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Abstract

This paper analyzes the macroeconomic implications of customer capital accumulation at the firm
level. We build an analytically tractable search model of firm dynamics in which firms of different sizes
and productivities compete for customers by posting pricing contracts in the product market. Cross-
sectional price dispersion emerges in equilibrium because firms of different sizes and productivities use
different pricing strategies to strike a balance between attracting new customers and exploiting incum-
bent ones. Using micro-pricing data from the U.S retail sector, we show that our mechanism can ratio-
nalize empirical correlations between store sales and relative prices, and the growth dynamics of stores
across sizes. We then calibrate our theory to match long-run moments from the cross-sectional distri-
bution of sales and prices, and use our estimated model to explain sluggish aggregate dynamics and
cross-sectional heterogeneity in the markup response to aggregate shocks. Finally, we show that our
estimated model offers an explanation for the secular decline in business dynamism and the rise in the
average markup experienced in the U.S. since the early 1980s.
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1 Introduction
Firm heterogeneity is key for explaining the relationship between firm performance and macroeco-

nomic flows. Firms of different sizes and ages experience persistently different growth paths along their
life cycle. In particular, newly established businesses typically start out small relative to their more ma-
ture competitors, and this gap takes time to close (e.g. Dunne et al. (1988), Caves (1998), Cabral and Mata
(2003)).

A large theoretical literature, inspired by the seminal work of Jovanovic (1982) and Hopenhayn (1992),
has traditionally attributed this evidence to a process of selection on the basis of productivity differences
among firms, and has analyzed how these may in turn shape firm and industry dynamics in various
meaningful ways. However, this interpretation has been recently challenged by a number of studies
showing that, because empirical patterns of firm growth are usually based on revenue data (which cannot
easily disentangle output prices from quantities), the productivity-based view of firm heterogeneity may
confound selection on technological productivity with selection on profitability. As more disaggregated
data have become available over subsequent years, new empirical evidence has shown that large cross-
sectional differences in revenue across firms remain after controlling for heterogeneity in productivity,
suggesting that differences in firm performance are stemming, to a great extent, from differences in firms’
idiosyncratic demand. For instance, Hottman et al. (2016) have recently shown that most variation in
the firm size distribution is attributable to variation in demand components (e.g. firms’ “appeal” such
as quality and taste, and product scope), while the contribution of marginal costs and technological
differences plays only a minor role. In manufacturing, Foster et al. (2008, 2016) have documented that,
even though new and well-established firms exhibit very different behavior, the productivity advantage
of entrants is only small and it dissipates within the first few years of operation.1

Hence, the evidence suggests an important demand-side channel of variation: firm investment in
demand accumulation could account for the differential performance of businesses of similar produc-
tivities but different sizes. In this paper, we formalize these ideas by developing an equilibrium theory
of firm dynamics in frictional product markets with aggregate and idiosyncratic shocks in which there
is a meaningful role for a demand accumulation process at the firm level. We interpret this process as
the formation of a customer base. The model is that of a frictional product market in which a fixed mass
of ex-ante identical buyers must search for sellers of a certain homogenous product, and the latter post
price contracts intended to attract new potential customers. Sellers of equal productivity are ex-post
heterogeneous in the number of buyers that they sell the product to, since their choice of the contract
endogenously determines the inflow of new potential buyers, and thus the rate at which sellers are able
to accumulate demand over time. Outside of the market, inactive firms must pay fixed entry (or market
penetration) costs to reach their first customer.

Even though the model’s dynamics are rich, the environment admits a recursive representation whereby
sellers post complete, long-term recursive contracts for their current buyers. Recursive contracts specify

1 These observations are not unique to the U.S. economy. Other studies exploring the demand component of firm dynamics
for different countries include Carlsson et al. (2014) (Sweden), Pozzi and Schivardi (2016) (Italy), Hong (2017) (France), Kaas
and Kimasa (2016) (Germany), and Kugler and Verhoogen (2012) (Colombia). Eaton et al. (2014) show that similar demand
considerations are also prevalent in the dynamics of exporting firms.
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a price level to be paid contemporaneously by all incumbent customers of the firm, and a set of con-
tinuation promises that state the life-time utility that buyers can expect to obtain under each and every
possible future size of the firm if they remain matched. New buyers of the firm immediately become cap-
tive because, due to a reputational concern, the seller commits to delivering the promised price schedule
moving forward. Unmatched buyers, on the other hand, trade off the ex-post gains from matching to
the ex-ante probability of joining the customer base, as they internalize the endogenous probability with
which each supplier’s size changes through the posted contract. Though we assume no commitment on
the buyer’s side, the customer nevertheless remains loyal to the firm because the promised continuation
payoffs compensate her for the opportunity cost of searching for other suppliers. Hence, valuable cus-
tomer relationships emerge endogenously, as forward-looking buyers must internalize the future path
of prices and thereby the future evolution of the firm that is implied by those pricing decisions.

In equilibrium, sellers strike an optimal balance between instantaneous revenues (via high prices) and
future market shares (via continuation values). The way this trade-off is resolved depends on the size of
the seller’s customer base. In equilibrium, the sign of the correlation between prices and firm size is not
built in, and it depends on the degree of frictions in the market.2 When costs to market penetration are
relatively high, small sellers optimally decide to promise high continuation utilities in order to generate
a high probability of quickly expanding their base and raise enough resources to afford the entry cost.
Because of product market congestion effects, the customer capital accumulation process takes time. As
firms mature and approach their stationary size, they lower their future promises and raise the price
as they increasingly prefer to exploit their customer base at the expense of lowering the speed at which
their market share accumulates. As a result, their markups tend to increase as they grow in size, and
the firm’s rate of growth slows down. When entry costs are relatively low, however, the firm might
instead be willing to lower its prices as it grows, because it has a weaker preference for rapid growth at
the early stages of its life cycle. In either scenario, these endogenous forces of customer acquisition are
counteracted by per-customer separation and exit shocks, meaning that firms converge to a stationary
size even if there are no decreasing returns in technology. This gives rise to both price and firm size
dispersion, as well as well-defined and right-skewed firm and customer distributions.

To solve for the optimal pricing contract, we show that the policy that maximizes the seller’s expected
value is equivalent to the optimal contract from a joint surplus perspective. In the latter formulation, the
pricing contract maximizes the sum of valuations across incumbent buyers and seller, and the price level
can be thought of as establishing a surplus-splitting rule between the agents involved. The equivalence
between the seller’s and the joint surplus problems is important because it reduces the dimensionality
of the state space considerably, and renders a partial analytical characterization of the equilibrium dy-
namics. Furthermore, we formally show that a Markov perfect equilibrium is constrained-efficient. This
allows us to interpret the model as a theory of efficient markups, in which sellers’ use of prices leads to a
socially optimal allocation of customers across different product markets.

The key behind the analytical tractability is that we can describe the equilibrium allocation indepen-

2 In this sense, we abstain from taking a stance ex-ante on the active empirical debate regarding the dynamics of firm-level
prices, where the literature has found mixed evidence. Foster et al. (2008, 2016) and Piveteau (2017) claim that prices are
increasing in the firm’s tenure in the market, while Berman et al. (2017) find that they are slightly decreasing. Fitzgerald
et al. (2017) find no dynamics of prices, and attribute growth in quantities to advertising and marketing expenditures.
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dently of the distribution of agents across states and time. We accomplish this because the search equi-
librium is block-recursive, a common property of models of directed search (e.g. Shi (2009), Menzio and
Shi (2010, 2011)) implying that, in order to evaluate payoffs, buyers and sellers need not keep track of the
distribution of agents across states over time. Thus, the firm distribution can be derived independently of
the optimal contracting problem, and the dynamics of firms and prices along the stationary solution, as
well as out of steady state, can be characterized without the need for approximation methods. Applying
these insights to a frictional product market with aggregate shocks is a theoretical contribution of this
paper.

After presenting our model, we turn to the data to discipline the behavior of prices across firm size.
An important empirical challenge is that, because sellers in the model belong to the same narrowly de-
fined product market, testing its predictions requires the use of highly granular data that contains sepa-
rate information on revenues and quantities. For this reason, we use highly disaggregated product-level
pricing data for the U.S. retail sector for the period 2001-2007 and exploit variation across store size.
We document the growth and pricing profiles of sellers of different sizes within closely defined prod-
uct markets. Specifically, we show that stores with larger volumes of sales tend to set higher prices for
their products, relative to the average price across all stores within the same product market segment.
Through the lens of our model, this pattern occurs because these small stores are trying to accumulate
customers. Moreover, these smaller stores tend to experience higher rates of growth on average, in accor-
dance with the predictions of the model. One potential concern is that these observations may be driven
by pure store age effects, as store age and size are likely to be positively correlated. For instance, relative
prices could be increasing with size because young sellers offer price discounts in order to learn about
unknown idiosyncratic demand components. While this type of interpretation is plausible, we show that
the size effect still survives after controlling for the store’s age.

We then proceed to quantify our model in order to study the aggregate implications of customer
capital accumulation through firm-level pricing strategies. Using simulated method of moments, we
calibrate the model to stationary moments of the distribution of relative prices and sales, which we take
from our sample of micro-pricing data from the U.S. retail sector. The model provides a good match to
measures of price dispersion and the correlation between prices and sales that we document in the data.
Using the estimated model, we then analyze the aggregate response of the economy to both aggregate
demand and aggregate supply shocks. In this exercise, we find both level and distributional effects.
First, we propose a new channel of transmission explaining the incomplete pass-through of shocks to
prices: in the wake of negative shocks to their profits, firms are able to front-load their contracts by
charging higher prices today and lowering the utility promised to their customers in the future. At the
heart of this result is the observation that, when hit by a shock, firms must trade-off immediate losses to
future market shares, which they can do by appropriately rebalancing prices and promised utilities in
the pricing contract. We also describe an important role for demand shocks on firm pricing. Shocks that
raise the marginal propensity to consume by buyers generate a boom in demand and additional entry
of firms. Since new firms enter small and charge relatively low prices, increased competition lowers the
average price level of the economy, and as a result the average size and growth rate of firms increases.
Moreover, since firms’ size dynamics are slow-moving, our model can offer a rationale for the sluggish
response of macroeconomic variables to aggregate shocks, and a channel of amplification that could
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potentially be important as a mechanism of transmission of nominal shocks.
Finally, we use the model to study the co-movement of two secular trends in the U.S. at frequencies

lower than the business cycle: (i) the steady decline in business dynamism, and (ii) the secular increase
in market power. In particular, it is a well-documented fact that the entry rate of firms across differ-
ent industries has dramatically declined since the early 1980s, a process that has been coupled with an
increase in the average size of firms (e.g. Pugsley and Şahin (2015)). Over the same time period, most in-
dustries have become more concentrated, and the average markup in the U.S. has dramatically increased
by a factor of more than three, according to DeLoecker and Eeckhout (2017). Further, this increase in
market power has been more pronounced in the upper tail of the distribution of markups. In the last
part of the paper, we investigate the relationship between these two phenomena using our estimated
model. In the estimated model, a decline in the entry rate implies an increase in the average size of
firms and a subsequent increase of the average markup in the economy, since larger firms set relatively
higher prices. Moreover, since the decline in firm entry implies a shift of the firm size distribution toward
higher-markup firms, the increase in concentration can give rise to an increase in dispersion at the top
of the markup distribution, in line with the empirical evidence presented by DeLoecker and Eeckhout
(2017).

Outline The remainder of the paper proceeds as follows. Section 2 summarizes related literature and
details our main contributions. In Section 3 we present our model of customer acquisition, pricing, and
firm dynamics, including the derivation of the firm size distribution, and the equilibrium efficiency re-
sult. Section 4 discusses the main mechanism, shows that search frictions can deliver different profiles
for prices, and explains the role of each central assumption. Section 5 describes our application to the U.S.
retail sector, and proceeds to the calibration of the model and its quantitative results, including the re-
sponse of the economy to aggregate shocks. Section 6 discusses the long-run rise in average markups and
the secular decline in business dynamism in the U.S. through the lens of our calibrated model. Section 7
presents extensions to the baseline model, and Section 8 concludes. The Appendix includes supplemen-
tary tables and figures, all the proofs, and some additional theoretical results.

2 Related Literature
There is a large amount of survey evidence that suggests that the customer base of a firm and its

pricing decisions are tightly linked. Blinder et al. (1998) show that the vast majority of firms report having
implicit contracts with their customers, and that these contracts are a major source of price stickiness. For
a variety of different countries, other studies such as Hall et al. (1997), Cason and Friedman (2003), Renner
and Tyran (2004), and Apel et al. (2005), present similar survey evidence showing that customer loyalty is
a sensitive concern for price-setting firms.3 More recently, using the same pricing dataset that we use in
Section 5.1, Paciello et al. (2016) are able to identify customer-retailer transactions and demonstrate that
customer attrition rates are on average low over long spells (i.e. a retailer’s customer base is typically

3 See also Fabiani et al. (2004) for exhaustive cross-country evidence in the Euro Area. There is also a large literature in
Marketing showing that there exists a large degree of persistence in consumer inertia and brand preferences (for a review
of this literature, see Bronnenberg and Dubé (2017)).
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sticky).
Our theory is primarily related to a long tradition of building customer capital into macroeconomic

models of firm pricing. Early attempts by Phelps and Winter (1970), Bils (1989), and Rotemberg and
Woodford (1991, 1999), analyzed pricing behavior under customer retention concerns. In these papers,
firms face an exogenously-given law of motion for the customer base. A number of papers have further
developed a variety of reasons why customers may be locked into a repeated-purchase relationship in
the first place. For instance, Klemperer (1987, 1995) and Kleshchelski and Vincent (2009) propose that
customers face switching costs, which can be broadly understood as the transaction costs associated with
switching to a competitor, or the costs in terms of utility when the consumer has developed a loyalty to-
ward a certain brand. In a similar vein, Ravn et al. (2006) and Nakamura and Steinsson (2011) consider
that customers form good-specific habits for consumption, and for this reason have a preference for re-
peating purchases with the same sellers.4 While the literature has traditionally resorted to reduced-form
formulations for customer capital formation, we contribute by offering a micro-foundation whereby cus-
tomers become captive. In our model, it is the seller’s commitment to the pricing contract (because of,
for example, reputational concerns) which naturally gives rise to these long-lasting relationships.

Regardless of the reason, the common insight in the literature is that when customers are locked into
their suppliers, demand becomes forward-looking. In this situation, prices not only fulfill the usual dis-
tributive role of splitting gains from trade between buyers and sellers, as in a standard Walrasian economy,
but may also play an allocative role and determine the duration of customer-seller relationships or the like-
lihood that new ones form. Consequently, the optimal price of the static profit maximization problem
may differ from the dynamic one because firms must solve a dynamic trade-off between exploiting their
current customers (by setting high prices) and attracting new customers in the future (by setting low
prices). In short, low prices today serve as a tool to guarantee larger market shares in the future.5

While our model shares these features with the literature, an important focus of our work are the
implications that customer-seller relationships have on firm dynamics, including firm growth, entry,
and exit, in an equilibrium model with aggregate shocks. In this dimension, our paper is also related
to the literature that has introduced a role for various types of firm intangibles into models of firm and
industry dynamics.6 The effects of intangibles on different aspects of the aggregate economy are well-
understood, including labor wedges (Gourio and Rudanko (2014a)), aggregate productivity (McGrattan
and Prescott (2014) and McGrattan (2015)), and household behavior (Hall (2008)). A number of papers
have further analyzed how expenditures on intangibles may shape the evolution of firms and industries.

4 As an application of this approach, Gilchrist et al. (2016) show that the inter-temporal pricing behavior of firms in customer
markets interacts with their degree of financial constraints, and can rationalize the mild disinflation episode experienced
in the United States during the Great Recession.

5 If firms are not committed to the price path, however, a well-known time-inconsistency problem arises: firms promise
low prices to attract customers and, once these customers become captive, sellers renege on their earlier promises and
charge a higher price. For instance, Nakamura and Steinsson (2011) show that, in this case, repeated interaction can lead to
the development of implicit contracts which, through a set of properly defined trigger strategies, can prevent prices from
increasing beyond a certain upper bound. We show that, when there is commitment on the seller’s side (e.g. the firm faces
reputational concerns), a similar type of contractual environment can emerge.

6 Firm intangibles are a substantial share of firms’ expenditures, and in the U.S. as much as 7.7% of GDP is devoted to
marketing, with advertising expenditures alone averaging about 2.2% since the early 1980s (see e.g. Arkolakis (2010)).
More recently, Bhandari and McGrattan (2017) have estimated the value of aggregate private-business “sweat equity” (e.g.
firm investment into building customer bases, client lists, and related intangibles) to be 0.65 times GDP.
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Atkeson and Kehoe (2005) show that organizational capital (i.e. investment in new technologies, new
markets, and new and higher-quality products) can drive the life-cycle of plants, and Hsieh and Klenow
(2014) argue that these processes may account for differences in plant-specific TFP between different
countries. Another class of papers, including Alessandria (2009), Drozd and Nosal (2012), Eaton et al.
(2014), Arkolakis (2016), and Piveteau (2017) study how consumer search and costs to market penetration
can rationalize certain patterns of trade and firm growth among exporting firms, while Dinlersoz and
Yorukoglu (2012) study the effects of information dissemination to customers for industry dynamics.

The paper that we most relate to is Gourio and Rudanko (2014b), who analyze the timing of firm re-
sponses to investment shocks by augmenting a neoclassical firm investment model with a search model
of the product market in which firm use price discrimination by offering a discount on new customers.
In more recent work, Rudanko (2017) uses a related setting to study the role of both discriminatory and
non-discriminatory pricing for firm growth, with a focus on time-inconsistent seller behavior under dif-
ferent commitment protocols in monopolist markets. Like both of these papers, we interpret customer
acquisition as a search-and-matching process in a frictional product market. Different from Gourio and
Rudanko (2014b), where firm growth is limited by convex adjustment costs to customer acquisition, we
limit firm expansion through the interaction between the search frictions and our structure with dynamic
long-term contracts with commitment. Indeed, we find that there is a limit to firm growth even when the
firm’s technology features constant returns to scale. As discussed in Section 4, this allows for a flexible
dependence between firm size and price, which can be either positive or negative. Relative to Rudanko
(2017), we focus on the case of commitment, which gives rise to efficient firm dynamics (Proposition 3).
Moreover, unlike either of these studies, we analyze firm pricing and customer dynamics in the pres-
ence of aggregate shocks. An important emphasis of our work is on the cross-sectional heterogeneous
response and incomplete pass-through of prices and markups in response to these shocks (Section 5.3).7

Luttmer (2006) and Fishman and Rob (2003) also study the implications of customer acquisition for the
firm size distribution, but those papers do not allow for a meaningful role for prices. In contrast, like
us, Paciello et al. (2016) study the implications of customer markets for the cross-sectional price distri-
bution and the pass-through of shocks, but while they study the pricing problem of firms with retention
concerns, we offer a complementary view whereby firms use prices to attract customers.8

We contribute to the aforementioned literature by providing a link between market shares and firm
dynamics in customer markets. In particular, a prevailing feature in the data is that the growth rate
of firm size is size-, and age-, dependent (e.g. Sutton (1997), Caves (1998), and Rossi-Hansberg and
Wright (2007)). Further, the size distribution is right-skewed in the data (e.g. Luttmer (2007)). These

7 Another difference with Gourio and Rudanko (2014b) is that we assume no price discrimination between customers.
However, this assumption is not key to generate firm dynamics or price and firm distributions. For a full discussion on this
issue, see Section 7.2. To cite more examples in the literature of intangible and industry dynamics: Kaas and Kimasa (2016)
embed the Gourio and Rudanko (2014b) framework into a frictional labor market to study the joint dynamics of prices and
wages; Perla (2016) studies the implications of product sorting by uninformed consumers on the industry life cycle and the
degree of market competition; Bai et al. (2012) incorporate a frictional goods market into a representative-agent neoclassical
economy to study the role of demand shocks; and Petrosky-Nadeau and Wasmer (2015) combine the goods market friction
with frictions in the credit market to analyze distortions in the labor market.

8 Methodologically, another innovation of our framework relative to Paciello et al. (2016) is that, to obtain analytical tractabil-
ity, we do not need to assume that the growth rate of firms is independent of the size of the customer base. Indeed, the fact
that firm growth is inherently a function of the firm’s current size is a key aspect of our theory.
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stylized patterns of growth, which we will document for our sample of retail firms in Section 5.1, can be
rationalized by our model. Under a certain parametrization of the model, small firms promise relatively
low prices, thereby attracting more customers and generating a higher likelihood of growing. In this case,
larger firms instead prefer to exploit their customer base, typically by charging higher prices, thereby
growing slower or even shrinking on average. This generates a right-skewed firm distribution: since
larger firms are visited less frequently and lose proportionally more customers than smaller firms, the
probability that a firm grows to be large is relatively low, and this generates a fat right tail. As we will
show, the size distribution in the micro data similarly exhibits a fat right tail.

The link between firm dynamics and prices is also supported by a number of studies relating em-
pirically demand-side fundamentals to the determination of prices at the firm level. Peters (2016) and
Kugler and Verhoogen (2012) find a positive correlation between output prices and size at the plant level
for Indonesian and Colombian firms, respectively, while Carlsson et al. (2014) find, using Swedish micro
data, that a substantial component of output price variation remains unexplained after accounting for
productivity differences. DeLoecker and Eeckhout (2017) have found that smaller firms charge lower
markups relative to competitors within their industry, and DeLoecker (2011), DeLoecker and Warzynski
(2012), and DeLoecker et al. (2016) perform similar analyses in the context of exporting firms for different
countries, concluding that markups contribute to differences in revenue productivity. While we do not
take a stand ex-ante on the relation between prices (or markups) and size, we rely on these observations
to justify our demand-driven theory of firm dynamics.

Because we use search frictions to obtain a non-degenerate cross-sectional price distribution, this pa-
per also contributes to the search literature on equilibrium price dispersion. Empirically, newly available
micro-level evidence has shown that there is substantial price dispersion for identical goods sold at a
given time and market (e.g. Kaplan and Menzio (2015)), an observation that we also document in Sec-
tion 5.1. Theoretically, search models of price dispersion have proliferated since the work by Butters
(1977), Varian (1980), and Burdett and Judd (1983). More recently, Menzio and Trachter (2015) and Ka-
plan et al. (2016) have shown that price dispersion can emerge from buyer heterogeneity in situations in
which sellers can price-discriminate. In our model, in contrast, buyers are identical and there is no price
discrimination. Instead, it is ex-post differences between firms which give rise to different price levels.
While a similar argument is made in Burdett and Coles (1997) and Menzio (2007), these papers do not
discuss the implications of customer capital for the evolution of the firm size distribution, nor do they
analyze the implications of customer accumulation at the aggregate level.

Finally, our paper is methodologically related to search-and-matching models with large firms, where
most advances have been made in the context of labor markets. We embed directed search into a model
of firm dynamics in the spirit of Elsby and Michaels (2013), Kaas and Kircher (2015), and Schaal (2017).9

Particularly, we combine two technical insights from this literature. First, we exploit the property of block
recursivity, which allows for a tractable characterization of the firm size distribution and its dynamics.
This property implies that agents do not have to carry distributions as state variables in their optimization
problems even though the model incorporates aggregate dynamics, thereby allowing us to study out-of-
steady-state transitions in response to aggregate shocks. Secondly, we make use of dynamic long-term

9 For a recent survey of directed search theory, see Wright et al. (2017).
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contracts (e.g. Moscarini and Postel-Vinay (2013), Schaal (2017)), which greatly reduce the dimensionality
of the state space as they allow us to condense the full forward-looking pricing problem into an amenable
recursive form.

3 Model
This section develops a directed search model of customer and firm dynamics with aggregate and

idiosyncratic shocks in which sellers must post pricing contracts in order to attract consumers. The key
assumption in the model is that contracts are long-term in nature, as sellers perfectly commit to the terms
of trade. As this commitment is internalized by agents, a dynamic trade-off emerges for both sellers and
buyers between the added value of new customers and the loss of profits on incumbent ones. As we shall
see, this mechanism is at the core of equilibrium firm and pricing dynamics.

3.1 Environment
Time is continuous and goes on forever, with a time instant indexed by t ∈ R+. The aggregate state of

the economy is indexed by a time-varying random variableϕ taking values in a discrete and finite support
Φ := {ϕ < · · · < ϕ}, with cardinality |Φ| = kϕ ≥ 2. The aggregate state is the source of exogenous
aggregate demand and/or supply fluctuations in the economy. We assume ϕ follows a homogenous
continuous-time Markov chain with generator matrix Λϕ :=

[
λϕ(ϕ′|ϕ)

]
, where λϕ(ϕ′|ϕ) denotes the

intensity rate of a ϕ-to-ϕ′ transition.10

Demographics

The economy is populated by a mass-one continuum of risk-neutral, infinitely-lived, ex-ante identi-
cal buyers, and a continuum of risk-neutral firms (sometimes referred to as sellers). While the total mass
of buyers is exogenous and normalized to unity, the composition of buyers across aggregate states and
between types (described below) is endogenous. The total measure of firms, in contrast, is not fixed
exogenously but determined in equilibrium. Buyers and sellers both discount future payoffs with a com-
mon and exogenous rate, r > 0. All payoffs and payoff-relevant states are public information among all
agents.11

There is a single homogenous, indivisible, and perishable good in the economy. Buyers and sellers
must participate in a search-and-matching market in order to engage in trade because the product mar-
ket is frictional: searchers cannot coordinate into finding a match with certainty at any given instant.
The product market frictions are meant to capture congestion effects in product markets with customer

10 For all ϕ ∈ Φ, the following properties hold: λϕ(ϕ|ϕ) ≤ 0, λϕ(ϕ′|ϕ) ≥ 0 for any ϕ′ 6= ϕ, and
∑
ϕ′∈Φ λϕ(ϕ′|ϕ) = 0.

These properties are definitional of continuous-time Markov processes (e.g. Norris (1997), Chapters 2 and 3). The rates
additionally satisfy the condition

∑
ϕ′ 6=ϕ λϕ(ϕ′|ϕ) < +∞, ∀ϕ (i.e. when any given state ϕ is visited, the economy always

spends a non-zero measure of time in it).
11 Faig and Jerez (2005) and Shi (2016) introduce search models in which private information about buyers’ payoffs generates
customer relationships. Menzio (2007) analyzes the dynamics of prices when there is, instead, private information about
the cost structure of sellers.
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anonymity in reality. One interpretation is that there exist informational asymmetries regarding prod-
uct characteristics, or some aspects of supply that are unknown to the potential customer (e.g. the exact
location of seller-price pairs). Another interpretation is that sellers may face inventory and/or capacity
constraints, and are unable to simultaneously serve a large amount of buyers (as in Burdett et al. (2001)).
In any case, these considerations lead businesses to invest in reputation-building in order to overcome
those frictions.12

Buyers value the consumption of the good by the same fixed utility flow, v > 0. At any instant in time,
a buyer is said to be active if she is matched with a firm and is consuming the good, and inactive if she
is unmatched and searching for a seller at a cost, c. These parameters possibly depend on the aggregate
state of nature, ϕ. Since v and c relate directly to buyers’ preferences, this state-dependence incorporates
the possibility of aggregate demand shocks into the model.13 We also assume no buyer is ever allowed
to borrow against its future income.

Sellers belong to one of two groups: incumbent (or active) sellers, and potential entrant (or inactive)
sellers. At any given time t, a typical incumbent seller has a customer base of nt ∈ N := {1, 2, 3, . . . } cus-
tomers, which we subsequently call the size of the seller. Each seller is also characterized by the realization
of an idiosyncratic productivity level z, taking values on a discrete and finite support Z := {z, . . . , z} of
cardinality |Z| = kz ≥ 2. Like the aggregate state, the idiosyncratic state follows a continuous-time
Markov chain with generator matrix Λz :=

[
λz(z

′|z)
]
, where λz(z′|z) denotes the transition rate from z

to z′.14 The realization of the idiosyncratic state is observable and public information.
An incumbent seller’s output is constrained by the size of its customer base. Since the good is indi-

visible, and because there is no benefit in leaving customers unserved, the number of units sold by the
seller equals the number of customers in the base, with each customer consuming one unit. The seller
also faces operating variable flow costs of C(n; z, ϕ), which depend on the idiosyncratic state (n, z), as
well as possibly the aggregate state ϕ. Further, we make the following assumptions:

Assumption 1 The following properties hold for all (z, ϕ) ∈ Z × Φ:

(i) C is a continuous, increasing, and time-invariant function of n, with C(n; z, ϕ) ≥ 0 and C(0; z, ϕ) = 0.

(ii) C(n; z, ϕ) is weakly convex in all n ∈ N.

Assumption 1 imposes mild regularity conditions on the firms’ technology. In particular, it states
that firm profits are continuous in firm size. The curvature of C with respect to n determines the degree
of returns to scale in the firm’s technology. For now, we need not make an explicit assumption in this
respect besides a weak form of convexity. Indeed, as we shall see, equilibrium firm-level prices are size-
(and productivity-) dependent even when marginal costs are constant in n. In the estimation section, we
will re-introduce the notion of convexity in C for quantitative purposes only.

Besides serving their customers, incumbent sellers post prices in the product market. Posting a price
bears no explicit cost for an incumbent. Incumbent sellers exit the market (and enter the pool of potential

12 Informational frictions in the product market are the preferred interpretation of Faig and Jerez (2005), Gourio and
Rudanko (2014b), and Foster et al. (2016), among others. Perla (2016) provides a micro-foundation for this view based
on the evolution of buyers’ consideration sets.
13 The source of variation in shopping disutility can be thought of as reflecting the cyclical nature of household shopping
behavior, which has been documented by Petrosky-Nadeau et al. (2016) for the United States.
14 Once again, for all z ∈ Z we have: λz(z|z) ≤ 0; λz(z′|z) ≥ 0 for any z′ 6= z;

∑
z′∈Z λϕ(z′|z) = 0; and

∑
z′ 6=z λϕ(z′|z) < +∞.
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entrants) in either one of two ways: because they go bankrupt, at a constant exogenous rate δf > 0, or if
they separate from their last remaining customer (because the buyer abandons the firm), at an exogenous
rate δc > 0.15 These events are assumed to be mutually independent, and orthogonal to the idiosyncratic
and aggregate shocks.

