
On the Geography of Global Value Chains

Pol Antràs and Alonso de Gortari∗

Harvard University and NBER

PRELIMINARY AND INCOMPLETE

April 28, 2017

Abstract

This paper develops a multi-stage general-equilibrium model of global value chains (GVCs)

and studies the specialization of countries within GVCs in a world with barriers to international

trade. With costly trade, the optimal location of production of a given stage in a GVC is not

only a function of the marginal cost at which that stage can be produced in a given country,

but is also shaped by the proximity of that location to the precedent and the subsequent desired

locations of production. We show that, other things equal, it is optimal to locate relatively

downstream stages of production in relatively central locations. We also develop a tractable,

quantifiable version of our model that illustrates how changes in trade costs affect the extent to

which various countries participate in domestic, regional or global value chains, and traces the

real income consequences of these changes.
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1 Introduction

In recent decades, technological progress and falling trade barriers have allowed firms to slice up

their value chains, retaining within their domestic economies only a subset of the stages in these

value chains. The rise of global value chains (GVCs) has dramatically changed the landscape of

the international organization of production, placing the specialization of countries within GVCs at

the center stage. Where in GVCs are different countries specializing? Should countries use specific

policies to place themselves in particularly appealing segments of GVCs? These are questions being

posed in the policy arena for which the academic literature has yet to provide satisfactory answers.

This paper studies the specialization of countries within GVCs in a world with barriers to

international trade. Although we are motivated by normative questions, the focus of this paper is

on outlining the implications of the existence of exogenously given trade costs for the equilibrium

shape of GVCs. The role of trade barriers on the geography of GVCs is interesting in its own right

and has been relatively underexplored in the literature, perhaps due to the technical diffi culties

that such an analysis entails. More specifically, characterizing the allocation of production stages

to countries is not straightforward because the optimal location of production of a given stage in

a GVC is not only a function of the marginal cost at which that stage can be produced in a given

country, but is also shaped by the proximity of that location to the precedent and the subsequent

desired locations of production.

We start off our analysis in section 2 by illustrating these interdependencies in a simple partial

equilibrium environment. We consider the problem of a lead firm choosing the location of its various

production stages in an environment with costly trade. A key insight from our partial-equilibrium

framework is that the relevance of geography (or trade costs) in shaping the location of the various

stages of a GVC is more and more pronounced as one moves towards more and more downstream

stages of a value chain. Intuitively, whenever trade costs are largely proportional to the gross value

of the good being transported, these costs compound along the value chain, thus implying that

trade costs erode more value added in downstream relative to upstream stages. In a parameterized

example of our framework, this differential effect of trade costs takes the simple form of a stage-

specific ‘trade elasticity’that is increasing in the position of a stage in the value chain. The fact

that trade costs are proportional to gross value follows from our iceberg formulation of these costs,

a formulation that is not only theoretically appealing, but is also a reasonable approximation to

reality.1

Having characterized the key properties of the solution to the lead-firm problem, we next show

how it can be ‘decentralized’. More specifically, we consider an environment in which there is

no lead firm coordinating the chain, and instead stand-alone producers of the various stages in a

GVC make cost-minimizing sourcing decisions by purchasing the good completed up to the prior

1The fact that import duties and insurance costs are approximately proportional to the value of the goods being
shipped should be largely uncontroversial. For shipping costs, weight and volume are naturally also relevant, but as
shown by Brancaccio, Kalouptsidi and Papageorgiou (2017), search frictions in the shipping industry allow shipping
companies to extract rents from exporters by charging shipping fees that are typically increasing in the value of the
goods in transit.
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stage from their least-cost source. The partial equilibrium of this decentralized economy coincides

with the solution to the lead-firm problem —and in fact can be recast as a dynamic programming

formulation of the lead-firm problem — but it is dramatically simpler to compute. For a chain

entailing N stages with each of these stages potentially being performed in one of J countries,

characterizing the J optimal GVCs that service consumers in each country requires only J ×N ×J
computations, instead of the lead firm having to optimize over JN potential paths for each of the

J locations of consumption (for a total of J × JN computations).

Although the results of our partial equilibrium model suggest that more central countries should

have comparative advantage in relatively downstream stages within GVCs, formally demonstrating

such a result requires developing a general-equilibrium model of GVCs in which production costs

are endogenously determined and also shaped by trade barriers. With that goal in mind and also to

explore the real income implications of changes in trade costs, in section 3 we develop a Ricardian

model of trade in which the combination of labor productivity and trade costs differences across

countries shapes the equilibrium position of countries in GVCs. More specifically, we adapt the

Eaton and Kortum’s (2002) Ricardian model to a multi-stage production environment and derive

sharp predictions for the average participation of countries in different segments of GVCs.

Previous attempts to extend the Ricardian model of trade to a multi-stage, multi-country

environment (e.g., Yi, 2003, 2010, Johnson and Moxnes, 2016, Fally and Hillberry, 2016) have

focused on the quantification of relatively low-dimensional models with two stages or two countries.

Indeed, as we describe in section 3, it is not obvious how to exploit the extreme-value distribution

results invoked by Eaton and Kortum (2002) in a multi-stage environment in which cost-minimizing

location decisions are a function of the various cost ‘draws’obtained by producers worldwide at

various stages in the value chain. The reason for this is that neither the sum nor the product of

Fréchet random variables are themselves distributed Fréchet, and thus previous approaches have

been forced to resort to numerical analyses and simulated method of moments estimation.

We propose two alternative approaches to restore the tractability of Eaton and Kortum (2002)

in a Ricardian model with multi-stage production. The first approach consists in simply treating

the overall unit cost of production of a GVC flowing through a sequence of countries as a draw from

a Fréchet random variable with a location parameter that is a function of the states of technology

and wage levels of all countries involved in that GVC, as well as of the trade costs incurred in

that chain. The second approach maintains the standard assumption that labor productivity is

stage-specific and drawn from a Fréchet distribution, but instead considers a decentralized equilib-

rium in which, producers of a particular stage in a GVC have incomplete information about the

productivity of certain suppliers upstream from them. More specifically, we assume that firms know

their productivity and that of the suppliers immediately upstream from them (i.e., their tier-one

suppliers) when they commit to sourcing from a particular supplier, but they do not know the

precise productivity of their suppliers’suppliers (i.e., tier-two suppliers, tier-three suppliers, and so

on). Interestingly, we find that these two alternative approaches are isomorphic, in the sense that
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they yield the exact same equilibrium equations.2

Under these two alternative assumptions, we show in section 4 that our model generates a

closed-form expression for the probability of any potential path of production constituting the

cost-minimizing path to service consumers in any country. These probabilities are analogous to

the trade shares in Eaton and Kortum (2002), and indeed our model nests their framework in the

absence of multi-stage production. Exploiting properties of the resulting distribution of final-good

and input prices, we show that our model also delivers closed-form expressions for final-good and

input trade flows across countries, which can easily be mapped to the various entries of a world

Input-Output table, or WIOT for short. Various versions of these type of global Input-Output

tables have become available in recent years, including the World Input Output Database, the

OECD’s TiVA statistics, and the Eora MRIO database. Our Ricardian multi-stage framework

also delivers a simple formula relating real income to the relative prevalence of purely domestic

value chains, a formula that generalizes the ‘gains from trade’formula in Arkolakis et al. (2012).

Although the set of general-equilibrium equations is a bit more cumbersome than in Eaton and

Kortum (2002), we show how the proof of existence and uniqueness in Alvarez and Lucas (2007)

can be easily (though tediously) adapted to our setting. Finally, we formally establish the exis-

tence of a centrality-downstreamness nexus, by which the average downstreamness of a country in

GVCs should be increasing in this country’s centrality (holding other determinants of comparative

advantage constant). After introducing our main data sources, in section 5, we provide suggestive

empirical evidence for this centrality-downstreamness nexus and for a key mechanism of the model

—namely, the fact that the trade elasticity is larger for downstream stages than for upstream stages.

In section 6, we leverage the tractability of our framework to back out the model’s fundamental

parameters from data on the various entries of a WIOT. Our empirical approach constitutes a blend

of calibration and estimation. First, we show that when abstracting from variation in domestic costs

across countries, our equilibrium conditions unveil a simple way to back out the matrix of bilateral

trade costs across countries from data on final-good trade flows within and across countries. Our

approach is akin to that in Head and Ries (2001), but it requires the use of only final-good trade

flows. We also fix the a key parameter that governs the shape of the Fréchet distributions of

productivity to (roughly) match the aggregate trade elasticity implied by our model. Conditional

on a set of countries J and a number of stages N , we then estimate the remaining parameters of

the model via a generalized method of moments (GMM), in which we target the diagonal entries

of a WIOT.

We perform this exercise for two distinct and complementary samples. First, we use 2014 data

from the World Input-Output Database, a source which is deemed to provide high-quality reliable

data on intermediate input and final-good bilateral trade flows across countries for a sample of

43 countries and the rest of the world. The main downside of this database is that the bulk of

the countries in the database are high- and medium-income countries in Europe, Asia and North

2The approach of building some form of incomplete information (or ex-ante uncertainty) into the Eaton and
Kortum (2002) framework is similar in spirit to the one pursued by Tintelnot (forthcoming) and Antràs, Fort and
Tintelnot (2017).
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America. In order to study the geography of GVCs worldwide, we also present results using the

broader sample of 190 countries in the Eora MRIO database. This data source is admittedly less

reliable, but it allows us to estimate the model for 101 countries (or consolidated countries) in

which all continents and income-levels are more properly represented. In both cases, we find that

the model is able to match the targeted moments remarkably well, and it also provides a very good

fit for the cells of the WIOT that were not directly targeted in the estimation.

Armed with estimates of the fundamental parameters of the model, we conclude the paper in

section 7 by performing counterfactual exercises that illustrate how changes in trade barriers affect

the extent to which various countries participate in domestic, regional or global value chains, and

traces the real income consequences of these changes. We find that the gains from trade (i.e.,

the income losses from reverting to autarky) emanating from our model are modestly larger than

those obtained from a version of our model without multi-stage production. This variant of our

model is a generalization of the Eaton and Kortum (2002) model calibrated to match exactly the

WIOT. When studying trade costs reductions relative to their calibrated levels, we find much higher

income gains, both in absolute terms, but also relative the version of our model without multi-stage

production. This larger gains partly reflect the increased participation of low-income countries in

GVCs.

Our paper most closely relates to the burgeoning literature on GVCs. On the theoretical

front, in recent years a few theoretical frameworks have been developed highlighting the role of the

sequentiality of production for the global sourcing decisions of firms. Among others, this literature

includes the work of Harms, Lorz, and Urban (2012), Baldwin and Venables (2013), Costinot

et al. (2013), Antràs and Chor (2013), Kikuchi et al. (2014), Fally and Hillberry (2014), and

Tyazhelnikov (2016).3 A key limitation of this body of theoretical work is that it either completely

abstracts from modeling trade costs or it introduces such barriers in highly stylized ways (i.e.,

assuming common trade costs across all country-pairs). On the empirical front, a growing body

of work, starting with the seminal work of Johnson and Noguera (2012), has been concerned

with tracing the value-added content of trade flows and using those flows to better document the

rise of GVCs and the participation of various countries in this phenomenon (see Koopman et al.,

2014, Johnson, 2014, Timmer et al., 2014, de Gortari, 2017).4 A parallel empirical literature has

developed indices of the relative positioning of industries and countries in GVCs (see Fally, 2012,

Antràs et al., 2012, Alfaro et al., 2015). On the quantitative side, and as mentioned above, our

work builds on and expands on previous work by Yi (2003, 2010), Johnson and Moxnes (2016)

and Fally and Hillberry (2016). Other authors, and most notably Caliendo and Parro (2015), have

developed quantitative frameworks with Input-Output linkages across countries, but in models with

a roundabout production structure without an explicit sequentiality of production. Finally, some

implications of the rise of offshoring and GVCs for trade policy have been studied by Antràs and

3This literature is in turn inspired by earlier contributions to modeling multi-stage production, such as Dixit and
Grossman (1982), Sanyal and Jones (1982), Kremer (1993), Yi (2003) and Kohler (2004).

4An important precursor to this literature is Hummels et al. (2001), who combined international trade and
Input-Output data to construct indices of vertical specialization.
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Staiger (2012) and Bown et al. (2016), but in much more stylized frameworks than studied in this

paper.

The rest of the paper is structure as follows. Section 2 develops our partial equilibrium model

and highlights some of its key features. Section 3 describes the assumptions of the general equi-

librium model, and section 4 characterizes its equilibrium. Section 6 covers the estimation of our

model and section 7 explores several counterfactuals. All proofs and several details on data sources

and the estimation are relegated to the Appendix A and Online Appendix B.

2 Partial Equilibrium: Interdependencies and Compounding

In this section, we develop a simple model of firm behavior that formalizes the problem faced by

a firm choosing the location of its various production stages in an environment with costly trade.

For the time being, we consider the problem of a firm (or, more precisely, of a competitive fringe

of firms) producing a particular good. We defer a discussion of the general equilibrium aspects of

the model to section 3.

2.1 Environment

There are J countries in which consumers derive utility from consuming a final good. The good is

produced combining N stages that need to be performed sequentially. The last stage of production

can be interpreted as assembly and is indexed by N . We will often denote the set of countries

{1, ..., J} by J and the set of production stages {1, ..., N} by N . At each stage n > 1, production

combines a local composite input (which encompasses primitive factors of production and a bundle

of materials), with the good finished up to the previous stage n− 1. Production in the initial stage

n = 1 only uses the composite input. The cost of the composite input varies across countries and

is denoted by ci in country i. Countries also differ in their geography, as captured by a J × J
matrix of iceberg trade coeffi cients τ ij ≥ 1, where τ ij denotes the units of the finished or unfinished

good that need to be shipped from i for one unit to reach j. Firms are perfectly competitive and

the optimal location ` (n) ∈ J of the different stages n ∈ N of the value chain is dictated by cost

minimization. Because of marginal-cost pricing, we will somewhat abuse notation and denote by

pn`(n) the unit cost of production of a good completed up to stage n in country ` (n). That good is

available in country ` (n+ 1) at a cost pn`(n)τ `(n)`(n+1).

We summarize technology via the following sequential cost function associated with a path of

production ` = {` (1) , ` (2) , ..., ` (N)}:

pn`(n) (`) = gn`(n)

(
c`(n), p

n−1
`(n−1) (`) τ `(n−1)`(n)

)
, for all n ∈ N . (1)

The stage- and country-specific cost functions gn`(n) in equation (1) are assumed to feature constant-

returns-to-scale and diminishing marginal products. As mentioned before, we let the cost of the

first stage depend only on the local composite input bundle, so constant returns to scale implies
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p1
`(1) (`) = g1

`(1)

(
c`(1)

)
for all paths `, with the function g1

`(1) necessarily being linear in c`(1).

