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Abstract

In 2005, the Indian Government launched a conditional cash-incentive program to en-
courage institutional delivery. This paper studies the effects of the program on neonatal
mortality using district-level household survey data. We model mortality using survival
analysis, paying special attention to the substantial heaping present in the data. The
main objective of this paper is to provide a set of sufficient conditions for identification
and consistent estimation of the baseline hazard accounting for heaping and unobserved
heterogeneity. Our identification strategy requires neither administrative data nor mul-
tiple measurements, but a correctly reported duration and the presence of some flat
segments in the baseline hazard which includes this correctly reported duration point.
We establish the asymptotic properties of the maximum likelihood estimator and pro-
vide a simple procedure to test whether the policy had (uniformly) reduced mortality.
While our empirical findings do not confirm the latter, they do indicate that accounting
for heaping matters for the estimation of the baseline hazard.
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1 Introduction

India has one of the largest neonatal mortality and maternal mortality rates in the world.1

Around 32 neonates per 1000 live births (around 876,200 children) die within the first
month of life (Roy et al., 2013; Save the Children, 2013) and among these babies, 309,000
die on the first day. Moreover, around 200 mothers die during pregnancy and child birth
per 100,000 live births. In order to tackle this huge problem, the Indian Government intro-
duced a conditional cash-incentive (Janani Suraksha Yojana) program in 2005 to encourage
institutional delivery. The Indian Government also deployed volunteer Accredited Social
Health Activists to help mothers with antenatal and postnatal care during the crucial pre
and post birth period.

This paper studies the effects of this program on neonatal mortality using district-level
household survey data. We focus on the first 28 days after birth, since the effects of the
program is expected to be most pronounced soon after birth when postnatal care is provided.
We model mortality using survival analysis, paying special attention to a characteristic of
the reported duration data which is the apparent heaping at 5, 10, 15, ... days, i.e. durations
which are multiple of five days. One of the commonest reason for this type of heaped data
is due to recall errors. Neglecting these heaping effects leads to inconsistent estimation of
the hazard function (e.g. Torelli and Trivellato, 1993 and Augustin and Wolff, 2000).

In addressing these heaping effects, this paper makes a methodological contribution in
the modelling of duration data when the observed data are characterized more generally
by some form of abnormal concentration at certain durations. The main objective of this
paper is to provide a set of sufficient conditions for identification and consistent estimation
of the baseline hazard (and other model parameters) accounting for heaping and unobserved
heterogeneity. We pay particular attention to the baseline hazard to gauge the effect of the
policy that was specifically intended to reduce neonatal mortality.

Despite the prevalence of heaping in survey data, the econometric literature on identi-
fication and estimation of duration models with heaping is rather limited. Abrevaya and
Hausman (1999) provide a set of sufficient conditions under which the monotone rank es-
timator is consistent for the accelerated failure time and the proportional hazard model in
the presence of misreported durations. However, the object of interest in their study is to
estimate the effects of the covariates and not the baseline hazard. Torelli and Trivellato
(1993) on the other hand derive a likelihood function which allows some form of heaping,
but require a parsimonious parametric specification for the hazard and thus their approach
is not suitable to assess a policy effect on the baseline hazard. Petoussis, Gill and Zeelen-
berg (1997) treat heaped durations as missing values and use the Expectation-Maximization
(EM) algorithm to estimate the model. Heitjan and Rubin (1990) suggest an EM-based
multiple imputation method for inference in the presence of heaped data, but do not deal
with duration models. Finally, Augustin and Wolff (2000) use dummy variables for heaped
durations. None of these papers are interested in the identification of the baseline hazard.

The paper closest to ours is Ham, Li and Shore-Sheppard (2014). They establish iden-
tification of the baseline hazard for multiple spell durations in the presence of seam bias
and unobserved heterogeneity. Seam bias, which is another form of measurement error, is
characterized by the fact that the end of one spell and the beginning of the next spell do

1Neonatal period is the first 28 days after birth.
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not coincide. The key difference between the identification strategy in Ham, Li and Shore-
Sheppard (2014) and ours is that they have two measurements for a duration collected
from different survey waves, where only one is affected by seam bias. By contrast, We have
neither multiple measurements, nor administrative data.2

The identification strategy we provide is based on a set of minimal assumptions on
the shape of the discretized hazard function. We require neither administrative data nor
multiple measurements. The key ingredients of our identification strategy are the existence
of at least one correctly reported duration and the presence of some flat segment(s) in the
baseline hazard which includes this correctly reported duration point. The length of the
flat segments required depends on the complexity of the heaping process. Heuristically, we
use the correctly reported duration in the constant part of the baseline hazard to identify
the parameters of the heaping process, i.e. the probability of rounding to a heaped value.
This enables us to identify the heaping parameters and hence the rest of the baseline hazard
parameters. Information about the correctly reported duration and the flat segment can
stem from different sources and does not need to come from a specific data set. For instance,
in the application in Section 5 we partially rely on information from a verbal autopsy report
on neonatal mortality in Uttar Pradesh, which suggests that assuming a flat hazard segment
towards 18 days is a relatively plausible assumption. The likelihood is constructed down-
weighting the contribution of the heaped duration and over-weighting the contribution of
the non heaped durations. This adjustment ensures consistent estimation of both heaping
and baseline hazard parameters in the case of a parametric specification of the unobserved
heterogeneity component. We rely on a parametric specification of unobserved heterogeneity
to obtain a closed form for the likelihood, and to conduct inference on the baseline hazard.
However, as for identification of the baseline hazard, we do emphasize that, in light of the
results in Ridder and Woutersen (2003), other, more flexible choices of the heterogeneity
distribution would indeed also suffice. Recently, Bierens (2008) suggests to approximate
unobserved heterogeneity via Legendre polynomials, while Burda, Harding, Hausman (2014)
suggest the use of an infinite mixture and, Hausman and Woutersen (2013) introduce a
rank type estimator, which does not require the specification of unobserved heterogeneity.
However, all these papers rule out incorrectly reported durations.

The rest of this paper is organized as follows. Section 2 describes the setup and the
heaping model we consider. As a main result, it provides a set of sufficient conditions
for the identification of the baseline hazard in the presence of unobserved heterogeneity
and heaping. Section 3 derives the likelihood and establishes the asymptotic properties of
the MLE estimator. Since we do not impose a strictly positive probability of rounding,
we account for the possibility of parameters on the boundary (Andrews (1999)). We also
outline (mis)specification tests for the heaping model. Section 4 investigates the effect of the
cash transfer policy on the baseline hazard, taking into account a possible side effect on the
heaping parameters.3 We study whether the policy has uniformly ”lowered” the baseline
hazard, or if instead it had the desired effect only over part of the hazard, for example

2We are unable to use the durations closer to the interview as a set of ’correctly’ reported observations

because there is heaping among these too.
3 In general, if mothers give birth in an institution, we would expect the birth dates to be correctly

recorded.
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over the first few days. Section 5 describes the data and the empirical model and reports
our findings. We establish that: (i) heaping matters, in fact we find that the associated
heaping probabilities before and after treatment are clearly significant; (ii) overall, the
program introduction has reduced neonatal mortality, but the effect is not uniform. Section
6 concludes. Finally, Appendix I contains all technical proofs, Appendix II reports the
empirical findings, while Appendix III provides details about the construction of (m out of
n) bootstrap standard errors.

2 Identification of the Mixed Proportional Hazard Model

with Heaped Durations

We begin by outlining our setup. We assume a Mixed Proportional Hazard (MPH) model
for the unobservable true durations. Our objective is to recover the underlying structural
parameters from the observable mismeasured durations.

Let τ∗i denote the underlying ”duration” of individual i for i = 1, . . . , N measured on a
continuous scale. The associated hazard function for i is then given by:

λi(τ
∗) = lim

∆→0
Pr(τ∗i < τ∗ + ∆|τ∗i > τ∗)/∆

We parameterise the hazard as:

λi(τ
∗|zi, ui) = λ0(τ∗) exp(z′iβ + ui),

where λ0(τ∗) is the baseline hazard, ui is the individual unobserved heterogeneity, and zi a
set of time invariant covariates.

We next assume that a continuous duration τi ∈ [τ, τ + 1) is recorded as τ . Therefore,
the discrete time hazard for our model is given by:

hi(τ |zi, ui) = Pr [τi < τ + 1|τi > τ, zi, ui]

=1− exp

(
−
∫ τ+1

τ
λi(s|zi, ui)ds

)
(1)

=1− exp
(
− exp

(
z
′
iβ + γ(τ

)
+ ui

)
,

where γ(τ) = ln
∫ τ+1
τ λ(s)ds.

The key issue is how to identify the underlying baseline hazard when we do not observe
τi, but only some misreported version of it. The form of misreporting we address in this
paper is heaping due to rounding. Thus, in the sequel, we will provide a minimal set of
conditions sufficient to identify the discretized baseline hazard in the presence of heaping.

Let DU denote the set of uncensored and DC the set of censored observations at τ ,
and write D = DU ∪ DC , i.e. for all i = 1, .., N, τi ∈ D, with D = {0, 1, .., τ}. Our first
assumption is on the censoring process.

Assumption C:
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(i) Durations are censored at fixed time τ and the censoring mechanism is independent of
the durations (type I censoring; Cox and Oakes, 1984);
(ii) Censoring is independent of the heaping process.

We note that this assumption could be straightforwardly generalized to allow for varying
censoring times across individuals (random censoring) as long as censoring is independent
of the heaping process and C(ii) is satisfied. Also, since censoring is independent of the
heaping process, deduce that DU = DH ∪DNH, where DH and DNH are the sets of heaped
and non-heaped points, respectively.4

In order to make our setup more formal, denote r as the maximum number of time
periods that a duration can be rounded to and h∗ as the first heaping point. In the following,
we will assume that heaping occurs at multiples of h∗. This assumption is motivated by
our application in Section 5, where reported dates of deaths are heaped at values that are
multiples of 5 days (i.e. h∗ = 5 and DH contains the durations 5, 10, 15 etc.). In addition,
we also assume that the rounding is carried out to the nearest heaping point. It might be
restrictive for some settings, but could easily be relaxed to non-multiple heaping points at
the cost of further notation. Similarly, the symmetry in the number of time periods that
people round up to or down from could be relaxed to allow for asymmetries as well.

