ut]− 3Ut E[V 2
t+1 | Ut]− U3

t .

Of those terms appearing on the right hand side, we have

E[V 3
t+1 | Ut] = iφ′′′Vt+1

(0), E[V 2
t+1 | Ut] = −φ2

Vt+1
(0)

by Assumption 6, and

E[η2t+1 | Ut] = E[Y 2
t+1 | Ut] + φ′′Vt+1

(0)− U2
t

by Theorem 1 and Proposition 1. Substitute them to obtain

E[η3t+1 | Ut] = E
[
Y 3
t+1 | Ut

]
− iφ′′′Vt+1

(0)− 3Ut E
[
Y 2
t+1 | Ut

]
+ 2U3

t .

where E
[
Y p
t+1 | Ut = u

]
is identified for each p ∈ {1, 2, 3} by the formula in Lemma 3.

A.7 Proof of Lemma 4

Proof. First, we note that for all τ > t

E
[
στ+1(Uτ ) ·Wτ+1 · eis(Ut+Vt)

]
= E

[
στ+1(Uτ ) · E[Wτ+1 | Ut, Vt,Wt+1, · · · ,Wτ ] · eis(Ut+Vt)

]
= 0 (A.13)

follows from Assumption 2 (i) and Assumption 8. Second,

E
[
Vt+q+1 · eis(Ut+Vt)

]
= E

[
E[Vt+q+1 | Ut, Vt] · eis(Ut+Vt)

]
= 0 (A.14)

similarly follows from Assumption 2 (iii) and Assumption 8. Given these auxiliary equalities,

we obtain

d

ds
ln E

[
eisUt

]
=

iE
[
Ut · eisUt

]
E [eisUt ]

=
iE
[
Ut · eis(Ut+Vt)

]
E [eis(Ut+Vt)]

=
iE
[
(Ut +

∑t+q
τ=t στ+1(Uτ ) ·Wτ+1 + Vt+q+1) · eis(Ut+Vt)

]
E [eis(Ut+Vt)]

=
iE
[
Yt+q+1 · eisYt

]
E [eisYt ]

31



under Assumption 3 (i), where the second equality follows from Assumption 8, the third equality

follows from a substitution of (A.13) and (A.14), and the fourth equality follows from a sub-

stitution of (1.1) and (1.3). Solving this differential equation with the trivial initial condition

yields the marginal characteristic function of Ut by

E
[
eisUt

]
= exp

{∫ s

0

iE
[
Yt+q+1 · eis

′Yt
]

E [eis′Yt ]
ds′

}
(A.15)

Under Assumption 3 (ii) and (iii), we can apply the Fourier transform to this identifying formula

to obtain the marginal density of Ut by

fUt(u) =
1

2π

∫
exp

{∫ s

0

iE
[
Yt+q+1 · eis

′Yt
]

E [eis′Yt ]
ds′ − isu

}
ds (A.16)

for each u ∈ supp(Ut).

A.8 Proof of Lemma 5

Proof. Under Assumption 3(i), the marginal characteristic function of Vt can be identified by

E
[
eisVt

]
=

E
[
eisYt

]
E [eisUt ]

=
E
[
eisYt

]
exp

{∫ s
0

iE[Yt+q+1·eis′Yt ]
E[eis′Yt ]

ds′
} (A.17)

where the first equality follows from (1.1) and Assumption 8, and the second equality follows

from a substitution of (A.15) in the proof of Lemma 4. Under Assumption 3 (ii) and (iii), we

can apply the Fourier transform to this identifying formula to obtain the marginal density of

Vt by

fVt(v) =
1

2π

∫
E
[
eisYt

]
exp

{∫ s
0

iE[Yt+q+1·eis′Yt ]
E[eis′Yt ]

ds′ + isv

}ds
for each v ∈ supp(Vt).

A.9 Lemma 6

Lemma 6 (Conditional Moments of Measured Earnings on Permanent Earnings). Suppose

that Assumptions 2, 3 and 8 are satisfied for the model (1.1) and (1.3). If E[|Yt+q+1|p | Ut]
is uniformly bounded on the support of Ut and E

[
|Yt+q+1|p · eisUt

]
is absolutely integrable with

respect to s, then the conditional p-th moment of Yt+q+1 given Ut is identified by the following

formula for each u ∈ supp(Ut).