Note that equation (1) also applies to the assembly stage N , and a good assembled in ` (N)

after following the path ` is available in any country j at a cost pFj (`) = pN`(N) (`) τ `(N)j (we use

the superscript F to denote finished goods). For each country j ∈ J , the goal is then choose the
optimal path of production `j =

{
`j (1) , `j (2) , ..., `j (N)

}
∈ JN that minimizes the cost pFj (`) of

providing the good to consumers in that country j.

For the bulk of this paper, we will focus on the case in which cross-country differences in

technology are associated with Ricardian differences in the effi ciency with which the composite

bundle of inputs is used in different stages, and in which the function gn`(n) is a Cobb-Douglas

aggregator of the input bundle and the product finished up to the previous stage. More specifically,

we write

pn`(n) (`) =
(
an`(n)c`(n)

)αn (
pn−1
`(n−1) (`) τ `(n−1)`(n)

)1−αn
, for all n ∈ N , (2)

where αn denotes the cost share of the input bundle at stage n and an`(n) is the unit input bundle

requirement at stage n in country ` (n). Because the initial stage of production uses solely the local

composite input, we have α1 = 1.

2.2 Lead-Firm Problem

We consider first the problem of a lead firm choosing the location of production of all stages

n ∈ N , in order to minimize the overall cost of serving consumers in a given country j. Using
pFj (`) = pN`(N) (`) τ `(N)j and iterating (2), this problem reduces to:

`j = arg min
`∈JN

pFj (`) = arg min
`∈JN

{
N∏
n=1

(
an`(n)c`(n)

)αnβn × N−1∏
n=1

(
τ `(n)`(n+1)

)βn × τ `(N)j

}
(3)

where

βn ≡
N∏

m=n+1
(1− αm) , (4)

and where we use the convention
∏N
m=N+1 (1− αm) = 1. Note that

∑N
n=1 αnβn = 1.

We next highlight two important features of program (3). First, notice that when trade costs are

identical for all country-pairs (i.e., τ ij = τ for all i and j), the first two terms reduce to a constant

that is independent of the path of production. In such a case, we can break the cost-minimization

problem in (3) into a sequence of N independent cost-minimization problems in which the optimal

location of stage n is simply given by `j (n) = arg mini {ani ci} , and is thus independent of the
country of consumption j. Notice, however that this result requires no differences between internal

and external trade costs (i.e., τ ij = τ also for i = j), and thus this case is isomorphic, up to a

productivity shifter, to an environment with costless trade. With a general geography of trade costs,

a lead firm can no longer perform cost minimization independently stage-by-stage, and instead it

needs to optimize over the whole path of production. Intuitively, the location ` (n) minimizing

production costs an`(n)c`(n) might not be part of a firm’s optimal path if the optimal locations for
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stages n − 1 and n + 1 are suffi ciently far from ` (n). A direct implication of this result is that

the presence of arbitrary trade costs turns a problem of dimensionality N × J into J much more
complex problems of dimensionality JN each. As we will see below, however, the dimensionality of

program (3) can be dramatically reduced using dynamic progamming.

A second noteworthy aspect of the minimand in equation (3) is that the trade-cost elasticity of

the unit cost of serving consumers in country j increases along the value chain. More specifically,

note from equation (4) that, as long as αn > 0 for all n, we have β1 < β2 < ... < βN = 1. For the

particular case in which overall value added is a symmetric Cobb-Douglas aggregator of the value

added of all stages (i.e., αnβn = 1/N , for all n), the program in (3) reduces to

`j = arg min
`∈JN

pFj (`) = arg min
`∈JN

{
N∏
n=1

(
an`(n)c`(n)

)1/N
×
N−1∏
n=1

(
τ `(n)`(n+1)

)n/N × τ `(N)j

}
, (5)

and the trade-cost elasticity increases linearly with the downstreamness n of a stage.

The reason for this compounding effect of trade costs stems from the fact that the costs of

transporting goods have been modelled (realistically, as we argued in the Introduction) to be pro-

portional to the gross value of the good being transacted, rather than being assumed proportional

to the value added at that stage. Thus, as the value of the good rises along the value chain, so does

the amount of resources used to transport the goods across locations. An implication of this com-

pounding effect is that, in choosing their optimal path of production, firms will be relatively more

concerned about reducing trade costs in relatively downstream stages than in relatively upstream

stages. As we will illustrate below and formally demonstrate when exploring the general equilib-

rium of our model, this feature of the cost function will generate a centrality-downstreamness nexus

by which, ceteris paribus, relatively more central countries will tend to gain comparative advantage

and specialize in relatively downsteam stages.5

Although we have derived this compounding effect of trade costs for the case of Ricardian

technological differences and Cobb-Douglas cost functions, we show in Appendix A.1 that the same

result applies for arbitrary constant-returns-to-scale technologies of the type in equation (1). More

specifically, denoting by βn the elasticity of p
F
j (`) with respect to τ `(n)`(n+1), we show that βn is

again necessarily non-decreasing in n even when these elasticities are not pinned down by exogenous

parameters. Thus, the result that firms will be particularly concerned about minimizing trade costs

in downstream stages is quite general.6

5Building on the results in Costinot (2012), we can briefly anticipate this result with the following example.
Suppose that trade costs can be decomposed as τ ij =

(
ρiρj

)−1
, where we take ρi is an index of the centrality

of country i. In such a case, it is straightforward to show that leaving aside other determinants of comparative
advantage, the unit cost of servicing consumers in country j is log-supermodular in a country’s centrality ρi and a
stage’s downstreamness n (see more on this in section 4).

6For example, for the case of a symmetric Leontief technology and production costs equal to 1 in all countries and
stages (i.e., an`(n)c`(n) = 1 for all n and ` (n)), we obtain

pFj (`) = τ `(N)j+τ `(N)jτ `(N−1)`(N)+τ `(N)jτ `(N−1)`(N)τ `(N−2)`(N−1)+τ `(N)jτ `(N−1)`(N)τ `(N−2)`(N−1)τ `(N−3)`(N−2)+· · · ,

which again illustrates the larger relative importance of downstream trade costs.
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2.3 Decentralization and Dynamic Programming

We have so far characterized the problem of a lead firm with full information on the productivity

of the various potential producers of each stage n in each country j. This characterization relies

on strong informational assumptions, so we now consider an alternative environment in which no

individual firm coordinates the whole value chain. Instead, we assume that a value chain constists

of a series of stage-specific producers that simply minimize their cost of production taking into

account their input bundle cost, their productivity, and the cost at which they can obtain the good

finished up to the immediately preceding stage. Similarly, consumers in country j simply purchase

the final good from whichever assembler (i.e., stage N producer) worldwide can provide the finished

good at the lowest price.

From equation (1), a producer of stage n in country ` (n) would choose to procure the good

finished up to stage n − 1 by simply solving min`(n−1)∈J

{
pn−1
`(n−1)τ `(n−1)`(n)

}
, regardless of this

producer’s input bundle cost, productivity and the future path of the good after flowing through

` (n) at stage n. Furthermore, the resulting price at which this producer can sell the good finished

up to stage n to producers of stage n + 1 is only a function of an`(n)c`(n) and this minimum price

min`(n−1)∈J

{
pn−1
`(n−1)τ `(n−1)`(n)

}
. Producers of the initial stage n = 1 only use their local composite

bundle, and thus p1
`(1) = a1

`(1)c`(1).

With constant returns to scale, the identity of the specific firms making these decisions is

of course immaterial, so this formulation is entirely consistent with our previous lead firm using

dynamic programming to solve for the optimal path of production leading to consumption in each

country j ∈ J . More specifically, instead of solving program (3) in a brute force manner, the lead

firm can break the problem into a series of stage- and country-specific optimal sourcing problems

(as in the decentralized formulation above), and then solve the problem via forward induction

(starting in the most upstream stages). Invoking the principle of optimality, we can then establish

(see Appendix A.2) that the resulting optimal path of production ` = {` (1) , ` (2) , ..., ` (N)} ∈ J N

that minimizes the cost pFj (`) in this decentralized formulation of the problem will coincide with

the one we obtained solving the lead-firm problem in (3) by exhaustive search. A key advantage of

this dynamic programming approach is that it only requires J ×N ×J computations to obtain the
optimal production path for all destinations of final consumption, instead of having to optimize

over JN potential paths for each country j.7 For example, with 200 countries and 5 stages, this

amounts to only 200, 000 computations rather than 64 trillion computations.8 Although it might

be clear from our discussion above, it is worth stressing that the isomorphism between the lead-firm

problem and the decentralized problem holds true for any constant-returns-to-scale technology, and

not only for the Cobb-Douglas one in (2).

7See Appendix A.2 for more details. This same point has been made in contemporaneous work by Tyazhelnikov
(2016).

8Though the dimensionality of the lead firm’s problem is huge, for the particular case with Cobb-Douglas tech-
nologies, in Appendix A.2 we show that the problem can also be written as a zero-one integer programming problem,
for which many extremely quick and effi cient algorithms are available (see, for instance, http://www.gurobi.com).
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Figure 1: An Example with Four Countries

2.4 An Example

We close this section by illustrating some of the salient and distinctive features of this partial model

of sequential production via a simple example. We consider a world with four countries (J = 4)

and four stages (N = 4). Technology is given by the symmetric Cobb-Douglas specification in (5),

with αnβn = 1/4 for all n. The four countries are divided into two regions, the West (comprising

countries A and B) and the East (comprising countries C and D). The ‘geography’of this example

is illustrated in Figure 1. Note that we impose a great deal of symmetry: intra-regional trade

costs are common in both regions, and inter-regional costs between A and C are identical to those

between B and D. On the other hand, trade costs between B and C are lower than between A

and D. For simplicity, all domestic trade costs are set to 0, so τ ii = 1 for i = A,B,C,D. We are

interested in solving for the optimal path of a four-stage production process leading to consumption

in country D (in green in the figure). Note that shipping to D directly is least costly when shipping

from D itself, followed by C (the other country in the East), then by A and finally by B, which is

the most remote country relative to D.

We compute the optimal path leading to D for different levels of trade costs starting with

a benchmark with τAB = τCD = 1.3, τBC = 1.5, τAD = 1.75, τAC = τBD = 1.8, and then

scale these international trade costs up or down by a shifter s (so starting from τ ij , we instead

use τ̃ ij (s) = 1 + s × (τ ij − 1)).9 For each matrix of trade costs, we run one million simulations

with production costs anj cj being drawn independently for each stage n and each country j from

a lognormal distribution with mean 0 and variance 1. By choosing a common distribution across

countries and stages, we seek to isolate the role of trade costs in shaping the optimal path of

sequential value chains.

The results of these simulations are depicted in Figure 2 for various levels of s ranging from 0

(free trade) to 50 (which results in close to prohibitive trade costs). The upper left panel shows the

9These parameters are chosen such that for all values of s considered, the triangle inequality holds for any three
given countries.
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average propensity of each country to appear in GVCs leading to consumption in D. The upper

right panel depicts the average position (or downstreamness) of countries in these GVCs. Finally,

the lower panel decomposes GVCs into purely domestic ones (with all production stages in D),

purely regional ones (with some stages in C and D, but not in A or B) and global ones (involving

at least one stage in A or B).

Several aspects of Figure 2 are worth highlighting. First, focusing on the upper left panel,

notice that country B, which is farthest away from country D, appears slightly more often in value

chains leading to D than its Western neighbor A does. The reason for this surprising fact is tightly

related to the sequential nature of production. Even though, A is closer to D than B is, B is

relatively close to D’s Eastern neighbor C, and this makes this ‘remote’country B a particularly

appealing location from which to set off value chains that will flow to D through C.10 A second

noteworthy aspect, apparent from the upper right panel of Figure 2, is that remoteness appears to

shape the average position of a country in GVCs, a fact we anticipated above. More specifically,

country B, which is farthest away from D, is on average the most upstream of all countries, followed

by its Western neighbor A, and then by C, with D being naturally the country positioned most

downstream in value chains leading to consumption in D. Finally, the lower panel of Figure 2

illustrates how the progressive reduction of international trade costs first gives rise to GVCs that

are largely regional in nature, and then later to truly global value chains involving inter-regional

trade. It is also worth highlighting that even for fairly low trade costs, purely domestic GVCs

remain quite prevalent, much more so than would be predicted by an analogous model without

sequentiality (see the Online Appendix B.1). The reason for this is the compounding effect of trade

costs, which other things equal makes it costly to offshore intermediate stages in chains in which

D has comparative advantage in the most upstream and downstream stages.

3 General Equilibrium Model

We next embed the model of firm behavior developed in section 2 into a full-fledged general equi-

librium model.

3.1 Environment

We continue to assume a world with J countries (indexed by i or j) where consumers now derive

utility from consuming a continuum of final-good varieties (indexed by z). Preferences are CES

and given by

u
({
yNi (z)

}1

z=0

)
=

(∫ 1

0

(
yNi (z)

)(σ−1)/σ
dz

)σ/(σ−1)

, σ > 1. (6)

Production of each of the final-good varieties is as described in the previous section: production

processes entails N sequential stages (indexed by n) and is characterized by the Ricardian, Cobb-
10As we show in Online Appendix B.1, in an analogous world without sequentiality, the above pattern would not

hold and the relative prevalence of countries would be strictly monotonic in the level trade costs incurred when
shipping to the assembly location.
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Figure 2: Some Features of Optimal Production Paths

Douglas specification in (2).

We let countries differ in three key aspects: (i) their technological effi ciency, as determined by

the unit input bundle requirements ani (z), (ii) their geography, as captured by a J × J matrix of
iceberg trade cost τ ij ≥ 1, and (iii) their size, as reflected by the measure Li of ‘equipped’labor

available for production in each country i (labor is inelastically supplied and commands a wage

wi).

The composite bundle of inputs used at each stage comprises labor and an aggregator of final-

good varieties that corresponds exactly to the CES aggregator in (6). In other words, part of

final-good production is not absorbed by consumers, but rather by firms that use those goods as

a bundle of materials. This roundabout structure of production is standard in recent Ricardian

models (see Eaton and Kortum, 2002, Alvarez and Lucas, 2007, or Caliendo and Parro, 2014), so

we adopt it for comparability (see, in particular, section 7). We should stress, however, that our

model features intermediate input flows across countries even in the absence of these production

‘loops’. We let the cost of an input bundle in country i be captured by a Cobb-Douglas aggregator

ci = (wi)
γi (Pi)

1−γi , where Pi is the ideal price index associated with the CES aggregator in (6).