Like incumbent firms, inactive firms are posting prices in order to attract customers and start operat-
ing in the product market. Unlike them, however, they must incur an entry cost κ > 0 for doing so, which
possibly depends on the aggregate state of nature, ϕ. A firm must pay this cost every time it has lost all
its customers and intends to re-enter the market, so κ can be thought of as a proxy for the fixed costs of an
advertising campaign that has the objective to reach the first customer of the firm. More broadly, κ can
be understood as a cost to market penetration, in the sense of Arkolakis (2010). Sellers who successfully
attract their first customer (and thus start operating with n = 1) draw an initial productivity level z0 ∈ Z
from some distribution πz , where πz(z) ≥ 0, ∀z ∈ Z , and

∑
z∈Z πz(z) = 1. We assume that there is free

entry of firms into the product market.

Pricing Contracts

All agents are able to direct their search in the following sense. Sellers announce price contracts in
order to attract buyers. Buyers, on the other hand, can perfectly observe the posted contract and are able
to discern the identity (i.e. the size n and productivity z) of the firm who is posting it.

When firms post prices to attract customers, a potential contractual relationship is thus formed. For
a customer-seller match formed at time t, a price contract is defined as a sequence (pt+j : j ≥ 0), which
specifies the price level at each tenure length j ≥ 0 of the match, conditional on no separation. Contracts
are complete and fully state-contingent. Thus, every element pt+j of the contract is contingent on the
history of aggregate and the firm’s idiosyncratic states up to date t + j. Since all the relevant states are
public, then pt+j = p(nt+j ; zt+j , ϕt+j), ∀j, t.

The contractual environment is as follows. On the demand side, we assume no commitment to the
contract, in that matched buyers can costlessly transition to inactivity if they so desire (though in equi-
librium this will not occur because of the subsequent additional cost c of re-sampling firms).16 On the
sellers’ side, we make two key assumptions. First, unlike the buyer, the seller fully commits to the con-
tract that is posted. This means that contracts with captive customers cannot be revised by the firm for
the duration of the match, and contracts have to comply with the firm’s prior promises.17 Second, we
assume anonymity among buyers, in that the firm is unable to price-discriminate between new and old
customers, and thus cannot index the contract to the identity of each buyer.18 This implies that, when
setting a price path optimally, the firm must internalize that any additional revenue from expanding
the number of customers comes at the expense of potentially lowering the average revenue from the
incumbent base.

15 In Section 7.1 we show how to endogenize the customer separation rate δc.
16 More specifically, there are endogenous switching costs for buyers: customer loyalty emerges endogenously because of
the opportunity cost (i.e. forgone contracted-upon expected value) of leaving the seller.
17 A possible interpretation of this assumption is that firms have a reputational concern, so that reneging on previous
promises entails unaffordable costs for them. We shall discuss the role of this assumption in Section 4.
18 In Section 7.2 we discuss the implications of relaxing the no discrimination assumption.

10



Product Markets

As is customary in the directed search literature, a sufficient statistic for each long-term pricing con-
tract is the promised life-time value that the contract delivers in expectation to the buyer at the point in
time when the match is formed and the contract is initiated. We denote this value byx, letX = [x, x] ⊆ R+

be the set of feasible values, and assume that all sellers advertising the same value x compete in all such
contracts. Moreover, buyers cannot coordinate their decisions among themselves. Up to the observable
idiosyncratic state (n, z), sellers offering the same value x are virtually indistinguishable to the buyer.
Thus, x effectively indexes a product market segment (or sub-market).

Each seller can simultaneously post, and each buyer can simultaneously search, in at most one sub-
market. Within each x ∈ X , and given a realization ϕ ∈ Φ of the aggregate state of nature, a certain mass
B(x;ϕ) ∈ [0, 1] of buyers apply to the contract, which is posted by a mass S(x;ϕ) ≥ 0 of sellers. Because
buyers cannot screen sellers within a market x, within-market search is random. A market is then said to
be active (or open) if:

θ(x;ϕ) :=
B(x;ϕ)

S(x;ϕ)
> 0

where θ(x;ϕ) is the buyer-to-seller ratio in market segment x, also referred to as the market’s tightness.
Importantly, agents take the mapping θ : X × Φ→ [0,+∞) as given when directing their search toward
specific offers. This is relevant because expected payoffs within a market can be fully evaluated using
the tightness measure: in a typical x ∈ X , a single applicant obtains offer x at the endogenous Poisson
arrival rate µ

(
θ(x;ϕ)

)
≥ 0, while a seller successfully finds an applicant for offer x at the Poisson arrival

rate η
(
θ(x;ϕ)

)
≥ 0, where η(θ) = θµ(θ).

Further, we impose the following regularity conditions:

Assumption 2 The meeting rates satisfy:

(i) η : R+ → R+ and µ : R+ → R+ are twice continuously differentiable and time-invariant functions;

(ii) η is increasing and concave; µ is decreasing and convex;

(iii) For some decreasing h : R+ → R+, define the composition f = η ◦µ−1 ◦ h. Then, the function f(x)(x̂− x)

is concave for all x ∈ [0, x̂] and x̂ > 0;

(iv) η(0) = limθ↗+∞ µ(θ) = 0, and limθ↗+∞ η(θ) = limθ↘0 µ(θ) = +∞.

The first two restrictions guarantee that the problems of the buyer and the seller are well-defined;
assumption (iii) is a restriction on the composition η ◦ µ−1 guaranteeing that the price-posting problem
of the seller has a unique interior solution; finally, part (iv) imposes a transversality condition on the
meeting rates.

A common micro-foundation of these assumptions is to suppose that each market x ∈ X is endowed
with a constant-returns-to-scale matching functionM(B,S) that is equipped with the appropriate Inada
conditions. Pairwise matching then requires that η(θ) = M(θ, 1) and µ(θ) = η(θ)/θ. Intuitively, the
seller’s meeting rate is found as the measure of meetings per seller, and because of congestion effects in
the product market, longer queues of applicants for a contract yield lower (respectively, higher) rates of
matching for the buyer (respectively, the seller).
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Recursive Formulation

We seek to solve for the symmetric Markov perfect equilibrium of this economy. We narrow attention
to this class of equilibria in the following sense. Markov-perfection means that the equilibrium policies
depend solely on the firm’s vector of payoff-relevant states (n, x; s), where henceforth we use s = (z, ϕ) to
denote the vector of exogenous (idiosyncratic and aggregate, respectively) states. We look for a symmetric
equilibrium in the sense that all firms within the same product market x choose to post the same contract.
This is a consequence of the assumption that there is competition within each sub-market, and the fact
that the firm’s states are fully observable. Finally, we restrict our attention to a stationary environment, in
which policies are time-varying only insofar as they are state-dependent. Thus, subsequently we drop
time subscripts unless otherwise needed.19

Because a dynamic pricing contract is a time path and thus a large and potentially complex object, we
exploit the property of stationarity to propose the following recursive formulation. We define a recursive
dynamic contract for a firm in state (n, x; s) as the object:20

ω :=
{
p,x′(n′; s′)

}
The elements of a recursive contract ω are the following. First, the contract specifies the price p that

is to be charged to each one of the n incumbent customers of the firm. Second, the contract specifies
the vector x′(n′; s′) ⊆ X of continuation payoffs that are promised by the firm to each buyer on the next
stage, i.e. under every possible size n′ ∈ {n − 1, n, n + 1} and exogenous state s′ ∈ Z × Φ. Hence, by
stationarity, conditional on a fixed exogenous state s (respectively, a size n), contracts are rewritten every
time the seller changes sizes (respectively, productivity), and they remain in place for as long as the firm’s
state does not change (i.e. x′(n′; s′) = x when n′ = n and s′ = s).21 Notice, finally, that the contract is
not indexed to the aggregate distribution of agents across states. This is an implication of the property
of block recursivity, which we take as given and we discuss in some detail in Section 3.5.

3.2 Buyer’s Problem

Inactive Buyers

Let us now describe the value functions of each type of agent in the economy. If a buyer is presently
inactive, let its expected value be UB(ϕ) in state ϕ ∈ Φ. The buyer enters the sub-market that offers the

19 While the Markov structure provides a lot of tractability to the setting and will allow for some sharp results, we should
stress that this is by no means the only equilibrium of the economy. Similarly, though we do not rule out the possibility
of non-stationary equilibria, we focus our analysis on the stationary solution for simplicity. If agents were risk-averse, for
instance, non-stationary solutions would emerge naturally. One such case is the model of the labor market with job-to-job
transitions presented in Shi (2009), where workers’ utilities have some curvature and firms optimally choose a front-loaded
wage profile in time to entice workers to remain matched to them.
20 We subsequently use bold characters for vectors, light characters for scalars, and capitalized characters for matrices.
21 As we shall see, there is an equilibrium one-to-one mapping between continuation utilities and price levels, so p also
remains fixed for as long as the firm does not experience a change in its state vector.
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highest valuation, and therefore:

UB(ϕ) = max
x̂(ϕ)∈X

uB
(
x̂(ϕ);ϕ

)
(1)

where uB
(
x;ϕ

)
is the value of searching in market x, satisfying the Hamilton-Jacobi-Bellman (HJB)

equation:

ruB
(
x;ϕ

)
= −c(ϕ) + µ

(
θ(x;ϕ)

)(
x− uB

(
x;ϕ

))
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
uB
(
x;ϕ′

)
− uB

(
x;ϕ

))
(2)

for any x ∈ X .22 Equation (1) states that the inactive buyer searches in the product market that
promises the highest expected value, x̂(ϕ). The value of entering market x incorporates the search cost
c(ϕ) > 0, and the option value of matching with any one firm within said market. The meeting rate
depends on how “crowded” the marketplace is, as measured by the prevailing tightness schedule θ(x;ϕ).
This tightness is taken by agents as a given function mapping X to R+. In case of a successful match,
and because sellers can only meet at most one customer every instant, the buyer will instantly join the
seller’s customer base. The last additive term in equation (2) incorporates the expected change in value
due to a change in the aggregate state, from ϕ to some ϕ′, occurring at rate λϕ(ϕ′|ϕ).23

Since inactive buyers choose to apply to the highest-valuation offers, active markets must be solutions
to the buyer’s search problem. Therefore:

∀(x, ϕ) ∈ X × Φ : uB
(
x;ϕ

)
≤ UB(ϕ), with equality if, and only if, θ(x;ϕ) > 0

This says that a market either maximizes ex-ante payoffs for the inactive buyer, or it remains unvisited.
In equilibrium, a non-zero measure of markets is open, and we let X ∗(ϕ) :=

{
x ∈ X : θ(x;ϕ) > 0

}
⊆ X

be the equilibrium set of markets in state ϕ ∈ Φ. Hence, for any given aggregate state ϕ ∈ Φ, we have:

µ
(
θ(x;ϕ)

)(
x− UB(ϕ)

)
= ΓB(ϕ) (3)

for all x ∈ X ∗(ϕ), where we have defined:

ΓB(ϕ) := c(ϕ) + rUB(ϕ)−
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
UB(ϕ′)− UB(ϕ)

)
(4)

as the opportunity cost of matching for the buyer in equilibrium market x. Intuitively, equation (3)
describes how inactive buyers sort in equilibrium, stating that all active market segments equalize the
expected option value of searching to the opportunity cost of matching. Thus, all equilibrium markets
make inactive buyers ex-ante indifferent.

For a given value of inactivityUB(ϕ), this ex-ante revenue-equalization condition uniquely pins down

22 For a derivation of all the HJB equations in the main text, see Appendix D.1.
23 Note that we assume that the inactive buyer returns to market x if unsuccessful in his search. As we argue shortly, this
entails no loss in generality. We should also point out that notation has been economized in two ways here. First, since
the value of inactivity is itself an equilibrium object, we write θ(x;ϕ) when in fact we mean θ(x;ϕ,UB(ϕ)). Second, since
market tightness is taken as given by the agent, uB

(
x;ϕ

)
is actually short-hand notation for uB

(
x;ϕ, θ

)
, where θ here is a

function mapping from X × Φ to R+. Similar concise notation will be used throughout the paper.
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the market tightness of any market in equilibrium. Importantly, equation (3) defines the θ(·;ϕ) schedule
over the entire support X , and thus it is used by agents to form beliefs about market tightness on both
equilibrium and off-equilibrium markets. This restriction, which is implicit in the bulk of the competitive
search literature, imposes a form of trembling-hand stability in beliefs, and ensures the existence of a
stable rational-expectation equilibrium.24 In particular, no firm (or coalition of firms) can possibly make
a profitable off-equilibrium deviation, for in this case beliefs dictate that buyers would remain indifferent
and thus the equilibrium allocation would be unaffected. Although we recognize the possibility that
other type of equilibria may exist under alternative specifications of agents’ beliefs, in what follows we
will focus on this type of perfect-foresight equilibrium for the sake of tractability.

With these remarks in place, we note that an implication of equation (3) is that, for each ϕ ∈ Φ, θ(x;ϕ)

is an increasing function of x ∈ X . This result is intuitive: more ex-post profitable offers attract a larger
mass of buyers per seller, while sellers offering less favorable contracts to the buyer can expect to find
a match sooner. In equilibrium, firms design contracts for which a low buyer meeting rate µ can be
compensated with a high enough promised expected continuation value x. Further, the buyer-to-seller
ratio is increasing inUB(ϕ): when the inactive buyers’ outside option is higher, contracts must offer more
attractive deals in order to compensate for the opportunity cost of matching.

Active Buyers

Consider now a customer who is currently consuming the homogeneous good from a firm of size
n ∈ N and idiosyncratic productivity z ∈ Z , under contract ω =

{
p,x′(n′; s′)

}
. The contract delivers the

promised value x to the customer, and it specifies the current price p and the new continuation promises
x′(n′; s′), to be delivered by the seller after a n-to-n′ and/or s-to-s′ transition.

The value for the buyer is given by the following HJB equation:

rV B(n,ω; s) = v(ϕ)− p+ (δf + δc)
(
UB(ϕ)− V B(n,ω; s)

)
+ (n− 1)δc

(
x′(n− 1; s)− V B(n,ω; s)

)
(5)

+ η
(
θ
(
x′(n+ 1; s);ϕ

))(
x′(n+ 1; s)− V B(n,ω; s)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′(n; z′, ϕ)− V B(n,ω; s)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′(n; z, ϕ′)− V B(n,ω; s)

)

where UB(ϕ) solves equation (1). The right side of equation (5) has different additive terms. In the
first line: the first term, v − p, shows flow surplus for the agreed-upon price p ∈ ω; the second term
states the possibility of separation, due to either the destruction of the firm or the destruction of the
match, in which case the customer ceases to consume and becomes inactive; the third term includes the
event in which any customer of the firm (except for the buyer in question) separates, in which case the
firm becomes size n− 1 and changes the promised value to x′(n− 1; s) ∈ ω for all those customers that
remain captive. The second line is the expected change in value due to the firm successfully attracting
a customer with its currently posted offer, in which event the seller becomes size n+ 1 and implements

24 For an in-depth discussion of the game-theoretical foundations of this assumption, see Galenianos and Kircher (2009,
2012).
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value x′(n + 1; s) ∈ ω. Because the seller cannot differentiate between the n incumbent customers and
the newcomer, this event affects the match value for all captive buyers in the same way. The likelihood of
the event depends upon how tight market x′(n+ 1; s) is. Finally, the last line of equation (5) includes the
change in value due to an exogenous shock, whether of idiosyncratic (first term) or aggregate (second
term) nature.

Importantly, equation (5) shows the sense in which the customer must anticipate the future path of
prices. When the buyer is captive and the seller is subject to size or productivity changes, the customer
must internalize how the seller will optimally redesign the contract under the new state. This meaning-
ful forward-looking aspect of demand thus arises endogenously because the seller is committing to its
customers. Let us now describe how the seller optimally chooses to do so.

3.3 Seller’s Problem

Incumbent Sellers

Consider a seller with idiosyncratic productivity z ∈ Z who is endowed with n ∈ N captive cus-
tomers. This seller currently follows the price strategy set up by its past contracts, under which its cus-
tomers agreed to trade in exchange for a promised value of x. The problem of such a seller, whose
expected value is denoted by V S(n, x; s), is to select a new contract ω =

{
p,x′(n′; s′)

}
for all of its n

customers so as to maximize the life-time value:

rV S(n, x; s) = max
ω∈Ω

{
pn− C(n; s) + δf

(
V S0 (ϕ)− V S(n, x; s)

)
+ nδc

(
V S
(
n− 1, x′(n− 1; s); s

)
− V S(n, x; s)

)
(6)

+ η
(
θ
(
x′(n+ 1; s);ϕ

))(
V S
(
n+ 1, x′(n+ 1; s); s

)
− V S(n, x; s)

)
+
∑
z′∈Z

λz(z
′|z)
(
V S
(
n, x′(n; z′, ϕ); z′, ϕ

)
− V S(n, x; s)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
V S
(
n, x′(n; z, ϕ′); z, ϕ′

)
− V S(n, x; s)

)}

where V S
0 (ϕ) denotes the value of having no customers (which we derive below).25 The right side of

equation (6) has the following components. The term
[
pn−C(n; s)

]
is the seller’s flow profits, composed

of revenue from selling n units, net of operating costs. The next term on the first line is the expected
change in value if the seller goes bankrupt, in which case she instantly loses all customers and enters
the pool of potential entrants. The third additive term states that the seller faces the probability that any
one of its n customers separates from the match, in which case the seller shrinks down to size (n − 1)

and delivers the promised value x′(n − 1; s) ∈ ω. The second line shows that, by posting a new offer
x′(n + 1; s) ∈ ω, the seller attracts a certain mass of buyers and faces a probability of increasing its size
to n + 1. When making a new offer, the seller understands the sorting behavior of buyers across states
for different promised values through the equilibrium θ schedule. In the event of a successful match, the
seller would implement the new continuation value, and its state vector would transition from (n, x; s)

into
(
n + 1, x′(n + 1; s); s

)
. Finally, the value of the firm could change exogenously because of a state

25 The object Ω := R× [x, x]k denotes the set of admissible contracts, and k ≡ 3kzkϕ−1. For n = 1, we note that x′(n−1; s) =
∅, ∀s ∈ Z × Φ, and denote V S(n− 1, x′(n− 1; s); s) by V S0 (ϕ).
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transition from s = (z, ϕ) to either (z′, ϕ) or (z, ϕ′), as captured by the last two terms in equation (6).
When choosing a contract ω, a seller in state (n, x; s) is constrained by the following condition:

V B(n,ω; s) ≥ x (7)

Equation (7) is a promise-keeping (PK) constraint guaranteeing that, in its choice of the contract, the
seller honors the promises that were made in the past: the value that each buyer of the firm obtains
under the contract must be weakly greater than the value x that was promised to her. This constraint is
in place due to our commitment assumption on the seller’s side.

Potential Entrants

To conclude with the description of the model’s environment, let us describe the problem of an out-
side firm. These firms have no customers (i.e. n = 0) and, unlike incumbents, they must incur a flow
set-up cost κ > 0 in order to post an initial contract. Prior to start selling the good, they must also draw
an initial productivity level z0 from the πz distribution. For each possible realization z0 ∈ Z , the contract
is the object

{
x′
(
1; z0, ϕ

)}
, specifying the utility promised to the first customer of the firm under state

(z0, ϕ). Thus, the potential entrant chooses amongst a menu of contracts, ω0(ϕ) := {x′(1; z0, ϕ)}z0∈Z ,
contingent on each realization of productivity at entry. Note, in particular, that the potential entrant’s
contract does not specify a price level for the first customer, for this choice is made ex-post, i.e. once the
customer has been acquired (and the seller faces problem (6) for n = 1).

The ex-ante value of the potential entrant in aggregate state ϕ is, therefore:

rV S
0 (ϕ) = −κ(ϕ) +

∑
z0∈Z

πz(z0)vS0 (z0, ϕ) +
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
V S

0 (ϕ′)− V S
0 (ϕ)

)
(8)

This value is composed of the set-up flow cost κ (first additive term), the expected value of posting
a contract under productivity draw z0 (second term), and the expected change in the ex-ante value of
entry for a change in the aggregate state (third term). We have defined the expected value of entry for a
firm under a z0 draw by:

vS0 (z0, ϕ) := max
x′∈X

η
(
θ(x′;ϕ)

)(
V S
(
1, x′; z0, ϕ

)
− V S

0 (ϕ)
)

(9)

Once again, the firm understands how inactive buyers sort across markets, as the θ(·;ϕ) schedule is
taken as given. Note that, because this firm does not yet have any customers at the time of choosing the
contract, the entrant’s problem is not subject to a PK constraint.

We assume free entry into the product market for the first customer. Since the total mass of sellers
adjusts freely, this assumption implies that, in equilibrium, more firms will enter the economy as long
as the expected value of posting a contract exceeds the set-up cost κ(ϕ) > 0. As more potential entrants
flood into the market, this expected value is pushed down to the entry cost. Therefore, in an equilibrium
with positive entry in all aggregate states, it must be the case that:

∀ϕ ∈ Φ : V S
0 (ϕ) = 0
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Since, by construction, firms enter with one customer, the free-entry condition pins down the average
market tightness among firms of size one in the cross-section of initial productivity levels. In particular,
from equation (8), for all states z0 ∈ Z such that θ

(
x′1(z0, ϕ);ϕ

)
> 0, it must be the case that:

κ(ϕ) =
∑
z0∈Z

πz(z0)η
(
θ
(
x′1(z0, ϕ);ϕ

))
V S
(
1, x′1(z0, ϕ); z0, ϕ

)
(10)

for any given ϕ ∈ Φ, where x′1(z0, ϕ) solves problem (9) in state (z0, ϕ).

3.4 Optimal Contract
In this section, we derive and describe the properties of the optimal contract for a typical firm. Our

main result is that, since contracts are complete, and sellers and buyers can engage in revenue-neutral
transfers schemes, the profit-maximizing contract leads to an allocation of utilities in which the joint
surplus (i.e. the sum of the expected values of a seller and all of its customers) is maximized. Moreover,
for any allocation that maximizes the joint surplus, there always exists a price that maximizes the seller’s
profit subject to the PK constraint. Thus, the seller’s and the joint surplus problems are equivalent.
As we shall see, this opens up a great simplification of the state space, and it renders the equilibrium
computationally tractable.

Joint Surplus Problem

To start, consider a typical firm whose state vector is (n, x; s), where recall that s := (z, ϕ) collects the
exogenous states. As seen in the last section, the optimal contract ω =

{
p,x′(n′; s′)

}
can be obtained as

the solution to the problem of the seller, described in (6). A standard monotonicity argument reveals that
sellers will offer the lowest values to their buyers such that the seller’s promises are still honored, and so
the PK constraint (7) will hold with equality. Thus, to economize on notation, for the remainder of the
paper we write x (a predetermined state variable) in place of V B(n,ω; s).

Next, define the joint surplus in a typical state (n, x; s) as the sum of the seller’s expected value from
the match, V S(n, x; s), and the aggregate expected value for all the n customers of the firm:

W (n, x; s) := V S(n, x; s) + nx

In Appendix B.1 we show that the joint surplus can be written in the following HJB representation:

(r + δf )W (n, x; s) = max
x′(n′;s′)

{
n

(
v(ϕ) + (δf + δc)U

B(ϕ)

)
−

(
C(n; s) + η

(
θ
(
x′(n+ 1; s);ϕ

))
x′(n+ 1; s)

)
(11)

+ η
(
θ
(
x′(n+ 1; s);ϕ

))(
W
(
n+ 1, x′(n+ 1; s); s

)
−W (n, x; s)

)
+ nδc

(
W
(
n− 1, x′(n− 1; s); s

)
−W (n, x; s)

)
+
∑
z′∈Z

λz(z
′|z)
(
W
(
n, x(z′, ϕ); z′, ϕ

)
−W (n, x; s)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
W
(
n, x(z, ϕ′); z, ϕ′

)
−W (n, x; s)

)}

Intuitively, equation (11) represents the joint surplus as the present discounted value of the buyers’
total surplus, net of the seller’s total costs. On the first line, the term n

(
v(ϕ) + (δf + δc)U

B(ϕ)
)

represents
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the aggregate flow surplus for all the n customers of the firm, which is composed of the sum of the
per-customer utility from consumption, v, and the expected per-customer gains from separation, (δf +

δc)U
B(ϕ). The second component in parentheses is the total costs of the match for the seller, which

include total operating costs, C(n; s), and the expected costs of offering a life-time continuation value of
x′(n + 1; s) to the new incoming customer, adjusted by the endogenous rate at which a new customer
joins the match. The second and third lines include the change in the expected joint surplus when the
match shrinks (because any one of the n customers leaves, or the firm is destroyed), or grows (because
a new customer joins). Finally, the last two terms incorporate expected changes in the joint surplus that
are due to exogenous shocks to z and ϕ.

With this specification at hand, we can now state the main equivalence result:

Proposition 1 (Joint Surplus Problem) The following properties hold:

i. The firm’s and the joint surplus problems are equivalent:

(a) Given a contract ω∗ =
{
p,x′(n′; s′)

}
that maximizes (6), x′(n′; s′) is a solution to (11).

(b) Conversely, for every vector x′(n′; s′) that solves (11), there exists a unique p for which
{
p,x′(n′; s′)

}
is a solution to (6).

ii. The joint surplus is invariant to x, i.e. W (n, x; s) = W (n, x̃; s), for all x, x̃ ∈ X , n ∈ N, s ∈ Z × Φ.

The proof is in Appendix B.1. Part i. of Proposition 1 establishes that the contract that maximizes
the seller’s profits can be found by solving an alternative problem, given by (11). In this problem, the
contract is designed so as to maximize the profits of all the parties involved in a utilitarian manner,
provided that the seller extracts rents from each buyer up to the limit established by promise-keeping.
Since the contract space is complete (that is, it specifies continuation promises for each and every possible
future state), and both agents have linear preferences, there always exists a menu composed of a price
and promised utility pair that, for any configuration of future states, redistributes rents among the seller
and its customers in a payoff-maximizing manner. Moreover, because the seller commits to the terms of
the contract, the allocation is unique in that no deviation from joint surplus maximization can deliver
higher profits for the seller.

Part ii. of the proposition thus follows immediately from the first one, and clarifies why problem
(11) is much simpler to solve than the firm’s problem (in (6)). Since price and continuation promises
map one-for-one, the maximized surplus is invariant to the rent-sharing components of the contract.
Conveniently, this means that the problem can be split in two stages. In the first stage, the firm sets
the vector of continuation promises x′(n′; s′) ⊆ X that maximizes the size of the surplus under every
possible combination of future states. In the second stage, the price level is set so as to implement such
an allocation, thereby splitting and distributing rents among the (n+1) agents involved so that the seller
keeps its promise (i.e. ensuring that PK binds in every state). Further, the surplus is also constant in the
firm’s previous promise, since x is a predetermined state that was chosen optimally in the prior stage of
the firm. By Markov perfection and completeness, the size n and current exogenous state s = (z, ϕ) serve
as sufficient statistics to determine the current surplus-maximizing policies. Thus, given s, there exists a
sequence {Wn(s)}+∞n=1 of positive real numbers such that the joint surplus can be expressed as:
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Wn(s) = W (n, x; s), ∀n ∈ N

As a result, the policy that solves problem (11) is not a function of x, and neither is the optimal
price level. While the equivalence between the joint-surplus problem and the decentralized problem is a
familiar result in the literature on complete contracts with commitment and transferrable utilities, here
we show that it can also result from, and provide great analytical tractability to, a dynamic model with
ex-post heterogeneity and meaningful firm dynamics.26

Characterization

Let us characterize the equilibrium policies that result from problem (11). Recall that, by ex-ante
indifference, the option value of matching for the buyer is constant across markets and given by ΓB(ϕ)

(equation (4)). Then, by equation (3) we know that:

θ(x;ϕ) = µ−1

(
ΓB(ϕ)

x− UB(ϕ)

)
(12)

for all x ∈ X . By Assumption 2.i and continuity of θ on x, equation (11) describes the maximization of
a continuous function over a compact support, so there exist promises

{
x+
n (s), x−n (s),xn(s′)

}
and a price

level pn(s) solving the joint surplus problem, where the “+” (respectively, “−”) superscript denotes the
upsize (respectively, downsize) decision. Once again, note that we index these policies by n, but not x.

Stage 1. Continuation promises Let us begin with the choice of x+. First, using equation (12) and
differentiability of η, the following first-order condition is sufficient for optimality:27

∂η
(
θ(x;ϕ)

)
∂x

∣∣∣∣∣
x=x+

n (s)

(
Wn+1(s)−Wn(s)

)
=
∂η
(
θ(x;ϕ)

)
∂x

∣∣∣∣∣
x=x+

n (s)

x+
n (s) + η

(
θ
(
x+
n (s);ϕ

))
(13)

Intuitively, the optimal continuation value x+
n (s) equates the expected marginal benefit of upgrading

the size of the firm by one customer (left-hand side), to the expected marginal costs of such a transition
(right-hand side). On the one hand, an increase by one dollar in the promised value x+ increases the joint
surplus by the amount (Wn+1−Wn) > 0 in case the seller makes a size transition. These gains must then
be weighted by the marginal effect of x+

n on the likelihood that the firm meets a new customer. On the
other hand, for every dollar spent on the new continuation value x+

n , the seller incurs in two associated
costs: first, the direct cost of delivering the new value to the additional customer, weighted by the change
in the meeting rate; and second, the decrease in the price level, by η

(
θ(x+

n ;ϕ)
)

dollars, which is required
by promise-keeping.