E
[
Y p
t+q+1 | Ut = u

]
=

∫
e−isuKp,q (s)φq+1,Ut (s) ds

2πfq,Ut(u)
, q ≥ 0, p ≥ 1
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where

Kp,q (s) =
E
[
Y p
t+q+1 · eisYt

]
E [eisYt ]

Proof. Since the statement of the lemma requires that E[|Yt+q+1|p | Ut] is uniformly bounded,

we can write

E
[
Y p
t+q+1 · eisUt

]
= E

[
(Ut+q + σt+q+1(Ut+q) ·Wt+q+1 + Vt+q+1)

p · eisUt
]

=
E
[
(Ut+q + σt+q+1(Ut+q) ·Wt+q+1 + Vt+q+1)

p · eis(Ut+Vt)
]

E [eisVt ]
(A.18)

=
E
[
Y p
t+q+1 · eisYt

]
E [eisVt ]

=
E
[
Y p
t+q+1 · eisYt

]
E [eisYt ]

· exp

{∫ s

0

iE
[
Yt+q+1 · eis

′Yt
]

E [eis′Yt ]
ds′

}

under Assumption 3 (i), where the first equality follows from (1.1) and (1.3), the second equality

follows from Assumption 8, the third equality follows from (1.1) and (1.3) again, and the last

equality follows from a substitution of (A.17).

We next focus on the following auxiliary function Ψ defined by

Ψ(u) := E[Y p
t+q+1 | Ut = u] · fUt(u)

By the assumption of the lemma that E[|Yt+q+1|p | Ut] is uniformly bounded, Ψ is absolutely

integrable. Furthermore, E
[
|Yt+q+1|p · eisUt

]
is absolutely integrable with respect to s by the

assumption of the lemma. Thus, we take the Fourier inverse of Ψ as follows∫
eisu ·Ψ(u)du =

∫ ∫
eisu · yp · fYt+q+1Ut(y, u)dydu = E[Y p

t+q+1 · eisUt ].

With this equality, the Fourier transform yields the following alternative expression for Ψ.

Ψ(u) =
1

2π

∫
e−isu · E

[
Y p
t+q+1 · eisUt

]
ds.

Therefore, we identify the conditional moment E[Y p
t+q+1 | Ut] by the closed form

E
[
Y p
t+q+1 | Ut = u

]
=

1
2π

∫
e−isu · E

[
Y p
t+q+1 · eisUt

]
ds

fUt(u)

=

∫ E[Y pt+q+1·eisYt ]
E[eisYt ]

exp

{∫ s
0

iE
[
Yt+q+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isu

}
ds

∫
exp

{∫ s
0

iE[Yt+q+1·eis′Yt ]
E[eis′Yt ]

ds′ − isu
}
ds

(A.19)

for each u ∈ supp(Ut), where the second equality follows from a substitution of (A.16) and

(A.18).
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A.10 Proof of Theorem 2

Proof. Due to Assumption 9 (i), we can identify the unconditional variance of Vt+q+1 by taking

derivative of the identifying formula (A.17) under Assumption 2 (iii) as follows.

E[V 2
t+q+1] = − d2

ds2
E
[
eisVt+q+1

]
s=0

= − d2

ds2

 E
[
eisYt+q+1

]
exp

{∫ s
0

iE
[
Yt+2(q+1)·e

is′Yt+q+1
]

E
[
eis
′Yt+q+1

] ds′
}

s=0

. (A.20)

By (1.1), we can write

E
[
Y 2
t+q+1 | Ut

]
= E

[
(Ut+q+1 + Vt+q+1)

2 | Ut
]

= E
[
U2
t+q+1 | Ut

]
+ E

[
V 2
t+q+1 | Ut

]
+ 2 E [Ut+q+1 · Vt+q+1 | Ut]

= E
[
U2
t+q+1 | Ut

]
+ E

[
V 2
t+q+1 | Ut

]
+2 E [Ut+q+1 · E[Vt+q+1 | Ut,Wt+1, · · · ,Wt+q+1] | Ut]

= E
[
U2
t+q+1 | Ut

]
+ E

[
V 2
t+q+1

]
where the last equality follows form Assumption 2 (iii) and Assumption 8. Thus, it follows that

Var(Ut+q+1 | Ut) = E
[
U2
t+q+1 | Ut

]
− E [Ut+q+1 | Ut]2

= E
[
Y 2
t+q+1 | Ut

]
− E

[
V 2
t+q+1

]
− E [Ut+q+1 | Ut]2

Therefore, under Assumption 9 (ii) and (iii), substituting (A.19) with p = 1 and p = 2 and