Although allowing for variation in value added shares γi across countries is not important for our

theoretical results, it will prove useful in allowing our model to better match world Input-Output

tables.

This completes the discussion of the structure of our general-equilibrium model. In principle,
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given values for the unit bundle requirements ani (z) and all other primitive parameters, the equi-

librium of the model could be computed by (i) solving for the cost-minimizing path of production

for each good z and each destination of consumption j given a vector of wages, and (ii) invoking

labor-market clearing to reduce equilibrium wages to the solution of a fixed point problem. Such

an approach, however, would not be particularly useful in order to formally characterize certain

features of the equilibrium or to estimate the model in a particularly transparent manner. With that

in mind, we next explore a particularly convenient parametrization of the unit bundle requirements

ani (z).

3.2 Technology

Building on the seminal work of Eaton and Kortum (2002), we propose a probabilistic specification

of the unit bundle requirements ani (z) that delivers a remarkably tractable multi-stage, multi-

country Ricardian model. We are certainly not the first ones to explore such a multi-stage extension

of the Eaton and Kortum (2002) framework. Yi (2010) and Johnson and Moxnes (2016), for

instance, consider a ‘natural’extension in which each productivity parameter 1/ani (z) is assumed

stochastic and drawn independently (across goods and stages) from a type II (or Fréchet) extreme-

value probability distribution, as in Eaton and Kortum (2002).

A key limitation of their approach is that the minimum cost associated with a given GVC path

is not characterized by a particularly tractable distribution. The reason for this is that, although

the minimum of a series of Fréchet draws is itself distributed Fréchet, the product of Fréchet random

variables is not distributed Fréchet.11 As a result, these papers need to resort to either calibration

(Yi, 2010) or a simulated method of moments (Johnson and Moxnes, 2016) to map the model to

actual data, while restricting the analysis to two-stage chains. We instead develop two alternative

approach that will permit a sharp characterization of some of the features of the equilibrium for an

arbitrary number of stages and that will be readily amenable to structural (maximum-likelihood)

estimation using world input-output tables.

A. Lead-Firm Approach

We begin by revisiting the problem of a lead firm choosing the location of the various stages of

production with full knowledge of the realized unit bundle requirements ani (z) for each stage in

each country. The key innovation we propose, relative to Eaton and Kortum (2002), is to introduce

randomness to the overall cost of production of a given value chain, rather than to the productivity

of each stage independently. Intuitively, a given production path ` = {` (1) , ` (2) , ..., ` (N)} ∈
JN will be associated with an average cost that is naturally a function of trade costs, input

bundle costs and the state of technology of the various countries involved in the chain. Yet,

compatibility problems, production delays, or simple mistakes can generate idiosyncratic noise

around that average. More formally, and building on the cost function in (3), we assume that the

11Assuming a linear cost function (i.e., perfect complementarity) does not provide tractability either because the
sum of Fréchet random variables is not distributed Fréchet either.
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overall ‘productivity’of a given chain ` is characterized by

Pr

(
N∏
n=1

(
an`(n) (z)

)αnβn ≥ a) = exp

{
−aθ

N∏
n=1

(
T`(n)

)αnβn} , (7)

which amounts to assuming that
N∏
n=1

(
an`(n) (z)

)−αnβn
is distributed Fréchet with a shape parameter

given by θ, and a location parameter that is a function of the states of technology in all countries in

the chain, as captured by
N∏
n=1

(
T`(n)

)αnβn . A direct implication of this assumption is that the unit
cost associated with serving consumers in a given country j via a given chain ` is also distributed

Fréchet. More precisely, denoting by pFj (`) the price paid by consumers in j for a good produced

following the path `, we have

Pr
(
pFj (`) ≥ p

)
= exp

{
−pθ ×

N∏
n=1

((
c`(n)

)−θ
T`(n)

)αnβn × N−1∏
n=1

(
τ `(n)`(n+1)

)−θβn × (τ `(N)j

)−θ}
,

(8)

independently of the final good z under consideration. This result will be key for neatly character-

izing the equilibrium, as we will show in the next section.

B. Decentralized Approach

We also develop an alternative approach closer in spirit to the stage-specific productivity random-

ness in Yi (2010) and Johnson and Moxnes (2016), which also achieves tractability and, in fact,

delivers an identical set of equilibrium conditions to those we will derive under the specification in

(7). On the technology side, we now assume that 1/ani (z) is drawn independently (across goods

and stages) from a Fréchet distribution satisfying

Pr
(
anj (z)αnβn ≥ a

)
= exp

{
−aθ (Tj)

αnβn
}
. (9)

Note that this formulation imposes a common variance (as captured by the shape parameter θ) of

the contribution of each stage n’s productivity —i.e., anj (z)−αnβn —to the overall productivity of a

value chain. This assumption ensures that we do not mechanically introduce heterogeneity across

stages in the trade-cost elasticity related to the importance of these stages in production.12

In order to make this alternative approach tractable, we relax the assumption that firms choose

the optimal path of production with full knowledge of the productivity levels with which all stages of

production in their chain could be produced in different countries. More specifically, we explore an

environment akin to the decentralized equilibrium developed in section 2.3, in which stage-specific

producers simply attempt to minimize the cost of production of their stage. Unlike in section 2.3,

we assume, however, that these stage-specific producers do not observe realized upstream prices

12There is no economic reason to think that that the trade-cost elasticity should vary with the contribution of a
stage to value added, and such variation would obviously obfuscate our result showing that this elasticity rises along
the value chain.
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before making sourcing decisions, and can only forecast these prices based on information on the

productivity levels of their potential direct (or tier-one) suppliers in various countries. These tier-

one supplier productivity levels are not suffi cient statistics for sourcing prices because upstream

marginal costs also depend on the productivity of suppliers further upstream (i.e., tier-two suppliers,

tier-three suppliers and so on). The idea behind this formulation is that firms need to pre-commit to

purchase from particular suppliers based on information they gather from inspecting (e.g., through

factory visits) all their potential immediate suppliers. Ex-post, a supplier’s price might be higher or

lower than expected because this supplier may face unexpectedly high or low sourcing costs itself.

Because this decentralized approach with incomplete information is a bit more cumbersome

than the formulation in (7), we illustrate how it works for the simple case with only two stages,

input production (stage 1) and assembly (stage 2). In Appendix A.3, we show how the approach

naturally generalizes to the case N > 2. Input producers of a given final good z in a given

country ` (1) ∈ J observe their productivity 1/a1
`(1) (z), and simply hire labor and buy materials

to minimize p1
`(1) (z) = a1

`(1) (z) c`(1). Assemblers of good z in any country ` (2) ∈ J observe their

own productivity 1/a2
`(2) (z), as well as that of all potential input producers worldwide, and solve

p2
`(2) (z) = min

`(1)∈J

{(
a2
`(2) (z) c`(2)

)α2 (
a1
`(1) (z) c`(1)τ `(1)`(2)

)1−α2
}
.

Independently of the values of a2
`(2) (z), c`(2), and α2, the solution of this problem simply entails

procuring the input from the location `∗ (1) satisfying `∗ (1) = arg min

{(
a1
`(1) (z) c`(1)τ `(1)`(2)

)1−α2
}
.

As is well-known, the Fréchet assumption in (9) will make characterizing this problem pretty

straightforward. Consider finally the problem of retailers in each country j seeking to procure

a final good z to local consumers at a minimum cost. These retailers observe the productivity

1/a2
`(2) (z) of all assemblers worldwide, but not the productivity of input producers, and thus seek

to solve

pFj (z) = min
`(2)∈J

{(
a2
`(2) (z) c`(2)

)α2
E
[
a1
`∗(1) (z) c`∗(1)τ `∗(1)`(2)

]1−α2
τ `(2)j

}
. (10)

If retailers could observe the particular realizations of input producers, the expectation in (10)

would be replaced by the realization of a1
`(1) (z) c`(1)τ `(1)`(2) in all ` (1) ∈ J , and characterizing

the optimal choice would be complicated because it would depend on the joint distribution of

a2
`(2) (z) and a1

`(1) (z),which is not Fréchet under (9). As we will demonstrate in section 4, with

our incomplete information assumption, the expectation in (10) does not depend on the particular

realizations of upstream productivity draws, and this will allow us to apply the well-know properties

of the univariate Fréchet distribution in (9) to characterize the problem of retailers.

4 Characterization of the Equilibrium

In this section, we characterize the general equilibrium of our model. We proceed in six steps. First,

we leverage our extreme-value representation of GVC productivity to obtain closed-form expressions
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for the relative prevalence (in value terms) of different GVCs in the world equilibrium. Second,

we show how to manipulate these relative market shares of different GVCs to obtain expressions

for bilateral intermediate input and final-good flows across countries, which can be mapped to

observable data from world Input-Output tables. Third, we study the existence and uniqueness

of the general equilibrium. Fourth, we obtain expressions for the gains from trade in our model

and compare them to those in Eaton and Kortum (2002). Fifth, we formalize the link between

downstreamness and centrality that we hinted at in section 2. In a final sixth subsection, we provide

some suggestive evidence for this downstreamness-centrality nexus and also for a key mechanism

in the model.

4.1 Relative Prevalence of Different GVCs and Equilibrium Prices

Let us begin with the lead-firm version of our model, in which the price paid by consumers in j

for a good produced following the path ` ∈ JN is given by the Fréchet distribution in (8). In

such a case, we can readily invoke a few of the results in Eaton and Kortum (2002) to characterize

the equilibrium prices and the relative prevalence of different GVCs. First, it is straightforward to

verify that the probability of a given GVC ` being the cost-minimizing production path for serving

consumers in j is given by

π`j =

N−1∏
n=1

((
T`(n)

)αn ((c`(n)

)αn τ `(n)`(n+1)

)−θ)βn × (T`(N)

)αN ((c`(N)

)αN τ `(N)j

)−θ
Θj

, (11)

where

Θj =
∑

`∈JN

N−1∏
n=1

((
T`(n)

)αn ((c`(n)

)αn τ `(n)`(n+1)

)−θ)βn × (T`(N)

)αN ((c`(N)

)αN τ `(N)j

)−θ
, (12)

and where remember that ci = (wi)
γi (Pi)

1−γi . With a unit measure of final goods, π`j also

corresponds to the share of GVCs ending in j for which ` is the cost-minimizing production path.13

Second, and as in Eaton and Kortum (2002), the price pFj (`) paid by consumers in j for a good

z produced following the path ` satisfies

Pr
(
pFj (`, z) ≤ p

)
= 1− exp

{
−Θjp

θ
}

(13)

regardless of the good z and the actual source (or, in our case, path of production) of the good.

Because the distribution of final-good prices in j is independent of the path `, it then follows

that the probabilities in π`j also constitute the shares of country j’s income spent on final goods

produced under all possible paths ` ∈ JN .
As is clear from equation (11), GVCs that involve countries with higher states of technology Ti

13Note that when N = 1, we necessarily have αN = 1, and the formulas (11) and (12) collapse to the well-know
trade share formulas in Eaton and Kortum (2002).
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or lower input bundles costs ci will tend to feature disproportionately in production paths leading

to consumption in j. Furthermore, and consistently with our discussion in section 2, high trade

costs penalize the participation of countries in GVCs, but such an effect is disproportionately large

for downstream stages relative to upstream stages. This is captured by the fact that the ‘trade

elasticity’associated with stage n is given by θβn, and βn is increasing in n with βN = 1.

Following the same steps as in Eaton and Kortum (2002), we can further solve for the exact

ideal price index Pj in country j associated with (6)

Pj = κ (Θj)
−1/θ , (14)

where κ =
[
Γ
(
θ+1−σ

θ

)]1/(1−σ)
and Γ is the gamma function. For the price index to be well defined,

we impose σ − 1 < θ.

So far we have focused on the ‘randomness-in-the-chain’formulation in (8). Consider now our

alternative approach with stage-specific randomness captured by (9) and incomplete information.

As in section 3, we will focus here on the case with two stages and leave the more general case to

Appendix A.3. Take two countries ` (1) and ` (2) and consider the probability π`j of a GVC flowing

through ` (1) and ` (2) before reaching consumers in j. This probability is simply the product of

(i) the probability of ` (1) being the cost-minimizing location of input production conditional on

assembly happening in ` (2), and (ii) the probability of ` (2) being the cost-minimizing location of

assembly for GVC serving consumers in j. Denoting E`(2) = E
[
τ `∗(1)`(2)a

1
`∗(1) (z) c`∗(1)

]1−α2
, and

using the properties of the Fréchet distribution, it is easy to verify that we can write π`j as

π`j =

(
T`(1)

)1−α2 (c`(1)τ `(1)`(2)

)−θ(1−α2)∑
k∈J

(Tk)
1−α2 (ckτk`(2)

)−θ(1−α2)

︸ ︷︷ ︸
Pr(`(1)|`(2))

×

(
T`(2)

)α2 ((c`(2)

)−α2 τ `(2)j

)−θ (
E`(2)

)−θ∑
i∈J

(Ti)
α2 ((ci)

α2 (τ ij))
−θ (Ei)−θ︸ ︷︷ ︸

Pr(`(2))

. (15)

A bit less trivially, but also exploiting well-known properties of the Fréchet distribution, it can

be shown that

E`(2) = E
[
τ `∗(1)`(2)a

1
`∗(1) (z) c`∗(1)

]1−α2
= ς

(∑
k∈J

(Tk)
1−α2 (ckτk`(2)

)−θ(1−α2)

)−1/θ

,

for some constant ς > 0, which allows us to reduce (15) to

π`j =

(
T`(1)

)1−α2 (c`(1)τ `(1)`(2)

)−θ(1−α2) (
T`(2)

)α2 ((c`(2)

)−α2 τ `(2)j

)−θ
∑
k∈J

∑
i∈J

(Tk)
1−α2 (ckτki)

−θ(1−α2) (Ti)
α2 ((ci)

α2 (τ ij))
−θ . (16)

It should be clear that this expression is identical to (11) —plugging in (12) —for the special case

N = 2. It is also straightforward to verify that the distribution of the price pFj (z) paid by consumers
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in j for any good z produced following the path ` = {` (1) , ` (2)} is independent of the actual path
` and is again characterized, as in equation (13), by Pr

(
pFj (`) ≤ p

)
= 1− exp

{
−Θ̃jp

θ
}
, where Θ̃j

is the denominator in (16), and is the analog of Θj in (12) when N = 2.