Denote the set of
(i) heaping points as:

DH =
{
τ : τ = jh∗, j = 1, ..., j, jh∗ < τ

}
;

(ii) points that may be rounded up as:

DH−l=
{
τ : τ = jh∗ − l, j = 1, ..., j, jh∗ − l < τ

}
;

(iii) points that may be rounded down as:

DH+l=
{
τ : τ = jh∗ + l, j = 1, ..., j, jh∗ + l < τ

}
;

and
(iv) non-heaping points as:

DNH =
(
DC
)
∪
(
∪rl=1DH−l

)
∪
(
∪rl=1DH+l

)
, for l = 1, ..., r.

Finally, all durations τ < τ which do not belong to
(
∪rl=1DH−l

)
∪
(
∪rl=1DH+l

)
∪DH lie in the

complement set DT =
((
∪rl=1DH−l

)
∪
(
∪rl=1DH+l

)
∪ DH

)c
and are assumed to be truthfully

reported.
In the following, let ti be the potentially misreported duration and assume that if the

true duration falls on one of the heaping points, it will be correctly reported. That is, for
each τi ∈ DH, ti = τi a.s.. However, when τi ∈

(
∪rl=1DH−l

)
∪
(
∪rl=1DH+l

)
, it is either

correctly reported or rounded (up or down) to the closest heaping point belonging to DH.
Thus, for l ∈ {1, . . . , r}, let Pr (ti = τi + l) = pl and Pr (ti = τi) = 1 − pl if τi ∈ DH−l .

4Szlydlowski (2013) allows for correlation between the censoring mechanism and unobserved heterogene-

ity, and, even in the absence of misreported durations, only achieves parameter set identification.
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Analogously, let Pr (ti = τi − l) = ql and Pr (ti = τi) = 1− ql if τi ∈ DH+l . In our example,
this is equivalent to assuming that a reported duration of say 5 days can include true
durations of 3 and 4 (6 and 7) where they have been rounded up (down) to 5 days - ps and
the qs give the probabilities of these roundings.

In order to identify the baseline hazard from possibly misreported observations, we need
to put some structure on the heaping process. This is summarized in Assumption H.

Assumption H
(i)
(
∪rl=1DH−l

)
∩
(
∪rl=1DH+l

)
= ∅ and DH+l ∩ DHC = ∅ for l = r;

(ii) There exists k ≤ τ − 2(r + 1), such that γ(k) = γ(k) for k ≤ k ≤ k + r + 1, and
γ(k) = γ(k + r + 2) for all k + r + 2 ≤ k < τ ;
(iii) ti = k if and only if τi = k a.s.;
(iv) For all l ∈ {1, . . . , r}, pl ∈ [0, 1) and ql ∈ [0, 1).

Assumption H(i) imposes that time periods cannot belong to more than one heap. This
assumption, albeit restrictive, is crucial for our identification strategy and cannot be relaxed.
It is, however, somewhat mitigated by the fact that we can in principle allow for a relatively
complex heaping structure with differently sized heaps and rounding probabilities. H(ii)-(iii)
requires that the baseline hazard is constant after time period k, but possibly at different
levels on either side of the heaping point k + r + 1, which could for instance apply when
heaping is asymmetric.5 Moreover, k is assumed to be observed without error, i.e. k ∈ DT .
We emphasize that these assumptions are stronger than required as it would in principle
suffice for the hazard to be constant over some region, not necessarily at the end nor even
over regions that are adjacent to each other. We have made this assumption to keep the
notation simple. Finally, Assumption H(iv) requires that durations belonging to either DH−l
or DH+l have a strictly positive probability to be truthfully reported. This is an essential
condition to identify γ(k) for 1 < k < τ .6

Heuristically, under the assumption that the hazard is constant over a set of durations
which includes some truthfully reported values enables us to first uniquely identify the γs as
well as the parameter modelling the heaping process, i.e. the ps and the qs, in this region.
Subsequently, we can then use these ps and qs to pin down the rest of the baseline hazard
parameters.

Assumption U:
(i) vi ≡ exp(ui) is independent of zi;
(ii) vi is identically and independently distributed;
(iii) The density of v is gamma with unit mean and variance σ−1.
(iv) The support of at least one element z1i of zi, say Sz1, whose corresponding element of
β is non-zero contains at least two values. Moreover, the full support of zi, Sz, contains the
zero vector.

5We note that there are different alterations of Assumption H that could identify the parameters of

interest as well. For instance, dropping the assumption on γ(k) in H(ii)-(iii), one could still obtain the result

of Proposition 1 below if the γ parameters were constant and the same to the right and the left of the

heaping point (rather than to differ in their levels as in H(ii)).
6One could also assume that the ps and qs are a function of some characteristics if we impose further

structure.
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Assumption U(i)-(ii) allows to integrate out unobserved heterogeneity and so to identify
the unconditional hazard function. The parametric choice of the unobserved heterogeneity
distribution in Assumption U(iii) on the other hand allows to obtain a closed form expression
for the unconditional hazard function, which will be used in the identification proof of
Proposition 1 below. In fact, identification of the baseline hazard together with the ps
and the qs would only require some mild regularity conditions as in Ridder and Woutersen
(2003). While the gamma density choice might appear overly restrictive at first sight, we
note that U(iii) can often be rationalised theoretically (Abbring and Van Den Berg, 2007)
and findings by Han and Hausman (1990) as well as Meyer (1990) suggest that estimation
results for discrete-time proportional hazard models where the baseline is left unspecified
(as in our model) display little sensitivity to alternative distributional assumptions on vi.
Finally, albeit beyond the scope of this paper, it might be possible to adopt other, more
flexible approaches such as the one recently proposed by Burda, Harding, and Hausman
(2014). Finally, Assumption U (iv) is standard in the literature on identification of MPH
models (cf. Elbers and Ridder, 1982; Ridder and Woutersen, 1984) and requires a minimum
amount of variation in the covariates zi to identify β.

Before stating our main identification result, we need to define some more notation,
which will be used in the proof of Proposition 1 below. Let θ =

(
β, γ(0), γ(1), ..., γ(k −

1), γ(k), γ(k + r + 2)
)

and define the probability of survival at least until time d in the
absence of misreporting as:

Si (d|zi, ui, θ) = Pr (ti ≥ d|zi, ui, θ)

=

d−1∏
s=0

exp
(
− exp

(
z′iβ + γ(s) + ui

))
=
d−1∏
s=0

exp
(
−vi exp

(
z′iβ + γ(s)

))
.

Now, for durations that are censored at time period τ we have:

Si (τ |zi, ui, θ) = Pr (ti ≥ τ |zi, ui, θ)

=

τ−1∏
s=0

exp
(
− exp

(
z′iβ + γ(s) + ui

))
=

τ−1∏
s=0

exp
(
−vi exp

(
z′iβ + γ(s)

))
.

Moreover, the probability for an exit event in ti < τ is:

fi (τ |zi, ui, θ) = Pr (ti = τ |zi, ui, θ)
=Si (τ |zi, ui, θ)− Si (τ + 1|zi, ui, θ)

=
τ−1∏
s=0

exp
(
−vi exp

(
z′iβ + γ(s)

))
(2)

−
τ∏
s=0

exp
(
−vi exp

(
z′iβ + γ(s)

))
.
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Here, fi (τ |zi, ui, θ) denotes the probability of a duration equal to τ when there is no mis-
reporting. However, because of the rounding, heaped values are over-reported while non-
heaped values are under-reported, and this needs to be taken into account when constructing
the likelihood (see next section). Hereafter, let

φi (t|zi, vi, θ) = Pr (ti = t|zi, vi, θ)

with t denoting the discrete reported duration. It is immediate to see that

(i) for ti ∈ DT , φi (t|zi, vi, θ) = fi (t|zi, vi, θ) ;

(ii) for ti ∈ DC , Pr (ti > t|zi, vi, θ) = Si (t|zi, vi, θ), with t = τ ;

(iii) for ti ∈ DH−l , φi (t|zi, vi, θ) = (1− pl)fi (t|zi, vi, θ);

(iv) for ti ∈ DH+l , φi (t|zi, vi, θ) = (1− ql)fi (t|zi, vi, θ);

(v) and for ti ∈ DH,

φi (t|zi, vi, θ) =

r∑
l=1

plfi (t− l|zi, vi, θ) +

r∑
l=1

qlfi (t+ l|zi, vi, θ) + fi (t|zi, vi, θ) .

In summary, there are five different probabilities of exit events depending on whether the
reported duration ti is in DT , DC , DH−l , DH+l , or DH respectively.

Moreover, using assumption U, the unconditional probabilities in case (i) above are given
by: ∫

φi (t|zi, v, θ) g(v;σ)dv =

∫
fi (t|zi, v, θ) g(v;σ)dv

=

∫
Pr (τi = t|zi, v, θ) g(v;σ)dv

=

∫
[Si (t|zi, v, θ)− Si (t+ 1|zi, v, θ)] g(v;σ)dv

=

∫
Si (t|zi, v, θ) g(v;σ)dv −

∫
Si (t+ 1|zi, v, θ) g(v;σ)dv

=

(
1 + σ

(
t−1∑
s=0

exp
(
z′iβ + γ(s)

)))−σ−1

−

(
1 + σ

(
t∑

s=0

exp
(
z′iβ + γ(s)

)))−σ−1

and in case (ii) by:∫
Pr (ti > t|zi, v, θ) g(v;σ)dv =

∫
Si (t|zi, v, θ) g(v;σ)dv

=

(
1 + σ

(
t−1∑
s=0

exp
(
z′iβ + γ(s)

)))−σ−1

,
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where the last equalities use the fact that there is a closed form expression for the case of a
Gamma density in a Proportional Hazard model (e.g., see Meyer (1990, p. 770)). Moreover,
since the integral is a linear operator the probabilities for the cases (iii) to (v) can be derived
accordingly.