(A.20), the (q + 1)-st order skedastic function is identified by

Var(Ut+q+1 | Ut = u) =

∫ E[Y 2
t+q+1·eisYt ]
E[eisYt ]

exp

{∫ s
0

iE
[
Yt+q+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isu

}
ds

∫
exp

{∫ s
0

iE[Yt+q+1·eis′Yt ]
E[eis′Yt ]

ds′ − isu
}
ds

+
d2

ds2

 E
[
eisYt+q+1

]
exp

{∫ s
0

iE
[
Yt+2(q+1)·e

is′Yt+q+1
]

E
[
eis
′Yt+q+1

] ds′
}

s=0

−


∫ E[Yt+q+1·eisYt ]

E[eisYt ]
exp

{∫ s
0

iE
[
Yt+q+1·eis

′Yt
]

E[eis′Yt ]
ds′ − isu

}
ds

∫
exp

{∫ s
0

iE[Yt+q+1·eis′Yt ]
E[eis′Yt ]

ds′ − isu
}
ds


2

for each u ∈ supp(Ut).
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A.11 Proof of Proposition 2

Proof. First, we obtain

Cov(Yt, Yt+1) = Cov(Ut, Ut+1) + Cov(Vt, Vt+1) + Cov(Ut, Vt+1) + Cov(Ut+1, Vt)

= Cov(Ut, Ut+1) + Cov(Vt, Vt+1) (A.21)

where the second equality follows from Assumption 2 (iii) and Assumption 10 (i). Second, we

obtain

Cov(Yt, Yt+2) = ρ1 Cov(Ut, Ut+1) + Cov(Vt, Vt+2)

+ Cov(Ut, σt+2(Ut+1) ·Wt+2) + Cov(Ut, Vt+2) + Cov(Ut+2, Vt)

= ρ1 Cov(Ut, Ut+1) + Cov(Vt, Vt+2) (A.22)

where the second equality follows from Assumption 2 (i) and (iii) together with Assumption 10

(i) and (ii). By incrementing the time indices in the above equations, we also get

Cov(Yt+1, Yt+2) = Cov(Ut+1, Ut+2) + Cov(Vt+1, Vt+2) (A.23)

Cov(Yt+1, Yt+3) = ρ1 Cov(Ut+1, Ut+2) + Cov(Vt+1, Vt+3) (A.24)

Taking the difference between (A.21) and (A.23) produces

Cov(Yt+1, Yt+2)− Cov(Yt, Yt+1) = Cov(Ut+1, Ut+2)− Cov(Ut, Ut+1) (A.25)

under Assumption 11 (i). Likewise, taking the difference between (A.22) and (A.24) produces

Cov(Yt+1, Yt+3)− Cov(Yt, Yt+2) = ρ [Cov(Ut+1, Ut+2)− Cov(Ut, Ut+1)] (A.26)

under Assumption 11 (ii). Note that

Cov(Ut+1, Ut+2) = Cov(Ut+1, Ut+1 + σt+2(Ut+1) ·Wt+2) = Var(Ut+1)

= Var(Ut + σt+1(Ut) ·Wt+1) = Var(Ut) + Var(σt+1(Ut) ·Wt+1)

holds under Assumption 2 (i) and Assumption 10 (ii). Likewise,

Cov(Ut, Ut+1) = Cov(Ut, Ut + σt+1(Ut) ·Wt+1) = Var(Ut)

holds under Assumption 2 (i) and Assumption 10 (ii). Therefore,

Cov(Ut+1, Ut+2)− Cov(Ut, Ut+1) = Var(σt+1(Ut) ·Wt+1) > 0
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is true under Assumption 12, showing that the right-hand side of (A.25) is non-zero. Therefore,

we can take the ratio of (A.26) to (A.25) to identify ρ1 by

ρ1 =
Cov(Yt+1, Yt+3)− Cov(Yt, Yt+2)

Cov(Yt+1, Yt+2)− Cov(Yt, Yt+1)
. (A.27)

Once ρ1 has been identified, take the difference of the two equations

ρ1Yt−1 = ρ1Ut−1 + ρ1Vt−1

Yt = ρ0,t + ρ1Ut−1 + σt(Ut−1) ·Wt + Vt

to get

Yt − ρ1Yt−1 = ρ0,t + σt(Ut−1) ·Wt + Vt − ρ1Vt−1.