In sum, this alternative specification of the stochastic nature of technology delivers the exact

same distribution of GVCs and of consumer prices as the one in which the overall GVC unit cost is

distributed Fréchet. As mentioned above and as demonstrated in Appendix A.3, this isomorphism

carries over to the case N > 2.

4.2 Mapping the Model to Observables

So far, we have just described how to adapt the Eaton and Kortum (2002) probabilistic approach

to apply to trade shares in terms of specific production paths (or GVCs) rather than in terms of

trade volumes. Unfortunately, these ‘GVC trade shares’are not observable in the data, so we next

describe how to map the model to the type of information available in world Input-Output datasets.

These sources of data provide information on (i) the share of final-good consumption in country

j originating in assembly plants (producing stage N) in all other countries i, and (ii) the share of

intermediate input purchases used by firms in j originating from producers in all other countries

in j.

Consider first the implications of our model for final-good shares. Notice that final goods flow

from a given source country i to a given destination country j only in GVCs serving consumers in

country j in which country i is in position N . Define the set of GVCs flowing through i at position

n by Λni ∈ JN−1. Formally, Λni =
{
` ∈ JN | ` (n) = i

}
. The overall relative prevalence of all GVCs

serving consumers in j in which country i is in assembly (position N) can then be expressed as

πFij =

∑
`∈ΛNi

N−1∏
n=1

((
T`(n)

)αn ((c`(n)

)αn τ `(n)`(n+1)

)−θ)βn × (Ti)
αN ((ci)

αN τ ij)
−θ

Θj
. (17)

Because these flows occur at the same expected price for all goods regardless of the actual source

country j, it follows that the shares πFij also correspond to the final consumption shares reported

in world Input-Output tables. Our model thus provides explicit formulas for these world Input-

Output entries as a function of the parameters of our model and the endogenous input bundle cost

ci, which we can solve for in general equilibrium. Note also that final-good trade flows between any

two countries i and j are then simply given by πFij ×wjLj , since spending on final goods in country
j must equal aggregate income, and labor is the only factor of production (when we estimate the

model, we will incorporate trade imbalances).

Computing intermediate input flows between any two countries i and j is a bit more tedious,

but equally straightforward. To begin, we need to distinguish between two types of intermediate

input flows. First, at any stage of production, firms in country j purchase a bundle of intermediates

at cost Pj from firms worldwide, and part of that spending originates in country i. Because the

bundle of intermediate corresponds exactly to the consumption CES aggregator, the share of j’s
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input purchases originating in i is again given by πFij in (17).
14 Furthermore, note that any time

the bundle of intermediates is used in production, spending on it in country j equals a multiple(
1− γj

)
/γj of spending on labor. As a result, aggregate flows between i and j of this type of

intermediates are given by πFij ×
(
1− γj

)
/γj × wjLj .

In our multi-stage model, there is a second type of intermediate input flows across countries.

In particular, firms from j also import a semi-finished product from i in sequential GVCs in which

i immediately precedes j. To compute these flows, let us begin by denoting by Λnk→i ∈ JN−2 the

set of GVCs that flow through k at position n ≤ N − 1 and through i at position n + 1, or more

formally, Λnk→i =
{
` ∈ JN | ` (n) = k and ` (n+ 1) = i

}
. The probability that this subset of GVCs

emerges in equilibrium in GVCs serving consumers in j is given by

Pr (Λnk→i, j) =

∑
`∈Λnk→i

N−1∏
n=1

((
T`(n)

)αn ((c`(n)

)αn τ `(n)`(n+1)

)−θ)βn × (T`(N)

)αN ((c`(N)

)αN τ `(N)j

)−θ
Θj

.

Note further that all final goods sold in j, command the same expected price regardless of the actual

chain, and thus Pr (Λnk→i, j) corresponds to the share of total spending in country j associated with

chains that flow through k at position n ≤ N − 1 and through i at position n+ 1 before reaching

country j after assembly. Moreover, the value of the trade flow between countries k and i at

positions n and n+ 1 is a share βn of the total spending on that chain in country j.
15 The latter

spending comprises final-good consumption (wjLj) and spending in the intermediate input bundle

(
(
1− γj

)
/γj × wjLj). To find the overall spending of intermediate input purchases by firms in i

importing from firms in k immediately upstream from them, we thus just need to aggregate across

destinations markets j and neighboring stages n and n+ 1 to obtain

Xki =
∑
j∈J

N−1∑
n=1

βn Pr (Λnk→i, j)
1

γj
wjLj .

Together with the input flows associated with the more standard roundabout structure of pro-

duction, we finally obtain that the share of input purchases by firms in i originating in country k

is given by:

πXki =

πFki
1−γi
γi

wiLi +
∑
j∈J

N−1∑
n=1

βn Pr (Λnk→i, j)
1
γj
wjLj

∑
k′∈J

πFk′i
1−γi
γi

wiLi +
∑
k′∈J

∑
j∈J

N−1∑
n=1

βn Pr
(
Λnk′→i, j

)
1
γj
wjLj

. (18)

Although computing these intermediate input shares is somewhat cumbersome, notice that our

model provides an explicit expression for these shares, which have an empirical counterpart in

world Input-Output databases (see more on this in section 6).

14 In the Eaton and Kortum (2002) model, these are the only type of intermediate input flows and thus there is a
unique ‘trade share’πij regardless of the nature of the goods flowing between country i and country j.
15This can be verified by iterating (2) and referring to the definition of βn in (4).
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4.3 General Equilibrium

So far, we have characterized trade flows as a function of the vectors of equilibrium wages w =

(w1, ..., wJ) and of input bundle costs P = (P1, ..., PJ). We next describe how these vectors are

pinned down in general equilibrium.

Notice first that invoking (14) and ci = (wi)
γj (Pi)

1−γj , we can solve for the vector P as a

function of the vector w from the system of equations:

Pj = κ

( ∑
`∈JN

N∏
n=1

((
c`(n)

)−θ
T`(n)

)αnβn × N−1∏
n=1

(
τ `(n)`(n+1)

)−θβn × (τ `(N)j

)−θ)−1/θ

. (19)

To solve for equilibrium wages, notice that for all GVCs, stage n value added (or labor income)

accounts for a share γ`(n)αnβn of the value of the finished good emanating from that GVC. Fur-

thermore, total spending in any country j is given by the sum of final-good spending (wjLj) and

spending in the intermediate input bundle (
(
1− γj

)
/γj×wjLj). The share of that spending going

to GVCs in which country i is in position n is given by Pr (Λni , j) =
∑
`∈Λni

π`j , where remember

that we have defined Λni =
{
` ∈ JN | ` (n) = i

}
and π`j is given in equation (11). It thus follows

that the equilibrium wage vector is determined by the solution of the following system of equations

1

γi
wiLi =

∑
j∈J

∑
n∈N

αnβn × Pr (Λni , j)×
1

γj
wjLj . (20)

The system of equations is nonlinear because Pr (Λni , j) is a nonlinear function of wages themselves,

and of the vector P , which is in turn a function of the vector of wages w.

When N = 1, we have that αNβN = 1 and Pr (Λni , j) = πij = (τ ijci)
−θ Ti/

∑
k

(τkjckk)−θ Tk.

The equilibrium then boils down to a simple generalization of the general equilibrium in Eaton and

Kortum (2002) and Alvarez and Lucas (2007), with cross-country variation in how the composite

input aggregates value added and the bundle of intermediate inputs.

In Online Appendix B.2, we build on Alvarez and Lucas (2007) to show that, given a vector of

wages w, the system of equations in (19) delivers a unique vector of input bundle costs P . In that

Appendix, we also demonstrate the existence of a solution w∗ ∈ RJ++ to the system of equations

in (20) —with (19) plugged in —and we derive a set of suffi cient conditions that ensure that this

solution is unique.

4.4 Gains from Trade

We next study the implications of our framework for how changes in trade barriers affect real

income in all countries. Consider a ‘purely-domestic’value chain that performs all stages in a given

country i to serve consumers in the same country i. Let us denote this chain ` = (i, i, ..., i) by iN .
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From equation (11), such a value chain would capture a share of country i’s spending equal to

πiN = Pr
(
iN
)

=
(τ ii)

−θ
(

1+
∑N−1

n=1
βn

)
× (ci)

−θ Ti
Θi

,

where we have used the fact that
∑N

n=1 αnβn = 1. Combining this equation with (14) and ci =

(wi)
γi (Pi)

1−γi , we can establish that real income in country i can be expressed as

wi
Pi

=

(
κ (τ ii)

1+
∑N−1

n=1
βn

)−1/γi
(
Ti
πiN

)1/(θγi)

. (21)

Because under autarky πiN = 1, we can conclude that the (percentage) real income gains from

trade, relative to autarky, are given by (πiN )−1/(θγi) − 1. This formula is analogous to the one

that applies in the Eaton and Kortum (2002) framework (and the wider class of models studied by

Arkolakis et al., 2012). An important difference, however, is that πiN is not the share of spending

on domestic finished goods (πFii in equation (17)), but rather the share of spending on goods

that only embody domestic value added. The latter share πiN is necessarily lower than πFii (and

increasingly so, the larger number of stages), and thus the gains from trade emanating from our

model are expected to be larger on this account. This result is similar to the one derived by Melitz

and Redding (2014) in an Armington framework with sequential production, and also bears some

resemblance to Ossa’s (2015) argument that the gains from trade can be significantly larger in a

multi-sector models, with stages in our model playing the role of sectors in his framework. One can

also show that our Cobb-Douglas assumption in technology is not essential for this result: the gains

from trade would still be given (πiN )−1/(θγi) − 1 for any CES multi-stage production technology

with an elasticity of substitution lower than one between the value added at different stages.16

Another key distinctive feature of the formula in (21) is that, unlike πFii , πiN cannot be directly

observed in the data, and thus the suffi cient statistic approach advocated by Arkolakis et al. (2012)

is not feasible in our setting. Instead, one needs a model to structurally back out πiN from available

data. For a similar reason, the hat algebra approach to counterfactual analysis proposed by Dekkle

et al. (2008) is not feasible in our setting.

Although we have argued above that πiN < πFii translates into large gains from trade than

in models without sequential production, it should be noted that the values of γi and θ that are

appropriate for our model might be different from those appropriate for a model without multi-

stage production. First, remember that our model features an additional type of intermediate input

flows relative to a model with roundabout production. In order to match the empirical ratio of

value added to gross output in each country, our model will thus require setting relatively higher

values of γi, which other things equal, will lead to lower gains from trade. As for the parameter

θ governing the elasticity of trade flows to iceberg trade costs, we can no longer rely on simple

gravity equation specifications to back out that parameter. Furthermore, our model suggests that

16We thank Arnaud Costinot for this observation. It should be clear, however, that the πiN one would back out
from available data would depend on the multi-stage production function one specifies.

20



the trade elasticity should on average be lower for intermediate inputs than for final goods, a

prediction we will find some suggestive empirical support for below. This suggests that the proper

way to calibrate our model entails setting a value of θ higher than the one that would be suitable

to calibrate a Ricardian model without multi-stage production. As in the case of γi, the use of

a larger value of θ would again generate a downward correction to the gains from trade. Overall,

whether our model generates larger or smaller gains from trade than models without multi-stage

production is an empirical question, one which we will explore in section 7.

4.5 The Centrality-Downstreamness Nexus

We next exploit the tractability of our framework to formally explore the role of a country’s ge-

ography (and, in particular, its centrality) in shaping its average position in GVCs. In order to

isolate the role of geography in shaping GVC positioning, we further focus on the ‘symmetric’

case αnβn = 1/N for all stages n, which amounts to assuming αn = 1/n and βn = n/N for all

n ∈ N . Without this assumption, technology would not be symmetric in the value added originated
at different stages, and thus the state of technology Ti of a country would affect different stages

differentially, thereby generating technological comparative advantage.17

In order to formalize a centrality-downstreamness nexus, let us define the average upstreamness

of production of a given country i in value chains that seek to serve consumers in country j, by

U (i; j) =
N∑
n=1

(N − n+ 1)× Pr (Λni , j)∑N
n′=1 Pr

(
Λn
′
i , j

) , (22)

where remember that Pr (Λni , j) is the probability that country i features in position n in value

chains leading to consumption in country j, and corresponds to Pr (Λni , j) =
∑
`∈Λni

π`j , with π`j
given in equation (11). The index U (i; j) in (22) is thus a weighted average distance of country i

from final consumers in value chains that service consumers in country j, and it is closely related

to measure proposed by Antràs et al. (2012). Although U (i; j) in equation (22) uses probabilities

rather than expenditure shares as weights, it can be verified that given our symmetry assumption,

these probabilities correspond to the share of country i’s value added at each stage in chains ending

in consumption in country j.

We seek to establish a connection between the measure of upstreamness U (i; j) and the cen-

trality of country i. As in section 2, the structure of equation (11) already hints at a negative

association between the two, since high values of trade costs (high τ ij) in relatively downstream

stages (high n) have a disproportionately negative effect on the likelihood of a given permutation of

countries forming an equilibrium value chain. In order to develop a more precise formulation of this

result, we assume that the easiness of trade between any two countries i and j can be decomposed

as (τ ij)
−θ = ρiρj , where we take ρi to be an index of the centrality of country i. Notice that if

17For instance, if downstream stages contributed more to overall value added than upstream stages, we would
obtain a prediction analogous to that in Costinot et al. (2013), namely that countries with better technologies Ti
have comparative advantage in downstream stages.
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Input use & value added Final use Total use
Country 1 · · · Country J Country 1 · · · Country J

Intermediate Country 1 X11 · · · X1J F11 · · · F1J Y1

inputs · · · · · · · · · · · · · · · · · · · · · · · ·
supplied Country J XJ1 · · · XJJ FJ1 · · · FJJ YJ

Value added w1L1 · · · wJLJ
Gross output Y1 · · · YJ

Figure 3: A schematic world Input-Output table.

country i is more central than country j, then it is cheaper to ship from i to any other country in

the world than it is to ship from country j. This is a rather strong notion of centrality but it has

the virtue of providing the following stark result (which we prove in Appendix A.4):

Proposition 1 The more central a country i is (i.e., the higher is ρi), the lower is the average
upstreamness U (i; j) of this country in global value chains leading to consumers in any country

j ∈ J .

In the next section, we will provide suggestive evidence consistent with this prediction.

5 Data Sources and Suggestive Evidence

The structural estimation of our model relies exclusively on aggregate world Input-Output data.