As for the choices of x(s′) and x−(s), note that these do not feature anywhere in equation (11) once
we impose that the joint surplus is invariant to promised utilities (Proposition 1, part ii.). Therefore,{
xn(s′), x−n (s)

}
cannot be determined by a surplus-maximizing condition similar to (13). Instead, these

26 For an application of this idea to a rich firm-dynamics search model of the labor market, see Schaal (2017).
27 Sufficiency obtains because the second-order condition follows from Assumption 2.iii specialized to h(x) = ΓB

x−UB and
x̂ = Wn+1 −Wn.
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values are purely redistributive: the only dimension in which they matter is the price level, and thus
they affect only the way in which the total surplus is split (i.e. the terms of trade). In particular, since
beliefs are pinned down by equation (12), the firm’s choice must be consistent with the sorting behavior
of inactive buyers. By symmetry, the optimal downsizing choice for a size-n must be consistent with the
optimal upsizing choice for a firm of size (n − 2), or x−n (s) = x+

n−2(s). Similarly, when transitioning to
another state, equation (12) and symmetry require that xn(s′) = x+

n−1(s′). Therefore, a firm’s optimal
continuation utility is independent of the firm’s state history. Moreover, by commitment, we know that
firms must deliver on their outstanding promises. In sum:

xn(s) = x+
n−1(s) = x−n+1(s), ∀(n; s) ∈ N×Z × Φ

Thus, the set of active market segments in equilibrium is comprised of a collection of promised utility
levels, X ∗ :=

{
xn(z, ϕ) : (n, z, ϕ) ∈ N× Z × Φ

}
, where each element xn(z, ϕ) is given by the solution to

(13).
Clearly, in equilibrium we must have xn(z, ϕ) > UB(ϕ), a direct implication of the inactive buyer’s

search problem: active markets must provide a positive option value to idle consumers, or else these
markets would remain unvisited. More interestingly, as we will show in Section 4 by means of numerical
examples, there exist parametrizations under which xn can be either an increasing or a decreasing sequence
in size n. Later on we shall argue, however, that the empirically relevant case is for xn to be a decreasing se-
quence in n, namely xn(z, ϕ) ≥ xn+1(z, ϕ) ≥ · · · > UB(ϕ). Under the latter parametrization, sellers with
less customers write more attractive contracts from the point of view of (matched) customers. Hence,
though indifferent ex-ante, buyers ex-post prefer to be matched to smaller firms. As sellers mature and
their customer base expands, the promised utility declines as they increasingly prefer to extract more
rents from each captive customer. Importantly, as we shall discuss in the next section, this observation is
a result of the product market frictions, and does not hinge on the behavior of marginal costs across sizes.
Indeed, the result holds even in parametrizations in which C(n) is linear in n. Figure A.1 in Appendix
A depicts the different markets in equilibrium, for a given state s = (z, ϕ). All equilibrium markets are
distributed on the θ schedule defined by buyer’s ex-ante revenue equalization, and the sequence of mar-
kets is constructed inductively as described above. To grow, the seller makes a state-contingent promise
that is strictly below the current valuation of buyers, depicted on the horizontal axis. In equilibrium, the
resulting collection of markets make buyers indifferent ex-ante.

Once the equilibrium markets are pinned down, the remaining equilibrium objects readily follow.
First, equilibrium market tightness levels are given by θn(z, ϕ) := θ

(
xn(z, ϕ);ϕ

)
via equation (12). Since

θ(x;ϕ) is an increasing and continuous function of x (equation (3)), then θn inherits the size-dependence
in xn. When xn is decreasing, smaller firms attract more buyers per unit of time by offering higher ex-
post values, so the buyer-to-seller ratio is higher in those markets, and these firms grow relatively faster
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compared to other firms. Indeed, we can write the law of motion of the seller’s customer base as:

nt+∆ − nt =



1 w/prob. η
(
θnt+1(z, ϕ)

)
∆ + o(∆)

−1 w/prob. ntδc∆ + o(∆)

−nt w/prob. δf∆ + o(∆)

0 else

(14)

where ∆ > 0 is small, and o(∆) satisfies lim∆↘0
o(∆)

∆ = 0. For small firms, the probability of attracting
a new customer (first line) is relatively higher. As the firm grows, the attrition probability (second line)
increases proportionally to the firm’s size as the attraction probability decays due to a decrease in xn,
leading to slower firm growth. Eventually, conditional on survival, these differences in growth rates
ensure that firms converge to a stationary size.

Stage 2. Prices Finally, the equilibrium price is given implicitly by the PK constraint, which binds
with equality. First, we replace V B(n,ωn; z, ϕ) = xn(z, ϕ) and ωn =

{
pn(z, ϕ); xn′(z

′, ϕ′) : (n′, z′, ϕ′) ∈
{n− 1, n, n+ 1} × Z × Φ

}
in equation (5). Then, solving for pn(z, ϕ) we obtain:

pn(z, ϕ) = v(ϕ)− rxn(z, ϕ)︸ ︷︷ ︸
≥0

Baseline component

+ δf
(
UB(ϕ)− xn(z, ϕ)

)︸ ︷︷ ︸
≤0

Exit component

+ η
(
θn+1(z, ϕ)

)(
xn+1(z, ϕ)− xn(z, ϕ)

)︸ ︷︷ ︸
≤0

Growth component

(15)

+ nδc

(
UB(ϕ) + (n− 1)xn−1(z, ϕ)

n
− xn(z, ϕ)

)
︸ ︷︷ ︸

≤0

Separation component

+
∑
z′∈Z

λz(z
′|z)
(
xn(z′, ϕ)− xn(z, ϕ)

)
︸ ︷︷ ︸

Idiosyncratic-shock component

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
xn(z, ϕ′)− xn(z, ϕ)

)
︸ ︷︷ ︸

Aggregate-shock component

The optimal price level for a firm of type (n, z) can be decomposed into the following parts. The
first one, v − rxn, is the price level that would prevail if, in the absence of any exogenous shock, each
customer were to stay matched forever with its seller and the firm did not change size going forward. We
call this term the baseline price level.28 The remaining terms in (15) introduce the necessary adjustments
for possible changes in firm states. These adjustments persuade the customers to accept the terms of
trade at the margin imposed by the firm’s promise-keeping.

To provide intuition, consider the parametrization under which xn ≥ xn+1. First, the firm offers a
price reduction of δf

(
UB−xn

)
≤ 0 to compensate the customer for the expected loss in value in the event

that the firm exits the market. We label this the exit component. Second, the term η(θn+1)(xn+1 − xn) ≤ 0

is a compensation for the possibility that the firm grows. The pre-existing customer requires a compen-
sation because in that case the total surplus is split among more buyers and each individual customer
obtains a lower share. This compensation is thus labeled as the growth component. Third, the firm adjusts
the price for the possibility of customer separation: a reduction in size lowers the seller’s value and has
a pecuniary externality on all the customers that remain matched, so the price must again be adjusted
to remain compatible with the seller’s commitment. We call this term the separation component. If a sep-

28 Indeed, in that case we would have pn = v− rxn, so xn =
∫ +∞

0
e−rt(v−pn)dt, the PDV of perpetually obtaining the fixed

surplus (v − pn).
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aration occurs, then the separating customer obtains UB , and the remaining non-separating customers
each obtain xn−1. This amounts to an average value of U

B+(n−1)xn−1

n per customer, which is the expected
change in the per-customer value due to a separation. Finally, the last two terms in equation (15) adjust
the price level for expected changes in the exogenous states.

In sum, as in the original intuition behind Rotemberg and Woodford (1991), firms use prices as a way
to invest into larger market shares in the future. In Section 4 we will discuss the different price effects that
may be present in equilibrium, provide intuition for the dependence on size, and describe the qualitative
properties of the solution.

3.5 Distribution Dynamics
To close the equilibrium, we need to describe the dynamics of the distribution of agents. The equilib-

rium of the economy described above features heterogeneous agents making forward-looking decisions
and sorting into distinct product markets in the presence of both idiosyncratic and aggregate shocks.
The distribution of agents across markets in turn depends on the aggregation of such decisions. Yet, the
characterization of individuals’ decisions has been silent on the exact composition of buyers and sellers
across market segments, or the evolution of this distribution. This property is known as block-recursivity.

In our model, block recursivity arises from two key ingredients. On the one hand, we assume that
search is directed, and thus sellers’ offers are not contingent on the identity of the applicant (in particular,
they are not contingent on the applicant’s outside option). As a result, market tightness, which embodies
agents’ distributions, serves as a sufficient statistic for both sellers and buyers when making decisions,
and allows them to not have to forecast the evolution of aggregates over future states of the economy.
On the other hand, the ex-ante revenue-equalization condition across all markets among inactive buyers
(equation (3)), and free entry of firms in the different entry markets {(n, z) : n = 1, z ∈ Z} (equation
(10)), together imply that the equilibrium tightness on each market adjusts to be consistent with agents’
beliefs.29 This has allowed us to inductively construct the entire sequence of buyer-to-seller ratios without
ever having to specify the exact composition of agent types within each market segment. Thus, the
equilibrium policy functions depend on the aggregate state ϕ ∈ Φ, but not on the distribution of agents
across individual states (n, z). Because market tightness is a sufficient statistic to evaluate payoffs in
this economy, the model allows for the description of distribution dynamics (on and off equilibrium) by
means of flow equations (below), and its numerical solution does not require approximation techniques
such as those of Krusell and Smith (1998), which are typically needed in models with aggregate shocks.
This makes our environment particularly apt to study aggregate product market dynamics.

Let us now present the aggregate dynamics of the model. Let Sn,t(z) ≥ 0 be the total measure of firms
of size n with idiosyncratic productivity z ∈ Z at time t ≥ 0. Recall that all such firms are seeking new
customers in market xn+1(z, ϕ). Therefore, letting BI

n+1(z, ϕ) be the measure of (inactive and searching)

29 Kaas and Kircher (2015) exploit similar insights to obtain tractability. An alternative approach would have been to dis-
pense of the indifference condition among inactive buyers, and assume instead free entry of firms across all contracts (not
only in the market of single-unit firms). This is the approach usually followed by the literature of directed search with
aggregate shocks and on-the-job search (e.g. Menzio and Shi (2010, 2011) and Schaal (2017)). Moscarini and Postel-Vinay
(2013) develop similar tools for firm-dynamics models of random search.
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buyers within market xn+1(z, ϕ), market tightness must guarantee that:

BI
n+1,t(z, ϕ) = θn+1(z, ϕ) · Sn,t(z) (16)

at every t ≥ 0 for alln ∈ N. Using that η(θ) = θµ(θ), equation (16) can be writtenµ
(
θn(z, ϕ)

)
BI
n,t(z, ϕ) =

η
(
θn(z, ϕ)

)
Sn−1,t(z), stating that the measure of inactive buyers who become customers of a (n, z)-type

firm is equal to the measure of sellers of productivity z and size n−1 who acquire an additional customer.
Similarly, let BA

n,t(z) be the measure of customers that are matched with firms of type (n, z) at time t.
By construction, we have:

BA
n,t(z) = nSn,t(z) (17)

at any t ≥ 0. The measures of inactive and active buyers must add up to the total mass of buyers in
the economy at all times, and thus:

∀ϕ ∈ Φ, ∀t ≥ 0 :

+∞∑
n=1

∑
z∈Z

BA
n,t(z)︸ ︷︷ ︸

=BAt

+

+∞∑
n=1

∑
z∈Z

BI
n,t(z, ϕ)︸ ︷︷ ︸

=BIt

= 1 (18)

This equation establishes an aggregate feasibility constraint, stating that the unit mass of buyers must
be either matched with a firm and consuming, or looking for one.

We have made BI
n(z, ϕ) depend explicitly on both ϕ and time t because this is a jump variable that

also evolves smoothly over time for each given state. Indeed, the measure of customers looking to be
matched with a specific type of seller responds instantaneously to the aggregate state to guarantee that
the indifference condition among unmatched buyers (equation (3)) is met in all states of nature. In con-
trast, Sn,t(z) is a stock variable, as it varies with t but does not respond instantaneously to changes in ϕ.
Through equation (17), BA

n,t(z) changes smoothly over time, while through equation (16) market tight-
ness θn(z, ϕ) must jump instantaneously in response to aggregate shocks. Yet, by the block-recursivity
property, we do not explicitly index it by t, for it remains constant along each aggregate state. The mass
of potential entrants, denoted S0,t(ϕ), jumps following a ϕ-shock, and otherwise evolves smoothly due
to sellers flowing in and out of inactivity in the transition. Finally, because the evolution of the measure
of customers is always continuous, by equation (18) the distribution of inactive buyers searching on each
market must jump with each regime switch in such a way for the aggregate measure of inactive buyers
to adjust only smoothly over time. Other economic aggregates, such as the average price level, average
markup, and aggregate output, inherit this property as well.

In sum, while our policy functions are jump variables, the distributions of agents respond slowly to
aggregate shocks. Because of this slow adjustment, the model features sluggish aggregate dynamics.
Figure A.2 in the Appendix provides a graphical and comprehensive depiction of all possible transi-
tions. Mathematically, the dynamics of sellers over idiosyncratic states can be summarized by a set of
Kolmogorov Forward (KF) equations taking values on a discrete support N×Z .30

First, for n = 1 we have:

30 The derivation of the KF equations to follow can be found in Appendix D.2.
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∂tS1,t(z) = πz(z)η
(
θ1(z, ϕ)

)
S0,t(ϕ) + 2δcS2,t(z) +

∑
z̃ 6=z

λz(z|z̃)S1,t(z̃)

−
(
δf + δc + η

(
θ2(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
S1,t(z) (19)

for any z ∈ Z , where ∂t is the partial derivative operator with respect to time. This equation rep-
resents flows into and out of state (1, z). Inflows (first line) are given by those successful entrants that
draw productivity z upon entry, and by the share of incumbents that are either of type z and size n = 2

and lose one customer, or that have one customer and transition into the productivity state z from some
z̃ 6= z. Outflows (second line) are given by firms in state (1, z) that either die, lose their only customer,
gain a second customer, or transition to a distinct productivity state, z̃ 6= z. The aggregate state enters
the law of motion only implicitly through its influence on the jump dynamics of S0 and θ1. Therefore,
the dynamics of S1 are smooth (i.e. not indexed by ϕ).

Similarly, for any n ≥ 2:

∂tSn,t(z) = η
(
θn(z, ϕ)

)
Sn−1,t(z) + (n+ 1)δcSn+1,t(z) +

∑
z̃ 6=z

λz(z|z̃)Sn,t(z̃)

−
(
δf + nδc + η

(
θn+1(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
Sn,t(z) (20)

The interpretation is similar to the previous equation: flows into state (n, z), n ≥ 2, are given by the
share of firms of size (n− 1) that obtain their nth customer, the share of firms of size (n+ 1) that lose one
customer, and the share of size-n firms that transition into productivity level z from some state z̃ 6= z;
outflows are given by firms that either die, lose or gain a customer, or experience a productivity shock.

Finally, the measure of potential entrants, S0,t(ϕ), evolves according to the following ODE:

∂tS0,t(ϕ) = δfSt + δc
∑
z∈Z

S1,t(z)−
∑
z0∈Z

πz(z0)η
(
θ1,t(z0, ϕ)

)
S0,t(ϕ) (21)

where St :=
∑+∞

n=1

∑
z∈Z Sn,t(z) is the total measure of incumbent firms (i.e. firms with one or more

customers). The usual intuition applies, with the particularity that entering firms must now draw an
initial productivity level at random, z0 ∼ πz .

Equations (19)-(21) offer a full characterization of out-of-steady-state dynamics, and thanks to the
property of block recursivity we can analyze the transition paths of the economy in response to aggregate
shocks (Section 5). We can further specialize these equations to obtain the time-invariant distribution of
firms by equating flows in and out of every possible state: ∂tSn,t(z) = 0, ∀(n, z) ∈ N×Z .31 The following
result ensures that the dynamics are convergent:

31 In general, an analytical solution for the stationary distribution does not exist. One exception is the economy without
shocks and δf = 0. In this case, the flow equations amount to a continuous-time Markov chain with reflection bound
at zero and exponentially distributed transition times (sometimes called a birth-death process), where transition rates are
endogenous and state-dependent. Appendix D.2 derives the analytical solution for this particular case.
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Proposition 2 (Stability) Given an equilibrium allocation, the dynamical system represented by the flow equa-
tions (19), (20), and (21) is stable, and converges to an invariant distribution for each aggregate state ϕ ∈ Φ.

For the proof, see Appendix B.2. In Appendix D.2 we then show how to derive the aggregate equi-
librium measures of agents in the stationary solution explicitly.

3.6 Equilibrium Definition and Efficiency
We are now ready to define an equilibrium:

Definition 1 A Recursive Equilibrium is, for each aggregate state ϕ ∈ Φ, a set of value functions V S : N ×
X × Z → R+ and V B : N × Ω × Z → R+; a value of inactivity UB(ϕ) ∈ R; a joint surplus W : N × Z →
R+; a contract ωn(s) =

{
pn(s),xn(s′), x+

n (s), x−n (s)
}

for incumbent firms, and ω0(ϕ) = {x1(z0, ϕ)}z0∈Z for
potential entrant firms; a decision rule x̂(ϕ) for inactive buyers and a promised utility xn(s) for active buyers of
firms of type (n, z) ∈ N × Z ; a market tightness function θ(·, ϕ) : X → R+; aggregate measures of agents:
{S0(ϕ),S(ϕ), BA(ϕ), BI(ϕ)}; and a distribution of sellers and buyers:

{
Sn(z), BA

n (z), BI
n(z, ϕ) : (n, z) ∈

N × Z
}

; such that: (i) the value functions solve (5) and (6), UB(ϕ) is the fixed point of the free-entry condition
(9)-(10), and the joint surplus Wn(z, ϕ) solves (11); (ii) the entrant’s contract ω0(ϕ) solves problem (8), and the
incumbent’s contract ωn(s) is such that x+

n (s) satisfies (13), x−n (s) = xn−1(s), and pn(s) is given by (15); (iii)
x̂(ϕ) solves the inactive buyer’s problem, (1)-(2), and sellers promise utility xn(s) = x+

n−1(s); (iv) market tightness
θ(x;ϕ) is consistent with the sorting behavior of inactive buyers, (3); and (v) aggregates and the distribution of
agents satisfy the flow equations described in Section 3.5.

To compute the decentralized recursive equilibrium, one can show that the joint surplus problem
defines a contraction in a space of vector-valued function, and obtain the value of inactivity UB(ϕ) as
the fixed point of the free entry problem.32 This insight is instructive for the numerical implementation
(Appendix C.1), which exploits the nested fixed-point nature of the problem to solve for equation (11)
via value function iteration on W and a bisection step on UB . Existence of the recursive equilibrium
is, however, notoriously harder to show given the rich structure of the model. Particularly, a non-trivial
requirement for block recursivity is that there be non-negative entry of firms in all aggregate states. This
condition effectively sets bounds on the exogenous state processes so that the free entry condition, and
therefore ex-ante revenue equalization across markets and by extension the block recursivity property,
can be met in all states of nature.

Proposition 3 below states that the recursive equilibrium is constrained-efficient. In particular, it
establishes that the decentralized allocation maximizes aggregate welfare subject to the cross-sectional
and dynamic properties of the distribution of agents described in Section 3.5. In our environment, the
planner chooses distributions of buyers and sellers, as well as market tightness levels, across all states
and time, in order to maximize:

E0

∫ +∞

0
e−rt

{
− κ(ϕt)S0,t +

+∞∑
nt=1

∑
zt∈Z

(
v(ϕt)B

A
nt,t(zt)− C(nt; zt, ϕt)Snt,t(zt)− c(ϕt)B

I
nt,t(zt)

)}
dt (22)

32 A preliminary proof of this result is available upon request.
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Aggregate welfare thus equals the present discounted sum of consumption gains by active buyers,
net of search costs by inactive buyers, and production and entry costs by firms. Using this definition of
welfare, we then establish:

Proposition 3 (Efficiency) The allocation of the decentralized equilibrium coincides with the planner’s solution.

For the proof, see Appendix B.3. This result implies that our model features efficient firm dynamics
and efficient pricing behavior. In particular, markup dispersion is necessary to optimally split the gains
from trade among buyers and sellers, as prices in our environment serve to efficiently direct buyer search
toward specific product markets. The result is in contrast to models explaining dispersion in firm-level
revenue through resource misallocation (e.g. Hsieh and Klenow (2009)). While we do not rule our other
interpretations, our setting demonstrates that this type of dispersion may also be generated through
efficient pricing.

4 Understanding the Mechanism
Before turning to the empirical and quantitative parts of the paper, this section presents a discussion

of the qualitative properties of the equilibrium, with an emphasis on how product market frictions lead
firms of different sizes to set different combinations of price and promised utilities, and to experience
different subsequent growth paths along their life cycle. We finish the section with a discussion of the
main modeling assumptions and describe the role that each of them plays in equilibrium.

4.1 Qualitative Features
To describe the qualitative features of the economy, we begin with a useful result: under a standard

parametrization of the meeting rates, we can obtain an analytical characterization of the joint surplus. In
particular, for the remainder of the paper we will use the Cobb-Douglas matching function:

µ(θ) = θγ−1

with η(θ) = θµ(θ), where γ ∈ (0, 1) is the matching elasticity. The following proposition summarizes
the solution to the joint surplus in this case.

Proposition 4 (Analytical Solution of the Joint Surplus) For each (z, ϕ) ∈ Z × Φ:

(a) The joint surplus Wn(z, ϕ) solves the following second-order difference equation:

Wn+1(z, ϕ) = Wn(z, ϕ) + UB(ϕ) +

(
ΓB(ϕ)

γ

)γ (
ΓSn(z, ϕ)

1− γ

)1−γ

(23)

where ΓB(ϕ) is given by (4), and {ΓSn(z, ϕ)}+∞n=1 is given in equation (B.4.4) of Appendix B.4.

(b) The buyers’ promised utility is given by xn+1(z, ϕ) = γ
(
Wn+1(z, ϕ)−Wn(z, ϕ)

)
+ (1− γ)UB(ϕ).
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The proof is given in Appendix B.4. Proposition 4 shows that, in spite of the rich dynamics of the
model, the solution to the joint surplus problem can be expressed analytically for each realization of
the shock.33 The result has an intuitive interpretation. First, recall from equation (3) that ΓB(ϕ) is the
expected value from matching for a buyer, which is equalized across markets (and, therefore, indepen-
dent of (n, z)). Likewise, in the Appendix we argue that ΓSn(z, ϕ) can be interpreted as the expected
match value for a seller in market (n, z). Therefore, result (23) says that, with a Cobb-Douglas matching
function, the equilibrium marginal net gain in joint surplus for each additional customer is a convex com-
bination of the expected match surplus that accrues to the seller, ΓS , and that which accrues to the new
customer of the firm, ΓB . The matching elasticity parameter governs how the surplus is shared between
the seller and the new customer. In particular, after a n → (n + 1) transition, the new customer of the
firm absorbs a fraction 0 < γ < 1 of the gains in the total net surplus from the new match:34

xn+1 − UB︸ ︷︷ ︸
Incoming customer’s ex-post

net gains from matching

= γ
(
Wn+1 −Wn − UB

)
︸ ︷︷ ︸

Total net gains in joint surplus
from the size expansion

In turn, the added value for the seller is given by:

V S
n+1 − V S

n︸ ︷︷ ︸
Seller’s ex-post net gain

from new customer

= (1− γ)
(
Wn+1 −Wn − UB

)
︸ ︷︷ ︸

[A] Surplus extracted
directly out of new match

+ n
(
xn − xn+1

)
︸ ︷︷ ︸

[B] Surplus transferred from all
pre-existing customers

In words, after a n→ (n+ 1) transition, the seller absorbs the remainder share (1− γ) of the net gain
in the joint value from the new customer (term [A]), and some additional surplus that the seller extracts
from each of the n pre-existing customers (term [B]), whose individual value has now decreased from
xn to xn+1 ≤ xn.

Let us now explain intuitively why the seller’s size affects its incentives to build a customer base in the
first place. For this, we proceed in two steps: first, we show how, give a size n, the seller uses prices and
promised utilities as complementary instruments to extract customer rents; second, we provide intuition
for the dependence between promised utilities and size, and the direction of this correlation.

Price versus promised utility Let us first show how the price is affected by size changes through
adjustments in the promised utility. For this, consider taking partial derivatives to equation (15) around
the (xn, xn+1) equilibrium promises. Respectively, this yields:

∂pn
∂x

∣∣∣∣
x=xn

= −
(
r + δf + η(θn+1) + nδc

)
< 0 (24a)

33 We must note that this is not a closed-form solution, in the sense that the equilibrium object UB features in equation (23).
It is also worth noting that the existence of such a solution is not specific to the Cobb-Douglas case. For instance, a second-
order difference equation for W also emerges under the CES function µ(θ) = (1 + θγ)

−1/γ , where γ > 1 (proof available
upon request).
34 We suppress state dependence here to alleviate notation. This does not affect the intuition in any significant way.

27



∂pn
∂x

∣∣∣∣
x=xn+1

= η
(
θn+1

)︸ ︷︷ ︸
[C]>0

+
∂η
(
θn+1

)
∂x

∣∣∣∣
x=xn+1︸ ︷︷ ︸

[D]>0

(
xn+1 − xn

)︸ ︷︷ ︸
[E]<0

≶ 0 (24b)

Equation (24a) shows that there is always a negative relation between the utility paid to each incum-
bent buyer and the price each one is charged. This is because the PK constraint binds in equilibrium:
higher prices are detrimental to the customer’s valuation. This dependence is strongest for the smallest
and the largest firms, where firm size is more likely to change per instant of time, and weakest (though
still negative) for sellers close to their stationary size.

More interesting is the effect of a seller’s promise to a potentially incoming customer on the price that
the seller charges to its currently incumbent customers (equation (24b)). This marginal effect has two
additive terms of opposite sign. The first part (term [C]) says that each additional dollar that the seller
offers to the new potential customer must be financed through revenue obtained from an increase in the
price that is currently being paid by the pre-existing customers. In expectation, this additional dollar is
worth η(θn+1), as this is the effective probability with which a new customer actually joins the match.
At the same time, offering an additional dollar to the new potential customer raises the probability with
which a new customer is successfully attracted (as captured by term [D], of positive sign by equation (3)).
In such an event, we have argued above (term [B]) that the seller captures the difference (xn − xn+1) > 0

from each and every one of the n captive buyers. Therefore, part [E] says that each individual incumbent
customer can expect its own valuation to decrease by exactly this amount in the event of an increase in
size. By promise-keeping, the seller must therefore provide a compensation on the price, equal to the
product of [D] and [E], for each additional dollar raised in the contract, in order to entice the customer
to remain matched even in the prospect of a size increase.

Intuition for the size dependence It remains to argue why xn could be a decreasing function of n
in the first place. To make the argument transparent, consider that marginal costs are constant in n (i.e.
C(n) ∝ n), so that all size dependence emerges only from the search frictions.

1 2 3 4 5 6 7

Size (n)

-1.106

-1.104

-1.102

-1.1

-1.098

-1.096

-1.094
Promised Ut. (xn)

1 2 3 4 5 6 7

Size (n)

0.596

0.598

0.6

0.602

0.604

0.606

0.608
Price (pn)

1 2 3 4 5 6 7

Size (n)

0.75

0.752

0.754

0.756

0.758

0.76

0.762
Tightness (θn)

1 2 3 4 5 6 7

Size (n)

0

0.2

0.4

0.6

0.8

1
Firm growth

η(θn)/n
δc + δf

Figure 1: Numerical Example: Promised utility, price, market tightness, and firm growth, as a function of size, for
the simple model with no exogenous (z, ϕ) shocks, and a constant marginal cost (i.e. C(n) ∝ n). Firm growth has
been decomposed between the rate of customer attraction (solid line) and that of customer attrition (dashed line).
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Figure 1 shows, using a numerical example, that prices can be strictly increasing in size even in an
environment with linear costs. The intuition for this result is a combination of the entry cost for sellers
and the search cost for buyers. When a seller has no customers, it has to pay the κ > 0 cost to enter. It
does so by promising a certain utility x′1 to its first customer. This offer must satisfy x′1 > UB , or else the
customer would prefer to remain unmatched, and must ensure that, if a match occurs, the expected value
at entry pays for the entry cost, or κ = η

(
θ(x′1)

)
V S

1 . After the seller has acquired its first customer, the
κ cost becomes sunk, and the seller must post an offer x′2 to attract a second customer. Again, x′2 > UB

is needed to prevent separation. Moreover, in the event of a successful match, the surplus changes from
W1 = V S

1 +x′1 toW2 = V S
2 +2x′2. Since the number of customers has grown proportionally, but customers

must still absorb part of the added value to agree to remain matched, the seller now reduces the offer to
each customer slightly, x′2 < x′1, to be able to absorb part of the leftover gains. This intuition carries over
for larger sizes: customers are enticed to remain matched, as they still receive compensation against the
costly search state in the form of expected utilities, but the seller lowers the promised as it grows because
the growth in the base is linear and the seller needs to raise resources quickly to overcome the high costs
to market penetration.

How does this argument depend on the degree of frictions? An important parameter for the size
dependence is the size of entry costs κ.35 Figure 2 uses the same parameter values as Figure 1, but with
a much lower value for κ. The path of prices is now different. First, the seller must still enter with a high
promise to the first customer in order to generate a high enough probability of entering. But because
entry into the market is now cheaper, the seller is not as concerned about raising resources quickly to
make up for the costs of market penetration, and is now willing to back-load its promises and offer lower
prices for larger sizes.
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Figure 2: Same as Figure 1, but with a lower value for κ.