Using Assumption 2 (i) and (iii) together with Assumption 10 (ii), take the expectation of the

above equation to identify ρ0,t by

ρ0,t = E [Yt − ρ1Yt−1]

where ρ1 on the right-hand side has been already identified by (A.27).

B Proofs for Asymptotics

B.1 Proof of Theorem 3

Proof. First, we introduce the auxiliary notations

η̂ (u) =

∫ hn

−hn
e−isuK̂ (s) φ̂Ut (s)φK

(
s

hn

)
ds, hn →∞

η (u) =

∫
R
e−isuK (s)φUt (s) ds

With these notations, we can write

σ̂2
t (u)− σ2

t (u)

=

∫ e−isuK̂ (s) φ̂Ut (s)φK

(
s
hn

)
ds

f̂Ut (u)
−
∫
e−isuK (s)φUt (s) ds

fUt (u)

 (B.1)

+
(
φ̂′′Vt+1

(0)− φ′′Vt+1
(0)
)

(B.2)

=

(
η̂ (u)

f̂Ut (u)
− η (u)

fUt (u)

)
+
(
φ̂′′Vt+1

(0)− φ′′Vt+1
(0)
)

(B.3)
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Consider the first component expressed as

η̂ (u)

f̂Ut (u)
− η (u)

fUt (u)
=

1

fUt (u)
(η̂ (u)− η (u))− η̂ (u)

fUt (u)

f̂Ut (u)−fUt (u)
fUt (u)

f̂Ut (u)−fUt (u)
fUt (u)

+ 1
(B.4)

Our proof consists of bounding each term appearing in (B.4).

First, it follows by Assumption 15 (i) that∣∣∣∣ 1

fUt (u)

∣∣∣∣ ≤ 1

mu

(B.5)

Second, by the arguments presented in Section B.2 below, it follows that for n large enough

sup
u
|η̂ (u)− η (u)| (B.6)

≤ sup
u

∣∣∣∣∫ e−isuK̂ (s) φ̂Ut (s)φK

(
s

hn

)
ds−

∫
e−isuK (s)φUt (s)φK

(
s

hn

)
ds

∣∣∣∣
+ sup

u

∣∣∣∣∫ e−isuK (s)φUt (s)φK

(
s

hn

)
ds−

∫
e−isuK (s)φUt (s) ds

∣∣∣∣
≤ sup

u

∣∣∣∣∫ e−isuφK

(
s

hn

)[
K̂ (s) φ̂Ut (s)−K (s)φUt (s)

]
ds

∣∣∣∣ (B.7)

+ sup
u

∣∣∣∣∫ e−isuK (s)φUt (s)

[
φK

(
s

hn

)
− 1

]
ds

∣∣∣∣ (B.8)

≤ h2nO (εn)

g2y (hn)
+

O (1)

gy (hn)

∫
gu (|s|)

[
φK

(
s

hn

)
− 1

]
ds (B.9)

Third, by (B.15) in Section B.2 and Assumption 15 (ii), we have that for n large enough

|η̂ (u)| ≤ sup
u
|η̂ (u)− η (u)|+ sup

u
|η (u)| ≤ O (1) (B.10)

Fourth, by Assumption 15 (i) and similar arguments as for (B.6) , we obtain that for n large

enough

sup
u

∣∣∣f̂Ut (u)− fUt (u)
∣∣∣

≤ sup
u

∣∣∣∣∫ e−isuφ̂Ut (s)φK

(
s

hn

)
ds−

∫
e−isuφUt (s)φK

(
s

hn

)
ds

∣∣∣∣
+ sup

u

∣∣∣∣∫ e−isuφUt (s)φK

(
s

hn

)
ds−

∫
e−isuφUt (s) ds

∣∣∣∣
= sup

u

∣∣∣∣∫ e−isuφK

(
s

hn

)[
φ̂Ut (s)− φUt (s)

]
ds

∣∣∣∣
+ sup

u

∣∣∣∣∫ e−isuφUt (s)

[
φK

(
s

hn

)
− 1

]
ds

∣∣∣∣
≤ sup

u

h2nO (εn)

g2y (hn)
+

∫
gu (|s|)