To understand the nature of the data, it is useful to refer to the schematic representation of a

WIOT in Figure 3. This matrix is split into two blocks with the block on the left containing data

on bilateral intermediate input trade flows across countries (denoted by Xij) and the block on the

right containing the data for final good trade flows (denoted by Fij). Each row (column) represents

the sales (purchases) of each country to (from) every other country. More specifically, each row

corresponds to the sales of a country for production in every other country (intermediate input

sales) and for consumption in every other country (final good sales). Hence, the sum across a row

equals a country’s gross output (denoted by Yi). Meanwhile, columns in the left block contain

intermediate input purchases by each country so that the sum across a column equals gross output

minus value added (the latter denoted by wiLi). Finally, summing down a column on the right

block delivers aggregate final good consumption.18

Given the cells of a WIOT, it is straightforward to construct empirical analogs to our model’s

key equilibrium variables, namely the final-good πFij and intermediate input shares π
X
ij in (17) and

(18), as well as gross output and value added in each country. More specifically, denoting by a ‘hat’

18Note that the difference between aggregate final consumption and value-added is the trade deficit/surplus. These
deficits are nontrivial for certain countries and are taken into account in both our estimation and counterfactual
exercises, as discussed below.
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Figure 4: Some Key Features of the World Input Output Database

these empirical moments, we have

π̂Fij =
Fij∑

i′∈J Fi′j
, π̂Xij =

Xij∑
i′∈J Xi′j

, Ŷj =
∑
i∈J

Xji +
∑
i∈J

Fji, ŵjLj = Ŷj −
∑
i∈J

Xji.

(23)

Building a WIOT of the type in Figure 3 is a formidable endeavor because it requires collecting

trade and production data from many different sources, including national and supra-national

statistical offi ces, but also because it necessarily requires assumptions and data analysis in order

to make the data comparable. In this paper we work, for the most part, with the World Input

Output Database (or WIOD for short), the outcome of a project was carried out by a consortium

of 12 research institutes headed by the University of Groningen in the Netherlands (see Timmer

et al., 2015). We choose this dataset for our benchmark estimation because we believe that the

assumptions put into its construction are less heroic than those contained in other sources. The

main limitation of the WIOD is that it only covers 43 relatively developed countries, and includes

no African country and only one country in Latin America (Brazil).19 With that in mind, we will

also estimate our model using the more comprehensive Eora MRIO database, which provides yearly

world input-output tables covering 190 countries and the rest of the world for the period 1990-2013.

Although we find this dataset less reliable than the WIOD, its broader sample will enrich the set

of counterfactuals studied in section 7.

Figure 4 depicts some salient characteristics of the data we employ in our structural estimation.

The left panel plots the diagonal elements π̂Fii of the final-good matrix against the diagonal elements

π̂Xii of the input matrix in the WIOD for the year 2013, with the size of each observation being

proportional to each country’s GDP. As is clear from the graph, most observations lie above the

45 degree line, indicating that the input π̂Xij and output π̂
F
ij matrices are asymmetric, and that

19Two releases of the WIOD are available. The 2016 release contains a WIOT covering 43 countries and the rest
of the world for the period 2000-2014. A previous relase (2013) contained information for 40 countries and the rest
of the world, for the period 1995-2011. See http://www.wiod.org.
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countries tend to rely on foreign sources more prevalently for inputs than for final goods. This

pattern, which is also observed in the Eora dataset (see Figure A.2 in the Appendix), is consistent

with the notion that trade costs are more detrimental for downstream versus upstream stages. The

right panel of Figure 4 plots each country’s gross output to final-good sales (GO/F ) against its

gross output to value added ratio (GO/V A). In a closed-economy, these two ratios would naturally

coincide and all observations would lie on the 45 degree line. In a globalized world, differences in

these ratios provide a rough measure of the positioning of countries in GVCs. More specifically, for

a given GO/V A, a high share of final output in overall sales (i.e., a low GO/F in the vertical axis)

would indicate that a country is relatively downstream in GVCs. Similarly, for a given GO/F , a

high ratio GO/V A would indicate that a country uses a relatively large amount of foreign inputs in

production, which again would suggest a relatively downstream position of this country in GVCs.

With this background, the figure indicates that although there are some deviations from the 45

degree line, cross-country variation in these ratios is much larger than within-country differences.

These considerations motivate the introduction of cross-country variation in the value-added shares

γi in our model. Without such variation, it would be impossible for us to match the ratios in the

right-panel of 4.

Suggestive Evidence

Having described our main data sources, we complete this section by exploring the empirical rel-

evance of a key mechanism of the model —namely, the fact that the trade elasticity is larger for

downstream stages than for upstream stages —and of the centrality-downstreamness nexus result in

Proposition 1. The empirical analysis in this section is reduced-form in nature and not structurally

related to our model, but we deem them to be informative nonetheless. We also note that the tests

below use additional sources of data that are not employed in the structural estimation, so we will

only discuss them succinctly as we introduce them.

We begin by studying empirically the compounding effect of trade costs, a key feature of our

model. A crude way to assess the differential sensitivity of trade flows to trade costs at different

stages of the value chain is to compare the elasticity of intermediate-input and final-good flows to

various proxies for trade costs τ ij . In particular, and building on the gravity equation literature,

consider projecting the bilateral trade cost parameters τ ij on a vector of pair-specific variables

including distance, contiguity and a common language indicator. More specifically, let

ln τ ij = lnκ+ δdist lnDistanceij + δconContiguityij + δlangSameLanguageij .

As long as the coeffi cients δdist, δcon and δlang are common for intermediate inputs and final

goods, then any difference in the sensitivity of final-good versus intermediate-input trade flows to

these bilateral gravity variables will be indication of a differential sensitivity of ‘upstream’versus

‘downstream’trade flows to trade costs. To assess the plausibility of this approach, consider the

case of the distance elasticity δdist. Our key identification assumption in that case is that trade
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costs, as a percentage of the value of the good being shipped, are identical regardless of whether

the good is an input or a final-good. If we observe final-good trade being more sensitive to distance

than input trade, we will then conclude that final-good trade is more sensitive to trade costs than

input trade is.

We implement this test in Table 1. In columns (1) and (2) of that table we report the results of

a standard gravity specification in which the log of aggregate shipments from country i to country

j are run on exporter and importer fixed effects, as well as the log of distance between i and j and

dummy variables for whether i and j share a contiguous or share a common border. Our shipments

data are from 2011 and correspond to the Eora MRIO database (described above). The data cover

190 countries and include information on domestic shipments (i.e., sales from i to i). The gravity

variables are from the CEPII dataset for the year 2006 (the most recent one available), and the

merge between these two datasources leaves us with information on 180 countries.

Table 1. Trade Cost Elasticities for Final Goods and Intermediate Inputs

(1) (2) (3) (4) (5) (6) (7)

Distance -1.111∗∗∗ -0.823∗∗∗ -1.144∗∗∗ -0.851∗∗∗ -1.210∗∗∗ -0.903∗∗∗ -0.794∗∗∗

(0.019) (0.014) (0.019) (0.014) (0.021) (0.015) (0.015)

Distance × Input 0.133∗∗∗ 0.106∗∗∗ 0.098∗∗∗

(0.006) (0.006) (0.006)

Continguity 2.187∗∗∗ 2.198∗∗∗ 2.287∗∗∗ 1.184∗∗∗

(0.111) (0.112) (0.120) (0.099)

Continguity × Input -0.177∗∗∗ -0.054

(0.037) (0.040)

Language 0.480∗∗∗ 0.507∗∗∗ 0.596∗∗∗ 0.513∗∗∗

(0.026) (0.027) (0.029) (0.027)

Language × Input -0.179∗∗∗ -0.169∗∗∗

(0.013) (0.013)

Domestic 5.635∗∗∗

(0.187)

Domestic × Input -0.599∗∗∗

(0.067)

Observations 32,400 32,400 64,800 64,800 64,800 64,800 64,800

R2 0.98 0.982 0.972 0.974 0.972 0.974 0.976

Notes: Standard errors clustered at the country-pair level reported. ∗∗∗, **, and * denote 1, 5 and 10 percent
significance levels. All regressions include exporter and importer fixed effects. Regressions in columns (3)-(7) also

include a dummy variable for inputs flows. See Appendix ?? for details on data sources.

Our results in columns (1) and (2) are fairly standard. Distance reduces trade flows with an

elasticity of around −1, while contiguity and common language have a sizeable positive effect on
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bilateral flows. Starting in column (3), we exploit a key advantage of the Eora MRIO database,

namely the fact that it reports separately bilateral shipments of intermediate inputs (Xij) and of

finished goods (Fij). In columns (3) and (4), we pool these observations and re-run the specifica-

tions in columns (1) and (2), while clustering at the country-pair level. It is clear that the results

are almost identical to those in columns (1) and (2). More interestingly, in column (5) we document

that the elasticity of trade flows to distance is significantly larger for final-good trade (−1.210) than

for intermediate-input trade (−1.077). The difference is sizeable and highly statistically significant.

In column (6), we document a similar phenomenon: the positive effect of contiguity and common

language on trade flows is significantly attenuated when focusing on the intermediate-input com-

ponent of trade. Finally, in column (7) we introduce a dummy variable for intranational shipments

as well as its interaction with input trade. As is well-known from the border-effect literature, the

domestic trade dummy is very large, but we again observe that it is significantly lower for input

trade, a result consistent with the scatter plot in the left panel of Figure 4 discussed above.

Taken together, the results in Table 1 are highly suggestive of trade barriers impeding trade

more severly in downstream stages than in upstream stages. In Online Appendix B.4, we further

show that our results are not materially affected when pooling data from all years (1995-2013)

for which the Eora dataset is available (instead of just using 2011 data).20 We also repeat our

tests using data from the two releases of the WIOD database, which cover a smaller and more

homogenous set of countries. The results with the 2013 release of the WIOD continue to indicate a

significantly lower distance elasticity and lower ‘home bias’in intermediate-input relative to final-

good trade. Nevertheless, with the 2016 release of the same dataset, we only find support for the

second differential effect (see Online Appendix B.4 for details). This last result makes us interpret

our results with caution. Another important caveat with the evidence above is that it is based

on gravity-style specifications that are inconsistent with our theoretical framework. As equations

(17) and (18) indicate, bilateral trade flows of final goods and intermediate inputs will typically be

affected by trade costs associated with third countries (see Morales et al., 2014, and Adao et al,.

2017, for recent evidence of these third-market effects).

We next turn to examining the empirical relevance of the downstreamness-centrality nexus

formalized in Proposition 1. For that purpose, we build on Antràs et al. (2012) who propose a

measure of the positioning of countries in GVCs and study how this measure correlates with various

country-level variables. More specifically, Antràs et al. (2012) propose a measure of industry

“upstreamness”(or average distance of an industry’s output from final use) and then compute the

average upstreamness of a country’s export vector using trade flow data from the BACI dataset

for the year 2002. Column (1) of Table 2 reproduces exactly their baseline specification, which

includes 120 countries, and correlates a country’s upstreamness with its GDP per capita, rule of

law, financial development, capital-labor ratio and human capital (schooling).21 Only financial

development and schooling have a statistically significant partial correlation with upstreamness.

20 In fact, we have obtained extremely stable results when running these same regressions year by year for this same
period 1995-2013.
21The source for each of these variables is discussed in Antràs et al. (2012).

26



In order to assess the relationship between upstreamness and centrality, we simply add a mea-

sure of centrality to these core specification in column (1). In particular, for each country i we

compute CGDPi =
∑

j (GDPj/Distanceij) and C
pop
i =

∑
j (Populationj/Distanceij), which cap-

ture a country’s proximity to other countries with either large GDP or large population (or both).

We are able to compute these measures for only 118 of the original 120 countries in Antràs et al.

(2012), so for completeness, column (2) reproduces the results of running the same specification as

in column (1) with only those 118 countries. Clearly, the results are not materially affected. More

interestingly, in columns (3) and (4) we document a highly statistically significant negative rela-

tionship between upstreamness and each of the two measures of centrality. This partial correlation

is not driven by the presence of the other covariates: column (5) shows that it persists when only

controlling for GDP per capita, and column (6) demonstrates that it holds even unconditionally.

In Online Appendix B.4, we plot this relationship and show that it is not driven by any outliers.

Though these correlations cannot be interpreted causally, they are again suggestive of the empirical

relevance of the nexus between centrality and downstreamness highlighted in Proposition 1.

Table 2. Export Upstreamness and Centrality

(1) (2) (3) 4) (5) (6)

Centrality (GDP weighted) −0.173∗∗∗ −0.233∗∗∗ −0.155∗∗∗

(0.065) (0.061) (0.044)

Centrality (population weighted) −0.228∗∗∗

(0.084)

Log(Y/L) 0.083 0.082 0.102 0.046 0.083∗

(0.142) (0.142) (0.138) (0.148) (0.046)

Rule of Law −0.029 −0.026 0.010 0.010

(0.103) (0.104) (0.105) (0.105)

Credit/Y −0.437∗∗∗ −0.440∗∗∗ −0.375∗∗∗ −0.407∗∗∗

(0.136) (0.137) (0.130) (0.135)

Log(K/L) 0.156 0.159 0.163 0.188

(0.131) (0.132) (0.129) (0.132)

Schooling −0.085∗∗∗ −0.085∗∗∗ −0.083∗∗∗ −0.094∗∗∗

(0.031) (0.031) (0.030) (0.029)

Observations 120 118 118 118 118 118

R2 0.154 0.153 0.194 0.199 0.083 0.056

Notes: Robust standard errors reported. ∗∗∗, **, and * denote 1, 5 and 10 percent significance levels. See Appendix
?? for details on data sources.
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6 Estimation

We next turn to a more structural empirical exploration of the model. In our baseline, we will

employ data from the WIOD for the year 2013, but we will subsequently replicate our estimation

using the broader Eora dataset for the year 2012.

It is useful to begin by outlining the parameters we need to estimate or calibrate for a given

number J of countries and N of stages. Geography is pinned down by the J × J matrix of

iceberg trade costs τ ij . Production depends on the Cobb-Douglas input expenditure shares αn,

which are stage-specific but common across countries, while the labor value-added shares γj are

country-specific but common across stages. There are thus N αn’s to estimate and J γj’s. Lastly,

labor productivity depends on a vector J ×1 of country-specific state-of-technology levels Tj , while

comparative advantage is governed by a single parameter θ. Although countries are also allowed to

vary in terms of their supply of equipped labor, the particular values of Lj only affect the estimates

of Tj and of equilibrium wages, but have no bearing on the counterfactuals discussed below. In

order to keep the estimates of Ti in economically meaningful levels, we simply normalize equipped

labor as Li = (capitali)
1
3 (populationi)

2
3 , where both capital and population are drawn from the

Penn World Tables for the years 2013 (in the Eora estimation) and 2014 (in the WIOD estimation).