Therefore, importantly, the positive correlation between prices and sizes is not built into the model.
Indeed, there is an active empirical debate in the literature about the direction of this correlation. Using
plant-level data from the U.S. manufacturing sector, Foster et al. (2008, 2016) claim that prices are increas-
ing in tenure in the market, while Berman et al. (2017) find, using customs data, that prices are slightly

35 For comparative statics analysis with other parameters, see Section D.5 in the Appendix.
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decreasing for export markets. In contrast, Fitzgerald et al. (2017) find no dynamics of prices after ad-
justing for selection. In light of this evidence, our model thus abstains from taking a stance ex-ante, and
allows for both increasing and decreasing price paths. In the next section, however, we will document
that prices increase in size in our sample, and that this effect is still significant after controlling for tenure
in the product market.

4.2 Discussion of the Model’s Main Assumptions
To complete our qualitative analysis, let us now discuss our main modeling assumptions. Our model

is somewhat stylized and uses some restrictions, particularly on the contractual environment. Arguably,
the three most relevant assumptions are: (i) active customers cannot search for other sellers without
having to pay the search cost; (ii) sellers cannot discriminate across customers; and (iii) the seller credibly
commits to the pricing plan. Let us discuss the role of each one of these in turn, and argue that the
qualitative properties of the model do not hinge on these modeling choices.

1. Endogenous Separations An important assumption that has been made for tractability is that cus-
tomers cannot bypass the costly inactive state when they separate (either voluntarily or due to a shock)
from their seller. Allowing for endogenous seller-to-seller transitions would incorporate an additional
dimension into the firm’s pricing decisions. Besides the rent-extraction trade-off between incoming cus-
tomers and the current base, the firm would now have solve an attraction-attrition trade-off: a more
ex-post profitable contract for inactive buyers may enhance the chance of a customer match, but also
increase the likelihood of a voluntary separation. We propose how to endogenize this margin in Section
7.1, and discuss the technical challenges it presents.

2. Price Discrimination Secondly, we have assumed that sellers cannot price discriminate across
different customers. While this assumption is realistic for most major sectors of the economy, especially
those in which sellers face a large number of potential buyers (such as retail, our application in Section
5.1), it may not be apt for certain others, for instance industries in which personalized buyer-seller rela-
tionships may explicitly develop (newspapers, cell phone and internet services, commercial banks, etc.).
Gourio and Rudanko (2014b) propose a model for these type of relationships, show that sellers attract
buyers by offering a price discount on their first-ever transaction, and study the implications of this pric-
ing behavior for firm investment. Though the focus of our paper is different, it is still worth emphasizing
that our environment does not nest the Gourio and Rudanko (2014b) result. In fact, allowing for price dis-
crimination not only preserves the block-recursivity property, which is key for providing tractability, but
it also preserves firm dynamics and price dispersion. Importantly, however, assuming discriminatory
contracting results into a new feature (always within the Markov-perfect equilibrium class): equilibrium
multiplicity in the form of price indeterminacy. We explain these results in detail in Section 7.2.

3. No Commitment The third main contractual assumption is that of perfect commitment on the
seller’s side. Intuitively, long-term contracts are a stand-in for a reputational concern on the side of the
firm. By promising to deliver a utility level, the seller can balance the price with the continuation value
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to lure customers into remaining matched. In turn, customers understand that the firm does not price
gouge, and they remain loyal to their seller in order to avoid going through the costly inactive state. As
discussed briefly in Section 3.2, the market tightness schedule θ : X × Φ → R is taken as given by all
agents, which sets rationality in beliefs in the sense that if a seller were to deviate from its pricing plan, all
inactive buyers would remain indifferent between the new off-equilibrium offer and the remaining ones
being offered on-path. Importantly, if we were to dispense of the commitment assumption on the seller
side, we would lose block recursivity and, thereby, all the attractive analytical features of the equilib-
rium. The reason for this is that, due to a time-inconsistency problem, firms would engage in potentially
multiple forms of pricing strategies, all of which could be sustained in equilibrium under appropriately
designed “implicit contracts”, paired with trigger strategies on the buyer side (see Nakamura and Steins-
son (2011) for a discussion). The implicit contracts literature (going back to Baily (1974) and Azariadis
(1975)) shows that these type of contracts exhibit history-dependence, which in our framework would
break our recursive formulation. Moreover, sellers would need to keep track of the distribution of buyers
in order to understand how to best lock-in buyers across markets, as ex-ante revenue equalization would
fail to hold. For these reasons, seller’s commitment is a sine qua non for our set-up.

5 Quantitative Analysis
Let us now turn to the quantitative part of the paper. First, we provide empirical evidence from the

U.S. retail sector and analyze correlations between seller sizes and prices. Then, we proceed to the com-
putational implementation of the equilibrium, present the calibration exercise, and study the aggregate
implications of the model in order to illustrate the effects of customer capital accumulation on the micro-
and macro-economic effects of aggregate shocks.

5.1 Data
Estimating our model requires the use of disaggregated data that allows us to observe prices and

quantities separately. Fortunately, these type of data have become increasingly available over the last
few years as macroeconomists have drawn renewed attention to the analysis of the micro structure of
markets. In this section, we use micro-pricing data on the U.S. retail sector. In this interpretation of
the theory, sellers are stores, and buyers are private consumers. We then argue that small stores in our
sample (i) experience higher growth rates, and (ii) set lower prices relative to other firms within the same
product market. We also show that this size effect is not driven by a store age effect, meaning that our
customer accumulation interpretation of seller dynamics is compatible with competing theories based
on store age that would deliver similar patterns. Additionally, this section will serve to document some
salient features of the distributions of relative prices and sales, which we will use in the next section to
calibrate our model.

Although the model is general and can be applied to different sectors of the economy, we view the
retail sector as fitting well with its basic features. We will use data of unique high granularity which will
allow us to focus on narrowly-defined homogenous products that are sold by sellers of different sizes
within the same market segment, in accord with the environment of the model. Moreover, the types
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of goods in the data are non-durable consumption products that, as in the model, are likely to engage
customers and sellers into repeated purchases and thereby lock them into lasting relationships. The
fact that retail stores face a potentially large number of customers implies that the customer anonymity
assumption likely provides a good approximation for the bulk of observed store transactions. Finally,
under this framing of the model, we interpret the buyer’s search cost as a proxy for the transport and/or
information costs associated to finding and/or switching stores for customers.

We use weekly micro-level data from the IRI Symphony scanner data set.36 The whole data set is
large, spanning a period of 12 years (from the first week of January 2001 to the last week of December
2012), and containing revenue and quantity information for over 5,000 retail (drug and grocery) stores
over 50 Metropolitan Statistical Areas (MSA) in the U.S. The data are automatically generated by retailers
themselves through their point-of-sale systems, so a caveat of the dataset is that we do not observe overall
consumer expenditures. Products are grouped into 31 broad categories, with each product defined at
the Universal Product Code (UPC) level.37 Because of the large amount of information, we focus our
attention only on two large geographical markets (New York and Los Angeles) in the period 2001-2007,
and consider 15 of the 31 product categories.38

Although the IRI does not explicitly report prices for individual transacted products, the weekly
average price can be backed out by taking the ratio of the value of sales to the number of units sold for
each item of the store. That is, we define:

Pusm,t =
TRusm,t
Qusm,t

as the average retail price of UPC u within week t, in store s and (geographic) market m, where TR
denotes the total dollar value of revenues from sales, and Q denotes the units of the product that are
sold. Throughout, we consider only transactions at stores with unique identifiers at each UPC ×market
× week cluster. We also restrict our sample to only those products that are commonly available across
stores and not only sold in specific establishments. Specifically, given the overall number of stores in
our sample, we choose to drop those goods that are sold in less than 10 stores in every given week and
market.39 Finally, in the absence of a theory of price discounts, we focus only on regular prices by filtering
out of the sample those products that are on sale. A convenient feature of the data is that products are
flagged whenever they go on promotion, which means that we need not employ a filtering algorithm as
in Nakamura and Steinsson (2008) but we can rather exclude flagged products directly.40 Table A.1 in

36 The data are available for request at https://www.iriworldwide.com/en-US/solutions/Academic-Data-Set. For doc-
umentation, see Bronnenberg et al. (2008). Recent studies in economics studying related issues that use the IRI Symphony
include Alvarez et al. (2014), Gagnon and López-Salido (2014), and Coibion et al. (2015).
37 The UPC is an array of numerical digits that is uniquely assigned to a given item, and it constitutes the highest level of
disaggregation available for a product. The description of products is very detailed, including information about the brand,
flavor, and several packaging attributes.
38 The 15 categories of consideration are: Beer, Blades, Carbonated Beverages, Cigarettes, Coffee, Cold Cereal, Deodorant,
Diapers, Frozen Pizza, Frozen Dinners, Household Cleaners, Hotdogs, Laundry Detergent, Margarine and Butter, and
Mayonnaise.
39 To further eliminate outliers, we also drop stores with non-positive sales, transactions with prices above $100 (which
approximately account for the top .02% of the price distribution in the full sample), and cases with multiple observations
at the store×market×week×UPC level, which we deem as mis-reported transactions.
40 A “promotion” is defined by the IRI as a temporary price reduction of 5% or greater. Sales are quite unresponsive to the
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Appendix A shows some descriptive statistics of our data before and after applying these restrictions.
To study the degree to which the same good is sold at different prices by stores of different size

profiles, we follow the literature (e.g. Kaplan et al. (2016)) by focusing on a relative measure of prices.
That is, we define:

p̂usm,t = logPusm,t −
1

NS
um,t

NS
um,t∑
s=1

logPusm,t (25)

whereNS
um,t is the number of stores selling good u in marketm and week t. In words, p̂usm,t indicates

the log-deviation in the price of good u in store s relative to the average price across all stores selling
that good in the week and market of interest. Price dispersion is measured as the average standard
deviation of p̂usm,t across stores, markets, and time. In our full sample, dispersion at the barcode level is
high (15.73%), in line with previous studies using similar micro pricing data from different sources (e.g.
Kaplan and Menzio (2015)). The restricted sample has a lower dispersion (10.55%), as a result of having
eliminated price outliers and uncommon goods. Figure A.3 shows the distribution of relative prices in
our sample, alongside that of normalized sales (the ratio of store-level sales to its mean) and store sales
growth rates. Table A.2 presents summary statistics for these distributions. We observe that the store
size distribution has a fat right tail, which accounts for the high dispersion in normalized sales.

For a measure of the store’s average relative expensiveness, we average relative prices across products
sold within the store:

êsm,t =
1

NU
sm,t

NU
sm,t∑
u=1

p̂usm,t (26)

whereNU
sm,t is the number of goods that are sold by store s in the corresponding week and market of

interest. The variable êsm,t describes how prices in the store compare, on average, relative to those of the
seller’s competitors.

We can now examine how stores of different sizes price their products differently. Our baseline mea-
sure of size is store-level sales (in logs), which we compute as the sum of dollar revenues across all the
products sold by a given store, in a given week and market. We are then interested in describing the
effects of store size on relative prices and sales growth rates. Formally, we adopt the following empirical
specification:

yusm,t = α0 + X>sm,tβ + γa + γs + γt + γm + εusm,t (27)

for store s in week t and (depending on the specification) product u, where yusm,t stands for the
dependent variable of interest. To isolate all sources of aggregate time variation that may be common
across stores, we control for time fixed effects γt. Further, we control for store characteristics by including
store fixed effects, γs, and market-specific common across time and stores, γm. We will run regressions
with and without store-age fixed effects γa, in order to verify that the size effects are not driven by age.41

business cycle, as documented by Coibion et al. (2015) for the IRI data, and therefore excluding do not change our life-cycle
results significantly.
41 The IRI reports (masked) retailer identifiers, which we exploit to track the tenure spell of different stores within the
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Covariates in Xsm,t include our measure of size at both store and product levels.
We run three main specifications for our dependent variable: the growth rate of product sales within

the store, the relative price at the UPC level, and the store’s relative expensiveness. Table 1 presents
results for the corresponding coefficients on store size.

(1a) (1b) (2a) (2b) (3a) (3b)
∆ log(Salesus) ∆ log(Salesus) p̂us p̂us ês ês

log(Saless) –.05674∗∗∗ –.05545 ∗∗∗ .01805∗∗∗ .01588∗∗∗ .01667∗∗∗ .01449∗∗∗
( .00075) (.00077) (.00023) (.00023) (.00008) (.00008)

Age FE 7 X 7 X 7 X
Controls X X X X X X
Fixed Effects X X X X X X
R2 .1371 .1373 .1541 .1550 .8862 .8917
Obs. (millions) 43.4 43.4 59.81 59.81 59.81 59.81

Table 1: Coefficient values for size regressions, with size proxied by sales. Source: IRI Symphony weekly data,
2001–2007. Notes: Subscript s denotes store, us denotes UPC within store. All regressions are controlled by
log-sales at the store-product level. Fixed Effects include store, market, and time fixed effects. Standard errors in
parentheses, clustered at the Store×UPC level. Significance levels: ∗=10%; ∗∗=5%; ∗∗∗=1%.

The results show that there exist significant differences in growth rates and prices across comparable
stores of different sizes. Columns (1a), (2a), and (3a) show the pure size effect, without controlling for
store age. Columns (1b), (2b), and (3b) show results for the same specifications in which age fixed effects
have been included, to demonstrate that the size effect remains significant. The latter implies that our
customer accumulation interpretation of store dynamics does not conflict with other views on pricing
behavior along the seller’s life cycle (e.g. learning about demand through price experimentation).

Columns (1a)-(1b) are our baseline store growth regressions, showing that larger firms (in terms of
total weekly revenue) experience lower rates of per-product sales growth. In particular, a 1 percentage-
point increase in store sales slows down sales growth by 0.055 percentage points on average. In the
model, this effect comes from the pricing behavior of smaller sellers, who set relatively lower prices and
attract customers at a faster pace. Empirically, we also find that relative prices are positively correlated
with store size. In this case, an increase in store sales by 1% is associated with a per-product price that is,
on average, about 0.016 percentage points higher than the average price for that product across all stores
selling in the week and market of consideration (column (2b)). Finally, columns (3a)-(3b) show the size
effect on relative prices on average across all products sold within the store. We see that an increase in 1
percentage point in store-level sales is associated with an increase in the store’s expensiveness index of
about 0.015 points.42

Though we do not claim that these results unveil a causal relationship between prices, sales, and
incentives to accumulate customers, we use these correlations to discipline the type of relationship that
the estimated version of the model should feature between firm size and prices.

market×week observation of interest. For a given market m and week t, the age of store s is the number of weeks asm,t =
1, 2, . . . , t elapsed since the store’s first entry into the market.
42 A potential concern in these regressions is that large and small chains behave differently in terms of pricing, a dimension
that our model does not capture. To avoid comparing very large chains to medium and small ones, we run our regressions
for only those chains whose number of stores lies below the median number of stores per chain in the sample. Table A.3
shows that the results are qualitatively similar.
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5.2 Estimation

Parametrization

Let us proceed with the estimation of the model. The first step is to parametrize the cost function of
firms and establish the structure of the exogenous shocks. For the former, we choose a convex function
that is separable in firm size:

C(n; z, ϕ) = w(z, ϕ) · nψ (28)

where w(z, ϕ) > 0 is a scale parameter, and ψ ≥ 1 is a curvature parameter controlling for the degree
of returns to scale in technology. When marginal costs are increasing in size (ψ > 1), there is a natural
upper bound on firm size for each state, given by n∗(z, ϕ) ≡

(
ψw(z, ϕ)/v

) 1
1−ψ , beyond which the static

flow surplus πn(z, ϕ) = nv−C(n; z, ϕ) is strictly decreasing and the seller does not want to grow further.43

The scale parameter changes across firms and aggregate states, and for simplicity we assume a linear form
in both arguments so that w(zi, ϕj) = wziϕj , for i = 1, . . . , kz and j = 1, . . . , kϕ, where w > 0 controls
the optimal scale. This specification of shocks is isomorphic to multiplicatively-related idiosyncratic and
aggregate TFP shocks in the production function, a standard approach in the search-and-matching firm-
dynamics literature (e.g. Kaas and Kircher (2015)).

On the other hand, we must specify the structure of the exogenous shocks, z andϕ. As these variables
evolve over a discrete grid in the model, in principle we should estimate the value of all the transition
rates in the underlying generator matrices. For each shock s ∈ {z, ϕ}, this would require the estima-
tion of ks(ks − 1) additional parameters, a potentially large number. To reduce the parameter space,
in practice we assume that the exogenous shocks follow continuous-time analogues of AR(1) (so-called
Ornstein-Uhlenbeck) processes, which we in turn approximate on finite grids using the Tauchen (1986)
method.44 This reduces the estimation of the shocks to only two parameters: a persistence parameter ρ,
and a volatility parameter σ.

Calibration Strategy

Our calibration strategy is to match aggregate moments related to store dynamics in the U.S. retail
sector as well as average long-run moments across all years of our sample of micro-pricing data presented
above.

The model is quite parsimonious, with 11 free parameters that need to be identified. Of these, 9 are
deep parameters:

(
v, r, δf , δc, w, ψ, κ, γ, c

)
, corresponding to the value of consumption, the time discount

rate, the separation rates of firms and consumers, the scale and curvature parameters of the operating cost
function, the entry cost for new sellers, the matching elasticity, and the search cost for inactive buyers,
respectively. On top of this, we must set values for the persistence and dispersion parameters of the
exogenous productivity state process: (ρz, σz). We assume that z can take up to kz = 25 different values.
We do not estimate the aggregate shocks ϕ because the spirit of our calibration exercise is to estimate an

43 Even though, as we saw in Section 4, the existence of a stationary size does not hinge on the curvature in the cost function,
the parameter ψ will help us pin down the size dependence in prices more easily.
44 Full details can be found in Section C.2 of the numerical appendix.
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economy in its long-run equilibrium. These shocks will be re-introduced in Section 6, where we discuss
our application to markup trends within the context of the calibrated economy.

External identification The parameters (v, r, δc) are calibrated outside the model. The value of con-
sumption is normalized to v = 1, so that the consumption good serves as the numeraire of the economy.
The discount rate is set to r = 0.05, corresponding to a discount factor of approximately 95% annually.
Finally, the exogenous separation probability is set to match a 0.044% weekly customer turnover rate (cor-
responding to δc ≈ 0.2041 at our yearly frequency), which implies that customer relationships last a bit
more than 4 and a half years on average. We take this value from Paciello et al. (2016), who estimated it
using the same database that we have used in our empirical analysis. The number falls within the range
of values reported by Gourio and Rudanko (2014b), who survey the marketing literature on customer re-
lationships for both contractual and non-contractual settings and find that turnover rates range between
10% and 25% annually, depending on the sector.

Internal identification We are left with the following free parameters: (i) the firm exit rate δf ; (ii)
the cost scale w; (iii) the firm entry cost κ; (iv) the buyer search cost c; (v) the matching elasticity pa-
rameter γ; (vi) the cost curvature parameter ψ; and (vii) the autocorrelation and dispersion parameters
(ρz, σz). Because of the high non-linearity of the model, identifying each parameter separately is hard in
our environment, though we can provide some intuition for how each parameter is informative of each
specific moment. Methodologically, we estimate the parameters jointly by matching a combination of
aggregate and firm-level long-run moments via Simulated Method of Moments (SMM). To implement
this procedure, we use an algorithm that randomly searches in the parameter space, and then employ an
unweighted minimum-distance criterion function that compares empirical moments to model-implied
moments from both the stationary solution and from simulated data.

For the stationary solution, we solve a nested fixed-point algorithm that uses a bisective step to solve
for the value of inactivity, UB . Appendix C.1 outlines the details of this method. To obtain moments
from simulated data, we compute paths for many distinct firms over T = 100 years of data which we
discretize with time steps of equidistant length ∆ = 0.01 each.45 All firms are drawn from the stationary
distribution

{
gn(z) : (n, z) ∈ N×Z

}
at time t = 0 and evolve endogenously through simulated Markov

chains that replicate the state dynamics described in Section 3.5. To allow for convergence of the distri-
bution, we drop the first half of the time sample when computing the average simulated moments. For
the productivity distribution πz , from which entrants draw their initial productivity level, we use the
ergodic distribution implied by the calibrated Markov chain for z.

The set of targeted moments can be grouped into two broad categories: (i) aggregate moments, and
(ii) firm-level moments related to the long-run distribution of sales and prices. At the aggregate level, we
target an average annual entry rate of 8.9%, which we compute for our IRI sample as the average across
years 2001-2007 of the ratio of stores aged 52 weeks or less to the total number of existing stores within
that year (see Table A.4 in the Appendix). We define the entry rate in the model as the ratio of actual
entrants to the total mass of incumbents. The exit rate is the measure of firms who either die or lose their

45 Our baseline results report simulations for 1,000 firms. However, we have tried with up to 10,000 firms and obtained
quantitatively similar results.
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last remaining customer. By equation (21), this means:

EntryRate =
S0∑

n,z Sn(z)

∑
z0∈Z

πz(z0)η
(
θ1(z0)

)
and ExitRate = δf + δc

∑
z S1(z)∑
n,z Sn(z)

(29)

These formulas hold in and out of steady state, but are equal to each other in the absence of ϕ shocks,
so the entry rate in the data helps us identify the exogenous exit rate δf in the model. At the aggregate
level, we also target the cross-sectional average markup. Because measuring markups in the data usually
requires a stand on market structure and the demand curve faced by firms, estimates vary substantially
in the literature depending on the empirical methodology, the industry of consideration, and the overall
sample. Using firm-level data, typical estimates range from about 10% to as much as 50% or more.46

Since we are calibrating our model to long-run average moments of the U.S. retail sector, we choose to
target a markup of 39%, a number that we impute from the average ratio of gross margin to sales in the
retail sector for our sample period (2001-2007). We obtain this number from the latest Annual Retail
Trade Report of the U.S. Census Bureau.47 To be consistent with the empirical target, in the model we
compute measured markups as the sales-weighted average of the ratio of price to marginal cost across
firms:

m =
∑
n∈N

∑
z∈Z

mn(z); with mn(z) := sn(z)
pn(z)

mcn(z)
(30)

where sn(z) = npn(z)∑
n,z npn(z) is the sales share of type (n, z) firms, and mcn(z) := C(n; z) − C(n − 1; z)

is the marginal cost of this type of firms. Though many parameters affect the average markup, γ is the
most relevant one, as it governs how the gains from trade are shared between the customers and their
seller (recall our discussion in Section 4).

At the store level, we target several moments of the long-run distribution of prices and sales that we
compute from our IRI sample. The cost parameters (ψ,w) determine firm profitability across sizes, so
they play an important role in determining the degree by which firms of similar productivity choose to
set different prices for the same product. We choose to target two moments that relate to this dimension
of heterogeneity. First, we target the time-series average standard deviation of relative prices (equation
(25)), our baseline measure of price dispersion, equal to 10.55% in the data. Second, we target the inter-
decile range in the distribution of relative prices between the tenth percentile and the median relative
price, equal to 1.1215 (see Table A.2). The reason we target this measure of left-tail dispersion is because
we estimate the model so the bulk of the population of firms charges low prices relative to the average
price (resulting from right-skewness in the stationary size distribution). Matching the lower part of the
price distribution is therefore important because our ultimate goal is to understand the macroeconomic

46 Using a model-free approach and manufacturing data at the plant level from Slovenia, DeLoecker and Warzynski (2012)
find that median markups range from 10% to 28%, depending on the specification, while DeLoecker et al. (2016) find even
more variation, from 15% up to 43%, using similar methods for India. In a study spanning 1981-2004, Christopoulou and
Vermeulen (2008) report an average markup of 37% for the Euro area, and of 32% for the U.S., and find that these estimates
vary substantially at the sectoral level.
47 The data are freely available at https://www.census.gov/retail/index.html. The average gross margin is about 28%,
implying an average markup of .28/(1− .28) ≈ .39. For comparison, Hottman (2017) estimates average markups in the U.S.
retail sector and finds slightly lower numbers, in the range 29-33%.

37

https://www.census.gov/retail/index.html


implications of pricing when firms accumulate demand.
Next, we need to discipline the parameters of the exogenous productivity process, z. Having matched

price dispersion measures, we are now interested in variation across productivity levels for fixed seller
size. Thus, we target the yearly autocorrelation in normalized store-level sales (pinning down the per-
sistence ρz), and the dispersion in the distribution of normalized sales (pinning down the volatility σz).
Finally, we need to calibrate the search cost for buyers, c, and the market penetration cost for sellers, κ. As
we discussed in Section 4, these parameters are important to pin down the dependence between firm size
and firm price, which determines two key aspects of firm dynamics: (i) the growth rate of firms across
sizes; and (ii) firms’ stationary size. For the former, we target the correlation between store product-level
sales growth rates and the relative price of those products. The correlation is negative, consistent with
the idea that smaller sellers grow faster and set lower prices relative to their competitors within the same
product market. Regarding (ii), we target the stationary size of sellers in the data. In the model, we mea-
sure the average size of firms as the mean number of units sold per firm. Since each customer consumes
one unit, the average size is (see e.g. Luttmer (2006)):

L =

(∑
n∈N

∑
z∈Z

1

n
Ln(z)

)−1

; with Ln(z) :=
nSn(z)∑
n,z nSn(z)

(31)

where Ln(z) is the fraction of active buyers that are customers of sellers of type (n, z). In our sample,
the average number of units sold of each product within a store is 12.4 in volume-equivalent terms,48 so
we target this number in the estimation to make average firm size comparable between data and model.

Estimation Results

The full set of calibrated parameter values is presented in Table 2, and the result of the calibration
exercise in terms of moment-matching is presented in Table 3. The model’s fit is reasonably good, being
able to explain both aggregate entry rates and average markups accurately, as well as both average and
left-tail dispersion in relative prices. Note that the model slightly under-predicts dispersion in normal-
ized sales, probably as the result of outliers in the data. On the other hand, the correlation between sales
growth and relative prices in the model is a little too strong relative to its empirical counterpart. This
likely reflects the presence of factors attenuating the relationship between prices and sales in the data
that cannot be captured by the model.49

Figure A.5 plots the joint surplus, the pricing policy function, the measured markups (computed
using the sales-weighted measure of equation (30)) and the promised utility, in the space of seller sizes (n)
and productivities (z), for the calibrated set of parameters. Recalling that higher values of z correspond
to higher average costs (recall equation (28)), we find that matches with more customers and higher
productivity levels (i.e. lower values for z) earn a larger surplus. Moreover, we find that the pricing policy
is increasing in the size of the customer base, and decreasing in productivity. Even though marginal costs

48 The IRI sample provides a conversion system whereby units of different product categories can be made comparable. We
use this standardization for this calculation.
49 To get a visual idea of identification, Figure A.4 in the Appendix plots each calibrated moment against the distribution
across different model simulation runs that results from our parameter search algorithm. We see that, with a few exceptions,
the calibrated moment is close to the median of this distribution.
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Parameter Value Description Source / Target

Calibrated externally
v 1 Value of consumption Normalization
r 0.05 Discount rate 5% annual risk-free rate
δc 0.2041 Separation rate Paciello et al. (2016)

Estimated internally
δf 0.0738 Firm exit rate Annual store entry rate
γ 0.5339 Matching elasticity Average markup
ψ 1.4044 Cost curvature Standard deviation of relative prices
w 0.1510 Cost scale p50-p10 inter-decile range in relative prices
c 0.5457 Buyer search cost Average store size
κ 1.6214 Firm entry cost Correlation between sales growth and relative price
ρz 0.0751 Persistence of z Autocorrelation in normalized store sales
σz 0.1034 Volatility of z Dispersion in normalized store sales

Time frequency Annual

Table 2: Full set of calibrated parameters in the baseline estimation. Notes: The parameters (ρz , σz) correspond
to the Euler-Maruyama equation (C.2.1) of the Ornstein-Uhlenbeck process for z. See Appendix C.2 for details.

are higher for larger firms (as ψ > 1), measured markups are still increasing in size, i.e. larger sellers
introduce relatively higher margins over their unitary costs into their prices. In Figure A.6 we plot the
distribution of normalized sales and that of the seller’s customer base that result from the simulation
of the economy under the calibrated set of parameters. The figure demonstrates that our model can
generate an invariant firm size distribution with a fat right-tail in both firm revenues and firm output
that resembles its empirical counterpart (see Figure A.3 in the Appendix). We also show (panel (c)) the
age distribution, to demonstrate that most small sellers in the economy are young, as argued in the size-
age regressions of the empirical analysis (Table 1).

Moment Model Data Data Source

A. Aggregate moments
Annual entry rate 0.087 0.089 IRI (Table A.4)
Average markup (2001-07) 1.388 1.383 U.S. Census

B. Store-level moments
sd(Relative prices) 0.1072 0.1055 IRI (Table A.1)
p50-p10 IDR relative prices 1.1224 1.1215 IRI (Table A.1)
Average store size 10.73 12.44 IRI
corr(Sales growth, Relative price) –0.023 –0.007 IRI
ac(Normalizes sales) 0.854 0.828 IRI
sd(Normalized sales) 0.6 0.474 IRI

Table 3: Targeted moments: model versus data. Notes: Average markup is weighted by sales shares. IDR means
inter-decile range. sd, corr, and ac mean “standard deviation”, “correlation”, and “autocorrelation”, respectively.
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Validation

To validate the results of our calibration, we assess the model’s performance on non-targeted mo-
ments. We look at two sets of moments. First, we check the model’s performance on other measures
of relative price dispersion, namely inter-decile ranges between the first and ninth deciles, and fifth and
ninth deciles. The results are in Panel A of Table A.5. The model’s predictions regarding price dispersion
above and below the median are in line with the micro-pricing data.