Proposition 1: Given Assumptions C, H, and U, we can uniquely identify the baseline
hazard parameters γ(0) to γ(τ − 1) together with the heaping probabilities pl and ql for
l = {1, . . . , r} from the reported durations.

The proof is based on establishing a one to one relationship between survival probabilities
and the baseline hazard parameters. Given Assumptions U, H(ii)-(iii), we follow the same

approach as in Heckman and Singer (1984) to uniquely identify
∑k

s=0 exp(γ(s)) and so
γ(k). Given this, and exploiting the flatness of the hazard, as stated in H(ii), we identify
the heaping probabilities ps and qs. Finally, using H(iv), we sequentially identify all γ(s),
for s < k.7

3 Estimation of the Mixed Proportional Hazard Model with

Heaped Durations.

Our next goal is to obtain consistent estimators for θ = {θ, σ} from the possibly misreported
durations. To do this, we first set up the likelihood function drawing from the derivations
of the previous section for truthfully and misreported durations. That is, given Assumption
U and the definition of φi(·) from cases (i) to (v), let:

LN (θ) =
N∏
i=1

∫
φi(t|zi, v)g(v;σ)dv

and so

lN (θ) = lnLN (θ)

=
N∑
i=1

ln

∫
φi(t|zi, v)g(v;σ)dv.

Thus
θ̂N = arg max

θ∈Θ
lN (θ)

θ† = arg max
θ∈Θ

E (lN (θ)) .

Assumption D:
(i) Assume that E[τ4

i ] <∞.
(ii) The durations τi, i = 1, ..., N are identically and independently distributed.

7Note that, similar to Assumption H, it appears from the proof in the Appendix that Assumption U is

sufficient, but by no means necessary.
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(iii) For all d = 1, ..., τ , 1
N

∑
i

1{τi = d} p→ Pr[τi = d] > 0.

Together with Assumption H(iv), Assumption D(iii) ensures that we observe exits in
each time period until τ . Needless to say, if we do not have enough observations for a given
duration, we cannot consistently estimate the associated baseline hazard parameters. We
now establish the asymptotic properties of θ̂N .

Theorem 2: Let Assumptions H,U,C and D hold. Then:
(i)

θ̂N − θ† = op(1)

(ii) √
N
(
θ̂N − θ†

)
d→ inf
ψ∈Ψ

(
(ψ −G)′ I† (ψ −G)

)
,

with I† = E
((
−∇2

θθlN (θ) /N
)
|θ=θ†

)
, and G ∼ N

(
0, I†−1

)
, Ψ being a cone in Rpβ+k+2+2r.8

(iii) Let π† =
(
p†1, ..., p

†
r, q
†
1, ..., q

†
r

)′
, if π† ∈ (0, 1)2r , then

√
N
(
θ̂N − θ†

)
d→ N

(
0, I†−1

)
.

In the current context, we are particularly interested in carrying out inference on the
baseline hazard parameters, and for that we use critical values from the limiting distribution

of
√
N
(
θ̂N − θ†

)
. However, as the information matrix I†−1 is not block diagonal, the

limiting distribution of the baseline hazard parameters depends on whether some heaping
probabilities are equal to zero or not. If one or more of the ”true” rounding probabilities are

equal to zero, then the limiting distribution of
√
N
(
θ̂N − θ†

)
is no longer normal. Needless

to say, this complicates inference on the baseline hazard.
Thus, we want to test the null hypothesis that at least one rounding parameter is equal

to zero versus the alternative that none is zero. If we reject the null, then we know that we
do not have any boundary problem and can then rely on the asymptotic normality result in

Theorem 2(iii). Let H
(j)
p,0 : pj = 0, H

(j)
p,A : pj > 0 and let H

(j)
q,0 , H

(j)
q,A be defined analogously.

Our objective is to test the following hypotheses,

Hr
0 =

(
∪rj=1H

(j)
p,0

)
∪
(
∪rj=1H

(j)
q,0

)
vs

Hr
A =

(
∩rj=1H

(j)
p,A

)
∩
(
∩rj=1H

(j)
q,A

)
,

so that under Hr
A all ps and qs are strictly positive.

To decide between Hr
0 and Hr

A we follow the Intersection-Union principle, IUP, see e.g.
Chapter 5 in Silvapulle and Sen (2005). According to the IUP, we reject Hr

0 at level α, if

8Ψ is a cone in Rs, if for a > 0, ψ ∈ Ψ implies aψ ∈ Ψ. Moreover, pβ denotes the dimension of zi.
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all single null hypotheses H
(j)
p,0 and H

(j)
q,0 are rejected at level α. Otherwise, we do not reject

Hr
0 .

Let
tpj ,N =

(
Î1/2
pjpj ,N

)
p̂j,N , tqj,N =

(
Î1/2
qjqj ,N

)
q̂j,N ,

where Î1/2
N Î

1/2
N = ÎN , ÎN = 1

N∇θlN (θ†)∇′θlN (θ†) and Îpjpj ,N , Îqjqj ,N are the corresponding
entries.9 Also, let

PVp,j,N = Pr
(
Z > tpj

)
, PVq,j,N = Pr

(
Z > tqj

)
,

where Z denotes a standard normal random variable.
We now introduce a rule for deciding between Hr

0 and Hr
A.

Rule IUP-PQ: Reject Hr
0 , if maxj=1,...,r {PVp,j , PVq,j} < α and do not reject otherwise.

Proposition 3: Let Assumptions H,U,C and D hold. Then, Rule IUP-PQ ensures that

lim
N→∞

Pr
(
Reject Hr

0 |Hr
0 true

)
≤ α

lim
N→∞

Pr
(
Reject Hr

0 |Hr
0 false

)
= 1.

If we reject Hr
0 , we can proceed performing inference based on asymptotic normality. If we

fail to reject Hr
0 , then we drop the pj or qj with the largest associated p-value and we apply

Rule IUP once again.

4 Modeling the Effect of the Cash Transfer Policy

Our main empirical question is to assess whether the introduction of the cash transfer policy
has reduced neonatal mortality. More precisely, we want to device a procedure for testing
the hypothesis that the baseline hazard has been lowered by the policy. In order to capture
the effect of the cash transfer policy we introduce a dummy Di, where Di = 1 if the duration
measurements started after the introduction of the policy, and zero otherwise. The discrete
hazard function for the true duration is

h̃i(d|zi, ui) = Pr[τi < d+ 1|τi ≥ d, zi, ui]

=
(

1− exp
(
− exp

(
z′iβ + γ(k) + γ(2)(k)Di + ui

)))
,

where the coefficient of Di, γ
(2)(k), is defined analogously to γ(k). It is immediate to see

that γ(2)(k) < 0 implies a lower hazard after the policy introduction.
We want to isolate any possible confounding effect. For example, it might be the case

that the heaping probabilities are also affected by the program: if more women deliver
babies in hospitals and are also followed up after the birth after the implementation of

9From (2) and the definition of φi(·) in (i) to (v), it is immediate to see that we can take right and left

derivatives and evaluate at the boundary level. See discussion in the proof of Theorem 2(ii) in the Appendix.
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the program, births and deaths might, on average, be recorded more accurately than be-
fore. That is, if more women deliver in hospitals, then it is likely that the probability of
rounding will decrease as families typically receive birth certificates when being discharged
from the hospital, which allows them to recall more accurately. Therefore, to isolate the
genuine effect on neonatal mortality, we allow the rounding probabilities to vary after the
policy introduction. For all durations not truthfully reported we allow for possibly different
rounding errors depending on whether the reported duration occurred before or after the
policy introduction.10

More formally, let ϑ = {θ, γ(2)(0), . . . , γ(2)(k−1), γ(2)(k), γ(2)(k+r+2)} and ϑ = {θ, σ}.
Define the likelihood contribution of a correctly reported duration as:

f̃i (τ |zi, ui, ϑ) = Pr (ti = τ |zi, ui, ϑ)

=
τ−1∏
s=0

exp
(
−vi exp

(
z′iβ + γ(s) + γ(2)(s)Di

))
−

τ∏
s=0

exp
(
−vi exp

(
z′iβ + γ(s) + γ(2)(s)Di

))
.

Then, the contribution of a non-truthfully reported duration can be defined in analogy to
φi (t|zi, ui, θ), say φ̃i (t|zi, ui, ϑ). Thus,
(i) for any ti = t ∈ DH−l ,

φ̃i(k|zi, vi, ϑ) = (1− p(1)
l (1−Di)− p(2)

l Di)f̃i(k|zi, vi, ϑ),

(ii) for ti = t ∈ DH+l

φ̃i(k|zi, vi, ϑ) = (1− q(1)
l (1−Di)− q(2)

l Di)f̃i(k|zi, ui, ϑ),

(iii) and for ti = t ∈ DH,

φ̃i(k|zi, ui, ϑ) =
r∑
l=1

(p
(1)
l (1−Di) + p

(2)
l Di)f̃(k − l|zi, ui, ϑ)

+
r∑

l′=1

(q
(1)
l (1−Di) + q

(2)
l Di)f̃i(k + l|zi, ui, ϑ)

+ f̃(k|zi, ui, ϑ).