To pin down trade costs, we follow the method proposed by Head and Ries (2001) and make the

simplifying assumption that domestic trade costs are common across countries and normalized to

0, i.e. τ jj = 1 for all j ∈ J . International trade costs, up to a power −θ, can then be immediately
read off the data through the use of equation (17) and our empirical analogs in (23):

τ−θij =

√√√√ π̂Fij

π̂Fii

π̂Fji

π̂Fjj
. (24)

Trade costs are symmetric by construction, i.e. τ ij = τ ji, and in practice the triangle inequality

(i.e., τ ij ≤ τ ikτkj) holds across more than 99.9% of triples.

A consequence of our approach to backing out trade costs is that the calibrated values for τ−θij
we obtain are unaffected by the particular value of θ chosen. Although the value of θ affects the

equilibrium of our model beyond its effect on τ−θij , it turns out that the moments we employ for

our structural estimation (see below) do not identify θ. More precisely, for every possible value of

θ, there exists a re-normalization of Tj that yields the same equilibrium (conditional on the same

set of parameters γj and αn). With that in mind, we simply set θ = 5 in our estimation. This

value is slightly higher than is typically assumed in the literature, but our model predicts that the

trade elasticity for final goods (i.e., θ) should be larger than the elasticity one would estimate with

overall trade flows (which is a weighted average of θβ1, θβ2,...θ).
22 We will return to this point

below, after having estimated the βn’s (i.e, the αn’s).

Another tricky parameter to calibrate is the number of stages N . We initially estimate the

22Simonovska and Waugh (2014), in a widely cited study, find a range for the elasticity of trade between 2.47 and
5.51. Using U.S. import data, Antràs et al. (2017) estimate an elasticity of trade of 4.54.
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model for the case N = 2. This is the simplest multi-stage model one could estimate, and as we

will discuss extensively below, the data actually appears to favor this value of N over larger ones.

Having pinned down the matrix of trade costs τ−θij , θ, and N, we estimate the remaining

parameters of the model by targeting specific moments of a WIOT via the generalized method

of moments (GMM). More specifically, we target four sets of moments, each constituting a J × 1

vector: i) the diagonal elements π̂Fii of the final-good matrix; ii) the diagonal elements π̂
X
ii of the

input matrix, iii) the gross output to value added ratio GOi/V Ai in each country, and iv) the GDP

share ŵiLi/
∑

j ŵjLj of each country.
23

The choice of these moments is motivated by the following considerations. First, note that

the vector of state of technology parameters Ti naturally shapes wages and thus (for given Li)

variation in GDP shares across countries. These technology parameters also affect the extent to

which countries rely on local versus foreign sources of inputs and final goods (and thus the shares

π̂Xii and π̂
F
ii . Meanwhile, the input expenditure shares αn determine how fast the trade elasticity

increases along GVCs, and are thus crucial in shaping the observed differences between the input

own share π̂Xii and the output own share π̂
F
ii . WithN = 2, we need only estimate α2 (since α1 = 1 by

assumption). If α2 were to be close to 1, the sequentiality of production would become immaterial,

and all input trade would reflect a roundabout structure of production, as in Eaton and Kortum

(2002). In such a case, we would not expect large asymmetries between π̂Xii and π̂
F
ii . Our previously

discussed evidence in the left panel of Figure 4 already indicated the empirical importance of those

asymmetries, so we would not expect α2 to be too close to 1.

Finally, the vector of gross output to value added ratios GOi/V Ai is a natural target for the

vector of country-specific value-added share parameters γj . To see this, note that with N = 1, the

gross output to value-added ratio is given by

GOi
V Ai

=
Yj
wjLj

=
wjLj +

1−γj
γj

wjLj

wjLj
=

1

γj
.

When N > 1, the expression for the gross output to value-added ratio is more complicated and

the other parameters of the model — and most notably the input shares αn —have an influence

over GOi/V Ai. To see this, consider our estimation with N = 2. For a given γj , the gross-output

to value-added ratio will be close to 1/γj when the upstream stage of production is irrelevant for

production (i.e., when α2 → 1), since this corresponds to reducing N from 2 to 1. Conversely, when

α2 → 0, the downstream stage of production adds very little value, and the gross output to value

added ratio is close to 2/γj , since the same output is shipped twice but value is added essentially

only once. In practice, for a general N , the gross output to value added ratio features variation

(see the right panel of Figure 4 above) both because countries have different labor value-added

shares but also because they find themselves at different degrees of upstreamness along the GVC;

23 In order to guarantee that our model provides a proper quantitative evaluation of the general-equilibrium workings
of the world economy, we place a higher weight on matching the empirical moments of larger economies. More
precisely, our weighting matrix is a diagonal matrix with GDP shares in the diagonal.
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the interaction of both forces determine this statistic.

Before turning to a discussion of our estimation results, we briefly comment on our treatment of

trade imbalances. As mentioned above (see footnote 18), these imbalances are empirically nontrivial

and correspond to the difference between aggregate final consumption and value added. Following

a common approach in the trade literature (see, in particular, Costinot and Rodríguez-Clare, 2015),

we treat these deficits as exogenous parameters, and we adjust our general-equilibrium equations

to account for the difference between income and spending (see Online Appendix B.3).

Estimation Results

We now turn to discussing our estimation results and overall fit of the model. We mostly focus our

discussion on the results we obtain using the WIOD, but at the end of this section, we also briefly

describe the our results with the broader Eora database.

As anticipated above, the asymmetries between the input and final-output diagonal elements

of the WIOD lead to an estimate of α2 far removed from one. In particular, we obtain α2 =

0.16. The estimated values for the vectors of γj and Tj are reported in Appendix A.5. Figure 5

presents a comparison between the data and the targeted moments, with the size of each observation

proportional to GDP. The values for the diagonal elements πXii , the gross output to GDP ratios,

and GDP shares are all estimated very accurately, with correlations equal to 0.99, 0.96, and 0.99

with their empirical counterparts, respectively. The fit of the final-output diagonal elements πFii is

also very good (the correlation with data is 0.90), but it also presents some slight discrepancies,

especially for some small countries (remember that our estimation algorithm weighs observations

by country size).

Figure 6 performs a similar comparison between model and data but for moments that were not

directly targeted in the estimation. The upper two charts present the non-diagonal elements of πX

and πF , and those entries are also matched relatively accurately in both cases (with correlations

equal to 0.83 and 0.91, respectively). The lower two charts explore how well our model matches

the backward and forward GVC participation of various countries, two measures of the positioning

of countries in GVCs proposed by Wang et al. (2017). Because we will later explore counterfactu-

als exercises that illustrate changes in the participation of countries in GVCs, it is desirable that

our calibration matches these type of moments properly. The backward GVC participation index

measures the share of value added, both domestic and foreign, in final good consumption that is

imported through intermediate goods and which was produced upstream. The forward GVC par-

ticipation index measures the share of domestic value-added that is exported through intermediate

goods to be consumed downstream. Our benchmark calibration fits both moments very well with

correlations of 0.99 and 0.95, respectively.

We next repeat our estimation with the use of the EORA data for 2013. Though the full

EORA database contains 190 countries we consolidate it into a set of 101 country/regions in order

to alleviate the burden of calibrating so many parameters.24 Remarkably, we estimate an upstream

24Specifically, we keep all countries with a population of 10 million or more and aggregate the rest into a set of 9
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Figure 5: Targeted Moments

input share of α2 = 0.19, which is very similar to the value of α2 = 0.16 found for the WIOD. In

Appendix A.5, we provide estimates for the remaining parameters, and also illustrate the fit of the

estimation via figures analogous to those in Figure 5 and 6. For both targeted and non-targeted

moments, the fit continues to be extremely good.25

It is useful to compare our estimates of α2 with those implied by our reduced-form results in

Table 1, which also used the Eora dataset. Although the gravity-style specification in Table 1

cannot be mapped structurally to our model, the differential effect of distance on input and final-

good trade is informative on the relative size of α2. More specifically, the ratio of the elasticity of

stage 1 output trade to stage 2 output trade is given by 1 − α2 in our model. Given the distance

elasticities estimated in column (7) of Table 1, and assuming that all input trade is stage 1 output,

we would then infer α2 = 1− 0.696/0.794 = 0.12. Now, of course, in our model not all input trade

is stage 1 output, since value added is combined with a bundle of materials at each stage, and

the trade elasticity of that “roundabout” input trade is equal to that of final good trade. Using

the structural estimates of our model we find that around 18 percent of input trade takes this

“roundabout” form. The actual elasticity of stage 1 input is thus lower than is implied by the

regions: Latin America and Caribbean, Central Europe, Eastern Europe, Western Europe, Scandinavia, Middle East
and North Africa, Sub-Saharan Africa, Central Asia, and East Asia and Pacific
25The correlations between data and model for the four targeted moments are 0.96, 0.93, 0.95, and 0.99, respectively.

The correlations for the off diagonal elements of πX and πF are 0.83 and 0.9, while the correlations for the backward
and forward participation index stand at 0.83 and 0.68.
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Figure 6: Untargeted Moments.

results in Table 1 (0.675 rather than 0.696), and the implied α2 is slightly larger (α2 = 0.15), and

very close to the one we have estimated structurally.

Revisiting the Calibration of N

Up to now, we have fixed the number of stages to N = 2. Estimating our model for N > 2 is

computationally more demanding but straightforward to carry out. In terms of the parameters to

estimate, notice that this only amounts to estimating a longer vector of input shares αn. Perhaps

surprisingly, we have found that the structural estimation shuts down production stages that are

more than one stage removed from final consumption, and delivers estimates for the other para-

meters that are identical to those in the benchmark with N = 2. To give a precise example, when

we estimate the model with N = 3, our calibration delivers α3 = 0.16 and α2 = 1. The most

upstream stage of production, n = 1, is thus effectively shut down (i.e., its output is neglible). The

recovered parameters for γj are exactly the same as in our benchmark calibration while those for

Tj are exactly those consistent with our benchmark calibration as well.26

Why does our model reject N > 3? A first important point to make is that we are calibrating

an average N for the whole world economy, including sectors in which chains might be large (e.g.,

in some manufacturing sectors) but sectors in which they might be very short (e.g., certain types

26Note that the model with N = 3 involves an additional summatory for n = 1 in the country level index Θj

even when this stage is shut down. Hence, the calibrated Tj’s for N > 2 should equal 1/JN−2 times the Tj’s for the
benchmark calibration with N = 2.
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of sectors). Relatedly, the worldwide ratio of gross output to value added in manufacturing is 3.82

(in the 2014 WIOD), while it is 1.78 for non-manufacturing sectors. The fact that the aggregate

value of N appears to be tightly related to the aggregate gross output to value added ratio (which

is 2.13 in the WIOD) resonates with the theoretical results in the ‘roundabout’ (Input-Output)

model of Fally (2012). Yet, we should stress that Fally’s result does not apply in our setting: by

appropriate choices of αn, a variant of our model with a large number of stages could be made

consistent with gross output to value added ratios in the neighborhood of 2. Doing so, however,

would demand setting relatively larger values of α2, which would then generate excessively high

asymmetries between the diagonal elements of the input and final output matrices. Because, our

GMM estimation penalizes those excessive deviations, we estimate a relatively low value of α2,

which then constraints us to set N = 2 to match the observed aggregate GO/V A ratios.

Some readers might still object that recovering the same estimated values for N > 2 is not

synonymous with correctly identifying N = 2. For example, the moments that we target may

be misspecified or not contain suffi cient information for backing out the correct N . We next show

through simulations that there is a precise sense in which recovering the same calibration for N ≥ 2

implies that the true N is indeed equal to 2 and that N > 2 can be rejected.

Let us work with several values for the chain length ranging from N = 1, which is the model

of Eaton and Kortum (2002), all the way to N = 4, and for a set of J = 5 imaginary countries.

For each N , we simulate a set of primitives of the model and compute the general equilibrium.

We then take the resulting simulated WIOT entries and apply our GMM estimation method with

the exact same four sets of moments as above. Furthermore, for each true value of N we run our

calibration for various possible values for the number of stages, i.e., N̂ = 1, 2, 3, 4. The spirit of the

exercise is thus to examine whether our estimation method can succesfully recover the true value

of N . We perform this exercise 100 times for each N , so this amounts to 1600 calibrations in total

(100 simulations for each N and four estimations per simulation, for each value N̂ = 1, 2, 3, 4).

Figure 7 plots our simulation results split into four panels, one for each true value of N . In each

panel, the x−axis plots the value of the objective function that the calibration minimizes, i.e. the
difference between the observed and estimated moments, while the y−axis plots the sum of squared
percentage differences between the true values of the parameters underlying the simulated data and

those estimated in the calibration (note the log-scale on both axis). In a nutshell, a lower value

in the x−axis implies that our calibration is fitting the data more accurately while a lower value
in the y−axis implies that our calibrated parameters are closer to the true parameters. Obviously,
estimations that place us in the bottom left corner of each plot are particularly accurate.

Focus first on the top left scatterplot for N = 1, and note that the calibrations for all N̂ do very

well. This should not be surprising since the model with N̂ > N is more flexible and thus nests

a model with a lower N̂ . A crucial observation, however, is that all the points in the scatterplot

lie in the bottom left of the graph, implying that a good fit of the moments occurs only if the

true parameters are recovered. Turn next to the bottom right scatterplot for N = 4. In this case

only the estimates for the empirical model with N̂ = 4 fit the data well, and notice that the true
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Figure 7: Calibration of N through simulations.

parameters are again recovered. In that same scatter plot, it is clear that the empirical model with

N̂ = 3 does better than N̂ = 2, and both do better than N̂ = 1. This is also obvious since lower

N̂ implies less degrees of freedom. The key takeaway from Figure 7 is that in order to recover the

correct N one need only have N̂ ≥ N and the calibration will be recover the correct parameters

regardless of the particular value of N̂ . This appears to be analogous to what occurs in our datasets

with N = 2 and thus, to the extent that the data generating process behind the observable data is

consistent with our model, we are able to reject N > 2.