We also look at the model’s ability to generate quantitatively correct predictions for the behavior of
price changes. Although our model does not provide a theory of price stickiness (prices are sticky because
they are indexed to slow-moving states, not because of costly price adjustment), it is still worth asking
how the model performs in terms of the frequency and the size of the price adjustments that we see in our
IRI sample. For this exercise, in the model we compute micro-price statistics along the stationary solution
using the theoretical results derived in Appendix D.3. In the data, we define the weekly frequency of
price changes within a store and market of interest as the share of goods sold by that store in that week
that experience a price change.50 For the moments of the distribution of price changes, we look at the
absolute value of log differences. Finally, we annualize frequencies and rates in the model and the data
for the sake of comparison.

Panel B in Table A.5 reports the simulated moments and their empirical counterparts. The calibrated
model does a good job in predicting the empirical frequency of price changes, even though these mo-
ments were not targeted. Therefore, the model also predicts relatively well the median price durations,
though the average duration is not accurately predicted as the distribution of price durations in the model
is not sufficiently skewed.51 Finally, the model predicts several moments of the distribution of expected
price changes, especially the average price change and the median. Moreover, the model can explain
about one third of the dispersion in the size of price changes, even though it was not calibrated for this
purpose.

5.3 The Response to Aggregate Shocks
In this section, we analyze the role of aggregate supply and demand shocks at both the macroeco-

nomic level as well as in the cross-section of firms. The purpose of this exercise is to understand the role
that customer pricing heterogeneity can have on macroeconomic transmission. In particular, we seek to
identify how firms’ incentives to accumulate customers can generate substantial amplification on macroe-
conomic aggregates through both level and distributional effects, as well as imperfect pass-through of
shocks to prices.

50 We focus only on regular price changes, which we define (following Coibion et al. (2015)) as changes in prices that are
larger than 1% or $0.01 in absolute value for products that are neither entering nor coming out of promotion, and whose
initial price is less than, or equal to, $5. For non-promotional goods with initial prices higher than $5, this threshold is set
at 0.5%. These criteria eliminate small price changes that may possibly be due to rounding or reporting errors. Moreover,
in order to filter out temporary price reductions that may not have been captured by the sales flag provided by the IRI, we
exclude price changes that return to their initial level within 3 weeks after the initial change.
51 To transform frequency f to duration d, we use the formula d = − 1

log(1−f) . See details in Appendix D.3. For medians, we
apply the formula directly on the median frequency to obtain the median duration. For means, we first use the formula to
compute the implied duration for each store and price, and then take the mean.
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Supply Shocks

Starting from the stationary equilibrium of the calibrated economy, we first study the response to a
1% transitory shock to the marginal cost, i.e. a positive ϕ-shock to C(n; z, ϕ) parametrized as in equation
(28). As with idiosyncratic shocks z, we assume that the aggregate state ϕ follows a mean-reverting
process in logs (details of this implementation can be found in Appendix C.2). The shock hits at time t0,
and the process mean-reverts without any further shocks for all t > t0.52 The shock is fully-anticipated
in the sense that agents incorporate the expectation about changes in their value functions due to the
aggregate shock (recall the HJB equations presented in Section 3).

Figure 3 presents the results. The response of the economy to the aggregate shock combines both
level and compositional effects. First, due to an exogenous increase in the cost of serving each customer
(panel (a)), the flow payoff in joint surplus falls on impact (panel (b)). To mitigate the effects on their
own profits, sellers lower the continuation utility that they promise to deliver to each customer going
forward. Panel (c) shows, in particular, that active buyers are hit harder than sellers by the productivity
shock. As a result of a lower promised utility, firms attract less inactive buyers, as their ex-ante value
from matching is now lower. Consequently, the average tightness in the market falls (panel (d)), and
with it the expected probability of firm growth. Interestingly, prices increase in response to the shock,
but the pass-through is incomplete (panel (e)). The increase in prices is due to the fact that, when faced
with an adverse shock to their costs, sellers choose to re-balance their contracts by front-loading payments
from their buyers. They implement this by choosing to exploit their customers more today (through a
high price) and forego some market shares in the future (through lower promised utility x). This strategy
also explains the incomplete pass-through: as the shock is smoothed out inter-temporally via these two
contracting instruments, the price response is muted. Note, moreover, that this dynamic re-balancing of
payments momentarily increases flow sales in spite of the decrease in the extensive margin of demand,
though this increase is only temporary (panel (f), solid line). Flow profits decrease, in contrast, as the
rise in sales is overwhelmed by the increase in costs (panel (f), dashed line).

To explain the behavior of measured markups (panel (l)), we must first understand the compositional
effects of the shock. First, in response to the decrease in demand, the rate of inactive buyers gradually
increases (panel (g)), so firms start to shrink on average (panel (h)).53 Thus, the firm size distribution
shifts to the left and, since the risk of exiting is higher for smaller firms, the aggregate exit rate goes up
(panel (i)). Interestingly, and despite the fall in the average size, the entry rate goes up as well (panel
(j)), even more so than the exit rate does, which in turn explains that the number of inactive sellers
decreases in response to the shock (panel (k)). The reason why the entry rate spikes up is that tightness
in the entry market (where n = 1) has increased, making the ex-post rate of acquiring the first customer
higher. The entry market thus behaves differently to any market for incumbents (where n ≥ 2), as the
latter type of market sees its tightness decrease in response to the shock (recall our intuition in the above
paragraph). The reason for this behavior is that, in order to enter into the economy, potential sellers must
raise enough resources to pay for the fixed market penetration cost, κ. While these costs have remained

52 Throughout this section, the aggregate state process is implemented with kϕ = 25 grid points. To obtain smooth re-
sponses in the value and policy functions, we use interpolation with cubic splines.
53 Note that these effects are purely compositional: they unfold with time, and there is no change on impact.
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Figure 3: Impulse responses of selected variables to a negative and temporary 1% shock to aggregate produc-
tivity (i.e. an increase in the marginal cost). Notes: All responses expressed in %-deviations from steady-state.
The shock hits at date t0 = 0. Responses are smoothed out with the use of cubic splines. Panel (a) depicts
the path of the exogenous state. Panels (b) to (f) depict cross-sectional averages using the simulated distribu-
tion of firms over idiosyncratic states. That is, for any policy or value function f(n, z), we plot the %-deviation of
N−1
t

∑
n,z f(n, z)mt(n, z), wheremt(n, z) is the count of firms of type (n, z) at time t, andNt :=

∑
n,zmt(n, z)

is the total count of incumbent firms. The average number of customers per firm in panel (h) is computed using
equation (31). Panels (i) and (j) are computed using equation (29). Panel (l) is computed using equation (30).
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constant, every inactive buyer’s ex-ante match value has worsen, so the seller must now raise the initial
promised compensation (x1) sufficiently in order to guarantee that the same entry costs are still being
recouped in expectation.54

Overall, the response in the measured markup (computed as a sales-weighted average, from equation
(30)) is explained mostly through shifts in the distribution of firms. On the one hand, the price level
increases for all firms through the rebalancing mechanism explained above, which puts upward pressure
on markups. On the other hand, because measured markups and size are positively correlated in the
calibrated economy (recall Figure A.5(c)), the increase in the relative measure of small firms means that
the contribution of low-markup firms to the aggregate markup is now relatively more important. This
puts downward pressure on markups. Therefore, the cyclicality of measured markups is, in principle,
ambiguous. In our calibrated economy, however, the latter compositional effect dominates the former
level effect, and markups on average decrease. Interestingly, this has also implications for the cross-
sectional response. Panel (l) shows the markup response for three different firm sizes, and shows that
there exists substantial heterogeneity between the very small firms and larger firms. In particular, the
smallest firms (n = 1) respond to the shock by almost twice as much as larger firms (n = 20) do. Similar
features have been documented in the data. For instance, Hong (2017) has found differential responses
of markups across firm sizes, with smaller firms displaying more elastic responses to output shocks, as
in our model.

To illustrate the idea that sellers smooth out the effects of the adverse shock inter-temporally by de-
pressing future demand, Figure 4 shows how the response varies with the average duration of customer
relationships, as measured by δc. In particular, we compare the baseline economy (solid), with an econ-
omy in which the duration of customer relationships is one-third shorter (dashed). In line with our
intuition, the figure shows that the response is dampened when customer relationships are shorter (that
is, when the customer separation rate δc is higher). This is because, when sellers expect their customers
to remain captive for a shorter time, sellers care more about their present profits, so promised utility is
less depressed in the future (panel (a)) and prices react more today (panel (c)). As a result, the shock has a
smaller impact on sellers’ value (panel (b)). Moreover, the effects of the shock on prices and continuation
utilities become less persistent. Finally, the fact that the price passthrough becomes less incomplete as δc
increases means that the absolute response of the average markup (panel (d)) is weaker. In the limit as δc
gets very large, markups would be acyclical to marginal cost shocks, as prices would respond one-for-one
and promised utilities would remain unaffected by the shock.

Demand Shocks

Recent research has emphasized the relevance that consumer shopping behavior may have on macroe-
conomic dynamics. For instance, Bai et al. (2012) incorporate a frictional goods market into a representative-
agent neoclassical economy to study the role of demand shocks, and observe that the latter are akin to
productivity shocks because an increase in demand induces search and hence an output boom. Petrosky-
Nadeau and Wasmer (2015) further show that goods market frictions can provide additional persistence

54 Note that this feature emerges because firms are forced to enter with one buyer in our setting. In a model with free entry
into every product market, the entry rate would likely move in the direction of the shock.
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Figure 4: Impulse responses of selected variables to a negative and temporary 1% shock to aggregate productivity
(i.e. an increase in the marginal cost), for different values of δc. Notes: See Figure 3.

to aggregate shocks, and Paciello et al. (2016) show that they can provide additional amplification. These
are because an increase in search effort raises demand elasticity and leads firms to charge lower prices.
In this section, we argue that the underlying size dynamics and the forces of firm entry can provide
additional insights into the aggregate response of the economy to aggregate demand shocks.

We consider a shock to the instantaneous utility from shopping, v. In particular, we implement a 1%
negative shock to v at time t0, and let the process mean-revert without any further shocks for all t > t0.
We choose an autocorrelation for theϕ process implying a half life of about three years, following Paciello
et al. (2016) and in line with estimates by Bai et al. (2012).55

Figure 5 presents the results. A negative shock to the utility from consumption leads to a decrease in
the number of buyers looking for a seller, since consumption is worth less. Because the buyers’ outside
option has relatively improved, firms lower the promised utility in an attempt to smooth the effects of the
shock. Once again, the burden of the shock is passed almost entirely to the customer: the seller’s value
decreases only slightly (panel (c), dashed line), and it is the decrease in the value of the buyer (panel (c),
solid line) which accounts for the bulk of the drop in joint surplus (panel (b)). As a result of the decrease
in demand, market tightness drop on impact (panel (d)), and the decrease in the matching rate leads
firms to progressively shrink in size.

In this respect, the demand shock is akin to a productivity shock (Figure 3), in line with the intuition
in Bai et al. (2012). In particular, the compositional effects are similar, with a left-ward shift in the firm size
distribution accounting for the increase in the exit rate and in the relative contribution of high-markup
firms to the aggregate markup. However, note that the behavior of prices in response to the demand
shock is remarkably different. First, the incomplete pass-through that we observed in the case of a sup-
ply shock, and which was due to firms optimally tilting their pricing contract toward more immediate
payoffs through higher prices today, is no longer present here. A shock to the marginal propensity to
consume has a one-to-one impact on the extensive margin of demand because of linearity in consumers’

55 In particular, Paciello et al. (2016) use a quarterly autocorrelation of 0.98 for their demand shock. Using the Euler-
Maruyama method described in equation (C.2.1) (Appendix C.2), in our calibration at a yearly frequency where each year
is discretized by 1/∆ = 100 sub-periods, a 0.95 quarterly autocorrelation means ρϕ = 1−0.984∆

∆ ≈ 0.0808.
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Figure 5: Impulse responses of selected variables to a negative and temporary 1% shock to aggregate demand (i.e.
a decrease in the utility of consumption v), expressed in %-deviations from steady-state. Notes: See Figure 3.
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preferences (note pn is linear in v in equation (15)). This means that all the adjustment has to be made
along promised utilities, which respond a lot more to the shock compared to the case of supply shocks.

The level effects are, once again, accompanied by interesting compositional effects. As a result of
the demand shock, the relative attractiveness of small firms improves, as markups decrease relatively
more for these firms (see panel (l)). This induces a short-lived spike in the entry of small firms, which
puts further downward pressure on prices through an increase in competition. At the same time, the
entry of (small) sellers causes a surge in the contribution of these firms to the aggregate price level.
On the other end of the distribution, in contrast, the shock decreases the relative mass of large firms,
and the contribution by larger, higher-markup firms does not respond as much to the shock. Thus, the
cyclicality in the response of measured markups is partly explained by compositional shifts in the firm
size distribution, whereby the entry of new firms with low prices amplifies the response of the economy
to aggregate shocks. Indeed, note that small-firm markups are more responsive (by a factor of about
two) to the demand shock compared to the supply shock. This, in turn, highlights the role that consumer
search may have in explaining macroeconomic transmission.

The Margins of Price Adjustment

We have described above how firms of different sizes respond to aggregate shocks to demand and
productivity. To further understand which are the main margins of price adjustment, we now decom-
pose the price response by the different additive terms that we identified in equation (15). Recall that,
according to this decomposition, sellers incorporate the equilibrium transitions into the price level in the
form of compensations that ensure that the seller’s utility promises are delivered in equilibrium.
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Figure 6: Impulse responses to negative and temporary 1% supply and demand shocks (same as Figures 3-5). De-
composition of the average price response across the different components identified in equation (15), where each
component is averaged using the theoretical distribution of sellers across states. The exogenous shock adjustments
(last two terms of equation (15)) are not being plotted.

Figure 6 shows the response of each fundamental component, for the same supply and demand
shocks introduced above. We note, first, that the response along the “baseline” component of price is
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a lot more elastic in the case of a demand shock, overwhelming the remaining components and ulti-
mately explaining why the price response is pro-cyclical after a demand shock and countercyclical after
a supply shock. Again, this is due to the fact that a demand shock to consumer preferences has an instan-
taneous effect on the price through a fall in the consumers’ contemporaneous willingness to pay. In the
case of the supply shock, this effect is muted by the contractual mechanism of incomplete pass-through
that we have discussed at length above. It is thus this difference which explains the different cyclical
nature of the average price level in each case.

We also observe that, in both cases, the “growth” component is countercyclical, while the “exit” and
“separation” components always co-move with the direction of the shock. For the former, the reason is
that, even though sellers respond to both types of shocks by cutting promised utilities and, therefore,
decreasing their probability of growing, smaller sellers make relatively bigger cuts as demand is more
elastic for these type of firms. This means that the relative value of an additional customer (the object
xn+1−xn) goes up after a negative shock, and thus sellers overcompensate customers in their price level
for the eventuality of growing. In contrast, sellers cut down their “exit” and “separation” compensations,
as both of these become less likely after a negative aggregate shock, no matter its nature.

6 The Secular Increase in Markups
In a recent study, DeLoecker and Eeckhout (2017) have documented a secular increase in the average

markup in the U.S. since the early 1980s. Using panel data for publicly traded firms across all sectors,
they find that average markups have been steadily rising from about 20% in 1980 to nearly 70% today
(see Figure 7, left). These changes have occurred mostly within, rather than between, industries. Namely,
the revenue share of top firms producing goods of comparable quality has steadily increased over time,
and the distribution of markups has experienced a gradual shift toward (and particularly amongst) high-
markup firms.56 As in our model, firm size and markups in their data are positively correlated within
narrowly defined industries.

Their analysis further unveils that the steep increase in the average markup has been accompanied
by a rise in market concentration across all major sectors. This observation is complementary to a well-
documented secular decline in business dynamism: since the early 1980s, the U.S. economy has experi-
enced a persistent decline in firm entry and a compositional shift toward larger and older firms (see e.g.
Pugsley and Şahin (2015)). In particular, the start-up rate (or the fraction of entering firms to the total
number of firms) has declined from about 12% in the early 1980s to about 8% by 2012. In the retail sector
specifically, entry rates have declined from 12.3% in 1980, to 8.6% in 2012 (see Figure 7, right).

We interpret this evidence through the lens of our model. The spirit of the exercise is not to provide
an explanation to the decline in the entry rate per se, but rather to connect it to: (i) a substantial increase
in the average markup; and (ii) an increase in dispersion on the upper tail of the markup distribution.
Using the calibrated economy, we present these results in two ways: first, we study the effects of a rise in

56 These observations have recently drawn a lot of attention among scholars. Autor et al. (2017a,b) argue that the increase
in sales and employment concentration across all major sectors has been driven by the top (so-called “superstar”) firms,
experiencing the most dramatic increases in sales shares within their industries. Gutiérrez and Philippon (2017) argue that
the decline in competition explains why firms tend to under-invest relative to Tobin’s Q.

47



1950 1960 1970 1980 1990 2000 2010

Year

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Sales-Weighted Average Markups (1950 - 2014)

1980 1985 1990 1995 2000 2005 2010

Year

6

7

8

9

10

11

12

13

14

15

%

Entry Rate (1980 - 2014)

All Sectors
Retail

Figure 7: Left: Average markup in the firm cross-section across all industries for the U.S. (1950 – 2014). Markups
are weighted by firm-level market shares in sales. Source: DeLoecker and Eeckhout (2017), using Compustat data.
We thank Jan Eeckhout for kindly sharing this time series with us.
Right: Entry rates (in %) across all sectors (solid line) and for the Retail Trade sector (dashed line), for the U.S. (1980
– 2014). Entry rates are defined as the share of all firms that are aged 1 year or less. Source: Business Dynamics and
Statistics (BDS) of the U.S. Census Bureau. Link: http://www.census.gov/ces/dataproducts/bds/data.html.

the entry cost κ across stationary solutions of the model; then, we study the transition between the two
extreme steady states to understand how the markup distribution adjusts slowly over time.

Figure 8 shows the first set of results, i.e. the effects of changes in the entry cost κ on the stationary
solution of the economy, at the calibrated set of parameters. Using this steady state comparison, shifts
in the entry cost of firms can rationalize both the secular trend in the average markup of the economy
and the rise in the within-industry markup coupled with an increase in concentration in the firm size
distribution. In particular, the lower-right panel of Figure 8 shows that the increase in the average markup
is driven by firms at the top of the markup distribution, as the contribution of large firms to the average
markup becomes more and more important relative to that of smaller firms as the entry cost increases.
Varying the entry cost parameter, we observe that the model can generate an increase in markups from
20% to more than 60%, i.e. of similar magnitude as in the data. As for the entry rate, the model generates
a decline from about 8.75% to about 8.1%. Finally, we see that these effects are detrimental to welfare,
as measured by equation (22) in steady state. This is in part because the increase entry cost is directly
reducing resources, but also because of the distributional effects on buyers and sellers that come from
the increase in market power.

[Transitional dynamics are currently work in progress]

7 Extensions
In this section, we relax some central assumptions of the baseline model of Section 3. In Section

7.1 we outline how to endogenize customer separations. In Section 7.2, we relax the assumption of no
price discrimination across customers, and show that the model preserves its main structure though the
predictions may change substantially.
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Figure 8: Entry rate, sales-weighted average markup, welfare, and markup shares by firm size, in the stationary
solution of the calibrated economy, for different values of the entry cost (κ). The calibrated value of κ is marked
with a dashed vertical line in all plots. Welfare is computed using equation (22) in steady state. Average markup
is computed using equation (30). Markup shares (by size) plots some of the additive terms of equation (30), for
different values of n (small, medium, and large), and z fixed at the median value.

7.1 Endogenous Customer Separations
To introduce customer firm-to-firm transitions, we can model customer search explicitly.57 While

we assume that there is still an exogenous risk δc > 0 of separation for each customer (in which case
the buyer must go through the inactivity stage), additionally we now add the possibility that customers
search, and potentially endogenously separate, while on the match. We assume that active buyers do not
face a cost of search, as they do not discontinue their consumption when transitioning from one seller to
the next.

Introducing this additional dimension into our model is not at all straightforward. Endogenous buyer
transitions across sellers could break the ex-ante indifference condition among inactive buyers, which in
our baseline setting is key to pin down equilibrium market tightness. In order to preserve the block-
recursive structure, one remedy would be to assume free entry across all markets on the seller side (e.g.
Schaal (2017)). This would change the environment substantially, so we leave it for future work.

To outline the basic setting of endogenous customer search within the baseline model, we thus must
turn off the aggregate shocks. The search decision of a customer currently obtaining value V B is:

max
x∈[V B ,x]

µ(θ(x))
(
x− V B

)
Note that the matched buyer only considers offers that deliver an expected value that weakly domi-

nates the current perceived utility, V B . Denoting the solution by x̂(n,ω; z) for a customer matched with

57 Appendix D.4 shows an alternative way of endogenizing the separation rate.
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firm of type (n, z) under contract ω, the first-order condition reads:

(
x̂(n,ω; z)− V B(n,ω; z)

)∂µ(θ(x))

∂x

∣∣∣∣
x=x̂(n,ω;z)

= −µ
(
θ
(
x̂(n,ω; z)

))
(32)

Intuitively, the inactive buyer trades off the expected option value of transitioning (left-hand side)
to the rate at which this offer can be obtained (right-hand side). Since we focus on equilibria in which
market tightness is an increasing function of promised utilities, it is not difficult to show (e.g. Shi (2009))
that x̂(n,ω; z) is increasing in V B(n,ω; z). In words, the more profitable a match is ex-post, the higher the
offer for which the customer will apply next. Therefore, customers separate according to their initial state,
and climb up on the utility ladder. This effect tends to shift the mass of customers (and therefore firms)
toward higher promised utilities, and thus acts as a countervailing force to the equilibrium dynamics of
the baseline model: when the sellers offering the worst terms of trade lose customers, they need to start
setting up more favorable contracts.

The risk of endogenously losing customers must now be incorporated into the pricing decisions of
firms. The buyers’ and firm’s HJB equations are identical to (5) and (6), respectively, except we now
replace δc by the “effective” customer separation rate:

δ̂c(n,ω; z) := δc + µ
(
θ
(
x̂(n,ω; z)

))
Therefore, the value functions now incorporate that all customers alike can endogenously transition

to other sellers if the terms of their current contract are not attractive enough for them. The market
tightness must now incorporate that the pool of searching buyers is composed of both inactive as well
as active buyers. Since active buyers only search for strictly better markets, and there is a single such
market they may possibly transition to, we have:

θn(z) =
1

Sn−1(z)

(
BI
n(z) +BA

ι(n)(z)
)

for any n ≥ 1, where ι(n) ∈ N is the size of the firm that a customer seeking to transition to a size-n
firm is currently matched with, i.e. the solution to xn(z) = x̂ι(n)(z).

7.2 Price Discrimination
The assumption of no price discrimination across different customers is not key to generate efficient

firm dynamics. We argue that, so long as we maintain the assumption of dynamic contracts with com-
mitment, our model still generates these dynamics as well as cross-sectional price dispersion. However,
always within the realm of Markov-perfect equilibria that we have narrowed our attention to, allowing
for price discrimination opens the door to equilibrium multiplicity.

First, if firms were to use only prices (instead of full dynamic contracts with price-utility pairs) as
their instrument for customer attraction, an equilibrium with price discrimination across customers of
different tenures would look similar to that of Gourio and Rudanko (2014b): firms would attract cus-
tomers by offering an instantaneous discount on the valuation v, and extract all surplus by charging v
immediately after the customer joins the seller, and until separation. Assuming price discrimination in
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our setting with dynamic long-term contracts and commitment does not yield this result. This is because
firms must still trade off static payoffs coming from the current price with dynamic ones coming from
the promised utility. Importantly, in this case, tractability would be preserved along several important
dimensions: (i) the equilibrium would still be block-recursive; and (ii) the optimal contract would still
solve a joint surplus problem. More importantly, (iii) the joint surplus would be constant in the distri-
bution of contracts across customers, so the equilibrium could still be characterized as a set of sequences
solving a joint surplus problem. Qualitatively, allowing for price discrimination comes at only only one
cost: (iv) price indeterminacy.

Let us discuss these results more formally. First, we must extend our baseline framework to allow dis-
crimination across buyers. Letωi =

{
pi,x

′
i(n
′; s′)

}
be the contract offered to the typical current customer

i = 1, . . . , n, which is composed of an individual-specific price pi and a personalized menu of continua-
tion utilities: x′i(n

′; s′) for n′ ∈ {n− 1, n, n+ 1} and s′ ∈ {(z′, ϕ), (z, ϕ′)}. A seller is characterized by the
collection {xi}ni=1 of outstanding promises, and must choose: (i) a menu of contracts {ωi}ni=1 for the n
current customers; and (ii) a starting promised utility x′0 ∈ R for the new incoming customer (if there is
any). The HJB equation for the seller now reads:

rV S
(
n,
{
xi
}n
i=1

; z, ϕ
)

= max
x′0,{ωi}ni=1

{
n∑
i=1

pi − C(n; z, ϕ) + δf

(
V S

0 (ϕ)− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))

+ δc

n∑
j=1

(
V S
(
n− 1,

{
x′i(n− 1; z, ϕ)

}n
i=1
\−
{
x′j(n− 1; z, ϕ)

}
; z, ϕ

)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ η
(
θ(x′0;ϕ)

)(
V S
(
n+ 1,

{
x′i(n+ 1; z, ϕ)

}n
i=1
∪+

{
x′0
}

; z, ϕ
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
z′∈Z

λz(z
′|z)
(
V S
(
n,
{
x′i(n; z′, ϕ)

}n
i=1

; z′, ϕ
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)

(
V S
(
n,
{
x′i(n; z, ϕ′)

}n
i=1

; z, ϕ′
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))}

where \− and ∪+ are multiset difference and union operators.58 The most important differences
relative to the baseline model (equation (6)) have been highlighted in blue. Note that, now, when a
customer i = 1, . . . , n separates, the vector of promised utilities shrinks in cardinality and the customers
that remain obtain the new promise x′i(n − 1; z, ϕ). The firm attracts new buyers by offering a starting
utility x′0 to the entering customer, while delivering the promised level x′i(n + 1; z, ϕ) to each of the
remaining n customers. The promise-keeping constraint now reads:

∀i = 1, . . . , n : xi ≤ V B(n,ωi; z, ϕ)

for all (z, ϕ) ∈ Z ×Φ, establishing that the firm commits to each and every customer (and recognizes
that each customer earns a different utility). As in the baseline model, we can solve for the optimal menu

58 These operators are defined by {a, b, b}\−{b} = {a, b} and {a, b} ∪+ {b} = {a, b, b}, and they are needed here because the
vector of promised utilities may contain more than one instance of the same element.
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of contracts by solving for the joint surplus problem:

Proposition 5 In the economy with price discrimination, the seller’s and the joint surplus problems are equivalent:

(i) Given a menu of contracts ωi =
{
pi,x

′
i(n
′; s′)

}
for i = 1, . . . , n that maximize the seller’s value subject to

the promise-keeping constraint,
{
x′i(n

′; s′)
}n
i=1

maximizes W
(
n, {xi}ni=1; z, ϕ

)
:= V S

(
n, {xi}ni=1; z, ϕ

)
+∑n

i=1 xi;

(ii) Conversely, for every
{
x′i(n

′; s′)
}n
i=1

that maximizesW
(
n, {xi}ni=1; z, ϕ

)
, there exists a menu of personalized

price levels
{
pi
}n
i=1

such that the collection
{
pi,x

′
i(n
′; s′)

}n
i=1

constitutes a solution to the seller’s problem.

The proof can be found in Appendix B.5. The characterization of the equilibrium is then very similar
to that of the baseline model. First, we note that by utility-invariance of the joint surplus, we can write:

∀(n, z, ϕ) ∈ N×Z × Φ : Wn(z, ϕ) = W
(
n,
{
xi
}n
i=1

; z, ϕ
)

(33)

Letting
{
x′0, {x′i,n+1(z, ϕ)}ni=1

}
be the set of optimal policies, the joint surplus solves the second-order

difference equation:

(r+δf )Wn(z, ϕ) = nv − C(n; z, ϕ) + n(δf + δc)U
B(ϕ) + η

(
θ(x′0;ϕ)

)(
Wn+1(z, ϕ)−Wn(z, ϕ)−

n∑
i=1

x′i,n+1(z, ϕ)
)

+ nδc
(
Wn−1(z, ϕ)−Wn(z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
Wn(z′, ϕ)−Wn(z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
Wn(z, ϕ′)−Wn(z, ϕ)

)

Since only the aggregate utility
∑n

i=1 x
′
i,n+1(z, ϕ) is relevant from the joint surplus perspective, there

is now a multiplicity of contracts that can be sustained in the optimal allocation.59 This is stated formally
in the following lemma:

Proposition 6 In the economy with price discrimination, prices are not uniquely determined. There is a contin-
uum of joint-surplus-maximizing contracts

{
p∗i ,x

′∗
i (n′; s′)

}n
i=1

that leave both the buyers and the seller indifferent.

For the proof, see Appendix B.6. This multiplicity result did not emerge in the baseline model be-
cause of our inductive construction of the Markov-perfect equilibrium: the free entry problem delivered
a unique choice of the promised utility, which by promise-keeping ensured a unique price. Given this
allocation, and the fact that firms of the same size cannot propose different contracts, the problems of the
firms of size n gave a unique allocation given the solution of that of firms of size n − 1. With price dis-
crimination, however, there is discretion in the way firms distribute promised utilities (and thus prices)
across their different buyers, so long as the sum of utilities is maximized according to the joint surplus
rule. In a sense, therefore, assuming no price discrimination can be seen as the price-discrimination
equilibrium in which all customers are charged the same price. Our analysis above shows, however, that
when looking at Markov strategies, other allocations can be sustained in equilibrium.