Notice that the specification above allows for different heaping probabilities before and after
the introduction of the policy.
Finally, let l̃N (ϑ) be defined as lN (θ), but with φ̃i (t|zi, ui, ϑ) instead of φi (t|zi, ui, θ). Also
let

ϑ̃N = arg max
ϑ∈Θ̃

l̃N (ϑ)

10Note, however, that our setup does not allow the β’s to change after the program introduction.
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ϑ‡ = arg max
ϑ∈Θ̃

lim
N→∞

1

N

N∑
i=1

E
(
l̃N (ϑ)

)
.

Note that durations are not necessarily identically distributed, as they may differ depending
on whether they occur before or after treatment.

We formulate the null as

Hγ
0 : max

{
γ(2)(0), γ(2)(1),..., γ

(2)(k), γ(2)(k + r + 2)
}
≥ 0

versus
Hγ
A : max

{
γ(2)(0), γ(2)(1),..., γ

(2)(k), γ(2)(k + r + 2)
}
< 0.

The null hypothesis is that over at least one ”day” the hazard function either has increased
or has not changed. On the other hand, under the alternative, the policy has reduced
neonatal mortality over the all period considered, i.e. over every day the baseline hazard
has decreased. Note that Hγ

A implies

H̃γ
A : max

J≤k+r+2


J∑
j=0

γ(2)(j)

 < 0

while H̃γ
A does not necessarily imply Hγ

A. Thus, rejection of Hγ
0 is a sufficient, but not a

necessary condition, for a uniform shift upward of the survivor function. In other words, if
we reject the null we have strong evidence that the policy has generated the desired effect.
Now, with a slight abuse of notation, it is immediate to see that we can re-state Hγ

0 and
Hγ
A as,

Hγ
0 = ∪k+2

j=1H
(j)
γ,0

vs
Hγ
A = ∩k+2

j=1H
(j)
γ,A,

where H
(j)
γ,0 : γ(2)(j) ≥ 0 and H

(j)
γ,A : γ(2)(j) < 0. Thus, the null implies that for at least one

j, γ(2)(j) ≥ 0 while the alternative is that γ(2)(j) < 0 for all j. Thus we can apply again the
Intersection Union Principle, IUP. Let:

t
γ
(2)
j ,N

=

(
Î1/2

γ
(2)
j γ

(2)
j ,N

)
γ̃

(2)
j,N , PVγ(2),j,N = Pr

(
Z > t

γ
(2)
j ,N

)
,

with Z being a standard normal random variable.

Rule IUP-GAMMA2: Reject Hγ
0 , if maxj=1,...,k+2

{
PVγ(2),j,N

}
< α and do not reject

otherwise.

In the sequel we shall need

Assumption D’:

(i) Assume that E[τ
4(1+δ)
i ] <∞ for δ > 0.

(ii) The duration τi, i = 1, ..., N are independently but not identically distributed.
(iii) As in Assumption D.
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As mentioned above, durations are no longer identically distributed because of the possible
structural break due to the policy introduction.

Proposition 4: Let Assumptions H,U,C and D’ hold. Then, Rule IUP-GAMMA2 ensures
that

lim
N→∞

Pr (Reject Hγ
0 |H

γ
0 true) ≤ α

lim
N→∞

Pr (Reject Hγ
0 |H

γ
0 false) = 1.

If we reject Hγ
0 , we can stop. In fact, its rejection provides strong evidence for the

efficacy of the policy. If we instead fail to reject Hγ
0 , the natural step is to proceed to

test the null hypothesis that the introduction of the cash transfer has not decreased the
probability of a baby dying in any of the first τ days, against the alternative that over at
least one day the probability of death has decreased. Hence, formally if we fail to reject
Hγ

0 , we proceed to test

H2γ0 : min
{
γ(2)(0), γ(2)(1),..., γ

(2)(k + r + 2)
}
≥ 0

versus
H2γA : min

{
γ(2)(0), γ(2)(1),..., γ

(2)(k + r + 2)
}
< 0.

Thus the null is that the introduction of the cash transfer has not decreased the probability
of a child dying in any of the first τ days. The alternative is that over at least one day the
probability of death has decreased. Note that H2γ0 implies

H̃2γ0 : min
J≤k+r+2


J∑
j=0

γ(2)(j)

 ≥ 0

while H̃2γ0 does not necessarily imply H2γ0 . Thus, failure to reject H̃2γ0 is a sufficient, but
not necessary condition, for a uniform shift downward or for no change in the survivor
function. The null is a composite hypothesis, as it is equivalent to (again, with a slight
abuse of notation)

H2γ0 = ∩k+2
j=1H2

(γ)
0,j

where H2
(γ)
0,j : γ

(2)
j ≥ 0. At issue here is the control of the overall size when testing composite

hypotheses.11 One common approach to this problem is based on controlling the overall
Family-Wise Error-Rate (FWER), which ensures that no single hypothesis is rejected at a
level larger than a fixed value, say α. This is typically accomplished by sorting individual
p−values, and using a rejection rule which depends on the overall number of hypotheses.
For further discussion, see Holm (1979), who develops modified Bonferroni bounds, White
(2000), who develops the so-called “reality check”, and Romano and Wolff (2005), who
provide a refinement of the reality check, in terms of controlling the average number of false
nulls rejected. However, when the number of hypotheses in the composite is large, all these
procedures tend to be rather conservative. This is because, strictly positive elements of

11For a survey of recent developments on testing composite hypotheses, see Corradi and Distaso (2011).
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γ(2) do not contribute to the statistic, but do contribute to the p-vale values, making them
larger.

A less conservative approach can be based on Andrews and Soares (2010) Generalized
Moment Selection (GMS). Consider the following statistic:12

S−N =

k+1∑
j=0

(√
Nγ̃

(2)
N (j)/σ̃N,j,j

)2

−
, where x− =

{
x, if x ≤ 0

0, if x > 0
, (3)

where σ̃2
N,j,j is the jj diagonal element ofRΣ̃NR

′, with Σ̃N being an estimator of vcov
(√

N
(
ϑ̃N − ϑ‡

))
,

and Rθ̃N = γ̃(2) =
(
γ̃(2)(0), ..., γ̃(2)(k + r + 2)

)
. Notice that, when γ̂(2)(k) ≥ 0 for all k, S−N

is equal to zero almost surely. In fact, only negative elements of γ̂2 contribute to the statistic.

Theorem 5: Let Assumptions H,U,C and D’ hold. Then, under H2γ0 ,

S−N
d→
k+1∑
j=0

k+1∑
i=0

ωjiZi + hj

2

−

,

where Z ∼ N(0, Ik+2), ω2
ji is the j, i element of Ω1/2, and Ω = D−1/2 (RΣR′)D−1/2, with

D = diag (RΣR′) , and hj = limN→∞

(√
Nγ(2)(j)

)
. Under H2γA, for ε > 0,

lim
N→∞

Pr

(
1√
N
S−N > ε

)
= 1.

In order to construct valid critical values for S−N , we can easily simulate variates from

Ω̃
1/2
N N

(
0, Ik+2

)
, but we need a way of approximating the slackness vector h. The main prob-

lem is that the vector h cannot be consistently estimated. Intuitively, except for the least
favorable case under the null, i.e. the case of γ(2)(0) = ... = γ(2)

(
k
)

= γ(2)
(
k + r + 2

)
= 0,(

γ(2)(k)/ωk,k
)
> 0 and so limN→∞

√
N
(
γ(2)(k)/ωk,k

)
tends to infinity, and cannot be con-

sistently estimated. The idea behind the GMS approach is to define data-driven rules to
approximate h and control for the degree of slackness. In the sequel, we choose h ac-

cording to the following rule, based on the law of the iterated logarithm: if γ̃
(2)
N (j) ≤

σ̃N,j,j
√

2 ln(ln(N))/N, then hj = 0 otherwise if γ̃
(2)
N (j) > σ̃N,j,j

√
2 ln(ln(N))/N, then

hj = ∞, so that
∑k+1

i=0 ωjiZi + hj > 0 almost surely and thus it does not contribute to
the computation of the simulated critical values. Hereafter, let c∗B,N,(1−α) be the (1−α)−th
percentile of the empirical distribution of

S
−∗(b)
N

d→
k+1∑
j=0

k+1∑
i=0

ω̃N,jiη
(b)
i 1

{
γ̃

(2)
N (j) ≤ σ̃N,j,j

√
2 ln(ln(N))/N

}2

−

,

where for b = 1, ..., B, η(b) =
(
η

(b)
0 , ..., η

(b)

k+1

)′
≡ N

(
0, Ik+1

)
.

12S−N is the same as the criterion function in Chernozukov, Hong and Tamer (2007).
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Theorem 6: Let Assumptions H,U,C and D’ hold. Then, under H2γ0 ,

lim
N,B→∞

Pr
(
S−N ≤ c

∗
B,N,(1−α)

)
≥ 1− α. (4)

and under H2γA,

lim
N,B→∞

Pr
(
S−N ≤ c

∗
B,N,(1−α)

)
= 0. (5)

Note that none of positive γ̃
(2)
N (j) contributes to the statistics, while only those γ̃

(2)
N (j)

which are smaller than σ̃N,j,j
√

2 ln(ln(N))/N contribute to the critical values. This is why
the coverage in the statement of Theorem 6 holds as a weak inequality. However, if for
some j, γ(2)(j) = 0, then the coverage is exactly 1 − α, see Theorem 1 in Andrews and
Guggenberger (2009). Hence, the simulated critical values provide a test with correct size
for the limiting distribution under the least favorable case, and with unit asymptotic power.

5 Empirical Application: Neonatal Mortality in India

5.1 Data

The data we use is the second and the third-rounds of the District Level Household and
Facility Survey (DLHS3 and DLHS2) from India.13 DLHS3 (DLHS2) survey collected infor-
mation from 720,320 (620,107) households residing in 612 (593) districts in 28 (29) states14

and 6 union-territories (UTs) of India during the period 2007-08 (2002-04). These surveys
focussed mainly on women and were designed to provide information on maternal and child
health along with family planning and other reproductive health services. DLHS2 only
included currently married women aged 15-44 but, DLHS3 included ever-married women
aged 15-49 and never-married women aged 15-24. A multi-stage stratified sampling design
that was representative at the district level was used. For our analysis we have combined
both rounds of the surveys and have recoded the districts to match the boundaries that had
been changed across the two surveys. This gave us 582 districts.