It is important to stress, however, that our identification of N relies heavily on our assumption

that the matrix of trade costs τ ij and the vector of technology levels Tj is common for inputs

and final goods. For example, one can show that an extension of the Eaton and Kortum (2002)

framework without multi-stage production (i.e., N = 1) could be calibrated to exactly match a

WIOT, provided that one allows for (i) cross-country variation in value added shares γj , and (ii)

arbitrary and potentially asymmetric trade costs for inputs and final goods. Intuitively, one could

choose an appropriate matrix of input trade costs τXij to reproduce the observed asymmetries in the

input and output matrices πXij and π
F
ij . The vector γj could then be set ensure that the GO/VA

ratios across countries are exactly nailed, while the technology parameters Tj could be chosen to

match the observed cross-country variation in GDP levels. In sum, the data we use cannot reject

N = 1 if one allows enough flexibility in the modeling of input and output trade costs.
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7 Counterfactuals

Having estimated the fundamental parameters of the model and having shown that our framework

provides an excellent fit of both the WIOD and Eora datasets, we next explore how counterfactual

changes in trade costs, holding other parameters constant, alter the entries of these WIOTs, thereby

affecting the real income and positioning of countries in GVCs.

Autarky and Zero Gravity

We begin by revisiting two focal counterfactual exercises in quantitive international trade, namely

an increase in trade costs large enough to bring back autarky, and a complete elimination of trade

barriers. Both of these counterfactuals are extreme in nature, but they are useful in understanding

some distinctive features of our framework.

The real income gains of trade relative to autarky can be computed with the formula (πiN )−1/(θγi)−
1, as indicated by equation (21), although πiN is not directly observable in the data and needs to

be inferred from our model. For the sample of countries in the WIOD, the gains from trade range

from a value of 3.3 percent for the United States to 75.9 percent for Luxembourg. The left-panel

of Figure 8 plots these real income gains for the largest 25 economies in the WIOD sample.27
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Figure 8: Gains from trade relative to autarky in GVC model (N = 2) versus
EK model (N = 1), WIOD sample.

The figure also compares these gains to those obtained in a comparison model without multi-

stage production calibrated to match the WIOD for the year 2014. This comparison model is a

modified Eaton and Kortum (2002) framework, with input trade reflecting roundabout produc-

tion, but with cross-country variation in value added shares γi, and differential (and potentially

asymmetric) trade costs for inputs and final goods. As mentioned at the end of section 6, by an

appropriate choice of parameters, such a model can always exactly match a WIOT. Furthermore,

similarly to Arkolakis et al. (2012), the real income losses from going to autarky can be computed

27This formula still measures the real income gains from trade in the presence of trade imbalances. If autarky
entailed a closing of these imbalances, the implications for real spending could be quite different than for real income.

35



using the formula
(
π̂Fii
(
π̂Xii
)1/γEKi −1

)−1/θEK
− 1, where γEKi = ŵiLi/Ŷi is the value added to gross

output ratio in country i, and where the variables with hats can be read off the data as in (23). As

explained in section 4.4, the value of θ relevant for this Eaton and Kortum (2002) model (i.e., θEK
in the formula) is naturally smaller than the one relevant for our framework (i.e., θ = 5), since θEK
here corresponds to the elasticity of overall trade, while θ in our GVC model corresponds to the

trade elasticity for only final good trade. Using our estimate of α2 and the relative prevalence of

final-good trade, sequential input trade, and ‘roundabout’input trade in our structural estimation

leads us to calibrate θEK = 4.635, which is very much consistent with available estimates of the

overall trade elasticity (see footnote 22).

With these background in mind, the left panel of Figure 8 shows that our model with GVCs

generates gains from trade that are generally higher than those emanating from a comparable

model without multi-stage production. The differences are, however, modest. Averaging across all

44 countries in the WIOD, the ratio of the (net) gains from trade in our GVC model versus those

in a modified Eaton and Kortum model equals 1.075. This is despite the fact that the share πiN

of purely domestic GVCs is on average 29% lower than the final-good trade share πFij (0.60 versus

0.85). As anticipated in section 4.4, the lower γEKi and θEK (relative to γi and θ) attenuate the

difference in the real income gains from trade. When computing the worldwide income gains from

trade, the differences are even smaller: relative to autarky, world income is 7.0% higher with GVCs

and 6.6% higher without them (with the resulting ratio 1.059 depicted as a dashed line in the right

panel of Figure 8).

The right-panel of Figure 8 shows, however, that there is quite a lot of variation in the under-

statement of the gains from trade. China and Mexico, two of USA’s largest trading partners, are

the countries for which the EK model underestimates these gains the most (by a factor 1.29 and

1.22, respectively). On the other hand, in a world with sequential production, the gains from trade

are lower for certain countries, such as Australia and Russia.

So far, we have discussed our benchmark results with the WIOD. When performing counterfac-

tuals with the broader sample of countries 101 countries and regions in the Eora database, we find

similar results. The gains from trade in a world with GVCs are on average a factor XX larger than

in a comparable model without multi-stage production, but again there is substantial variation

across countries (see Figure A.5 in Appendix A.5). Because the bias is smaller for larger economies

the worlwide income gains from trade are only a factor XX larger (XX% versus XX%) in our model

relative to a comparable Eaton and Kortum (2002) model.

We next explore the implications of a (hypothetical) complete elimination of trade barriers. The

real income consequences of a move to a world with zero gravity are much pronounced. Focusing

on the 25 largest economies in the WIOD, Figure 9 shows that these gains range from 163% for

the United States to a staggering 913% for Taiwan. Furthermore, these (net) percentage gains

are on average a factor 1.359 higher than in a model without multi-stage production. For some

countries, such as Norway or Taiwan, the modified EK model understimates the real income gains

by a very large factor (2.41 and 1.77, respectively). Yet, for other countries, the differences are
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Figure 9: Gains from moving to zero gravity in GVC model (N = 2) versus EK
model (N = 1), WIOD sample.

more modest. Overall, world income grows by 318% in our GVC model versus 283% in a model

without multi-stage production (with the associated ratio 1.12 appearing as a dashed line in the

right panel of Figure 9). When repeating this exercise for the sample of countries in Eora, we find

that worldwide income grows by XX, a factor of XX more than in the comparison E-K model (see

Appendix A.5 for an illustration analogous to Figure 9). Figure 10 breaks these worldwide income

gains by continent.

Free Trade Increases World Income by a Factor of 5

North America Europe RoW LA & C M.East & N.Africa Asia Africa
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Figure 10: Gains from moving to zero gravity in GVC model (N=2) versus EK model (N=1), Eora
sample

A Fifty Percent Reduction in Trade Barriers
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8 Conclusion
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A Appendix

A.1 Increasing Trade-Cost Elasticity

Define p̃n−1
`(n) (`) = pn−1

`(n−1) (`) τ `(n−1)`(n) as the price paid in ` (n) for the good finished up to stage

n− 1 in country ` (n− 1), so that we can express the sequential unit cost function as

pn`(n) (`) = gn`(n)

(
c`(n), p̃

n−1
`(n) (`)

)
.

Define the elasticity of pFj (`) with respect to the trade costs that stage n’s production faces as

βjn =
∂ ln pFj (`)

∂ ln τ `(n)`(n+1)
,

with the convention that ` (N + 1) = j so that βjN is the elasticity of p
F
j (`) with respect to the trade

costs faced when shipping assembled goods to final consumers in j. Because τ `(n)`(n+1) increases

p̃n`(n+1) (`) with a unit elasticity, the following recursion holds for all n′ > n

∂ ln pn
′+1
`(n′+1) (`)

∂ ln τ `(n)`(n+1)
=
∂ ln pn

′+1
`(n′+1) (`)

∂ ln p̃n
′
`(n′+1) (`)

∂ ln pn
′
`(n′) (`)

∂ ln τ `(n)`(n+1)
.

At the same time, the unit cost elasticity at stage n+ 1 satisfies

∂ ln pn+1
`(n+1) (`)

∂ ln τ `(n)`(n+1)
=
∂ ln pn+1

`(n+1) (`)

∂ ln p̃n`(n+1) (`)
.

Hence, the elasticity of finished good prices can be decomposed as

βjn =

N∏
n′=n+1

∂ ln pn
′
`(n′) (`)

∂ ln p̃n
′−1
`(n′) (`)

, (A.1)

invoking the convention
∏N
n′=N+1 f (n′) = 1 for any function f (·). Constant returns to scale in

production implies that the function gn`(n) is homogeneous of degree one. As a result, the elasticity

of unit costs with respect to input prices is always less or equal than one, so for all n > 1 we have

∂ ln pn`(n) (`)

∂ ln p̃n−1
`(n) (`)

≤ 1,

with strict inequality whenever a stage adds value to the product. From equation (A.1), it is then

clear that

β1
j ≤ β2

j ≤ · · · ≤ βNj = 1,

with strict inequality when value added is positive at all stages.
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A.2 Fighting the Curse of Dimensionality: Dynamic and Linear Programming

When discussing the lead-firm problem in section 2.2, we mentioned that there are JN sequences

that deliver distinct finished good prices pFj (`) in country j. Hence, solving for the optimal se-

quences `j for all j by brute force requires JN+1 computations and is infeasible to do when J and

N are suffi ciently large. However, we show below that use of dynamic programming surmounts this

problem by reducing the compution of all sequences to only J×N ×J computations. Furthermore,
in the special case in which production is Cobb-Douglas the minimization problem can be modeled

with zero-one linear programming, for which very effi cient algorithms exist.

Dynamic Programming

Define `jn ∈ J n as the optimal sequence for delivering the good completed up to stage n to producers
in country j. This term can be found recursively for all n = 1, . . . , N by simply solving

`jn = arg min
k∈J

pnk

(
`kn−1

)
τkj , (A.2)

since the optimal source of the good completed up to stage n is independent of the local cost cj at

stage j, the specifics of the cost function gnj , or the future path of the good. For this same reason,

we have written the pricing function pnk in terms of the n− 1 stage sequence `kn−1 since it does not

depend on future stages of production (though it should be clear that pnk will also be a function

of the production costs and technology available for producers at that chosen location k). The

convention at n = 1 is that there is no input sequence so that `k0 = ∅ for all k ∈ J and the price

depends only the input bundle: p1
k (∅) = g1

k (ck).

The formulation in (A.2) makes it clear that the optimal path to deliver the assembled good to

consumers in each country j, i.e., `j = `jN , can be solved recursively by comparing J numbers for

each location j ∈ J at each stage n ∈ N , for a total of only J ×N × J computations.
To further understand this dynamic programming approach, Figure A.1 illustrates a case with

3 stages and 4 countries. Instead of computing JN = 64 paths for each of the four locations of

consumption, it suffi ces to determine the optimal source of (immediately) upstream inputs (which

entails J ×J = 16 computations at stages n = 2 and n = 3, and for consumption). In the example,

the optimal production path to serve consumers in A, B, and C is A→ B → B, while the optimal

path to serve consumers in D is C → D → D.

Linear Programming

In the special case in which production is Cobb-Douglas, the optimal sourcing sequence can be

written as a log-linear minimization problem

`j = arg min
`∈JN

N−1∑
n=1

βn ln τ `(n)`(n+1) + ln τ `(N)j +
N∑
n=1

αnβn ln
(
an`(n)c`(n)

)
.
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Figure A.1: An Example with Four Countries and Three Stages

This can in turn be reformulated as the following zero-one integer programming problem

`j = arg min

N−1∑
n=1

βn
∑
k∈J

∑
k′∈J

ζnkk′ (ln τkk′ + αna
n
kck) +

∑
k∈J

ζNk
(
ln τkj + αNa

N
k ck

)
s.t.

∑
k′∈J

ζnk′k =
∑
k′∈J

ζn+1
kk′ , ∀k ∈ J , n = 1, . . . , N − 2

∑
k′∈J

ζN−1
k′k = ζNk , ∀k ∈ J∑

k∈J
ζNk = 1

ζnkk′ , ζ
N
k ∈ {0, 1} .

A.3 Decentralized Approach with N ∈ N+

This Appendix demonstrates how to generalize our approach with stage-specific randomness and

incomplete information to an environment with more than two stages. It should be clear that the

input sourcing decisions for the two most upstream stages work in the same way as outlined in

section 3.2.B for a general number of stages N > 2. Let us quickly recap those decisions. Input

producers of good z at the first stage set prices equal to the cost of labor and materials needed

to produce a unit of the first-stage good: p1
`(1) (z) = a1

`(1) (z) c`(1). Meanwhile, a producer of z at

stage n = 2 in country j observes the productivity draws of its tier-one input suppliers and thus

sources inputs from `jz (1) = arg min`(1)∈J

{(
a`(1) (z) c`(1)τ (1)j)

)1−α2}. However, producers at stage
n > 2 only observe the productivity draws of their tier-one suppliers (i.e., those at n− 1), and are

forced to use their expectations over the productivity draws of upper tier input suppliers in order
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to form expectations over the prices at which they will ultimately buy from their tier-one suppliers

(at n− 1). This is because we have assumed that sourcing decisions are made before observing the

prices at which tier-one suppliers will ultimately be able to sell at. In other words, when deciding

on their optimal input sources, firms producing at stage n+ 1 can only form expectations over the

input prices from stage n− 1 that each of its own possible suppliers producing at stage n faces (or

will face).

Let `jz (n) be the tier-one sourcing decision of a firm producing good z at stage n + 1 in j.

Generalizing the approach in the main text, define the expectation

Enj [s] = En
[(
pn
`jz(n)

(z) τ
`jz(n)j

)s]
,

for any s > 0 and where we have written the expectation with an n subscript indicating that the

expectation takes that unit costs (and prices) from stages 1, . . . , n as unobserved. To be fully clear,

a firm at n+2 observes the productivity draws from stage n+1 but does not know previous sourcing

decisions. Hence it must form an expectation over the location from which its stage n suppliers

source, `jz (n), and use this to calculate the expected input prices Enj [s]. As will become clear in

the next paragraph, denoting the expectations for a general s > 0 is useful since downstream firms

between n+ 2, . . . , N and final consumers will all use the information on expected input prices at

n but in different ways depending on the objective function they seek to minimize.

Substituting in the Cobb-Douglas production process in (2), we can write

Enj [s] = En
[(
an
`jz(n)

(z) c
`jz(n)

)αns
× En−1

`jz(n)
[(1− αn) s]×

(
τ
`jz(n)j

)s]
.