[
φK

(
s

hn

)
− 1

]
ds (B.11)
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Finally, combining (B.5) , (B.9), (B.10), and (B.11), and using that g2y (hn) < gy (hn) and that

m2
u < mu yield

sup
u

∣∣∣∣∣ η̂ (u)

f̂Ut (u)
− η (u)

fUt (u)

∣∣∣∣∣ ≤ 1

m2
ug

2
y (hn)

(
h2nOp (εn) + c1

1

hqn

∫ hn

−hn
sqgu (|s|) ds+ 2

∫ ∞
hn

gu (|s|) ds
)

Consider now the second difference in (B.3), i.e. φ̂′′Vt+1
(0)− φ′′Vt+1

(0). Note that φ′′Vt+1
(0) is

the second moment of the random variable Vt+1, which exists by Assumption 4 (identification).

Since φ̂′′Vt+1
(0) is the empirical second moment of Vt+1, we can apply a CLT for independently

distributed random variables to derive the uniform rate of convergence of φ̂′′Vt+1
(0)− φ′′Vt+1

(0).

Under Assumptions 15 (v) and (vi), the standard Lindeberg-Feller CLT obtains a
√
n rate of

convergence. By applying the rule op (a) + op (b) = op (max {a, b}) of addition of op sequences

obtains the result in (4.2).

B.2 Auxiliary Results for Asymptotics

In this section, we show the derivation of (B.9).

First, we bound K (s) as follows. For n large enough,

sup
|s|≤hn

|K (s)| ≤
sup

∣∣E (Y 2
t+1e

isYt
)∣∣

inf |E (eisYt)|

≤ 1

gy (hn)

(
sup

∣∣E (Y 2
t+1e

is(Ut+Vt)
)∣∣) (B.12)

≤ 1

gy (hn)

(
sup

∣∣E (Y 2
t+1e

isUt
)∣∣ · ∣∣E (eisVt)∣∣) (B.13)

≤ 1

gy (hn)

(
sup

∣∣E (eisUtE (Y 2
t+1|Ut

))∣∣) (B.14)

≤ O (1)

gy (hn)
(B.15)

where (B.12) follows by Assumption 15 (iii), (B.13) follows by the independence of Ut and Vt,

(B.14) follows by the law of iterated expectations, Assumption 15 (v) and
∣∣EeisVt∣∣ ≤ 1, and

(B.15) follows by Assumption 15 (v) and
∣∣EeisUt∣∣ ≤ 1.

Second, for n large enough, we can bound (B.8) by

sup
u

∣∣∣∣∫ e−isuK (s)φUt (s)

[
φK

(
s

hn

)
− 1

]
ds

∣∣∣∣
≤

∣∣∣∣∫ gu (|s|)K (s)

[
φK

(
s

hn

)
− 1

]
ds

∣∣∣∣ (B.16)

≤ O (1)

gy (hn)

∫
gu (|s|)

[
φK

(
s

hn

)
− 1

]
ds (B.17)
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where (B.16) follows by Assumptions 15 (ii) and (B.17) follows from (B.15).

The stochastic part (B.7) can be bounded as follows. For n large enough and making use

of the fact that φK is a characteristic function,

sup
u

∣∣∣∣∫ e−isuφK

(
s

hn

)[
K̂ (s) φ̂Ut (s)−K (s)φUt (s)

]
ds

∣∣∣∣ (B.18)

≤ Chn sup
|s|≤hn

∣∣∣K̂ (s) φ̂Ut (s)−K (s)φUt (s)
∣∣∣

≤ Chn sup
|s|≤hn

∣∣∣φ̂Ut (s)
(
K̂ (s)−K (s)

)∣∣∣ (B.19)

+Chn sup
|s|≤hn

∣∣∣K (s)
(
φ̂Ut (s)− φUt (s)

)∣∣∣ (B.20)

≤ h2n
Op (εn)

g3y (hn)
(B.21)

where εn and hn are as in the statement of Theorem 1. The inequality in (B.21) follows by the

following arguments.