DLHS3 collected data on all pregnancies for each woman since 1st of January 2004.
DLHS2 on the other hand collected information on all live births. The year and month
of birth were recorded for all live births. For those children who had died by the time of
the interview, year and month of death were also recorded. We convert this information to
match the financial year (1st of April to 31st of March of the following year) in India as the
conditional cash transfer program (CCT) of interest was administered at the beginning of
a financial year.

13International Institute for Population Sciences (IIPS) was the nodal agency responsible for these surveys.

Further details about the survey and relevant reports can be found at http://www.rchiips.org/prch-3.

html and http://www.rchiips.org/pdf/rch2/National_Report_RCH-II.pdf.
14The state Nagaland was excluded in the third round.
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5.2 The Conditional Cash Transfer Program-Janani Suraksha Yojana

(JSY)

The National Rural Health Mission (NRHM) launched the program Janani Suraksha Yo-
jana (JSY) in April 2005. This program replaced the National Maternity Benefit Scheme
(NMBS) that had been available since August 1995. The objective of the JSY was to reduce
maternal and neonatal mortality by promoting institutional delivery. NMBS was linked to
the provision of better diet. However, JSY integrated cash assistance with antenatal care
during pregnancy, followed by institutional care during delivery and immediate post-natal
period (see Lingam and Kanchi (2013)). The scheme was rolled out from April 2005 with
different districts adopting at different times.

The JSY program provided cash assistance to eligible pregnant women for delivery care
(MOHFW, 2009). Initial financial assistance ranged between 500 to 1,000 Rupees (approx.
8 to 16 US Dollars) and has been modified over the years making it available to more
women. The central government drew up the general guidelines for JSY in 2005. Whilst
the adoption of JSY was compulsory for the whole of India, individual states were left with
the authority to make minor alterations. The program was ultimately implemented by all
the districts over time.

5.3 Sample and Variables

We do not have information on when and which districts implemented the program. We
follow Lim et al. (2010) and Mazumdar et al. (2010) and create a treatment variable at the
district level. The DLHS3 asked the mothers whether they had received financial assistance
for delivery under the JSY scheme. Since the receipt of JSY could be correlated with
unobserved mother specific characteristics in our model, we instead use this information to
create a variable at the district level as follows. We define a district as having initiated
the program in a particular year when the weighted15 number of mothers who had received
JSY among the mothers who gave birth in that district, exceeds a certain threshold for
the first time. This district is defined as a ‘treated’ district from that period onwards. We
experimented with different threshold. The main set of results are reported for the model
using the 18% cutoff. The estimated effects were very similar across different thresholds.

There is a possibility that the States started the roll-out of the program in districts
where the number of institutional deliveries were low and neonatal mortality was high. We
therefore conduct our analysis using only the sample of babies born in the districts that were
eventually treated during our observation period using the 18% cut-off. In addition, we have
also extended the sample to include a few years prior to the program start to obtain enough
deaths for the estimation of the baseline hazard. We use the birth and death information
for babies born between April 2001 and December 2008 in these districts.

The object of interest is the deaths within the first 28 days after birth. Frequency
distribution of the reported days of survival is presented in Table 1. We have 163,617
babies in our sample. Of these, 4,407 (2.69%) were recorded as having died before reaching

15As the DLHS is representative at the district level, appropriate weights to obtain summary statistics at

the district level are provided in the dataset.
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28 days implying a neonatal mortality rate of 441 babies per 1,000 live births. We make the
following observations: (i) observed frequencies exhibit heaping at days which are multiples
of 5; (ii) the number of reported deaths are quite small nearer the end of the time period. In
order to model the baseline hazard non-parametrically, we also need enough exits over the
observation period in the treated as well as the untreated districts. We therefore restrict our
analysis to modelling the hazard during the first 18 days after birth. Hence our censoring
point is 18 days instead of 28 days. The frequency distribution of survival information
by treatment status is again provided in Table 1. 40,531 babies (24.8%) were born in the
districts under treatment. The control group consists of 123,086 babies (75.2%). We also
note, (i) the proportion of babies dying in each day is generally lower for babies born in
treated districts compared to those born in untreated districts; (ii) the observed heaping
at 5, 10, 15,..etc is still present in both samples.

As a preliminary to the estimation of formal models, it is informative to examine the non-
parametric estimates of the unconditional hazard function distinguished by the treatment
status. These are plotted in Figure 1. All babies born alive and survived the first 18 days
are treated as censored observations and are also included in the risk set in the plot. The
estimated hazard for those babies born in the treated districts generally lie below the hazard
for the control group. The plots also show the heaping at durations which are multiples of
5 with a distinctive heap at 15 days and this is observed for both groups.

The model includes some control variables at the parental level as well as the child
level. The parental level characteristics included are: (i) mother’s age, mother’s and fa-
ther’s education in years along with binary indicators for, caste and religion of the head
of the household, whether the household lives in a rural area, and dummies for household
standard of living is in the top or the middle third of the distribution.16 The baby level
characteristics included are binary indicators for sex, birth order and the year of birth.
Summary statistics for these variables distinguished by treatment status are in Table 2.
The average characteristics of the treated and the untreated samples are generally similar.
The only differences are in those characteristics that have been improving over time. For
example, the general level of schooling in India has been improving over time and hence the
average years of schooling of parents in the treated sample are slightly higher given that
the program was implemented recently.

5.4 Empirical Findings

We estimate the model using two different specifications. In the first one, we allow for
heaping as outlined in Section 2, while the second one ignores this anomaly altogether.
Since heaps in the data appear to be pronounced differently at different days (cf. Table 1),
we allow for ‘small’ heaps at days 5 and 10, and for a ‘big’ heap at day 15 in the heaping
specification. The former are associated with DH−1 = {4, 9} and DH+1 = {6, 11} together
with the probabilities p1 and p3, while the ‘big’ heap is assumed to contain true durations
from {13, 14} and {16, 17}, respectively. The corresponding probabilities are p1, p2, and
p3, p4, respectively. We set k = 12 relying partially on information from the Program for

16The standard of living index was provided by the data people. See the DLHS2 (IIPS, 2006) and DLHS3

(IIPS, 2010) reports for further information about the construction of these indexes.
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Appropriate Technology in Health (PATH) report (2012, p.20) on neonatal mortality in
Uttar Pradesh, which suggests that the number of babies dying after 10 days after birth is
relatively stable and not subject to large fluctuations.

Starting with the model allowing for heaping in Table 3 and the estimates of the prob-
abilities p1 to p4, it is clear that in all four cases we reject the null hypothesis that the
probability associated with the heaping process is equal to zero. The same results, albeit

less pronounced, are obtained for corresponding tests on the probabilities p
(2)
1 to p

(2)
4 , which

are related to the heaping process after treatment and could differ from p1 to p4. Thus,
allowing for heaping appears to be important within our setup, and, judging by the size
of the estimated probabilities, treatment does not seem to have substantially altered the
rounding patterns of individuals in the data (at least w.r.t. the specified heaps). Moreover,
note that the estimated effects of the covariates in Table 3 are as expected.

Next, we turn to the maximum likelihood estimates of the γ(·) and γ(2)(·) coefficients in
Table 4. Theses parameters were estimated in exponential form (exp(γ(·)) and exp(γ(2)(·))),
which is shown in the first column of Table 4. Examining the size of the estimated coef-
ficients, it is evident that, despite no real difference in their significance levels, exp(γ)-
coefficients are generally smaller in size in the model allowing for heaping than in the one
without.

Turning to the effects of the JSY program and the second part of Table 4, we conduct the
following tests in accordance with our theoretical results from Section 4 to gauge whether
its introduction uniformly reduced mortality in the data across the first 18 days: using
the IUP-GAMMA2 rule, we construct a battery of t-tests for each γ(2), e.g. t

γ
(2)
0 ,N

=

(0.947−1)/0.066 = −0.801 for day 0 for the model with heaping, and compare each of these
test statistics in turn with the one-sided 5% critical value from the normal distribution.
Since it is obvious that we fail to reject some individual null hypotheses for γ(2) < 0 as
the exponential of the estimated coefficients is actually larger than one (which implies
an increase in mortality), we cannot reject the union of the individual hypotheses either.
Thus, we fail to reject the hypothesis that the introduction of the conditional cash transfer
program reduced mortality uniformly across our observation period. On the other hand, we
note that γ(2)(7) to γ(2)(10) as well as γ(2)(12) and γ(2)(16) are significantly less than one
in the model allowing for heaping, which implies that we do reject H2γ0 , the null that the
cash transfer program had no effect on the γ coefficients over the period under examination.
A similar conclusion can be drawn when examining the model without heaping, where a
similar rejection pattern is observed. These effects are illustrated by Figures 2 and 3, which
display the discrete hazard rates at zi = 0 by treatment status for the model with and
without heaping effects.

Summarizing the findings of this section, we note that our estimates suggest clear ev-
idence of heaping in the data as the estimated ‘heaping probabilities’ were significantly
different from zero. Moreover, the estimated coefficients in the model allowing for heaping
were generally found to be smaller than the ones of the model without heaping. Finally, our
test results did not indicate that the introduction of the JSY program reduced mortality
uniformly over the first 18 days after birth. On the other hand, the program appears to have
some effect after day 7, despite the low number of cases after the first week. Since our anal-
ysis was conducted using only those babies born in districts that were eventually treated, it
remains to be established whether the actual effect of mothers receiving treatment exhibits
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a similar pattern, too. Drawing from the results of this paper, we conjecture that the pro-
gram might not be targeting the mothers properly as districts that have implemented the
program are not improving the survival chances of the babies substantially.