The crucial observation is that to determine expected input prices from stage n a firm must also

incorporate expected input prices from stage n− 1, and so on until input prices from all upstream

stages have been incorporated. Note that productivity draws across stages of production are in-

dependent, but even more importantly, sourcing decisions across stages of production are also

independent. Hence, one can use the law of iterated expectations to compute expected input prices

from n − 1, En−1

`jz(n)
[·], in the computation of expected prices at n in Enj [·]. The latter expectation

is over `jz (n) but once we condition on a specific value for `jz (n), the expectation En−1

`jz(n)
[·] is a

constant. Finally, note also that this recursion starts at n = 1 with E0
j [s] = 1 since only labor and

materials are used in that initial stage.

Let us next illustrate why these definitions are useful. Consider the optimal sourcing strategies

related to procuring the good finished up to stage n < N. Given the sequential cost function in (2),

the problem faced by a stage n+ 1 producer in j can be written as

`jz (n) = arg min
`(n)∈J

{(
an`(n) (z) c`(n)

)αn(1−αn+1)
× En−1

`(n) [(1− αn) (1− αn+1)]×
(
τ `(n)j

)1−αn+1} .
where the 1− αn+1 superscript comes from the stage n+ 1 producer wanting to minimize its own

expected input price and in which the stage n input price enters its own unit cost to this power.
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Meanwhile, final consumers (or local retailers on their behalf) source their goods by solving

`jz (N) = arg min
`(N)∈J

{(
aN`(N) (z) c`(N)

)αN
× EN−1

`(N) [1− αN ]× τ `(N)j

}
.

The probability of sourcing inputs from a specific location i at any stage n can be determined

by invoking the properties of the Fréchet distribution, given that 1/ani (z) is drawn independently

(across goods and stages) from a Fréchet distribution satisfying

Pr
(
anj (z)αnβn ≥ a

)
= exp

{
−aθ (Tj)

αnβn
}
.

In particular, we obtain

Pr
(
`jz (n) = i

)
=

(
(Ti)

αn ((ci)
αn τ ij)

−θ
)βn En−1

i ((1− αn) (1− αn+1))−βn+1θ∑
l∈J

(
(Tl)

αn ((cl)
αn τ lj)

−θ
)βn En−1

l ((1− αn) (1− αn+1))−βn+1θ
.

These probabilities can now be leveraged in order to compute expected input prices. Define ãij =

(ci)
αns En−1

i [(1− αn) s] (τ ij)
s so that 1/ (aαnsi ãij) ∼ Frechet

(
T
αnβn
i ã

−βn
s
θ

ij , βns θ

)
(note that the

above distribution is the special case in which s = 1− αn+1).

These probabilities can now be leveraged in order to compute expected input prices. Define

ãij = (ci)
αns En−1

i [(1− αn) s] (τ ij)
s so that 1/ (aαnsi ãij) ∼ Frechet

(
T
αnβn
i ã

−βn
s
θ

ij , βns θ

)
(note that

the above distribution is the special case in which s = 1−αn+1). Then using the moment generating

formula for the Fréchet distribution, it can be verified that

Enj [s] =

[∑
l∈J

T
αnβn
l ã

−βn
s
θ

lj

]− s
βnθ

Γ

(
1 +

βn
s
θ

)
,

where Γ is the gamma function. From this equation it should also be clear why we are denoting

Enj [s] as a function of s, since as we move down the value chain we need to compute the upstream

expectations at different ’moments’.

We are now ready to determine the equilibrium variables: (1) composite prices and (2) the

distribution of GVCs. Composite prices can be derived recursively using our expectations:

Pj =
(
ENj [1− σ]

) 1
1−σ =

[∑
l∈J

(Tl)
αN ((cl)

αN τ lj)
−θ EN−1

l [(1− αN ) (1− σ)]−
θ

1−σ

]− 1
θ

Γ

(
1 +

1− σ
θ

)

=

[∑
`∈J

N∏
n=1

((
T`(n)

)αn ((c`(n)

)αn τ `(n)`(n+1)

)−θ)βn]− 1
θ N∏
n=1

Γ

(
1 +

1− σ
βnθ

) 1
1−σ

Finally, since input decisions from n are independent from the decisions that firms at n− 1 made
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then

π`j = Pr
(
`jz (N) = ` (N)

∣∣∣``(N)
z (N − 1) = ` (N − 1)

)
×

×
N−1∏
n=2

Pr
(
``(n+1)
z (n) = ` (n)

∣∣∣``(n)
z (n− 1) = ` (n− 1)

)
× Pr

(
``(2)
z (1) = ` (1)

)
= Pr

(
`jz (N) = ` (N)

)
×

N∏
n=1

Pr
(
``(n+1)
z (n) = ` (n)

)

=

∏N−1
n=1

((
T`(n)

)αn ((c`(n)

)αn τ `(n)`(n+1)

)−θ)βn × (T`(N)

)αN ((c`(N)

)αN τ `(N)j

)−θ
∑
`′∈J

∏N−1
n=1

((
T`′(n)

)αn ((c`′(n)

)αn τ `′(n)`′(n+1)

)−θ)βn × (T`′(N)

)αN ((c`′(N)

)αN τ `′(N)j

)−θ ,
which is identical to equation (11) in the main text obtained in the ‘randomness-in-the-chain’

formulation of technology.

A.4 Proof of Centrality-Downstreamness Nexus

Let (τ ij)
−θ = ρiρj . In such a case, the probability of country j sourcing through ` reduces to

π`j =

N∏
m=1

(
T`(m)

(
c`(m)

)−θ)αmβm (
ρ`(m)

)βm−1+βm

∑
`∈J

∏N
m=1

(
T`(m)

(
c`(m)

)−θ)αmβm (
ρ`(m)

)βm−1+βm

and is thus independent of the destination country j. The aggregate probability of observing

country i in location n can thus be expressed as

Pr (Λni ) =
∑
`∈Λni

π`j =

∑
`∈Λni

N∏
m=1

(
T`(m)

(
c`(m)

)−θ)αmβm (
ρ`(m)

)βm−1+βm

∑
k∈J

∑
`∈Λnk

∏N
m=1

(
T`(m)

(
c`(m)

)−θ)αmβm (
ρ`(m)

)βm−1+βm
. (A.3)

But note that we can decompose this as

Pr (Λni ) =

(
Ti (ci)

−θ
)αnβn

(ρi)
βn−1+βn ×

∑
`∈Λni

∏
m 6=n

(
T`(m)

(
c`(m)

)−θ)αmβm (
ρ`(m)

)βm−1+βm

∑
k∈J

(
Tk (ck)

−θ
)αnβn

(ρk)
βn−1+βn ×

∑
`∈Λnk

∏
m 6=n

(
T`(m)

(
c`(m)

)−θ)αmβm (
ρ`(m)

)βm−1+βm

=

(
Ti (ci)

−θ
)αnβn

(ρi)
βn−1+βn∑

k∈J

(
Tk (ck)

−θ
)αnβn

(ρk)
βn−1+βn
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where the second line follows from the fact that, for GVCs in the sets Λni and Λnk , the set of all

possible paths excluding the location of stage n are necessarily identical (and independent of the

country where n takes place), and thus the second terms in the numerator and denominator of the

first line cancel out.

For the special symmetric case with αnβn = 1/N and αn = 1/n we obtain that

Pr (Λni ) =

(
Ti (ci)

−θ
) 1
N

(ρi)
2n−1
N

∑
k∈J

(
Tk (ck)

−θ
) 1
N

(ρk)
2n−1
N

Now consider our definition of upstreamness

U (i) =
N∑
n=1

(N − n+ 1)× Pr (Λni )
N∑

n′=1

Pr
(
Λn
′
i

) . (A.4)

This is equivalent to the expect distance from final-good demand at which a country will contribute

to global value chains. The expectation is defined over a country-specific probability distribution

over stages, fi (n) = Pr (Λni ) /
∑N

n′=1 Pr
(

Λn
′
i

)
.

Finally, note that for two countries with ρi′ > ρi and two inputs with n
′ > n we necessarily

have
fi′ (n

′) /fi′ (n)

fi (n′) /fi (n)
=

(
ρi′

ρi

)2(n′−n)/N

> 1.

As a result, the probability functions fi′ (n) and fi (n) satisfy the monotone likelihood ratio property

in n. As is well known, this is a suffi cient condition for fi′ (n) to first-order stochastically dominate

fi (n) when ρi′ > ρi. But then it is immediate that Efi′ [n] > Efi [n], and thus the expected value in

(A.4), which is simply N + 1−Efi [n], will be lower for country i′ than for country i when ρi′ > ρi.

A.5 Further Estimation Results

A.5.1 WIOD for 2014

Table A.1 presents the values of γj and Tj for the sample of 44 countries in the WIOD found in

our benchmark estimation with N = 2.

A.5.2 EORA for 2013

Figure A.2 depicts some salient features of the Eora MRIO dataset for the year 2013. The figure is

analogous to Figure 4 in the main text, and depicts the same qualitative patterns. The domestic

shares are on average higher for final output than for inputs and there is wide dispersion in gross

output to value added ratios and gross output to final output ratios, with both ratios being highly

positively correlated.
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Table A.1: WIOD Calibration

γj Tj γj Tj

Australia 0.93 126.75 Ireland 0.86 1.04
Austria 0.91 18.03 Italy 0.89 30.87
Belgium 0.83 2.04 Japan 0.96 23.56
Bulgaria 0.78 0.01 South Korea 0.72 1.28
Brazil 1.00 0.04 Lithuania 0.95 0.17
Canada 0.95 16.40 Luxembourg 0.51 0.17
Switzerland 0.89 1910.55 Latvia 0.79 0.07
China 0.59 0.24 Mexico 1.00 0.01
Cyprus 0.99 0.60 Malta 0.65 0.04
Czech Republic 0.73 0.30 Netherlands 0.87 2.87
Germany 0.92 139.34 Norway 0.90 0.49
Denmark 0.93 19.24 Poland 0.84 1.34
Spain 0.93 16.22 Portugal 0.95 0.55
Estonia 0.81 0.06 Romania 0.85 0.04
Finland 0.88 4.12 Russia 0.89 0.02
France 0.97 65.99 Slovakia 0.77 0.57
Great Britain 0.97 117.83 Slovenia 0.85 1.52
Greece 1.00 0.10 Sweden 0.94 67.34
Croatia 0.94 0.11 Turkey 0.91 0.14
Hungary 0.83 0.02 Taiwan 0.75 0.02
Indonesia 0.93 0.00 USA 1.00 417.44
India 0.97 0.00 Rest of World 0.79 0.02
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Figure A.2: Some Key Features of the Eora MRIO Dataset

We next turn to the estimation results for the EORA 2013 database when our model is calibrated

to the same moments as the WIOD and with N = 2. As mentioned in the main text, we find α2 =

0.19 in that case. Table A.2 presents the values of γj and Tj for the sample of 101 country/regions.

Figures A.3 and A.4 illustrate the goodness of fit of our model. As mentioned in the main text,

the correlation between model and data is very high, even when considering untargeted moments.
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Figure A.3: EORA Targeted Moments.

Figure A.5 presents the gains from trade with respect to autarky for the GVC and EK models
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Figure A.4: EORA Untargeted Moments.

for the largest 25 countries/regions. The gains are on average 21% higher for the sample of 20

largest country-regions and 31% for the full sample of 101 country/regions.
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Figure A.5: EORA gains from trade relative to autarky comparison between
GVC model (N = 2) and EK model (N = 1).

52



Table A.2: EORA Calibration

γj Tj γj Tj

Afghanistan 0.70 0.000 Israel 0.96 207.106
Eastern Europe 0.79 0.000 Italy 0.94 2.132
Algeria 0.98 0.000 Japan 0.97 19.349
Western Europe 0.72 0.029 Kazakhstan 0.86 0.001
Angola 0.98 0.015 Kenya 0.93 0.000
Latin America & Caribbean 0.85 0.347 Madagascar 0.87 0.000
Argentina 1.00 0.304 Malawi 0.61 0.000
Australia 0.85 78.774 Malaysia 0.85 0.002
Central Europe 0.89 4.964 Mali 0.64 0.001
Central Asia 0.84 0.000 Mexico 1.00 0.000
Middle East & North Africa 0.97 0.318 Morocco 0.93 0.001
Bangladesh 0.94 0.000 Mozambique 0.89 0.000
Belgium 0.77 0.034 Myanmar 0.69 1.000
Benin 0.59 0.000 Nepal 0.82 0.000
South Asia 0.68 0.007 Netherlands 0.91 0.055
Bolivia 0.88 0.096 Niger 0.97 0.000
Sub-Saharan Africa 0.92 0.000 Nigeria 1.00 0.000
Brazil 0.86 0.110 Pakistan 0.90 0.001
East Asia & Pacific 0.79 2.205 Peru 0.89 0.018
Burkina Faso 0.94 0.000 Philippines 0.99 0.000
Burundi 0.87 0.000 Poland 0.81 0.054
Cambodia 0.62 0.000 Portugal 0.85 0.115
Cameroon 0.82 0.000 South Korea 0.51 0.115
Canada 0.91 2.241 Romania 0.81 0.003
Chad 1.00 0.000 Russia 0.93 0.032
Chile 0.88 0.020 Rwanda 0.94 0.000
China 0.63 0.025 Saudi Arabia 1.00 0.019
Colombia 1.00 0.000 Senegal 0.87 0.000
Cuba 0.95 0.001 Singapore 0.68 0.111
Czech Republic 0.76 0.037 Somalia 0.39 0.000
Cote dIvoire 0.80 0.011 South Africa 0.88 0.003
North Korea 0.89 0.001 South Sudan 1.00 0.022
DR Congo 0.85 1.129 Spain 0.84 0.953
Scandinavia 0.89 3.265 Sri Lanka 0.98 0.000
Dominican Republic 0.93 0.001 Sudan 0.91 4.559
Ecuador 0.93 0.004 Syria 0.84 1.000
Egypt 1.00 0.000 Taiwan 0.90 1.943
Eritrea 0.81 0.000 Thailand 0.73 0.089
Ethiopia 0.02 0.000 Tunisia 0.78 0.002
France 0.94 3.155 Turkey 1.00 0.000
Germany 0.82 1.466 Uganda 0.77 0.000
Ghana 0.94 0.000 Ukraine 0.73 0.001
Greece 0.99 0.034 UK 0.90 2.642
Guatemala 0.97 0.124 Tanzania 0.46 0.000
Guinea 0.68 0.000 USA 0.94 28.721
Haiti 0.59 0.000 Uzbekistan 0.93 0.000
Hong Kong 0.54 0.007 Venezuela 0.94 0.013
India 0.87 0.001 Viet Nam 0.59 0.000
Indonesia 0.98 0.001 Yemen 0.91 0.000
Iran 0.97 0.000 Zambia 0.73 0.000
Iraq 1.00 0.000
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