59 We should note here that the baseline model delivers a unique equilibrium contract only within the class of stationary
Markov perfect equilibria that we have restricted our attention to. However, this does not mean that other equilibria may
not exist under broader equilibrium definitions. Our point in this section is to point out that multiplicity reemerges within
our Markov environment after we introduce discrimination.
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8 Conclusion
Recent studies indicate that a major source of variation in firm performance across a variety of in-

dustries stems from demand components that are idiosyncratic to the firm, and that price differences are
key to explain revenue differences for firms of similar productivity levels. These observations can shed
new light on the behavior of markups at the aggregate level. We have presented a dynamic search model
of demand accumulation through firm pricing with aggregate and idiosyncratic shocks and a relevant
scope for firm dynamics in order to study the connection between customer capital at the microeconomic
level and macroeconomic dynamics. In the model, firms of different customer base sizes strategically use
menus of prices and continuation promises in order to trade off two conflicting concerns: attracting new
customers to increase future market share, and extracting surplus from incumbent customers to increase
current profits. The model exhibits cross-sectional price dispersion, and offers a micro-founded inter-
pretation for sluggish price dynamics at both the firm and the aggregate level.

We have analyzed a number of predictions on both pricing and firm dynamics dimensions, and found
them to be qualitatively in line with data from a large panel of stores in the U.S. retail sector. We have
found that stores with lower volumes of sales experience higher sales growth rates for their products, and
set prices that are, on average, lower than those of their direct competitors. Using this evidence, we have
estimated the model and conducted experiments on the response of the economy to aggregate shocks
to productivity and demand. In these exercises, we have found both level and compositional effects:
shocks that raise the marginal propensity to consume by buyers elicit more entry of small sellers, as the
opportunities of capturing new customers become greater. Since these sellers are also the ones setting
lower prices, the markup distribution experiences a left-ward shift, and output booms. We have also
provided a novel channel for incomplete pass-through of shocks to prices: because firms internalize that
their prices today determine not only current profits but also future ones, they are able to smooth out the
negative impact of shocks by front-loading their contracts and charging higher prices today, giving rise
to a countercyclical price response. In combination, these results can therefore rationalize the cyclicality
of markups that we see in the data, both at the aggregate level as well as in the cross-section of firms.

Finally, we have used the model to account for some salient low-frequency features of the U.S. econ-
omy since the 1980s, namely the secular decline in business dynamism (Pugsley and Şahin (2015)), and
the continued increase in the average markup and in market concentration (DeLoecker and Eeckhout
(2017)). Seen through the lens of our model, a shock that depresses firm entry is associated with a shift
in the firm distribution toward higher-markup firms, and thus a rise in market concentration. A contin-
ued decrease in the costs of buyer search or an increase in the entry cost of firms can explain these facts
simultaneously. This suggests that incorporating micro-founded pricing environments into quantitative
macro models is relevant to understand certain patterns in macroeconomic dynamics. Further investi-
gating the scope of customer markets to explain these and other trends remains an interesting avenue
for future work.
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Appendix

Contents. The Appendix is structured as follows. Appendix A includes tables and figures. Appendix B presents all the
proofs. Appendix C discusses the numerical implementation. Finally, Appendix D describes additional results, including
the derivation of the HJB equations, distribution dynamics, price statistics at the stationary solution, and comparative statics
exercises.

A Tables and Figures

Full Sample Sub-Sample
Number of product categories 15 15
Number of chains 64 64
Number of stores 278 278
Number of UPCs 19,721 11,483
Stores per chain (average) 27 26
Stores per product (average) 59 88
Products per store (average) 4,180 3,638
Average price (USD) 7.75 8.32
Price dispersion 15.73% 10.55%
Total sales (Billion USD) 2.86 1.60
Number of weeks 365 365
MSAs considered NY, LA NY, LA
Number of observations 89,112,170 59,813,217

Table A.1: Descriptive statistics before and after restricting the sample. Source: IRI Symphony weekly data. Notes:
Price dispersion is computed as the average standard deviation of log-standardized prices (equation (25)) across all
time periods.

Relative Normalized Sales
prices sales growth

Mean 0 1 –.0008
Median .0009 .9087 –.0003
Percentiles

1st –.3257 .2729 –.1905
10th –.1138 .4709 –.0772
25th –.0415 .6656 –.0378
75th .0486 1.2281 .0373
90th .1097 1.7029 .0765
99th .2809 2.3819 .1782

Dispersion
St. Dev. .1055 .4744 .0694
p90-p10 range 1.2504 3.6163 1.1661
p90-p50 range 1.1149 1.8740 1.0798
p50-p10 range 1.1215 1.9297 1.0799

Table A.2: Distribution of relative prices, normalized store sales (i.e. the ratio of total dollar sales within the store
to average sales across products sold in the store), and annualized sales growth rates, across the whole 2001-2007
sample. Source: IRI Symphony weekly data.
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(1a) (1b) (2a) (2b) (3a) (3b)
∆ log(Salesus) ∆ log(Salesus) p̂us p̂us ês ês

log(Saless) –.04036∗∗∗ –.0392∗∗∗ .0101∗∗∗ .0063∗∗∗ .0079∗∗∗ .0045∗∗∗
(.0012) (.0012) (.0003) (.0003) (.00005) (.00004)

Age FE 7 X 7 X 7 X
Controls X X X X X X
Fixed Effects X X X X X X
R2 .1355 .1358 .1498 .1511 .9263 .9339
Obs. (millions) 21.15 21.15 28.95 28.95 28.95 28.95

Table A.3: Same as Table 1, except that the sample has been restricted to only those stores that belong to chains
with a total number of stores below the median.

New All Entry
Year stores stores rate
2001 18 189 9.52%
2002 11 182 6.04%
2003 14 172 8.14%
2004 9 176 5.11%
2005 13 185 7.03%
2006 20 187 10.7%
2007 32 200 16%

Average 16.71 184.43 8.9%

Table A.4: Number of new stores (aged 52 weeks or less) and all existing stores, per year. The entry rate of stores
is computed as the ratio of new stores to all stores. Source: IRI Symphony weekly data.

Moment Model Data

A. Distribution of Relative Prices
p90-p10 range 1.1994 1.2504
p90-p50 range 1.0508 1.1149

B. Distribution of Price Changes
Average frequency 0.9639 0.9609 annualized
Median frequency 0.9814 0.9264 annualized
Average implied duration 0.2788 0.7817 years
Median implied duration 0.2503 0.3568 years
Average absolute change 0.0305 0.0313 log-points
Median absolute change 0.0312 0.0197 log-points
St. Dev. absolute change 0.0505 0.1415 %-points

Table A.5: Non-targeted moments: model vs. data. Notes: Data moments are taken from our IRI sample. See
Appendix D.3 for the calculation and aggregation of firm-level price statistics in the model.
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B Omitted Proofs
B.1 Proof of Proposition 1: Joint Surplus Problem

Proof. Denote by ω =
{
p,
{
x′(s′), x′+(z, ϕ), x′−(z, ϕ)

}}
a generic policy of the typical seller, where x′(s′) =

{x′(z′, ϕ), x′(z, ϕ′)} stands for the promised utility under size n and a new state s′ 6= (z, ϕ) (recall that x′(z, ϕ) = x
by stationarity), and x′+(z, ϕ) and x′−(z, ϕ) are the upsizing and downsizing choices, respectively. Then, the value
of the seller in equilibrium, V S(n, x; s), can be written as the maximand on the right-hand side of (6), evaluated at
ω. That is:

V S(n, x; z, ϕ) = max
ω∈Ω

Ṽ S(n; z, ϕ|ω) s.t. x ≤ V B(n,ω; z, ϕ)

where Ṽ S(n; z, ϕ|ω) is given by:60

Ṽ S(n; z, ϕ|ω) :=
1

ρ(n; z, ϕ)

[
pn− C(n; z, ϕ) + η

(
θ
(
x′+(z, ϕ);ϕ

))
V S
(
n+ 1, x′+(z, ϕ); z, ϕ

)
+ nδcV

S
(
n− 1, x′−(z, ϕ); z, ϕ

)
+
∑
z′∈Z

λz(z
′|z)V S

(
n, x′(z′, ϕ); z′, ϕ

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)V S
(
n, x′(z, ϕ′); z, ϕ′

)]
(B.1.1)

and we have defined ρ(n; z, ϕ) := r+δf +nδc+η
(
θ(x′+(z, ϕ);ϕ)

)
as the effective discount rate of the firm, which

adjusts the actual discount rate (r) for the death, separation, and growth rates faced by the agents.
From (B.1.1), it is clear that, for any given policy ω, it is always optimal to offer the highest possible price

that is consistent with promise-keeping. Indeed, the price has no bearing on the agents’ incentives within the
search market. Therefore, the PK constraint must bind with equality, and we can solve for the price p such that
x = V B(n,ω; z, ϕ) using equation (5):

pPK
({

x′(s′), x′+(z, ϕ), x′−(z, ϕ)
})

= v(ϕ)− ρ(n; z, ϕ)x+ δfU
B(ϕ) + η

(
θ
(
x′+(z, ϕ);ϕ

))
x′+(z, ϕ) (B.1.2)

+ δc

(
UB(ϕ) + (n− 1)x′−(z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)x′(z′, ϕ) +

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)x′(z, ϕ′)

Intuitively, other things equal, the price level is higher when promised future utilities are higher and when the
discounted value of the buyer is lower, since extracting surplus from the buyer today must be compensated in the
future because of promise-keeping.

Using the above notation, we can now substitute the price (B.1.2) into the seller’s value (B.1.1). After some
straightforward algebra, we obtain:

W̃ (n, x; z, ϕ|ω) =
1

ρ(n; z, ϕ)

[
n

(
v(ϕ) + (δf + δc)U

B(ϕ)

)
−

(
C(n; z, ϕ) + η

(
θ
(
x′+(z, ϕ);ϕ

))
x′+(z, ϕ)

)
(B.1.3)

+ η
(
θ
(
x′+(z, ϕ);ϕ

))
W
(
n+ 1, x′+(z, ϕ); z, ϕ

)
+ nδcW

(
n− 1, x′−(z, ϕ); z, ϕ

)
+
∑
z′∈Z

λz(z
′|z)W

(
n, x′(z′, ϕ); z′, ϕ

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)W
(
n, x′(z, ϕ′); z, ϕ′

)]

where we have defined:

W̃ (n, x; z, ϕ|ω) := Ṽ S(n; z, ϕ|ω) + nx and W (n, x; z, ϕ) := max
ω∈Ω

W̃ (n, x; z, ϕ|ω)

as the joint surplus under contract ω, and the maximized joint surplus, respectively. Next, note that the right-

60 Here we are arguing by free-entry that V S0 (ϕ) = 0, ∀ϕ ∈ Φ, to simplify the expression for Ṽ S . Moreover, we use that∑
z′∈Z λz(z

′|z) =
∑
ϕ′∈Φ λϕ(ϕ′|ϕ) = 0.
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hand side of equation (B.1.3) does not depend on x nor p, and so we can write the joint surplus under a given policy
as :

W̃ (n, x; z, ϕ|ω) = W̃n

({
x′(s′), x′+(z, ϕ), x′−(z, ϕ)

})
This proves Part 2 of the proposition. Part 1 now readily follows. Since the joint surplus is invariant to the

price level by construction, the optimal contract can be found by splitting the program into two separate stages.
In the first stage, the seller chooses the continuation values

{
x′(z, ϕ′), x′+(z, ϕ), x′−(z, ϕ)

}
that maximize (B.1.3).

In the second stage, once the surplus has been maximized, the seller chooses the promise-compatible price level
(via equation (B.1.2)) that is consistent with the promised continuation utilities. Formally, the optimal contract ω∗
satisfies:

ω∗ =
{
p∗,
{
x′∗(s′), x′∗+(z, ϕ), x′∗−(z, ϕ)

}}
where{

x′∗(s′), x′∗+(z, ϕ), x′∗−(z, ϕ)
}

:= arg max W̃n

({
x′(s′), x′+(z, ϕ), x′−(z, ϕ)

})
(B.1.4a)

p∗ := pPK
({

x′∗(s′), x′∗+(z, ϕ), x′∗−(z, ϕ)
})

(B.1.4b)

By expressing the problem of the seller in terms of W̃ , we have just shown that the contract that is optimally cho-
sen by the firm,ω∗, must maximize the joint surplus. Conversely, for any set

{
x′(s′), x′+(z, ϕ), x′−(z, ϕ)

}
of continu-

ation values that maximizes the joint surplus, there is a price level, given by p = pPK
({

x′(s′), x′+(z, ϕ), x′−(z, ϕ)
})

,
that maximizes the seller’s value subject to the PK constraint. Therefore, the seller’s problem (equation (6)) and
the joint surplus problem (equations (B.1.4a)-(B.1.4b)) are equivalent. �

B.2 Proof of Proposition 2: Invariant Distribution
Proof. Let

{
θn(z, ϕ) : (n, z, ϕ) ∈ N × Z × Φ

}
be an equilibrium collection of market tightness levels, where

N = {1, . . . , n}, and n < +∞ is a large integer. In matrix notation, for each aggregate state ϕ ∈ Φ, the dynamical
system can be written as:

∂tSt(ϕ) = TϕSt(ϕ) (B.2.1)

where St(ϕ) :=
(
S0,t(ϕ),S>1,t, . . . ,S

>
n,t

)>, with Sn,t :=
(
Sn,t(z1), . . . , Sn,t(zkz )

)>, and Tϕ is the partitioned
matrix:

Tϕ :=



t11 δef + δec δef δef · · · δef δef δef

ηe1(ϕ)> D1(ϕ) δ2,c 0kz :kz · · · 0kz :kz 0kz :kz 0kz :kz

0kz :1 η2(ϕ) D2(ϕ) δ3,c · · · 0kz :kz 0kz :kz 0kz :kz

...
...

...
...

. . .
...

...
...

0kz :1 0kz :kz 0kz :kz 0kz :kz · · · Dn−2(ϕ) δn−1,c 0kz :kz

0kz :1 0kz :kz 0kz :kz 0kz :kz · · · ηn−1(ϕ) Dn−1(ϕ) δn,c

0kz :1 0kz :kz 0kz :kz 0kz :kz · · · 0kz :kz ηn(ϕ) Dn(ϕ)


where t11 := −

∑
z πz(z)η(θ1(z, ϕ)) is a scalar, 0p:q denotes a p × q matrix of zeros, and Tϕ is a K ×K square

matrix, where K = 1 + nkz . Further, we have defined the following 1× kz row vectors:

δef =
(
δf , . . . , δf

)
; δec =

(
δc, . . . , δc

)
; ηe1(ϕ) =

(
πz(z1)η

(
θ1(z1, ϕ)

)
, . . . , πz(zkz )η

(
θ1(zkz , ϕ)

))
;

and the following kz × kz matrices:

∀n = 2, . . . , n : δn,c = diag
(
nδc, . . . , nδc

)
;
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ηn(ϕ) = diag
(
η
(
θn(z1, ϕ)

)
, . . . , η

(
θn(zkz , ϕ)

))
;

∀n = 1, . . . , n : Dn(ϕ) =


dn(z1, ϕ) λz(z1|z2) . . . λz(z1|zkz )
λz(z2|z1) dn(z2, ϕ) . . . λz(z2|zkz )

...
...

. . .
...

λz(zkz |z1) λz(zkz |z2) . . . dn(zkz , ϕ)


where the diagonal elements of Dn(ϕ) are given by:

dn(zj , ϕ) =

−
(
δf + nδc + η

(
θn+1(zj , ϕ)

)
+
∑
6̀=j λz(z`|zj)

)
for n = 1, . . . , n− 1

−
(
δf + nδc +

∑
` 6=j λz(z`|zj)

)
for n = n

(Recall that a graphical depiction of these transitions can be found in Figure A.2). Generally, system (B.2.1)
describes an irreducible Markov chain, as any state (n′, z′) ∈ N × Z can be reached almost surely from some
(n, z) 6= (n′, z′). Moreover, the Markov chain is aperiodic. These properties, plus the fact that the state space is
finite, guarantee that the Markov chain is ergodic. Therefore, by Theorem 11.2 of Stokey and Lucas (1989), the
system converges to a unique steady-state distribution S∗(ϕ), for each ϕ ∈ Φ.

More specifically, note that, thanks to the block-recursivity property, the equilibrium policies are not explicitly
indexed by time (their time variation being fully encoded in the dependence to the aggregate state ϕ), so Tϕ is
constant. This means that we can solve the differential equation (B.2.1) directly. The solution is:

St(ϕ) = eTϕtS0(ϕ)

where the initial distribution S0(ϕ) ∈ RK+ is given. To compute eTϕt, consider the eigenvalue decomposition
Tϕ = EϕΛϕE−1

ϕ , where Λϕ :=
(
λ1(ϕ), . . . , λK(ϕ)

)
is the diagonal matrix of eigenvalues, and Eϕ collects the

corresponding eigenvectors. Defining Zt(ϕ) := E−1
ϕ St(ϕ), then ∂tZt(ϕ) = ΛϕZt(ϕ), and because Λϕ is a diagonal

matrix, we can solve this differential equation element-wise, i.e. ∂tZi,t(ϕ) = λi(ϕ)Zi,t(ϕ) for each i = 1, . . . ,K.
This is a simple system of ODEs with solution:

Zi,t(ϕ) = cie
λi(ϕ)t, i = 1, . . . ,K

where ci ∈ R is a constant of integration. Since St(ϕ) = EϕZt(ϕ), we have obtained:

St(ϕ) =

K∑
i=1

cie
λi(ϕ)tvi (B.2.2)

where vi is the K × 1 eigenvector associated to the i-th eigenvalue. Therefore, the stability of system (B.2.2) as
t→ +∞ depends on the sign of the eigenvalues of Tϕ. The trace of Tϕ is:

tr(Tϕ) =

K∑
i=1

λi(ϕ) = −
kz∑
j=1

πz(zj)η(θ1(zj , ϕ)) +

n∑
n=1

kz∑
j=1

dn(zj) < 0

The trace being unambiguously negative means that there is at least one negative eigenvalue, if not more.
Letting 1 ≤ ` ≤ K denote the number of negative eigenvalues, and re-ordering the eigenvalues from small to large
with no loss of generality, we can then impose cj = 0, ∀j ∈ {`+1, `+2, . . . ,K}, on equation (B.2.2), and let t→ +∞
to find the stable solution. That is:

S∗(ϕ) := lim
t→+∞

∑̀
j=1

cje
λj(ϕ)tvj ∈ RK+

is the unique invariant distribution of sellers in state ϕ ∈ Φ. �

B.3 Proof of Proposition 3: Efficiency
Proof. Consider a benevolent planner that is constrained by the search frictions of the economy and seeks to

maximize aggregate welfare subject to the resource constraints of the economy. The planner can allocate resources
freely, so the problem does not feature contracts or prices. Instead, we label each sub-market directly by its tight-
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ness, θ. To simplify notation, it is understood that time subscripts embody the entire history of aggregate shocks,
which is taken as some arbitrary path ϕt = (ϕj : j ≤ t) ⊆ Φ.

The planner chooses time series for the tightness in each market segment, Θt ≡
{
θnt,t(zt) : (nt, zt) ∈ N× Z

}
;

distributions of inactive and active buyers across markets, BIt ≡
{
BInt,t(zt) : (nt, zt) ∈ N×Z

}
and BAt ≡

{
BAnt,t(zt) :

(nt, zt) ∈ N × Z
}

; a measure of potential entrants S0,t; and a distribution of firms across states, St ≡
{
Snt,t(zt) :

(nt, zt) ∈ N×Z
}

, to maximize aggregate welfare in the economy:

max
Θt,BIt ,B

A
t

S0,t,St

E0

∫ +∞

0

e−rt

{
−κ(ϕt)S0,t+

+∞∑
nt=1

∑
zt∈Z

[
v(ϕt)B

A
nt,t(zt)−C(nt; zt, ϕt)Snt,t(zt)− c(ϕt)B

I
nt,t(zt)

]}
dt (B.3.1)

In words, total welfare is equal to the present discounted value of aggregate consumption gains for active
buyers, net of production operating costs for active sellers,61 and net of the search and entry costs for inactive
buyers and inactive sellers.

The planner is subject to three sets of constraints. The first one concerns the evolution of the firm distribution,
which we described in Section 3.5 and reproduce again here for convenience:

∂tS0,t = δf

+∞∑
nt=1

∑
zt∈Z

Snt,t(zt) + δc
∑
zt∈Z

S1,t(zt)−
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)
S0,t (B.3.2a)

∂tS1,t(zt) = πz(zt)η
(
θ1,t(zt)

)
S0,t + 2δcS2,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)S1,t(z̃)

−
(
δf + δc + η

(
θ2,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
S1,t(zt) (B.3.2b)

∀nt ≥ 2 : ∂tSnt,t(zt) = η
(
θnt,t(zt)

)
Snt−1,t(zt) + (nt + 1)δcSnt+1,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)Snt,t(z̃)

−
(
δf + ntδc + η

(
θnt+1,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
Snt,t(zt); (B.3.2c)

for all zt ∈ Z , where ze denotes the productivity draw upon entry. Note that implicit in these equations
underlies the evolution of firms’ size (i.e. the law of motion for nt).

The second set of constraints describes the distribution of buyers across firms at any given time:

∀(nt, zt) ∈ N×Z : BAnt,t(zt) = ntSnt,t(zt) (B.3.3a)
∀(nt, zt) ∈ N×Z : BInt,t(zt) = θnt,t(zt)Snt−1,t(zt) (B.3.3b)

1 =

+∞∑
nt=1

∑
zt∈Z

(
BAnt,t(zt) +BInt,t(zt)

)
(B.3.3c)

Equation (B.3.3a) states that each customer consumes a single unit; equation (B.3.3b) states that each market
segment is in equilibrium, in the sense that the measure of buyers who find a firm in any given market equals
the measure of firms within that market who find a new customer; equation (B.3.3c) says that every buyer in the
economy is in either the active or the inactive state.

Finally, the mass of potential entering firms needs to be non-negative in any aggregate state of the world:

S0,t ≥ 0 (B.3.4)

The planning problem consists on maximizing (B.3.1) subject to the seven constraints listed above. We begin
by simplifying the dimensionality of the problem. First, we use constraints (B.3.3a) and (B.3.3b) to rewrite (B.3.3c)

61 The sum of these first two terms thus equals the total gains from trade.
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as:

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt) +

+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt) + S0,t

∑
zt∈Z

θ1,t(zt) = 1 (B.3.5)

Substituting constraints (B.3.3a) and (B.3.3b) into the objective function, we are left with the following problem:

max
Θt,S0,t,St

E0

∫ +∞

0

e−rt

{
−

(
κ(ϕt) + c(ϕt)

∑
zt∈Z

θ1(zt)

)
S0,t + v(ϕt)

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt)−
+∞∑
nt=1

∑
zt∈Z

C(nt; zt, ϕt)Snt,t(zt)

− c(ϕt)
+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt)

}
dt

subject to constraints (B.3.2a), (B.3.2b), (B.3.2c), (B.3.4), and (B.3.5). Conveniently, the variables BIt and BAt have
disappeared from the problem, and the state vector has been reduced to the measures of firms: St ≡ [S0,t,St].

To solve the simplified planner’s problem, we use standard tools from Optimal Control theory, where Θt is the
control variable. The current-value Hamiltonian of the simplified planning problem is:

Ht(Θt;St) := −

(
κ(ϕt) + c(ϕt)

∑
zt∈Z

θ1(zt)

)
S0,t + v(ϕt)

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt)−
+∞∑
nt=1

∑
zt∈Z

C(nt; zt, ϕt)Snt,t(zt)

− c(ϕt)
+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt)

+ φt

[
1−

+∞∑
nt=1

∑
zt∈Z

ntSnt,t(zt)−
+∞∑
nt=1

∑
zt∈Z

θnt+1,t(zt)Snt,t(zt)− S0,t

∑
zt∈Z

θ1,t(zt)

]

+ ψ0,t

[
δf

+∞∑
nt=1

∑
zt∈Z

Snt,t(zt) + δc
∑
zt∈Z

S1,t(zt)−
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)
S0,t

]

+
∑
zt∈Z

{
ψ1,t(zt)

[
πz(zt)η

(
θ1,t(zt)

)
S0,t + 2δcS2,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)S1,t(z̃)

−
(
δf + δc + η

(
θ2,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
S1,t(zt)

]

+

+∞∑
nt=2

ψnt,t(zt)

[
η
(
θnt,t(zt)

)
Snt−1,t(zt) + (nt + 1)δcSnt+1,t(zt) +

∑
z̃ 6=zt

λz(zt|z̃)Snt,t(z̃)

−
(
δf + ntδc + η

(
θnt+1,t(zt)

)
+
∑
z̃ 6=zt

λz(z̃|zt)
)
Snt,t(zt)

]}
+ ϑtS0,t

where ψn,t(z) ≥ 0, n ≥ 1 (respectively, ψ0,t ≥ 0) is the co-state variable on the flow equation for Sn,t(z)
(respectively, S0,t); φt ≥ 0 is the multiplier on (B.3.5); and ϑt ≥ 0 is the multiplier on the non-negative entry
condition, where the corresponding complementary slackness hold.

In vector notation, the necessary conditions for optimality are:

∇ΘHt(Θt;St) = 0
∇SHt(Θt;St) = −∇tψt + rψt

where ∇ denotes the gradient operator, and ψt is a stacked vector of co-state variables. These conditions are
also sufficient because the Hamiltonian is quasi-concave. Indeed, the objective function is linear in both control
and state variables, and because of Assumption 2 establishing concavity of η, all the constraints are concave in the
control and linear in the states.
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Regarding the first set of optimality conditions, for given zt ∈ Z we have:

[θ1] : φt + c(ϕt) =
(
ψ1,t(zt)− ψ0,t

)
πz(zt)

∂η(θ)

∂θ

∣∣∣
θ=θ1,t(zt)

(B.3.6a)

[θn : n ≥ 2] : φt + c(ϕt) =
(
ψnt,t(zt)− ψnt−1,t(zt)

)∂η(θ)

∂θ

∣∣∣
θ=θnt,t(zt)

(B.3.6b)

As for the second set of conditions, we have:

[S0] : −∂tψ0,t + rψ0,t =− κ(ϕt)−
(
φt + c(ϕt)

) ∑
zt∈Z

θ1(zt) (B.3.7a)

+
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)
ψ1,t(z

e)− ψ0,t

∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)

+ ϑt

[Snt(zt)] : −∂tψnt,t(zt) + rψnt,t(zt) = nt
(
v(ϕt)− φt

)
−
(
φt + c(ϕt)

)
θnt+1,t(zt)− C(nt, zt;ϕt) (B.3.7b)

+ δf

(
ψ0,t − ψnt,t(zt)

)
+ ntδc

(
ψnt−1,t(zt)− ψnt,t(zt)

)
+ η
(
θnt+1(zt)

)(
ψnt+1,t(zt)− ψnt,t(zt)

)
+
∑
z̃∈Z

λz(z̃|zt)
(
ψnt,t(z̃)− ψnt,t(zt)

)
for given zt ∈ Z , where in the last line we have used that

λz(z|z) = −
∑
z̃ 6=z

λz(z̃|z)

for all z ∈ Z , by the properties of the Markov chain. We will now show that a block-recursive equilibrium with
non-negative entry of firms satisfies the optimality conditions of the planner by appropriately choosing the co-
state variables of the planning problem. Note that equations (B.3.7a)-(B.3.7b) show that the co-state variables can
be represented as HJB equations. Moreover, (B.3.6a)-(B.3.6b) are the corresponding first order conditions of those
equations. Therefore, it suffices to find the values of the multipliers for which the HJB equations of the planner
coincide with the joint surplus problem of the decentralized allocation.

Pick a decentralized equilibrium allocation
{
Wn(z, ϕ), xn(z, ϕ), θn(z, ϕ), UB(ϕ) : (n, z, ϕ) ∈ N × Z × Φ

}
, and

consider the following realization for the multipliers:

φt(ϕ
t) = rUB(ϕt)

ψ0,t(ϕ
t) = 0

∀nt, zt : ψnt,t(zt, ϕ
t) = Wnt(zt, ϕt)− ntUB(ϕt)

Under this guess, notice that ∂tψ0,t = ∂tψn,t(zt) = 0, ∀n ≥ 1. Moreover, the multipliers depend only on the
current realization of the aggregate state, and not on the entire history. Further, for a sufficiently low value of κ,
we can impose strictly positive entry and therefore ϑt = 0, ∀t.

Plugging these guesses into (B.3.7b), after some simple algebra we obtain:

(r + δf )Wnt(zt, ϕt) = nt

(
v(ϕt) + (δf + δc)U

B(ϕt)
)
− C(nt, zt;ϕt)

−
[(
rUB(ϕt) + c(ϕt)

)
θnt+1,t(zt) + η

(
θnt+1(zt)

)
UB(ϕt)

]
+ ntδc

(
Wnt−1(zt, ϕt)−Wnt(zt, ϕt)

)
+ η
(
θnt+1(zt)

)(
Wnt+1(zt, ϕt)−Wnt(zt, ϕt)

)
+
∑
z̃∈Z

λz(z̃|zt)
(
Wnt(z̃, ϕt)−Wnt(zt, ϕt)

)
Notice that the last equation resembles the maximized HJB equation for the joint surplus (equation (11)) except

for the term highlighted in blue (second line). However, using that η(θ) = θµ(θ) and xn+1(z, ϕ) = UB(ϕ) +
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rUB(ϕ)+c(ϕ)
µ(θn+1(z,ϕ)) by inactive buyers’ indifference, we obtain that this term is equal to:(

rUB(ϕt) + c(ϕt)
)
θnt+1,t(zt) + η

(
θnt+1(zt)

)
UB(ϕt) = η (θnt+1,t(zt, ϕt))xnt+1,t(zt, ϕt) (B.3.8)

Using this fact into the above equation and grouping terms, we then finally recognize the value of the joint
surplus in the decentralized solution, equation (11).