6 Conclusions

India has one of the largest neonatal mortality rates in the world. For this reason, the
Indian Government launched a conditional cash-incentive program (JSY) to encourage in-
stitutional delivery in 2005. This paper studied the effect of the program on the neonatal
mortality rate. Mortality is modeled using survival analysis, paying special attention to
the substantial heaping present in the data. The main methodological contribution of the
paper is the provision of a set of sufficient conditions for pointwise identification and con-
sistent estimation of the baseline hazard in the joint presence of heaping and unobserved
heterogeneity. Our identification strategy requires neither administrative data nor multi-
ple measurements. It only requires the presence of a correctly reported duration and of
some flat segments in the baseline hazard, which includes this correctly reported duration
point. Information about the correctly reported duration and the flat segment can stem
from different sources and does not need to come from a specific data set. The likelihood is
constructed down-weighting the contribution of the heaped duration and over-weighting the
contribution of the non heaped durations. This adjustment ensures consistent estimation
of both heaping and baseline hazard parameters. We establish the asymptotic properties of
the maximum likelihood estimator and provide simple procedure to test whether the policy
had (uniformly) reduced mortality. Our empirical findings can be summarized as follows:
first, heaping plays an important role in our data as the estimated probabilities associated
with the heaping process were found to be significant before and after the introduction of
the JSY program. Second, evidence for a uniform increase in survival probability of babies
born in districts that were treated is rather scarce, despite a statistically significant increase
after the first week. This casts some doubts about the overall efficacy of the JSY program
in targeting mothers properly.
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Appendix I

Proof of Proposition 1: In the following, suppose that k = τ−2 (r + 1) and jh∗ = τ−r−1,
with r = 1, so that k + 2 = jh∗ ∈ DH, and τ = k + 4. The extension to r > 1 will be
outlined subsequently. Moreover, without loss of generality, assume that zi is a scalar.

Define for any time period d

H0(d) =
d∑
s=0

exp (γ(s))

as the discrete cumulative baseline hazard.

First of all, notice that k is correctly observed by H(iii) and thus not in DH, ∪rl=1DH−l ,
or ∪rl=1DH+l . This implies that:

Pr
(
ti = k|zi, θ

)
= Pr

(
τi = k|zi, θ

)
.

Moreover, since time periods cannot belong to more than one heap (an immediate conse-
quence of H(i) and the definition of the different sets), it must hold that:

Pr
(
ti ≥ k|zi, θ

)
= Pr

(
τi ≥ k|zi, θ

)
.

Likewise, since individuals at k + 1 only heap upwards, it also holds that:

Pr
(
ti ≥ k + 1|zi, θ

)
= Pr

(
τi ≥ k + 1|zi, θ

)
.

For the case of correctly reported durations, we can proceed as in Heckman and Singer (p.

235, 1984). Given Assumption U,

Pr
(
τi ≥ k + 1|zi, θ

)
= Si

(
k + 1|zi, θ

)
=

∫ ∞
0

Si
(
k + 1|zi, v, θ

)
g(v;σ)dv

=

∫ ∞
0

exp
(
−vH0(k) exp (ziβ)

)
g(v;σ)dv

=
(
1 + σ

(
H0(k) exp (ziβ)

))−σ−1

.

Since the covariates are time invariant and independent of unobserved heterogeneity, set
zi = 0 to obtain

Si
(
k + 1|zi = 0, θ

)
=

∫ ∞
0

exp
(
−vH0(k)

)
dG(v;σ)

=
(
1 + σ

(
H0(k)

))−σ−1

.

Now Si
(
k + 1|zi = 0, θ

)
may be viewed as a composite of monotone functions, A(H0(k)),

where:

A(H0(k)) =

∫ ∞
0

exp
(
−vH0(k)

)
g(v;σ)dv.
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To solve for H0(k), write M = A(H0(k)) and observe that H0(k) = A−1(M) is uniquely
determined by strict monotonicity and continuity of A, which follows by U(iii) and the
exponential form. Then, set M = Si

(
k + 1|zi = 0, θ

)
and deduce that:

H0(k) = A−1(Si
(
k + 1|zi = 0, θ

)
).

Analogously,
H0(k − 1) = A−1(Si

(
k|zi = 0, θ

)
),

and so H0(k) − H0(k − 1) = exp(γ(k)), which identifies γ(k). By assumption H(ii), this
implies that also H0(k + 1) = H0(k + 2) and γ(k + 1) = γ(k + 2) = γ(k) are identified.

In the following, we will, without loss of generality, continue to set zi = 0 for notational
simplicity. Notice, however, that the argument carries through with zi 6= 0 as β can be
identified by standard arguments. Now, since the level of Pr

(
τi = k|zi = 0, θ

)
is known and

observed, and σ is identified by standard arguments, the probabilities

Pr
(
τi = k + 1|zi = 0, θ

)
=
(
1 + σ

(
H0(k)

))−σ−1

−
(
1 + σ

(
H0(k) exp(γ(k))

))−σ−1

and

Pr
(
τi = k + 2|zi = 0, θ

)
=
(
1 + σ

(
H0(k) exp(γ(k))

))−σ−1

−
(
1 + σ

(
H0(k) exp(2γ(k))

))−σ−1

are also known.

Moreover, to identify Pr
(
τi = k + 2|zi = 0, θ

)
, notice that heaping in our setup is just a

redistribution of probability masses between periods k+ 1, k+ 2, and k+ 3. Thus, it holds
that:

Pr
(
ti = k + 1|zi = 0, θ

)
+ Pr

(
ti = k + 2|zi = 0, θ

)
+ Pr

(
ti = k + 3|zi = 0, θ

)
= Pr

(
τi = k + 1|zi = 0, θ

)
+ Pr

(
τi = k + 2|zi = 0, θ

)
+ Pr

(
τi = k + 3|zi = 0, θ

)
Hence, since the first two probabilities after the equality are known, we can identify Pr

(
τi =

k + 3|zi = 0, θ
)

as:

Pr
(
τi = k + 3|zi = 0, θ

)
= Pr

(
ti = k + 1|zi = 0, θ

)
+ Pr

(
ti = k + 2|zi = 0, θ

)
+ Pr

(
ti = k + 3|zi = 0, θ

)
− Pr

(
τi = k + 1|zi = 0, θ

)
− Pr

(
τi = k + 2|zi = 0, θ

)
.

In turn, by the same arguments as before, γ(k + 3) can be identified from H0(k + 3) −
H0(k + 2).17

Finally, also p1 and q1 can be identified from:

Pr
(
ti = k + 1|zi = 0, θ

)
= (1− p1) Pr

(
τi = k + 1|zi = 0, θ

)
and

Pr
(
ti = k + 3|zi = 0, θ

)
= (1− q1) Pr

(
τi = k + 3|zi = 0, θ

)
.

17Note that Pr
(
ti ≥ k + 4|zi, θ

)
= Pr

(
τi ≥ k + 4|zi, θ

)
= Si

(
k + 4|zi, θ

)
is correctly observed as it is

either the censoring point, is correctly observed, or belongs to DH−l with l = r.
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Next examine the first heap for j = 1, i.e. h∗, and the corresponding times from DH−1 and
DH+1 . Since points from different heaps do not overlap by H(i), and periods prior to h∗− 1
are correctly observed, it holds that Pr (ti ≥ h∗ − 1|zi = 0, θ) = Pr (τi ≥ h∗ − 1|zi = 0, θ) =
Si (h∗ − 1|zi = 0, θ) and all γs up until γ(h∗ − 2) are identified.18 Now,

Pr (ti = h∗ − 1|zi = 0, θ)

= (1− p1) Pr (τi = h∗ − 1|zi = 0, θ)

= (1− p1) (Pr (τi ≥ h∗ − 1|zi = 0, θ)− Pr (τi ≥ h∗|zi = 0, θ))

=(1− p1)

(∫ ∞
0

Si (h∗ − 1|zi = 0, v, θ) g(v;σ)dv −
∫ ∞

0
Si (h∗|zi = 0, v, θ) g(v;σ)dv

)
=(1− p1)

(
(1 + σ (H0(h∗ − 2)))−σ

−1

− (1 + σ (H0(h∗ − 1)))−σ
−1
)
,

which uniquely identifies H0(h∗ − 1), and so γ(h∗ − 1) since p1, σ, all γs up until γ(h∗ − 2)
have been already identified, and the above equation is strictly increasing and continuous
in H0(h∗ − 1).
Next, recalling

Pr (ti = h∗ − 1|zi = 0, θ) = (1− p1) Pr (τi = h∗ − 1|zi = 0, θ) ,

Pr (ti = h∗ + 1|zi = 0, θ) = (1− q1) Pr (τi = h∗ + 1|zi = 0, θ) ,

and

Pr (ti = h∗|zi = 0, θ)

= p1 Pr (τi = h∗ − 1|zi = 0, θ) + Pr (τi = h∗|zi = 0, θ) + q1 Pr (τi = h∗ + 1|zi = 0, θ) ,

it follows that

Pr (ti = h∗|zi = 0, θ)− p1

1− p1
Pr (ti = h∗ − 1|zi = 0, θ)

− q1

1− q1
Pr (ti = h∗ + 1|zi = 0, θ)

= Pr (τi = h∗|zi = 0, θ)

= Pr (τi ≥ h∗|zi = 0, θ)− Pr (τi ≥ h∗ + 1|zi = 0, θ)

=

(∫ ∞
0

Si (h∗|zi = 0, v, θ) g(v;σ)dv −
∫ ∞

0
Si (h∗ + 1|zi = 0, v, θ) g(v;σ)dv

)
=

(
(1 + σ (H0(h∗ − 1)))−σ

−1

− (1 + σ (H0(h∗)))−σ
−1
)

which uniquely identifies γ(h∗), given that p1, q1, σ as well as γ(s) for s = 0, ..., h∗ − 1 have
been already identified. As for γ(h∗ + 1),

Pr (ti = h∗ + 1|zi = 0, θ)

= (1− q1) (Pr (τi ≥ h∗ + 1|zi = 0, θ)− Pr (τi ≥ h∗ + 2|zi = 0, θ))

= (1− q1)

(∫ ∞
0

Si (h∗ + 1|zi = 0, v, θ) g(v;σ)dv −
∫ ∞

0
Si (h∗ + 2|zi = 0, v, θ) g(v;σ)dv

)
= (1− q1)

(
(1 + σ (H0(h∗)))−σ

−1

− (1 + σ (H0(h∗ + 1)))−σ
−1
)
,

18If h∗ = 1, Si (h∗ − 1|zi, θ) = 1 by definition.
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which uniquely identifies γ(h∗ + 1). The remaining heaps follow analogously.