Consider first inequality (B.19). Define:

α1 (s) = E
(
Y 2
t+1e

isYt
)

β1 (s) = E
(
eisYt

)
and let

(
α̂1 (s) , β̂1 (s)

)
are the sample analogues of (α1 (s) , β1 (s)) . Then

K̂ (s)−K (s) =
1

β1 (s)
(α̂1 (s)− α1 (s))− α̂1 (s)

β1 (s)

β̂1(s)−β1(s)
β1(s)

β̂1(s)−β1(s)
β1(s)

+ 1

Notice that β1 (s) is the characteristic function of Yt, so by Assumption 15 (iii), for n large

enough we have that: ∣∣∣∣ 1

β1 (s)

∣∣∣∣ ≤ 1

gy (hn)

By Assumption 15 (iv), applying Lemma 1 of Bonhomme and Robin (2010), we obtain that

for some C > 8
√

3 + δ:

sup
|s|≤hn

|α̂1 (s)− α1 (s)| ≤ Cεn

sup
|s|≤hn

∣∣∣β̂1 (s)− β1 (s)
∣∣∣ ≤ Cεn

By similar arguments as those used to derive (B.15) we have that:

|α̂1 (s)| ≤ sup
|s|≤hn

|α̂1 (s)− α1 (s)|+ sup
|s|≤hn

|α1 (s)| ≤ O (max {εn, 1}) = O (1)
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Combining the results above, and using properties of the order of convergence and that

g2y (hn) ≤ gy (hn), yields

sup
|s|≤hn

∣∣∣K̂ (s)−K (s)
∣∣∣ ≤ O (εn)

g2y (hn)
(B.22)

Consider now φ̂Ut (s)− φUt (s) appearing in (B.20) . Define

α2 (s) = E [iYt+1 exp (isYt)]

and let α̂2 (s) be the sample counterpart of α2 (s). Then

sup
|s|≤hn

∣∣∣φ̂Ut (s)− φUt (s)
∣∣∣ = sup

|s|≤hn

∣∣∣∣∣exp

(∫ s

0

α̂2 (s′)

β̂1 (s′)
ds′

)
− exp

(∫ s

0

α2 (s′)

β1 (s′)
ds′
)∣∣∣∣∣

≤ sup
|s|≤hn

∣∣∣∣exp

(∫ s

0

α2 (s′)

β1 (s′)
ds′
)∣∣∣∣
∣∣∣∣∣
∫ s

0

α̂2 (s′)

β̂1 (s′)
ds′ −

∫ s

0

α2 (s′)

β1 (s′)
ds′

∣∣∣∣∣
≤ sup

|s|≤hn
|φUt (s)|

∣∣∣∣∣
∫ s

0

α̂2 (s′)

β̂1 (s′)
ds′ −

∫ s

0

α2 (s′)

β1 (s′)
ds′

∣∣∣∣∣
≤ sup

|s|≤hn

∫ s

0

∣∣∣∣∣ α̂2 (s′)

β̂1 (s′)
− α2 (s′)

β1 (s′)

∣∣∣∣∣ ds′
≤ hn

Op (εn)

g2y (hn)
(B.23)

where the last inequality follows by arguments similar to those used in the derivation of (B.22).

Further, similar to (B.24), it can be shown that

sup
|s|≤hn

∣∣∣φ̂Ut (s)
∣∣∣ ≤ sup

|s|≤hn

∣∣∣φ̂Ut (s)− φUt (s)
∣∣∣+ sup

|s|≤hn
|φUt (s)| ≤ Op (1) (B.24)

Combining all of the above, allows us to bound the term in (B.19) by:

2hn sup
|s|≤hn

∣∣∣φ̂Ut (s)
∣∣∣ sup
|s|≤hn

∣∣∣(K̂ (s)−K (s)
)∣∣∣ ≤ hn

Op (εn)

g2y (hn)
(B.25)

and the term in (B.20) by:

2hn sup
|s|≤hn

|K (s)| sup
|s|≤hn

∣∣∣(φ̂Ut (s)− φUt (s)
)∣∣∣ ≤ h2n

Op (εn)

g3y (hn)
(B.26)

Combining (B.25) and (B.26), and using that h2n > hn and that g3y (hn) ≤ g2y (hn) obtains

sup
u

∣∣∣∣∣ η̂ (u)

f̂Ut (u)
− η (u)

fUt (u)

∣∣∣∣∣ ≤ 1

m2
ug

2
y (hn)

(
c1h

2
nO (εn) +

∫
gu (|s|)

[
φK

(
s

hn

)
− 1

]
ds

)
Since φK is the characteristic function of the kernel of order q ≥ 2, there exists a continuous

function r defined on s ∈ [−1, 1] such that φK (s) = 1 + r (s) sq. Then we obtain that∫
gu (|s|)

[
φK

(
s

hn

)
− 1

]
ds ≤ sup

s∈[−1,1]
|r (s)| 1

hqn

∫ hn

−hn
sqgu (|s|) ds+ 2

∫ ∞
hn

gu (|s|) ds.
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C Tables and Figures
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(a) Density Function of U1 (b) Density Function of U2

(c) Density Function of V1 (d) Density Function of V2

(e) Skedastic Function σ2
2

Figure 1: Monte Carlo simulation results from 500 replications with N = 500 and h−1 = 1/4.