Similarly, plugging the guess for the multipliers into (B.3.7a), we obtain:

κ(ϕt) = −
(
rUB(ϕt) + c(ϕt)

) ∑
zt∈Z

θ1(zt) +
∑
ze∈Z

πz(z
e)η
(
θ1,t(z

e)
)(
W1(ze)− UB(ϕt)

)
A final manipulation using (B.3.8) again then allows us to obtain the free entry condition in the decentralized

allocation, equation (10).
Summing up, under an appropriate choice of the co-states, the planner’s solution is equivalent to the problem

of the decentralized economy. Therefore, the optimality conditions of the decentralized economy coincide with
the first-order conditions of the planner (given by (B.3.6a)-(B.3.6b)), and the policies that we have obtained from
the block-recursive equilibrium maximize aggregate welfare given our choice of the co-state multipliers. Hence,
the equilibrium is efficient. �

B.4 Proof of Proposition 4: Joint Surplus Analytical Solution
Proof. The equilibrium allocation is composed of sequences

{
Wn(z, ϕ), xn(z, ϕ), θn(z, ϕ), pn(z, ϕ) : (n, z, ϕ) ∈

N×Z × Φ
}

satisfying equations (11), (12), (13), and (15), where the free entry condition:

κ(ϕ) =
∑
z0∈Z

πz(z0)η
(
θ
(
x1(z0, ϕ);ϕ

))(
W1(z0, ϕ)− x1(z0, ϕ)

)
(B.4.1)

must hold for all ϕ ∈ Φ. Under the meeting rate µ(θ) = θγ−1, equation (12) defines the following equilibrium
mapping:

θ : (x;ϕ) 7→
(
x− UB(ϕ)

ΓB(ϕ)

) 1
1−γ

(B.4.2)

Some algebra shows that the joint surplus maximization rule (equation (13)) can be written as:

Wn+1(z, ϕ)−Wn(z, ϕ)− xn+1(z, ϕ) =
1− γ
γ

(
xn+1(z, ϕ)− UB(ϕ)

)
(B.4.3)

for any n ∈ N and (z, ϕ) ∈ Z ×Φ. This equation reflects the relevant trade-offs in the equilibrium: when firms
offer a higher value, they attract more buyers because the buyer’s relative outside option worsens (right-hand side).
Yet, the remaining value that accrues to the seller is also lower because part of the joint surplus is being transferred
to the new customer (left-hand side). The joint-surplus maximizing rule splits the rents so that, for the marginal
customer, these payoffs are equalized. Note that we can also write this condition as:

xn+1(z, ϕ)− UB(ϕ) = γ
(
Wn+1(z, ϕ)−Wn(z, ϕ)− UB(ϕ)

)
︸ ︷︷ ︸

:=Γn+1(z,ϕ)

showing that the buyer absorbs a fraction γ of the marginal gains from matching, Γn+1(z, ϕ). Next, define:

ΓSn(z, ϕ) := (r + δf )Wn(z, ϕ)− πn(z, ϕ) + nδc

(
Wn(z, ϕ)−Wn−1(z, ϕ)

)
− n(δc + δf )UB(ϕ)− Ξn(z, ϕ) (B.4.4)

where πn(z, ϕ) := nv(ϕ)− C(n; z, ϕ) is the flow joint surplus, and

Ξn(z, ϕ) :=
∑
z′∈Z

λz(z
′|z)Wn(z′, ϕ) +

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)Wn(z, ϕ′)

is the expected value of the joint surplus across exogenous states. Letting θn+1(z, ϕ) := θ
(
xn+1(z, ϕ);ϕ

)
, note

that:
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ΓSn(z, ϕ) = η
(
θn+1(z, ϕ)

)(
Wn+1(z, ϕ)−Wn(z, ϕ)− xn+1(z, ϕ)

)
=

(
1− γ
γ

)
η
(
θn+1(z, ϕ)

)(
xn+1(z, ϕ)− UB(ϕ)

)
=

(
1− γ
γ

)
θn+1(z, ϕ)ΓB(ϕ)

where the first line uses the HJB equation for the joint surplus (equation (11)), the second line uses (B.4.3), and
the third line uses (B.4.2) and η(θ) = θµ(θ). The right-hand side of the first equality allows us to interpret ΓS as
the expected match surplus for the seller. Using the last equality, we have found the market tightness:

θn+1(z, ϕ) =

(
γ

1− γ

)
ΓSn(z, ϕ)

ΓB(ϕ)
(B.4.5)

for all n ≥ 1. Finally, we can write (B.4.3) as Wn+1(z, ϕ) −Wn(z, ϕ) = UB(ϕ) + γ−1
(
xn+1(z, ϕ) − UB(ϕ)

)
=

UB(ϕ) + γ−1ΓB(ϕ)θn+1(z, ϕ)1−γ . Using (B.4.5) and rearranging terms, we obtain our desired result:

Wn+1(z, ϕ) = Wn(z, ϕ) + UB(ϕ) +

(
ΓB(ϕ)

γ

)γ (
ΓSn(z, ϕ)

1− γ

)1−γ

(B.4.6)

This is a second-order difference equation in n. The boundary conditions are W0 = 0 (as the joint value is nil
when the seller has no customers), and W1 set to satisfy the free entry condition (B.4.1). By (B.4.3), we know that
W1 − x1 = (1− γ)(W1 − UB) and x1 − UB = γ(W1 − UB), and thus we can write (B.4.1) as:

κ(ϕ) = (1− γ)

(
ΓB(ϕ)

γ

) γ
γ−1 ∑

z0∈Z
πz(z0)

(
W1(z0, ϕ)− UB(ϕ)

) 1
1−γ

our desired result. �

Figure A.7 shows the solution to the second-order difference equation graphically. In equilibrium, the joint
surplus value for each additional customer of the match is an increasing and concave sequence in size, with the
gain for the first customer determined by the expected value at entry (equal to κ). As the seller accumulates more
customers, the joint surplus flattens as the promised utility of each additional customer converges to the outside
option, xn ↘ UB , thereby making the rate of attraction for new customers shrink down to zero, θn ↘ 0.

B.5 Proof of Proposition 5: Optimal Contracts under Price Discrimination
Proof. The argument is conceptually similar to that of the proof to Proposition 1 (see Appendix B.1). Let-

ting
{
x′0,
{
ωi
}n
i=1

}
, with ωi :=

{
pi,x

′
i(n
′; s′)

}
and x′i(n

′; s′) =
{
x′i(n + 1; z, ϕ), x′i(n − 1; z, ϕ), {x′i(n; z′, ϕ) : z′ ∈

Z}, {x′i(n; z, ϕ′) : ϕ′ ∈ Φ}
}

, form a generic policy for the firm, the firm’s problem can be written as:

V S
(
n,
{
xi
}n
i=1

; z, ϕ
)

:= max
x′0,{ωi}ni=1

Ṽ S
(
n;x′0,

{
ωi
}n
i=1

; z, ϕ
)

s.t. xi ≤ V B(n,ωi; z, ϕ), ∀i = 1, . . . , n

where:

Ṽ S
(
n;x′0,

{
ωi
}n
i=1

; z, ϕ
)

:=
1

ρ(n; z, ϕ)

[
n∑
i=1

pi − C(n; z, ϕ) + δc

n∑
j=1

V S
(
n− 1,

{
x′i(n− 1; z, ϕ)

}n
i=1
\−
{
x′j(n− 1; z, ϕ)

}
; z, ϕ

)
+ η
(
θ(x′0;ϕ)

)
V S
(
n+ 1,

{
x′i(n+ 1; z, ϕ)

}n
i=1
∪+

{
x′0
}

; z, ϕ
)

(B.5.1)

+
∑
z′∈Z

λz(z
′|z)V S

(
n,
{
x′i(n; z′, ϕ)

}n
i=1

; z′, ϕ
)

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)V S
(
n,
{
x′i(n; z, ϕ′)

}n
i=1

; z, ϕ′
)]

is the value of the seller, with ρ(n; z, ϕ) := r+δf +nδc+η
(
θ(x′0;ϕ)

)
being the effective discount rate. The value
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of buyer i = 1, . . . , n under this policy is:

rV B(n,ωi; z,ϕ) = v(ϕ)− pi + (δf + δc)
(
UB(ϕ)− V B(n,ωi; z, ϕ)

)
+ (n− 1)δc

(
x′i(n− 1; z, ϕ)− V B(n,ωi; z, ϕ)

)
+ η
(
θ(x′0;ϕ)

)(
x′i(n+ 1; z, ϕ)− V B(n,ωi; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′i(n; z′, ϕ)− V B(n,ωi; z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′i(n; z, ϕ′)− V B(n,ωi; z, ϕ)

)
Notice that the firm is re-optimizing after changing size. By monotonicity of preferences, the promise-keeping

constraint will bind for each customer:

xi = V B(n,ωi; z, ϕ), ∀i = 1, . . . , n

From this equation, we can solve for the promise-compatible price level to be charged to each customer under
the policy

{
x′0,
{
ωi
}n
i=1

}
:

pPKi

({
x′0, {x′j(n′; s′)}nj=1

})
= v(ϕ)− ρ(n; z, ϕ)xi + δfU

B(ϕ) + δc

(
UB(ϕ) + (n− 1)x′i(n− 1; z, ϕ)

)
(B.5.2)

+ η
(
θ(x′0);ϕ

)
x′i(n+ 1; z, ϕ) +

∑
z′∈Z

λz(z
′|z)x′i(n; z′, ϕ) +

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)x′i(n; z, ϕ′)

Importantly, note that the price level for a specific customer i is independent of the distribution of utilities for
all the other customers, that is:

pPKi

({
x′0, {x′j(n′; s′)}j 6=i

}
∪+ {x′i(n′; s′)}

)
= pPKi

({
x′0, {x′φ(j)(n

′; s′)}φ(j)6=i
}
∪+ {x′i(n′; s′)}

)
for any arbitrary bisection φ : {1, . . . , n} → {1, . . . , n}. Therefore, since the firm’s problem internalizes the

price level, the resulting maximization should be independent of the distribution of utilities. Indeed, plugging
(B.5.2) into (B.5.1) and rearranging terms yields:

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)

:=
1

ρ(n; z, ϕ)

[
n
(
v(ϕ) + (δf + δc)U

B(ϕ)
)
−
(
C(n; z, ϕ) + η

(
θ(x′0;ϕ)

) n∑
i=1

x′i(n+ 1; z, ϕ)

)

+ δc

n∑
j=1

W
(
n− 1,

{
x′i(n− 1; z, ϕ)

}n
i=1
\−
{
x′j(n− 1; z, ϕ)

}
; z, ϕ

)
(B.5.3)

+ η
(
θ(x′0;ϕ)

)
W
(
n+ 1,

{
x′i(n+ 1)

}n
i=1
∪+

{
x′0
}

; z, ϕ
)

+
∑
z′∈Z

λz(z
′|z)W

(
n,
{
x′i(n; z′, ϕ)

}n
i=1

; z′, ϕ
)

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)W
(
n,
{
x′i(n; z, ϕ′)

}n
i=1

; z, ϕ′
)]

where we have defined:

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)

:= Ṽ S
(
n;x′0,

{
ωi
}n
i=1

; z, ϕ
)

+

n∑
i=1

xi

and:

W
(
n,
{
xi
}n
i=1

; z, ϕ
)

:= max
x′0,{ωi}ni=1

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)

as the joint surplus under policy
{
x′0, {ωi}ni=1

}
, and the maximized joint surplus, respectively. Finally, noting

that the right-hand side of (B.5.3) does not depend on the initial distribution of utilities {xi}ni=1 nor the price level,
we can write the joint surplus under a given policy as:

W̃
(
n,
{
xi
}n
i=1

;x′0,
{
ωi
}n
i=1

; z, ϕ
)

= W̃n

(
x′0,
{
x′i(n

′; s′)
}n
i=1

; z, ϕ
)
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This allows us to break up the optimal contracting problem into two separate stages. Where
{
x′∗0 , {p∗i ,x′∗i (n′; s′)}ni=1

}
denotes an optimal contract, we have:

{
x′∗0 , {x′∗i (n′; s′)}ni=1

}
= arg max W̃n

(
x′0,
{
x′i(n

′; s′)
}n
i=1

; z, ϕ
)

p∗i = pPKi

({
x′∗0 , {x′∗j (n′; s′)}nj=1

})
, ∀i = 1, . . . , n

It thus follows that the joint surplus problem and the seller’s problem are equivalent. �.

B.6 Proof of Proposition 6: Price Indeterminacy under Discrimination
Proof. Let ε ∈ R be an arbitrary number. The goal of the proof is to show that there is some βn(ϕ) > 0 (possibly

a function of size and the aggregate state) for which, if a given contract with ωb =
{
pi+εβn(ϕ),x′i(n

′; s′) + ε
}n
i=1

is
optimal, then each customer and the seller maximize their value under contract ωa =

{
pi,x

′
i(n
′; s′)

}n
i=1

. The value
of contract ωbi for customer i = 1, . . . , n is:

rV B(n,ωbi ; z, ϕ) = v(ϕ)− pi − εβn(ϕ) + (δf + δc)
(
UB(ϕ)− V B(n,ωi; z, ϕ)

)
+ (n− 1)δc

(
x′i(n− 1; z, ϕ) + ε− V B(n,ωbi ; z, ϕ)

)
+ η
(
θ(x′0(ϕ);ϕ)

)(
x′i(n+ 1; z, ϕ) + ε− V B(n,ωbi ; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′i(n; z′, ϕ) + ε− V B(n,ωi; z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′i(n; z, ϕ′) + ε− V B(n,ωi; z, ϕ)

)
= v(ϕ)− pi − ε

(
βn(ϕ)− (n− 1)δc − η

(
θ(x′0(ϕ);ϕ)

))
+ (δf + δc)

(
UB(ϕ)− V B(n,ωbi ; z, ϕ)

)
+ (n− 1)δc

(
x′i(n− 1; z, ϕ)− V B(n,ωbi ; z, ϕ)

)
+ η
(
θ(x′0(ϕ);ϕ)

)(
x′i(n+ 1; z, ϕ)− V B(n,ωbi ; z, ϕ)

)
+
∑
z′∈Z

λz(z
′|z)
(
x′i(n; z′, ϕ)− V B(n,ωbi ; z, ϕ)

)
+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
x′i(n; z, ϕ′)− V B(n,ωbi ; z, ϕ)

)
= rV B(n,ωai ; z, ϕ) + ε

(
βn(ϕ)− (n− 1)δc − η

(
θ(x′0(ϕ);ϕ)

))
where we have used

∑
z′∈Z λz(z

′|z)ε =
∑
ϕ′∈Φ λϕ(ϕ′|ϕ)ε = 0 in the second equality. Thus, V B(n,ωai ) =

V B(n,ωbi ) if, and only if,

βn(ϕ) = (n− 1)δc + η
(
θ(x′0(ϕ);ϕ)

)
(B.6.1)

As for the seller’s value, note that:

rV S
(
n,
{
xi
}n
i=1

; z, ϕ
)

= max
x′0(ϕ),{ωi}ni=1

{
n∑
i=1

pi + nεβn(ϕ)− C(n; z, ϕ) + δf

(
V S0 (ϕ)− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ δc

n∑
j=1

(
V S
(
n− 1,

{
x′i(n− 1; z, ϕ) + ε

}n
i=1
\−
{
x′j(n− 1; z, ϕ) + ε

}
; z, ϕ

)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ η
(
θ(x′0(ϕ);ϕ)

)(
V S
(
n+ 1,

{
x′i(n+ 1; z, ϕ) + ε

}n
i=1
∪+

{
x′0(ϕ)

}
; z, ϕ

)
− V S

(
n, {xi}ni=1; z, ϕ

))
+
∑
z′∈Z

λz(z
′|z)
(
V S
(
n,
{
x′i(n; z′, ϕ) + ε

}n
i=1

; z′, ϕ
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)

(
V S
(
n,
{
x′i(n; z, ϕ′) + ε

}n
i=1

; z, ϕ′
)
− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))}
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= max
x′0(ϕ),{ωi}ni=1

{
n∑
i=1

pi + nεβn(ϕ)− C(n; z, ϕ) + δf

(
V S0 (ϕ)− V S

(
n,
{
xi
}n
i=1

; z, ϕ
))

+ δc

n∑
j=1

(
Wn−1(z, ϕ)−

∑
i6=j

x′i(n− 1; z, ϕ)− (n− 1)ε− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))

+ η
(
θ(x′0(ϕ);ϕ)

)(
Wn+1(z, ϕ)−

n∑
i=1

x′i(n+ 1; z, ϕ)− x′0 − nε− V S
(
n, {xi}ni=1; z, ϕ

))

+
∑
z′∈Z

λz(z
′|z)
(
Wn(z′, ϕ)−

n∑
i=1

x′i(n; z′, ϕ)− nε− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)

(
Wn(z, ϕ′)−

n∑
i=1

x′i(n; z, ϕ′)− nε− V S
(
n,
{
xi
}n
i=1

; z, ϕ
))}

= rV S
(
n,
{
xi
}n
i=1

; z, ϕ
)

+ nε
(
βn(ϕ)− (n− 1)δc − η

(
θ(x′0(ϕ);ϕ)

))
where we have used the definition ofW in the second equality. Thus, under our choice for βn(ϕ) in (B.6.1), the

value of the seller does not change, either. In sum, both buyers and seller are indifferent between contracts {ωai }ni=1

and {ωbi }ni=1. Consequently, the joint surplus does not change by definition, and therefore contract {ωai }ni=1 is
optimal if, and only if, {ωbi }ni=1 is optimal. Generally, these is a continuum of optimal contracts, indexed by ε. �

C Numerical Appendix
C.1 Stationary Solution Algorithm

To solve for the stationary equilibrium, we solve for two nested fixed-point problems. The innermost problem
is the maximization of the joint surplus function, for a given value of inactivity, UB . SinceW defines a contraction,
we use a value function iteration algorithm for this step. The outermost fixed point problem is on UB(ϕ) which,
for each and every aggregate state, must satisfy the free entry condition. For this step, we use a bisection method,
whereby UB(ϕ) is updated depending on whether there is too much, or not enough, entry. Throughout, the state
space grid is fixed at N × Z × Φ, where N = {1, . . . , n̄}, with n̄ ∈ N a sufficiently large bound on firm size, and
Z = {zi}kzi=1 and Φ = {ϕj}

kϕ
j=1. The (z, ϕ) processes are parametrized according to the description in Section C.2.

In the calibration, we set kϕ = 1, kz = 25, and n̄ = 50.

The following describes the steps of the algorithm:

Step 1. Set the counter to k = 0. Choose guesses U (0)(ϕ) and U (0)
(ϕ) � U (0)(ϕ) for each ϕ ∈ Φ. Set the

value of inactivity to:

UB(0)(ϕ) =
1

2

(
U (0)(ϕ) + U

(0)
(ϕ)
)

Step 2. For any given k ∈ N and n ∈ N , use value function iteration to find the fixed point W (k)
n (z, ϕ) of:

(r + δf )W (k)
n (z, ϕ) = n

(
v(ϕ) + (δf + δc)U

B(k)(ϕ)
)
− C(n; z, ϕ) + nδc

(
W

(k)
n−1(z, ϕ)−W (k)

n (z, ϕ)
)

+ max
x′n+1(z,ϕ)

{
η ◦ µ−1

(
ΓB(k)(ϕ)

x′n+1(z, ϕ)− UB(k)(ϕ)

)(
W

(k)
n+1(z, ϕ)−W (k)

n (z, ϕ)− x′n+1(z, ϕ)
)}

+
∑
z′∈Z

λz(z
′|z)
(
W (k)
n (z′, ϕ)−W (k)

n (z, ϕ)
)

+
∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)
(
W (k)
n (z, ϕ′)−W (k)

n (z, ϕ)
)

where ΓB(k) = c(ϕ)+rUB(k)(ϕ)−
∑
ϕ′∈Φ λϕ(ϕ′|ϕ)

(
UB(k)(ϕ′)−UB(k)(ϕ)

)
. Store the correspond-

ing policy functions:
{
x
′(k)
n+1(z, ϕ) : (n, z, ϕ) ∈ N ×Z × Φ

}
.

Step 3. For each ϕ ∈ Φ, compute the object:
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∆(k)(ϕ) := κ(ϕ)−
∑
z0∈Z

πz(z0)

{
η ◦ µ−1

(
ΓB(k)(ϕ)

x
′(k)
1 (z0, ϕ)− UB(k)(ϕ)

)(
W

(k)
1 (z0, ϕ)− x′(k)

1 (z0, ϕ)
)}

Stop if ∆(k)(ϕ) ∈ [−ε, ε] for all ϕ ∈ Φ and some small tolerance ε > 0. Otherwise, set

UB(k+1)(ϕ) =
1

2

(
U (k+1)(ϕ) + U

(k+1)
(ϕ)
)

for each ϕ ∈ Φ, where:

(a) If ∆(k)(ϕ) > ε, then U (k+1)(ϕ) = U (k)(ϕ) and U (k+1)
(ϕ) = UB(k)(ϕ);

(b) If ∆(k)(ϕ) < −ε, then U (k+1)(ϕ) = UB(k)(ϕ) and U (k+1)
(ϕ) = U

(k)
(ϕ);

and go back to Step 2. with [k]← [ [k + 1].

The advantage of this approach is that the policy function in Step 2. can be expressed as a function of only W
and UB (recall Proposition B.4), the two functions over which we iterate. Both fixed-point algorithms are fast and
converge within only a few iterations. After convergence, we have the full equilibrium sequences for W , defined
on every point of the state space grid N × Z × Φ, from which market tightness, prices, and distributions can be
readily computed using our analytical results described above.

C.2 Numerical Approximation of the Exogenous State Processes
This appendix shows how to parametrize and estimate continuous-time Markov chain (CTMC) processes. In

the context of our model, we have two such exogenous processes: z and ϕ. Consider the idiosyncratic shock, for
instance (the same structure applies to the aggregate shock). Firstly, the kz × kz infinitesimal generator matrix Λz

has the usual form, i.e. the elements of each row vector add up to zero:

Λz =


−
∑
j 6=1 λ1j λ12 . . . λ1kz

λ21 −
∑
j 6=2 λ2j . . . λ2kz

...
...

. . .
...

λkz1 λkz2 . . . −
∑
j 6=kz λkzj


where λij is short-hand for λz(zj |zi), zi, zj ∈ Z . Since this level of generality would require the estimation of

kz(kz − 1) transition rates, we reduce the parameter space by specializing the CTMC as follows:

• First, we assume z follows a driftless Ornstein-Uhlenbeck (OU) process in logs. An OU process is a type of
mean-reverting and autoregressive CTMC which can be loosely viewed as the continuous-time analogue of
an AR(1).62 Formally:

d log zt = −ρz log ztdt+ σzdBt

where Bt is a standard Brownian motion, and ρz, σz > 0 are parameters.
• Operationally, in the numerical version of the model in which time is partitioned and takes values in T =
{∆, 2∆, 3∆, . . . }, we implement this process by using the Euler-Maruyama method, that is:

log zk = (1− ρz∆) log zk−1 + σz
√

∆εzk, εzk ∼ iid N (0, 1) (C.2.1)

for each k ∈ T. Notice that this is an AR(1) processes with autocorrelation ρ̃z := 1 − ρz∆ and variance
σ2
z

ρz(1 + ρ̃z)
. Thus, ρz > 0 can be seen as a measure of mean-reversion, with lower values corresponding to

higher persistence.

62 For another example of a continuous-time search-and-matching model with shocks that uses Ornstein-Uhlenbeck pro-
cesses, see Shimer (2005).
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• The discrete-time process above is defined on a continuous state space, so we then employ standard tech-
niques (Tauchen (1986)) to approximate the AR(1) processes using a discrete-time, discrete-state Markov
chain that we define on the theoretical grid, Z . The outcome of this method is a transition probability matrix
Πz =

(
πij
)
, where πij denotes the probability of a zi-to-zj transition in the T space.

• Finally, to map this specification back into continuous time, we use the fact that, for small enough ∆ > 0,
transition probabilities are well approximated by transition rates in the following sense:63

∀i = 1, . . . , kz : πij ≈ λij∆,∀j 6= i and πii ≈ 1−
∑
j 6=i

λij∆

when ∆ > 0 is small enough.

This methodology therefore has the obvious advantage that, instead of having to calibrate the whole collection{
λzij
}

of transition rates individually, these can be backed out directly from estimating only two parameters: ρz
and σz .

D Additional Theoretical Results
D.1 HJB Equations

In this appendix, we show how to derive the HJB equations for inactive buyers (equation (2)), active buyers
(equation (5)), incumbent sellers (equation (6)), and potential entrant sellers (equation (8)), from their discrete-
time counterparts. Throughout, we assume a discrete-time stationary environment in which time intervals are
equidistant and of some (short) length ∆ > 0.

Inactive Buyers
The value of an inactive buyers in state ϕ ∈ Φ is:

UB(ϕ) = max
x̂(ϕ)∈X

uB
(
x̂(ϕ);ϕ

)
where uB

(
x̂(ϕ);ϕ

)
is given by the Bellman equation:

uB
(
x̂(ϕ);ϕ

)
=− c(ϕ)∆ + e−r∆

([
η
(
θ(x̂(ϕ);ϕ)

)
∆ + o(∆)

]
max

{
x̂(ϕ), uB

(
x̂(ϕ);ϕ

)}
+
∑
ϕ′∈Φ

[
λϕ(ϕ′|ϕ)∆ + o(∆)

]
uB
(
x̂(ϕ);ϕ′

)
+
[
1− η

(
θ(x̂(ϕ);ϕ)

)
∆−

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)∆ + o(∆)
]
uB
(
x̂(ϕ);ϕ

))
+ o(∆) (D.1.1)

where o(∆) has the property lim∆→0
o(∆)

∆ = 0. The intuitive interpretation is standard. Here, and in every
value function to follow, we use that, for a given Poisson arrival rate k ≥ 0, the term k∆ + o(∆) (respectively,
1− k∆ + o(∆)) approximates the probability of exactly one arrival (respectively, no arrivals) of the Poisson shock
within some time interval [t, t+ ∆]. This approximation is valid for ∆ > 0 small enough. The probability of two or
more arrivals is approximately equal to o(∆), and accounted for in the object o(∆). Moreover, the discount factor
e−r∆ approximates the usual discrete-time discounting of 1

1+r∆ when ∆ > 0 is small enough.
It should be noted that, if θ(x;ϕ) > 0, then it must be that max{x−UB(ϕ), 0} > 0, or else no buyer would visit

the market. Thus, any matched customer is ex-post better off than any inactive buyer. On the one hand, this means
that, so long as the size of shocks is sufficiently restricted, we may ignore the possibility of voluntary transition

63 Formally, in this step we are using the result that any CTMC with fixed transition rate matrix Λ maps into a discrete-time
chain with transition probability matrix Π(t) at time t ∈ Z+ in which holding times between arrivals are independently and
exponentially distributed. In particular, ∂tΠ(t) = ΛΠ(t), and thus Π(t) = eΛt (when Π0 = I). Hence, the probability of
a zi-to-zj transition after time ∆ is given by λij∑

j 6=i λij

(
1− e−

∑
j 6=i λij∆

)
when j 6= i, and by e−

∑
j 6=i λij∆ otherwise. When

∆ > 0 is sufficiently small, these probabilities are well approximated by λij∆ and
(

1−
∑
j 6=i λij∆

)
, respectively.
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to inactivity from our HJB equations for buyers, without loss of generality. Moreover, since inactive buyers are
always willing to enter into the product market, the seller’s optimal design of the contract ω need not incorporate
a participation constraint.

To obtain equation (2), subtract e−r∆uB
(
x̂(ϕ);ϕ

)
from both sides, divide every term by ∆, and take the continuous-

time limit as ∆→ 0 (using that lim∆→0
1−e−r∆

∆ = r).

Active Buyers
Now consider the value of being the customer of a firm of size n that promises continuation utility x in state

s = (z, ϕ) ∈ Z × Φ, and offers contract ω =
{
p,x′(n′; s′)

}
. In the discrete-time approximation, we have:

V B(n,ω; s) =
(
v(ϕ)− p

)
∆ + e−r∆

([
(δf + δc)∆ + o(∆)

]
UB(ϕ) +

[
(n− 1)δc∆ + o(∆)

]
max

{
x′(n− 1; s), UB(ϕ)

}
+
[
η
(
θ
(
x′(n+ 1; s);ϕ

))
∆ + o(∆)

]
max

{
x′(n+ 1; s), UB(ϕ)

}
+
∑
z′∈Z

[
λz(z

′|z)∆ + o(∆)
]

max
{
x′(n; z′, ϕ), UB(ϕ)

}
+
∑
ϕ′∈Φ

[
λϕ(ϕ′|ϕ)∆ + o(∆)

]
max

{
x′(n; z, ϕ′), UB(ϕ′)

}

+

[
1− δf∆− nδc∆− η

(
θ
(
x′(n+ 1; s);ϕ

))
∆−

∑
z′∈Z

λz(z
′|z)∆−

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)∆ + o(∆)

]
max

{
V B(n,ω; s), UB(ϕ)

})
+ o(∆)

This equation represents the buyer’s Bellman equation in full generality. Particularly, we recognize the possi-
bility that, as indicated by the max operators, the customer is free to opt out of the match at the beginning of period
t + ∆, in which case she stops buying from the firm and must become inactive for at least one period. The buyer
may also transition to inactivity if either the firm dies or the match is destroyed exogenously. If she remains within
the firm, she acknowledges that the match might change in value once the firm shrinks (second line), grows (third
line), or is hit by an exogenous shock (fourth line). The fifth line is the complementary case in which none of the
Poisson shocks hit, in which case the customer is still given the chance to transition to inactivity.

To obtain our final HJB equation, we first recall that transiting to inactivity is not optimal under any contingency.
Since, in equilibrium, the seller offers continuation values in the set of equilibrium markets, we may eliminate the
max operators above. Finally, we can subtract e−r∆V B(n,ω; s) from both sides, divide every term by ∆, and take
the continuous-time limit as ∆→ 0 to obtain equation (5).