We will now consider the extension to r > 1: γ(k) can be identified as before and
thus we can construct Pr

(
τi = k + 1|zi = 0, θ

)
= . . . = Pr

(
τi = k + r + 1|zi = 0, θ

)
=

Pr
(
τi = k|zi = 0, θ

)
. Next, observe that:

r∑
l=1

Pr
(
ti = k + l|zi = 0, θ

)
+ Pr

(
ti = k + r + 1|zi = 0, θ

)
+

r∑
l=1

Pr
(
ti = k + r + 1 + l|zi = 0, θ

)
=(r + 1) Pr

(
τi = k|zi = 0, θ

)
+ rPr

(
τi = k + r + 2|zi = 0, θ

)
,

where we used the fact that γ is constant after k + r + 2. Thus, since r is known,

Pr
(
τi = k + r + 2|zi = 0, θ

)
=

1

r

[
r∑
l=1

Pr
(
ti = k + l|zi = 0, θ

)
+ Pr

(
ti = k + r + 1|zi = 0, θ

)
+

r∑
l=1

Pr
(
ti = k + r + 1 + l|zi = 0, θ

)
− (r + 1) Pr

(
τi = k|zi = 0, θ

)]

is identified. Hence, for each l = 1, . . . , r, we can now retrieve the probabilities from:

Pr
(
ti = k + l|zi = 0, θ

)
= (1− pl) Pr

(
τi = k + l|zi = 0, θ

)
and

Pr
(
ti = k + r + 1 + l|zi = 0, θ

)
= (1− ql) Pr

(
τi = k + r + 1 + l|zi = 0, θ

)
.

as before. Then, examining the first heap again, note that each γ prior to γ(h∗ − l) can
now be uniquely identified from

Pr (ti = h∗ − l|zi = 0, θ)

= (1− pl) Pr (τi = h∗ − l|zi = 0, θ) ,

γ(h∗ − l) can be uniquely identified from

Pr (ti = h∗|zi = 0, θ)−
r∑
l=1

pl
1− pl

Pr (ti = h∗ − l|zi = 0, θ)

−
r∑
l=1

ql
1− ql

Pr (ti = h∗ + l|zi = 0, θ)

= Pr (τi = h∗|zi = 0, θ) ,

and so on, by the same argument used for r = 1.

24



Proof of Theorem 2:
(i) Given Assumption D, by the uniform law of large number for identically and indepen-
dently distributed observations,

sup
θ∈Θ
|(lN (θ)− E (lN (θ))) /N | = op(1)

and recalling that the argmax is a continuous function,

arg max
θ∈Θ

lN (θ)− arg max
θ∈Θ

E (lN (θ)) = op(1).

As θ† = arg maxθ∈ΘE (lN (θ)) , and θ† is unique, because of the unique identifiability estab-
lished in Proposition 1, the statement in (i) follows.
(ii) The statement follows from Theorem 3(a)-(b) in Andrews (1999), hereafter A99, once
we show that his Assumption 2-6 hold. Note that, given Assumption U,∫

Pr (ti > t|zi, v, θ) g(v;σ)dv =

∫
Si (t|zi, v, θ) g(v;σ)dv

=

(
1 + σ

(
t−1∑
s=0

exp
(
z′iβ + γ(s)

)))−σ−1

,

and from the definition of φi(·) in (i)-(v), it is immediate to see that lN (θ) has well defined
left and right derivatives for θ ∈ Ψ+, with Ψ+ = Ψ ∩ C

(
θ†, ε

)
, with C

(
θ†, ε

)
denoting an

open cube of radius ε around θ†. Thus lN (θ) has the following quadratic expansion

lN (θ)− lN (θ†) = ∇θlN (θ†)
(
θ − θ†

)
+

1

2

(
θ − θ†

)′
∇2
θθlN (θ†)

(
θ − θ†

)
+RN (θ) ,

with RN (θ) = Op
(
N−3/2

)
, because of the existence of third order partial left and right

derivatives. This ensures that Assumption 2* in A99 is satisfied, which in turn implies
Assumption 2 in A99 holds too. By the central limit theorem for iid random variables, and

given the information matrix equality, N−1/2I−1
N ∇lN (θ†)

d→ N
(
0, I†−1

)
. This ensures that

Assumption 3 in A99 holds. Given the consistency established in part (i), Assumption 4 in
A99 follows immediately from his Assumptions A2* and A3. Given Assumption H(iv), the
boundary issue which may arise is when some pl and/or ql for l = 1, ..., r are zero. Hence,(
Θ− θ†

)
is locally equal to Ψ which is a convex cone in Rpβ+k+2+2r, and Assumption 5 and

6 in A99 hold.
(iii) In this case θ† is not on the boundary, and so

ψ̂ = inf
ψ∈Ψ

(
(ψ −G)′ I† (ψ −G)

)
= G

and G ∼ N
(
0, I†−1

)
.

Proof of Proposition 3:
Given Assumption D’, the statements in Theorem 2 hold with θ̂N replaced by ϑ̃N , and θ†

replaced by ϑ‡, thus for each j = 1, ..., r,

p̂j,N
d→ max {0, Gj} , Gj ∼ N(0, I−1

pjpj ),
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and as, given Assumption D’, ÎN − I =op(1), tpj ,N
d→ N(0, 1), and so rejecting whenever

PVp,j,N < α ensures a level α test for H
(j)
p,0 . It then follows from the same argument in the

proof of Proposition 5.3.1 in Silvapulle and Sen (2005), that the overall size of the test is at

most α. Finally, the power is one as the probability of failing to reject each single H
(j)
p,0 or

H
(j)
q,0 is asymptotically one.

Proof of Proposition 4
By the same argument as in Proposition 3.

Proof of Theorem 5: By the law of large numbers and the central limit for independent
non-identical series,

√
N

(
γ̃

(2)
N (0)− γ(2)(0)

σ̃N,0,0
, ...,

γ̃
(2)
N (k)− γ(2)(k)

σ̃N,k,k
, ...,

)
d→ N (0,Ω) ,

with Ω = D−1/2 (RΣR′)D−1/2 as defined in the statement of the Theorem. By noting that,

S−N =

k+1∑
j=0

(
√
N
γ̃

(2)
N (j)− γ(2)(j)

σ̃N,j,j
+
√
N
γ(2)(j)

σ̃N,j,j

)2

−

,

the statement under H2γ0 follows by the continuous mapping theorem, as S−N satisfies As-
sumption 1-3 in Andrews and Guggenberger (2009). Under H2γA there is some j such that
γ(2)(j) < 0 and then the statistic diverges at rate

√
N.

Proof of Theorem 6:
By the law of the iterated logarithm, as N →∞, with probability approaching one, for

j = 0, ...k+1,
(

N
2 ln lnN

)1/2 γ̃
(2)
N (j)
σ̃N,j,j

≤ 1 if γ(2)(j) = 0 or if γ(2)(j) < 0, while
(

N
2 ln lnN

)1/2 γ̃
(2)
N (j)
σ̃N,j,j

>

1 if γ(2)(j) > 0. Hence, when H2γ0 is true, as N gets large only those γ̃
(2)
N (j) associated with

γ(2)(j) = 0 contribute to the simulated limiting distribution, and in the meantime, the

probabillity of eliminating a non-slack (”too” positive) γ̃
(2)
N (j) approaches zero. This en-

sures that the statement in (4) holds, and holds as strict equality if for some j, γ(2)(j) = 0.