In each display, the solid curve draws the true function, and dashed curves draw MC quartiles.



(a) Density Function of U1 (b) Density Function of U2

(c) Density Function of V1 (d) Density Function of V2

(e) Skedastic Function σ2
2

Figure 2: Monte Carlo simulation results from 500 replications with N = 500 and h−1 = 1/16.

In each display, the solid curve draws the true function, and dashed curves draw MC quartiles.



(a) Density Function of U1 (b) Density Function of U2

(c) Density Function of V1 (d) Density Function of V2

(e) Skedastic Function σ2
2

Figure 3: Monte Carlo simulation results from 500 replications with N = 500 and h−1 = 1/64.

In each display, the solid curve draws the true function, and dashed curves draw MC quartiles.



Year GDP Growth Rate Unemployment Rate

1977 4.6 6.4

1978 5.6 6.0

1979 3.2 6.0

1980 -0.2 7.2

1981 2.6 8.5

1982 -1.9 10.8

1983 4.6 8.3

1984 7.3 7.3

1985 4.2 8.0

1986 3.5 6.6

1987 3.5 5.7

1988 4.2 5.3

1989 3.7 5.4

Table 1: US annual GDP growth rates and unemployment rates from 1977 to 1989.
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(a) Bandwidth h−1 = 1/8 (b) Bandwidth h−1 = 1/12

(c) Bandwidth h−1 = 1/16 (d) Bandwidth h−1 = 1/20

Figure 4: Estimated first-order skedastic function σ2
1982 for year 1982. The displayed curves

indicate the inter-quartile bands based on 500 bootstrap resamples with bandwidth (a) h−1 =

1/8, (b) 1/12, (c) 1/16, and (d) 1/20. The domains are the intervals of lengths corresponding

to two estimated standard deviations of U1981 based on the respective bandwidths.
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(a) Var(U1991 | U1990 = · ) for the 1991 Recession

(b) Var(U2008 | U2006 = · ) for the Great Recession

Figure 5: (a) An estimated first-order skedastic function σ2
1991 for the recession in year 1991,

and (b) an estimated second-order skedastic function Var(U2008 | U2006 = · ) for the great

recession in year 2008. The displayed curves indicate the inter-quartile bands based on 500

bootstrap resamples with bandwidth h−1 = 1/12.
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(a) 1977–1978 (b) 1978–1979 (c) 1979–1980

(d) 1980–1981 (e) 1981–1982 (f) 1982–1983

(g) 1983–1984 (h) 1984–1985 (i) 1985–1986

(j) 1986–1987 (k) 1987–1988

Figure 6: Estimated first-order skedastic functions σ2
t for pairs of adjacent years (a) 1977–1978

through (k) 1987–1988. The displayed curves indicate the inter-quartile bands based on 500

bootstrap resamples with bandwidth h−1 = 1/12.
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(a) 1977 (b) 1978 (c) 1979

(d) 1980 (e) 1981 (f) 1982

(g) 1983 (h) 1984 (i) 1985

(j) 1986 (k) 1987 (l) 1988

Figure 7: Estimated densities of the permanent component Ut for years (a) 1977 through (l)

1988. The solid curves draw nonparametric estimates, and the dashed curves draw Gaussian

estimates. For the nonparametric estimates, the bandwidth h−1 = 1/6 is used for all years to

smooth rugged curves.
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(a) 1977 (b) 1978 (c) 1979

(d) 1980 (e) 1981 (f) 1982

(g) 1983 (h) 1984 (i) 1985

(j) 1986 (k) 1987 (l) 1988

Figure 8: Estimated densities of the transitory component Vt for years (a) 1977 through (l)

1988. The solid curves draw nonparametric estimates, and the dashed curves draw Gaussian

estimates. For the nonparametric estimates, the bandwidth h−1 = 1/6 is used for all years to

smooth rugged curves.
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