Incumbent Sellers
Consider now a seller with n ∈ N customers who is currently promising a value x in state s = (z, ϕ). The seller

must choose contract ω =
{
p,x′(n′; s′)

}
to maximize:

V S(n, x; s) = max
ω∈Ω

{(
np− C(n; s)

)
∆ + e−r∆

([
δf∆ + o(∆)

]
V S0 (ϕ) +

[
nδc∆ + o(∆)

]
max

{
V S
(
n− 1, x′(n− 1; s); s

)
, V S0 (ϕ)

}
+
[
η
(
θ
(
x′(n+ 1; s)

)
;ϕ
)

∆ + o(∆)
]

max
{
V S
(
n+ 1, x′(n+ 1; s); s

)
, V S0 (ϕ)

}
+
∑
z′∈Z

[
λz(z

′|z)∆ + o(∆)
]

max
{
V S
(
n, x′(n; z′, ϕ); z′, ϕ

)
, V S0 (ϕ)

}
+
∑
ϕ′∈Φ

[
λϕ(ϕ′|ϕ)∆ + o(∆)

]
max

{
V S
(
n, x′(n; z, ϕ′); z, ϕ′

)
, V S0 (ϕ′)

}

+

[
1− δf∆− nδc∆− η

(
θ
(
x′(n+ 1; s);ϕ

))
∆−

∑
z′∈Z

λz(z
′|z)∆−

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)∆ + o(∆)

]
max

{
V S(n, x; s), V S0 (ϕ)

})}
+ o(∆)

subject to:
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V B(n,ω; s) ≥ x

As in the case of buyers above, we write the seller’s Bellman equation in full generality. In particular, at the
beginning of period t+∆, the seller can choose to cease operations and transition to n = 0, as indicated by the max
operators. Otherwise, the interpretation of the above equation is very similar to the one given in the main text.
To arrive at equation (6), we anticipate that V S0 (ϕ) = 0, ∀t, by free entry, and therefore V S(n, x; s) ≥ V S0 (ϕ) = 0,
∀(n, x; s), without loss of generality. Then, we can proceed by taking the usual continuous-time limit, as described
above.

Entrant Sellers
Finally, we characterize the problem of potential entrants. In the discrete-time approximation, potential en-

trants draw their initial productivity z0 from the distribution πz , after which they pay the set-up cost κ(ϕ) > 0
allowing them to post a contract. Let vS0 (s0) denote the value of drawing productivity z0, where s0 := (z0, ϕ).
Then, the entrant chooses the initial contract x′(1; s0) ∈ X , specifying the promised utility for the first customer of
the firm, to maximize:

vS0 (s0) = max
x′(1;s0)∈X

{
e−r∆

([
η
(
θ
(
x′(1; s0);ϕ

))
∆ + o(∆)

]
max

{
V S
(
1, x′(1; s0); s0

)
, V S0 (ϕ)

}
+
∑
ϕ′∈Φ

[
λϕ(ϕ′|ϕ)∆ + o(∆)

]
V S0 (ϕ′)

+

[
1− η

(
θ
(
x′(1; s);ϕ

))
∆−

∑
ϕ′∈Φ

λϕ(ϕ′|ϕ)∆ + o(∆)

]
V S0 (ϕ)

)}
+ o(∆)

where V S0 (ϕ) is the expected value of entry, defined by:

V S0 (ϕ) = −κ(ϕ)∆ +
∑
z0∈Z

πz(z0)vS0 (z0, ϕ)

To obtain equation (8), subtract e−r∆V S0 (ϕ) from both sides of the second equation by making use of the fact
that

∑
z0∈Z πz(z0) = 1, and take the continuous-time limit in the usual fashion, noting that, by free entry, we can

drop the possibility of voluntary separation, and thereby eliminate the max operator from the first equation.

D.2 Derivations of Section 3.5
Kolmogorov Forward Equations

To derive the KFEs, we work with the equilibrium shares of agent types, defined by gn,t(z) :=
Sn,t(z)
St , for each

n ∈ N and z, where St :=
∑
n≥1

∑
z Sn,t(z) is the total measure of incumbents. Note that g is a probability mass

function (p.m.f.), with gn,t(z) ≤ 1 and
∑
n≥1

∑
z gn,t(z) = 1, ∀t ≥ 0, for each given ϕ.

After a period of size ∆ > 0, the share of firms of type (n, z) when n = 1 becomes:

g1,t+∆(z) =
[
πz(z)η

(
θ1,t+∆(z, ϕ)

)
∆ + o(∆)

]S0,t(ϕ)

St
+ 2
[
δc∆ + o(∆)

]
g2,t(z) +

∑
z̃ 6=z

[
λz(z|z̃)∆ + o(∆)

]
g1,t(z̃)

+

[
1− δf∆− δc∆− η

(
θ2,t+∆(z, ϕ)

)
∆−

∑
z̃ 6=z

λz(z̃|z)∆ + o(∆)

]
g1,t(z) (D.2.1)

Similarly, for n ≥ 2, we have:

gn,t+∆(z) =
[
η
(
θn,t+∆(z, ϕ)

)
∆ + o(∆)

]
gn−1,t(z) + (n+ 1)

[
δc∆ + o(∆)

]
gn+1,t(z) +

∑
z̃ 6=z

[
λz(z|z̃)∆ + o(∆)

]
gn,t(z̃)

+

[
1− δf∆− nδc∆− η

(
θn+1,t+∆(z, ϕ)

)
∆−

∑
z̃ 6=z

λz(z̃|z)∆ + o(∆)

]
gn,t(z) (D.2.2)
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These equations describe the law of motion for gn,t(·): due to customer acquisition, attrition, or an exogenous
shock, the first line shows the shares of firms transitioning into state (n, z); the second line shows the share of firms
of type (n, z) that are not hit by any shock, and thereby remain type (n, z). Subtracting gn,t(z) from both sides of
equation (D.2.2) and dividing by ∆ gives:

gn,t+∆(z)− gn,t(z)
∆

=
[
η
(
θn,t+∆(z, ϕ)

)
+
o(∆)

∆

]
gn−1,t(z) + (n+ 1)

[
δc +

o(∆)

∆

]
gn+1,t(z)

+
∑
z̃ 6=z

[
λz(z|z̃) +

o(∆)

∆

]
gn,t(z̃)−

[
δf + nδc + η

(
θn+1,t+∆(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z) +
o(∆)

∆

]
gn,t(z)

Taking the limit as ∆→ 0,

∂tgn,t(z) = η
(
θn,t(z, ϕ)

)
gn−1,t(z)+(n+1)δcgn+1,t(z)+

∑
z̃ 6=z

λz(z|z̃)gn,t(z̃)−
(
δf+nδc+η

(
θn+1,t(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
gn,t(z)

A similar derivation on (D.2.1) shows that, for n = 1,

∂tg1,t(z) = πz(z)η
(
θ1,t(z, ϕ)

)S0,t(ϕ)

St
+ 2δcg2,t(z) +

∑
z̃ 6=z

λz(z|z̃)g1,t(z̃)−
(
δf + δc + η

(
θ2,t(z, ϕ)

)
+
∑
z̃ 6=z

λz(z̃|z)
)
g1,t(z)

It remains to show the law of motion for the measure of potential entrants, S0,t(ϕ). In this case, for given ϕ, we
have:

S0,t+∆(ϕ) =
[
δf∆ + o(∆)

]
St +

[
δc∆ + o(∆)

]∑
z

S1,t(z) +

[
1−

∑
z0

πz(z0)η
(
θ1,t+∆(z0, ϕ)

)
∆ + o(∆)

]
S0,t(ϕ)

Taking the continuous-time limit in the usual way, we arrive at:

∂tS0,t(ϕ) =
(
δf + δc

∑
z

g1,t(z)
)
St −

∑
z0

πz(z0)η
(
θ1,t(z0, ϕ)

)
S0,t(ϕ)

In the stationary solution, inflows and outflows are equated for every pair of idiosyncratic states (n, z), so
∂tgn,t(z) = 0 and ∂tS0,t(ϕ) = 0. The system of KF equations then becomes a system of second-order equations
which can be solved numerically on the state-space grid. In particular, we find a solution for the matrix {gn(z)}n,z ,
and the share of potential entrants per incumbent firm, h0(ϕ) := S0(ϕ)/S.

Computing the Aggregate Stationary Measures of Agents
Once we have found a solution {gn(z)}n,z for the invariant size distribution, we can compute aggregate mea-

sures as follows. Firstly, using (17) we obtain the object bAn (z) :=
BAn (z)
S by:

bAn (z) = ngn(z)

Then, bA := BA/S =
∑+∞
n=1

∑
z∈Z ngn(z). On the other hand, from equation (16) we know that BIn(z, ϕ) =

Sθn(z, ϕ)gn−1(z). Therefore, adding across states (from n = 2 onward) yields:

S
+∞∑
n=2

∑
z∈Z

θn(z, ϕ)gn−1(z) =

+∞∑
n=2

∑
z∈Z

BIn(z, ϕ)

= BI −
∑
z∈Z

BI1(z, ϕ)

= 1−BA −
∑
z∈Z

θ1(z, ϕ)S0(ϕ)
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Using the definitions above, the last line can be written as S =
1−

(
bA + h0(ϕ)

∑
z θ1(z, ϕ)

)
S∑

n≥2

∑
z θn(z, ϕ)gn−1(z)

. Solving for S,

we obtain the stationary measure of active sellers:

S =

(
bA + h0(ϕ)

∑
z∈Z

θ1(z, ϕ) +

+∞∑
n=1

∑
z∈Z

θn+1(z, ϕ)gn(z)

)−1

Once the total measure of sellers is known, all other aggregate measures can be easily obtained. For instance,
the mass of potential entrants is S0(ϕ) = Sh0(ϕ), and the different measures of incumbent sellers can be obtained
by Sn = Sgn. The measure of active buyers is BA = SbA, and the measure of inactive buyers is BI = 1−BA.

Special Case: Analytical Solution for the Invariant Size Distribution
Assume an environment without exogenous (z, ϕ) shocks, and let us introduce the object σn = Sn/(S0 + S),

defined for any n = 0, 1, 2, . . . Then, when δf = 0, we can re-write the flow equations of Section 3.5 at steady state
as:

η(θn)σn−1 + (n+ 1)δcσn+1 −
(
η(θn+1) + nδc

)
σn = 0

for any n ≥ 1, and δcσ1−η(θ1)σ0 = 0. Since
∑+∞
n=0 σn = 1 by construction, {σn} follows a stationary birth-death

process, with Markov transition rates η(θn+1) and nδc for transitions n→ (n+ 1) and n→ (n− 1), respectively. If
we solve the difference equation on n ≥ 1 recursively, we find:

σn =
1

n!

∏n−1
i=0 η(θi+1)

(δc)n
σ0 (D.2.3)

Imposing that
∑+∞
n=0 σn = 1 in equation (D.2.3) yields:

σ0 =

(
1 +

+∞∑
n=1

1

n!

∏n−1
i=0 η(θi+1)

(δc)n

)−1

(D.2.4)

From the last expression, it is clear that {σn} admits an ergodic representation if, and only if:

+∞∑
n=1

1

n!

∏n−1
i=0 η(θi+1)

(δc)n
< +∞ (D.2.5)

Under necessary condition (D.2.5), the stationary solution of the birth-death process {σn} is given by (D.2.3)-
(D.2.4). Using that gn = σn(1 + S0/S) for n ≥ 1, and S0/S = σ0/(1− σ0), we then have:

gn =
S0

S
1

n!

∏n−1
i=0 η(θi+1)

(δc)n
, with S0

S
=

[
+∞∑
n=1

1

n!

∏n−1
i=0 η(θi+1)

(δc)n

]−1

,

Note that for as long as there is a fat right-tail in the distribution of market tightness, this is a realistic description
of the fat-tailed, Pareto-like size distributions that we see in the data (e.g. Luttmer (2007)).

D.3 Conditional and Aggregate Price Statistics
This section shows how to calculate, using the model’s stationary solution, the conditional and aggregate price

statistics that we use in the validation exercise.

0. Background and Definitions
Consider a price spell whose starting date is normalized to t = 0 and which lasts until some unknown time

t ≥ 0. Let T denote the total duration of the price spell (a continuous, non-negative random variable), and let
F : R+ → [0, 1] be the c.d.f. of T . We define the survival function associated to duration T , denoted ST , as the
probability that the price spell lasts at least t ≤ t periods, i.e. STt := Pr[T ≥ t] = 1 − Ft. Consequently, the
probability that the price spell will end in the [t, t+ ∆] interval is:
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Pr[t < T ≤ t+ ∆] = STt − STt+∆

The hazard function is defined as the probability that a spell ends within the [t, t + ∆] interval, conditional on
having lasted until time t, i.e. the object Pr[t < T ≤ t + ∆|T > t]. Using Bayes’ rule, we can write the hazard
function in terms of the survival function as follows: Pr[t < T ≤ t + ∆|T > t] = 1 − STt+∆

/
STt . The instantaneous

hazard rate is then defined by the continuous-time limit: ht := lim∆↘0
1
∆

(
1− STt+∆

/
STt
)
. Using L’Hôpital’s rule,

we have:

ht = −∂t logSTt (D.3.1)

Hence, defining the cumulative hazard as Ht :=
∫ t

0
hsds, the cumulative hazard and the survival functions are

related by STt = exp {−Ht} (as ST0 = 1−H0 = 1). Using this result, note that we can write the discrete-time hazard
function in terms of the instantaneous hazard as follows:

Pr[t < T ≤ t+ ∆|T > t] = 1−
STt+∆

STt
= 1− exp

{
Ht+∆ −Ht

}
= 1− exp

{
−
∫ t+∆

t

hsds

}
(D.3.2)

Finally, the expected duration of price spells is given by E{T} =
∫ +∞

0
tdFt. Integrating by parts and using that

STt = 1−Ft, we obtain:

E{T} =

∫ +∞

0

STt dt (D.3.3)

Let us now compute these objects at the stationary solution of the model. Throughout, we consider a typical
firm of fixed type (nt, zt) = (n, z) ∈ N × Z at time t, and let the random variable Tn(z, ϕ) denote the duration of
price spells of the firm in aggregate state ϕ ∈ Φ.

1. Instantaneous Hazard Rate
Conditional on firm survival, the probability that a firm of type (n, z) changes its price at some time within the

interval [t, t+ ∆], given that the price spell was still ongoing at date t, is:

Pr
[
t < Tn(z, ϕ) ≤ t+ ∆

∣∣∣Tn(z, ϕ) > t
]

=
[
η
(
θn+1,t+∆(z, ϕ)

)
∆ + o(∆)

]
+ n

[
δc∆ + o(∆)

]
+
∑
z̃ 6=z

[
λz(z̃|z)∆ + o(∆)

]
+
∑
ϕ̃ 6=ϕ

[
λϕ(ϕ̃|ϕ)∆ + o(∆)

]
where o(∆) collects higher-order terms. In words, the hazard of a price change is the joint probability of an

increase in size, a decrease in size, and an exogenous shock out of the current state, respectively. The instantaneous
hazard rate (as defined in (D.3.1)) is, therefore:

hn(z, ϕ) = η
(
θn+1(z, ϕ)

)
+ nδc +

∑
z̃ 6=z

λz(z̃|z) +
∑
ϕ̃6=ϕ

λϕ(ϕ̃|ϕ)

Note the absence of time subscripts in the above expression. This is a convenient implication of our block-
recursive structure: as described in Section 3.5, θn,t(z, ϕ) is a jump variable that need not explicitly be indexed by
time t. That is, all time variation in the instantaneous hazard rate is encapsulated in its explicit dependence on the
aggregate state ϕ. Thus, for a given ϕ, the hazard of price changes is constant in time.

Two relevant implications of this result follow:

• Since the instantaneous hazard is flat at the firm level, the firm-level cumulative hazard is linear in time
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(though non-linear in the aggregate state):

Hn,t(z, ϕ) = hn(z, ϕ)t (D.3.4)

The survival function, in turn, takes the simple form STn,t(z, ϕ) = exp
{
− hn(z, ϕ)t

}
.

• This result does not mean, however, that hazard rates are not time-dependent at higher levels of aggrega-
tion. Indeed, the measured aggregate hazard rate of price changes is time-varying because aggregate shocks
generate slow-moving dynamics in the distribution of firms across states. In particular, the cross-sectional
average hazard of price changes is equal to:

Ht(ϕ) :=
∑
n∈N

∑
z∈Z

gn,t(z)hn(z, ϕ)

where
{
gn,t(z, ϕ)

}
is the firm-size probability mass function (p.m.f.), gn(z) = Sn,t(z)

/∑
n

∑
z Sn,t(z). For

instance, in periods of high firm entry, the size distribution shifts to the left, so the aggregate hazard puts
more weight on the hazard rates of small firms.

2. Frequency of Price Changes
We define the frequency of price changes over a time window of length one (i.e. 1/∆ sub-periods) as the

cumulative probability of a price change after a spell of such length. Using equation (D.3.2) and the fact that the
instantaneous hazard rate is flat at the firm level (equation (D.3.4)), we can now easily write this probability as:

fn(z, ϕ) = 1− exp
{
− hn(z, ϕ)

}
(D.3.5)

The frequency of price changes at the (n, z)-level is a jump variable that is time-independent for as long as there
are no transitions in the aggregate state ϕ. The average frequency of price adjustment in the cross-section of firms
is:

Ft(ϕ) :=
∑
n∈N

∑
z∈Z

gn,t(z)fn(z, ϕ)

Hence, the aggregate frequency of price changes evolves over time according to the underlying distribution
dynamics.

3. Expected Duration of Price Spells
From equation (D.3.4), it is readily seen that the price duration Tn(z, ϕ) follows an exponential distribution with

parameter hn(z, ϕ). The average duration (equation (D.3.3)) then reduces to the reciprocal of the instantaneous
hazard. Expressed in terms of frequency, this means:

E
{
Tn(z, ϕ)

}
= − 1

log
(
1− fn(z, ϕ)

) (D.3.6)

At the population level, once again expected durations are affected by the slow-moving distributional dynam-
ics. Then:

Dt(ϕ) :=
∑
n∈N

∑
z∈Z

gn,t(z)

hn(z, ϕ)

is average expected duration of prices at time t.

4. Moments of the Distribution of Price Changes
Finally, we report moments of the distribution of (non-zero) price log-changes.

• The expected absolute price change in market (n, z) is defined as the average log change in prices. Denoting
p̂ ≡ log p, we have:
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Et
{∣∣∣p̂n,t+∆(z, ϕ)− p̂n,t(z, ϕ)

∣∣∣} =
(
η
(
θn+1,t+∆(z, ϕ)

)
∆ + o(∆)

)
×
∣∣∣p̂n+1,t+∆(z, ϕ)− p̂n,t(z, ϕ)

∣∣∣
+ n

(
δc∆ + o(∆)

)
×
∣∣∣p̂n−1,t+∆(z, ϕ)− p̂n,t(z, ϕ)

∣∣∣
+
∑
z̃ 6=z

(
λz(z̃|z)∆ + o(∆)

)
×
∣∣∣p̂n,t+∆(z̃, ϕ)− p̂n,t(z, ϕ)

∣∣∣
+
∑
ϕ̃6=ϕ

(
λϕ(ϕ̃|ϕ)∆ + o(∆)

)
×
∣∣∣p̂n,t+∆(z, ϕ̃)− p̂n,t(z, ϕ)

∣∣∣
where

∣∣.∣∣ denotes the absolute value. Therefore, letting µ∆
n (z, ϕ) denote the expected absolute price log-

change, taking the continuous-time limit we obtain:

µ∆
n (z, ϕ) = η

(
θn+1(z, ϕ)

)∣∣∣p̂n+1(z, ϕ)− p̂n(z, ϕ)
∣∣∣+ nδc

∣∣∣p̂n(z, ϕ)− p̂n−1(z, ϕ)
∣∣∣

+
∑
z̃ 6=z

λz(z̃|z)
∣∣∣p̂n(z̃, ϕ)− p̂n(z, ϕ)

∣∣∣+
∑
ϕ̃6=ϕ

λϕ(ϕ̃|ϕ)
∣∣∣p̂n(z, ϕ̃)− p̂n(z, ϕ)

∣∣∣ (D.3.7)

• The variance of the distribution of price changes is given by:

Vt
{∣∣∣p̂n,t+∆(z, ϕ)− p̂n,t(z, ϕ)

∣∣∣} = Et
{(∣∣∣p̂n,t+∆(z, ϕ)− p̂n,t(z, ϕ)

∣∣∣− Et
{∣∣∣p̂n,t+∆(z, ϕ)− p̂n,t(z, ϕ)

∣∣∣})2}
Following the usual derivation, in the continuous-time limit we obtain:

σ∆
n (z, ϕ) = η

(
θn+1(z, ϕ)

)(∣∣∣p̂n+1(z, ϕ)− p̂n(z, ϕ)
∣∣∣− µ∆

n (z, ϕ)
)2

+ nδc

(∣∣∣p̂n(z, ϕ)− p̂n−1(z, ϕ)
∣∣∣− µ∆

n (z, ϕ)
)2

+
∑
z̃ 6=z

λz(z̃|z)
(∣∣∣p̂n(z̃, ϕ)− p̂n(z, ϕ)

∣∣∣− µ∆
n (z, ϕ)

)2

+
∑
ϕ̃6=ϕ

λϕ(ϕ̃|ϕ)
(∣∣∣p̂n(z, ϕ̃)− p̂n(z, ϕ)

∣∣∣− µ∆
n (z, ϕ)

)2

(D.3.8)

where σ∆
n (z, ϕ) denotes the variance of price changes.

Time subscripts have again been dropped from the firm-level statistics by the block recursivity argument: pric-
ing policies, when conditioned on the realization of the aggregate state, are time-invariant. At the population level,
these moments now cannot be aggregated using g (the unconditional firm distribution), for not all firms change
prices every period. Instead, we use the so-called renewal distribution of firms, that is, the distribution of firms
conditional on a price adjustment. Since the probability that a firm of type (n, z) changes prices is given by the
frequency fn(n, z) (equation (D.3.5)), the renewal distribution is given by:

rn,t(z, ϕ) :=
gn,t(z)fn(z, ϕ)∑

n∈N

∑
z∈Z

gn,t(z)fn(z, ϕ)

Figure A.8 compares the unconditional and the renewal p.m.f.’s in the calibrated economy. We note that there is
more mass on smaller firms relative to the unconditional distribution, as these firms change prices more frequently.

Then, the average expected size of a price change and the average standard deviation of price changes are given
by:

M∆
t (ϕ) :=

∑
n∈N

∑
z∈Z

rn,t(z, ϕ)µ∆
n (z, ϕ) and Σ∆

t (ϕ) :=
∑
n∈N

∑
z∈Z

rn,t(z, ϕ)
√
σ∆
n (z, ϕ)

respectively.
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D.4 Extension: Business-Stealing
We now present an alternative way to model that, on top of inactive buyers, firms can use their pricing contracts

to attract customers that are already buying from other firms. One way to incorporate such possibility is to assume
that, when posting a contractω, a firm attracts a buyer that is randomly drawn from the pool of all buyers, whether
matched or unmatched. Then, firms now face an aggregate risk τ(ϕ) > 0 of losing a customer to another seller,
where τ(ϕ) is determined in equilibrium. One complication now is that τ is an equilibrium object which will
depend on the aggregate state through both market tightness and the firm distribution. This means that sellers
would need to forecast τ in an economy with aggregate shocks, thereby breaking the block recursivity property.
A model with no aggregate shocks can still be solved, however, by using the solution methods developed above.

In the latter case, the HJB equation of a seller of size n promising utility x changes only slightly. In particular,
V S is again given by (6), except now the “effective” customer separation rate is:

δ̂c(n) := δc +
τ

n

Here, δc > 0 is the exogenous separation rate, and τ/n is the per-customer endogenous separation rate. Since
meeting rates are independent across firms, the aggregate customer attrition rate that is due to firm pricing is
τ :=

∫
x∈X η

(
θ(x)

)
dS(x), where S(x) is the measure of firms promising utility x. The HJB equation of the buyer

(equation (5)) will be modified similarly, using δ̂c(n;ϕ) for δc.
Since firms are atomistic and their contracts cannot affect the aggregate attrition rate τ , this variable is taken as

given by sellers. Thus, the equivalence between seller’s and joint surplus problems allows us to write the equilib-
rium aggregate separation rate more simply as:

τ(ϕ) =

+∞∑
n=1

η
(
θn(z)

)
Sn−1(z) (D.4.1)

where Sn(z) is the measure of firms of type (n, z), and η
(
θn(z)

)
is the rate at which firms of type (n, z) attract

customers. Moreover, since both inactive and active buyers can now form new matches, every buyer (matched or
otherwise) is effectively in the pool of potential new customers for firms, and thus market tightness is defined by:

θn(z) =
1

Sn−1(z)

(
BIn(z) +

+∞∑
m=1

∑
z̃∈Z

BAm(z̃)

)
for any n ≥ 1 and z ∈ Z .

D.5 Comparative Statics
In this section, we present a set of comparative statics exercises on the stationary recursive equilibrium to

illustrate the behavior of the joint surplus, firm growth rates, price levels, and promised utilities, across parameter
values. For illustration, we focus on a simplified version of the model in which the exogenous shocks (z, ϕ) are
turned off. This simplification makes the intuition simpler and does not change the qualitative features of the
equilibrium.

Figure D.1 shows, as a function of seller’s size n, the equilibrium market tightness, promised utility, and price
level for a numerical example.64 We observe that, when the seller enters with n = 1 customer, she attracts a higher
measure of buyers than any other type of firm (left panel). This is because these firms promise a high continuation
utility to their buyers (middle panel) by setting relatively low prices (right panel). As growth unfolds, the promised
utility decreases as the seller must compromise across more buyers, causing market tightness, and thus firm growth
rates, to decline. In the stationary solution, this implies that a relatively larger measure of firms is of small size,
which translates into a right-skewed stationary firm distribution (left panel in Figure D.2). The distribution of
customers (middle panel) is similarly skewed by construction, whereas the distribution of inactive buyers looking
to be matched with a firm has a larger mass on the left, as it is smaller firms who make the most attractive promises
from an ex-post perspective.

In order to understand how sellers of different sizes implement the decline in promised utilities through ad-
justments in the price level, we can decompose the latter into the different components described in equation (15).

64 For these examples, we use the parameter values: v = 1; c = 0.63; κ = 0.98; δf = 0.09; w = 0.15; δc = 0.20; and γ = 0.546.
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Figure D.1: Numerical Example: Market tightness, promised utility, and prices for the simple model with no
exogenous (z, ϕ) shocks. Comparative statics with matching elasticity (γ).

In the model without shocks, the price decomposition simplifies to:

pn = v − rxn︸ ︷︷ ︸
Baseline≥0

+ δf (UB − xn)︸ ︷︷ ︸
Exit≤0

+ψ(xn+1)(xn+1 − xn)︸ ︷︷ ︸
Growth≤0

+nδc

(
UB + (n− 1)xn−1

n
− xn

)
︸ ︷︷ ︸

Separation≤0

(D.5.1)

where we have definedψ : x 7→ η◦µ−1
(

ΓB

x−UB

)
by equation (12). As the seller grows, the baseline price that the

buyer is charged increases with size (first panel in Figure D.3). The intuition is standard: since sellers cannot price
discriminate, they increasingly prefer to extract rents from the current base as the base increases in size. The overall
price level is then adjusted for the different state transitions. Both the exit and the growth components (second
and third panels) are negative, putting downward pressure on prices. As sellers grow, the promised utility for
buyers approaches the outside optionUB , and the adjustment on price due to firm exit decreases in absolute value.
Similarly, the growth compensation is relatively larger when the seller is small, as increases in the customer base
lead to larger revisions of the continuation utility. As the seller grows, however, the opportunity cost of firm growth
for the matched buyer (i.e. xn+1 − xn) declines, and the overall price level needs to be compensated less for the
event of a growth shock. Finally, the separation component (fourth panel) is placing downward pressure on prices
as well, since the expected value that each customer expects to obtain after a separation (the object U

B+(n−1)xn−1

n )
exceeds her current value (xn). Both of these are decreasing in size, and thus the net effect depends on the elasticity
of the promised utility xn with respect to size.
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Figure D.2: Numerical Example: Stationary distributions. Comparative statics with matching elasticity (γ). The
diagrams plot the stationary distribution of sellers ({Sn}), active customers (equation (17)), and inactive buyers
(equation (16)).

Let us now compare across different levels of the matching elasticity. According to our intuition above, a higher
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value for γ means that buyers absorb a higher share of the joint surplus. Indeed, this implies that market tightness,
promised utilities and, therefore, the growth rate of sellers, are all higher when rent shares are more favorable to
the customer (see Figure D.1). Sellers implement this with lower prices, and therefore manage to grow larger (see
Figure D.2). Besides changes in levels, we also observe interesting slope effects: when incoming customers extract
larger rent shares, the increase in market tightness is higher for smaller firms, and therefore growth rates are tilted
toward them. This generates relatively faster growth for smaller firms, which accounts for the relative decrease in
the measure of small firms that we see in Figure D.2. Interestingly, these slope effects are implemented through
the price level (pn) rather than the continuation values (xn): as γ increases, the price schedule becomes steeper, but
the promised utility does not.

Figures D.4, D.5, and D.6 below show comparative statics for the entry cost (κ), the separation rate (δc), and the
search cost (c), respectively, with similar intuitions to the ones used above.
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Figure D.3: Numerical Example: Price decomposition. Comparative statics with matching elasticity (γ). The
diagrams plot the different price components of equation (D.5.1).
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Figure D.4: Comparative statics with entry cost (κ).
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Figure D.5: Comparative statics with separation rate (δc).
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Figure D.6: Comparative statics with search cost (c).
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