The statement in (5) follows immediately, as for b = 1, ..., B S
−∗(b)
N has a well defined limiting

distribution under both hypotheses, while S−N diverges to infinity under the alternative.
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Appendix II

Table 1: Neonatal Mortality − Deaths by Number of Days of Survival

Births Untreated Dist.1 Births Treated Dist.1

Days Freq. Percent Cum. Percent Freq. Percent Freq. Percent

0 1, 065 0.65 0.65 832 0.68 233 0.57
1 1, 097 0.67 1.32 853 0.69 244 0.6
2 358 0.22 1.54 261 0.21 97 0.24
3 426 0.26 1.8 325 0.26 101 0.25
4 187 0.11 1.91 144 0.12 43 0.11
5 201 0.12 2.04 154 0.13 47 0.12
6 103 0.06 2.1 81 0.07 22 0.05
7 130 0.08 2.18 104 0.08 26 0.06
8 160 0.10 2.28 133 0.11 27 0.07
9 45 0.03 2.31 35 0.03 10 0.02
10 106 0.06 2.37 85 0.02 21 0.05
11 37 0.02 2.39 29 0.02 8 0.02
12 41 0.03 2.42 34 0.03 7 0.02
13 17 0.01 2.43 14 0.01 3 0.01
14 28 0.02 2.45 20 0.02 8 0.02
15 180 0.11 2.56 150 0.12 30 0.07
16 21 0.01 2.57 18 0.01 3 0.01
17 13 0.01 2.58 8 0.01 5 0.01
18 19 0.01 2.59
19 8 0 2.59
20 71 0.04 2.64
21 28 0.02 2.65
22 18 0.01 2.66
23 5 0 2.67
24 5 0 2.67
25 26 0.02 2.69
26 7 0 2.69
27 5 0 2.69

Cens.
Obs. 159,210 97.31 100 119,806 97.38 39,596 97.70
Total 163,617 100 123,086 100 40,531 100
1 The treatment status is based on whether at least 18% of the women who gave birth in a particular

financial year said that they had received cash under the program JSY.
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Figure 1: Unconditional Hazards
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Table 2: Summary Statistics of Covariates

Untreated1 Treated1

Number of Obs Children 163, 617 123, 086 40, 531

Number of Obs Mothers 127, 637 96154 31, 377

Mean Std Dev Mean Std Dev Mean Std Dev

Parental Characteristics
Mother’s Age (years) 25.62 5.21 25.90 5.21 24.74 4.97
Mother’s Schooling (years) 4.52 4.79 4.32 4.78 5.11 4.79
Father’s Schooling (years) 6.49 4.98 6.43 5.02 6.70 4.85
Caste: Base − Other Backward
Schedule Caste 0.18 0.18 0.18
Schedule Tribe 0.18 0.18 0.18
Privileged Caste 0.24 0.24 0.23
Religion: Base − Hindu

Muslim 0.10 0.10 0.10
Other 0.08 0.08 0.08
Living Std.: Base − Bottom Third

Milddle third 0.33 0.32 0.36
Top third 0.22 0.20 0.25

Rural Household 0.78 0.77 0.81

Child Characteristic
Girl 0.48 0.48 0.48
Birth Order: Base − First Born
Bord=2 0.28 0.28 0.30
Bord=3 0.16 0.16 0.14
Bord 4 or more 0.20 0.21 0.16
Birth Year: Base − 2001
2002 0.11 0.15 0.00
2003 0.12 0.15 0.00
2004 0.14 0.19 0.00
2005 0.15 0.18 0.04
2006 0.15 0.09 0.35
2007 0.15 0.01 0.58
2008 0.01 0.00 0.04
1 We define babies as ‘treated’ if they are born in a district where at least 18% of the women who had given

birth said they had received cash under the program JSY.
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Table 3: Estimated Effects of Covariates & ‘Heaping’ Prob-
abilities

Model with Heaping1

Coeff.Est. Bootstrapped S.E.2

Before Treatment

p1 0.539 0.068
p2 0.466 0.052
p3 0.373 0.063
p4 0.498 0.058

After Treatment

p
(2)
1 0.412 0.106

p
(2)
2 0.558 0.052

p
(2)
3 0.468 0.078

p
(2)
4 0.325 0.100

Covariates3

Mother’s age − 0.108 0.011
Mother’s schooling − 0.016 0.013
Father’s schooling − 0.056 0.016

Girl − 0.159 0.045
Birth Order 2 − 0.226 0.049
Birth Order 3 − 0.140 0.054

Birth Order 4 or higher 0.110 0.080
2002 − 0.033 0.064
2003 − 0.002 0.054
2004 − 0.203 0.043
2005 − 0.153 0.055
2006 − 0.150 0.043
2007 − 0.178 0.049
2008 − 0.228 0.085

Scheduled caste − 0.098 0.056
Scheduled tribe − 0.280 0.048
Privileged caste − 0.120 0.043

Muslim − 0.255 0.049
Other religion − 0.256 0.050

Middle third std. living − 0.069 0.039
Top third std. living − 0.014 0.067

Rural household − 0.156 0.046
1 Model allows for small heaps at days 5 and 10 with associated

probabilities p1 and p3, and a large heap at day 15 with associated
probabilities p1, p2, p3, and p4. k was set to k = 12.

2 Bootstrapped standard errors with 100 replications (see Appendix
III for details).

3 For testing purposes, the effects of the covariates on the hazard
before and after the introduction of JSY were assumed to be the
same.
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Table 4: Maximum Likelihood Estimates

Model with Heaping1 Model without Heaping
Coeff.Est. Bootstrapped S.E.2 Coeff.Est. Bootstrapped S.E.2

exp(γ) by day Before Treatment

0 0.484 0.048 0.573 0.044
1 0.492 0.049 0.586 0.046
2 0.292 0.026 0.340 0.024
3 0.306 0.031 0.369 0.027
4 0.243 0.026 0.235 0.019
5 0.176 0.022 0.254 0.018
6 0.160 0.021 0.186 0.015
7 0.170 0.017 0.206 0.017
8 0.195 0.021 0.236 0.019
9 0.115 0.024 0.116 0.022
10 0.145 0.021 0.189 0.016
11 0.102 0.023 0.109 0.025
12 0.115 0.029 0.122 0.025
13 0.115 0.029 0.204 0.036
14 0.115 0.029 0.096 0.032
15 0.115 0.029 0.250 0.017
16 0.073 0.035 0.085 0.032
17 0.073 0.035 0.064 0.036

exp(γ(2)) by day Change after Treatment3

0 0.947 0.066 0.986 0.074
1 0.983 0.067 1.107 0.067
2 1.001 0.072 1.098 0.068
3 0.928 0.080 1.069 0.083
4 0.867 0.088 0.975 0.107
5 0.927 0.098 0.999 0.100
6 0.860 0.087 0.880 0.088
7 0.819 0.093 0.854 0.082
8 0.752 0.075 0.770 0.077
9 0.829 0.084 0.798 0.066
10 0.723 0.074 0.837 0.085
11 0.891 0.070 0.947 0.073
12 0.822 0.049 0.771 0.067
13 0.822 0.049 0.754 0.062
14 0.822 0.049 0.815 0.080
15 0.822 0.049 0.785 0.059
16 0.844 0.062 0.720 0.059
17 0.844 0.062 0.763 0.071

σ4 0.710 0.054 0.781 0.057
1 Model allows for small heaps at days 5 and 10 with associated probabilities p1 and p3, and a large

heap at day 15 with associated probabilities p1, p2, p3, and p4. k was set to k = 12.
2 Bootstrapped standard errors with 100 replications (see Appendix III for details).
3 γ(2) = 1 implies that treatment had no effect.
4 σ is the inverse of the variance of the gamma distributed unobserved heterogeneity.31



Figure 2: Estimated Hazard without Heaping

�

0
.1

.2
.3

.4
H

a
z
a

rd
 R

a
te

0 5 10 15 20
Days

Untreated Treated

Model without Heaping

Hazard Plots by Treatment Status

Figure 3: Estimated Hazard with Heaping
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Appendix III

The standard errors in the illustration of Section 5 have been constructed using the boot-
strap method. However, due to the possibility of one or more parameters lying on the
boundary of the parameter space, which invalidates the first order validity of the naive
bootstrap (see Andrews, 2000), we follow Section 6.4 in Andrews (1999) and construct
standard errors based on subsampling. More precisely, as we resample with replacement we
are implementing m out of n (moon) bootstrap.

Let l̃i(ϑ) be the contribution of baby i-th to the likelihood l̃N (ϑ). Let Ij , j = 1, ...,M,
be M independent draws from a discrete uniform on [1, N ]. We then make M draws, with

replacement from
(
l̃1(ϑ), ..., l̃N (ϑ)

)
, to get

(
l̃I1(ϑ), ..., l̃IM (ϑ)

)
=
(
l̃∗1(ϑ), ..., l̃∗M (ϑ)

)
. Note

that for M sufficiently large, the proportion of draws before and after treatment matches
the sample proportion, and this ensure the validity of the bootstrap even in the presence
of a possible structural break due to the treatment effect. Indeed, Goncalves and White
(2004) suggest to resample the likelihood instead of directly resampling the observations,
in order to deal with possible heterogeneity. Let

ϑ̃∗M = arg max
ϑ∈Θ̃

M∑
j=1

l̃∗i (ϑ)

and let
(
ϑ̃
∗(1)
M , ..., ϑ̃

∗(B)
M

)
denotes the bootrap estimator at replication 1, ..., B. Now, the

estimator of the bootstrap variance-covariance matrix reads as

V̂ ∗M,B =
M

B

M∑
j=1

ϑ̃∗(j)M − 1

M

M∑
j=1

ϑ̃
∗(j)
M

ϑ̃∗(j)M − 1

M

M∑
j=1

ϑ̃
∗(j)
M

′ .

Given Assumptions H,U,C and D’, we can show that the conditions in Theorem 1 in
Goncalves and White (2005) are satisfied.19 It then follows that asM/N → 0, N,M,B →∞

V̂ ∗M,B − Σ = oP (1) + op∗(1),

where Σ = limN→∞ var
(√

N
(
ϑ̃N − ϑ‡

))
, and op∗(1) denotes a term converging to zero

according to the bootstrap probability law, as M,B →∞. Hence, the standard error for the
elements of ϑ̃N can be obtained using the square root of the diagonal element of 1

M V̂
∗
M,B.

It remains to select M and B. In our set-up we need to choose M rather large relative
to N. This is to ensure we have enough ”exits” for each duration. In practice M is roughly
equal to 0.8N, which may violate the condition M/N → ∞. However, for smaller value of
the ratio M/N we do not have enough exits and so we would violate Assumption H(iv),
which is necessary for identification. Finally, given the highly nonlinearity of our model,
and the large number of parameters, we have to set B = 100. 20

19This can be establisheded using the same argument as in Appendix B in the Supplementary Material of
Corradi, Distaso and Mele (2013).

20Roughly speaking each bootstrap iteration takes about 7 minutes, and thus we need to limit the number
of replications. As a robustness check, we have tried much larger values of B, B = 300, 500 for a simplified
version of the model, with a much smaller number of covariates. Our findings are quite robust to the choice
of B.
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