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1. Introduction

In the literature on returns to education, the use of instrumental variables (IV) is a popular

solution to deal with the endogeneity of education choice. But, this may give misleading answers

when the instrument is invalid. Growing up in a county with a college located in it raises attendance

and has been used as an instrument for schooling. At best, this instrument will pick up the causal

effect of college attendance on the set of agents induced to go to college because they live close to it,

the compliers. One of the requirements for this to be a good instrument is that the distribution of

ability and taste is the same for individuals who grew up close to colleges and those who did not.

However, because agents select where they live based on their preferences, this assumption will not

hold. Indeed, agents’ taste for college is correlated with their parents’ taste, which influenced where

they lived. This makes the college proximity instrument invalid.

Suppose now that we use another instrument that also raises college attendance, say that both

parents live in the household. This instrument may also be invalid: parents who choose to stay

together may be more concerned about their children’s college attendance. Also, family structure

affects a child’s cognitive ability, which influences her educational attainment. In this paper, I

show how to (partially) identify causal parameters using variation from two (potentially) invalid

instruments.

Here is the intuition behind my identification strategy. In my canonical example, the treatment

variable college graduation and the instrument college proximity partition the population into four

unobserved groups, called the types. We distinguish the individuals that go to college regardless

of the presence of a college in their county of residence (always-takers), those who will not go no

matter how close they are to a college (never-takers), people who would not go if they lived close to

a college, but would go if they did not (defiers), and the compliers. Individuals who graduated from

college and lived near a college are either compliers or always-takers. Hence, for individuals who

graduated from college and lived near a college, the identified distribution of earnings is a mixture

of the earnings distributions for compliers and always-takers, respectively. Under my assumptions,

mixture weights depend on the additional instrument, but mixture component distributions do not.

I can then use variation in mixture weights to derive sharp bounds on distributions.

Contribution of the paper. First, I show that with the help of a second (invalid) instrument,

one can derive sharp bounds on the potential outcomes distributions for the compliers. Indeed, I

show that each of these distributions is identified up to a scale parameter that is partially identified.

Therefore, I derive bounds on the local quantile treatment effects (LQTE), the LATE, the average

treatment effect on the treated (ATT), the average treatment effect on the untreated (ATUT), as well

as the average treatment effect (ATE) on the whole population of interest. It is worth pointing out

that if the two invalid instruments are binary, they may help each other in partially identifying the

potential outcomes distributions for their respective compliers. Furthermore, I show that under some
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testable tail restrictions, the potential outcomes distributions are point-identified for the compliers.

Thus, the LATE and the LQTE are point-identified under these restrictions. To the best of my

knowledge, it is the first time point-identification of the LATE is shown with an invalid instrument.

I am not aware of a paper that shows point-identification of the LATE under a different set of

assumptions other than the so-called LATE assumptions. Moreover, my paper is the first to relax

full independence to conditional independence given type.

Second, I show that my results generalize to settings where the LATE monotonicity assumption

does not hold. Relaxing monotonicity only increases the dimensionality of the parameters to be

(partially) identified. This assumption states that there are no defiers. In the return to schooling

example, it means there are no individuals who will not go to college when they live close to a

college, but will go when they live far. While this assumption seems reasonable in this example, it

could be too restrictive in some circumstances.

Third, I extend the model to account for the sample selection problem that arises in the return

to schooling literature and many other settings, since not all individuals are working and the wage

is only observed for those who are working (Heckman, 1979). The difficulty comes from the fact

that the endogenous variable college education affects both the employment status and the wage. I

partially identify the LATE and the LQTE for individuals who are always employed regardless of

their college education and who are induced to go to college by a change in educational institutions.

I also show how to allow for misclassified treatment as the schooling variable could be mismeasured.

Fourth, I show how inference on mixture distributions can be conducted using the intersection

bounds framework of Chernozhukov, Lee and Rosen (2013) or Andrews and Shi (2013). One can

therefore use the stata packages developed by Chernozhukov, Kim, Lee and Rosen (2015) or Andrews,

Kim and Shi (2016) to construct a confidence set on the potential outcomes distributions for the

compliers.

Finally, I illustrate my methodology on data from the National Longitudinal Survey of Young Men

(NLSYM), previously used by Card (1995), to estimate returns to college education using college

proximity as instrument. As in Ginther (2000), I use family structure (presence of both parents

at home at age 14) as a second instrument, and I find that getting a college degree has a positive

effect on the log hourly wage. I find that a college degree increases the average hourly wage of

the compliers by 38–79%, while the two-stage least squares (2SLS) estimate is an 872% increase.

These findings suggest that the college proximity instrument is invalid, but helps provide meaningful

information about the causal effect of college degree on wages.

Related literature. Imbens and Angrist (1994) introduced the concept of LATE, the average

treatment effect for individuals whose treatment status is influenced by a change in an instrument

that satisfies the following so-called LATE assumptions: it is independent of all latent variables

(potential outcomes and potential treatments), and the treatment is monotone in it (also known as
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no-defiers assumption). The set of such individuals is called the compliers in the language of Angrist,

Imbens and Rubin (1996). Under these LATE assumptions, Heckman and Vytlacil (1999, 2001,

2005) introduced in the presence of a continuous instrument the local instrumental variable (LIV)

estimand to identify the marginal treatment effect (MTE), defined as the ATE for the subpopulation

at the margin. Heckman, Tobias and Vytlacil (2001), Carneiro, Heckman and Vytlacil (2010, 2011),

Carneiro and Lee (2009), among many others used the LIV estimator to study the return to college

using multiple instruments like tuition fees and distance to college, which Card (2001) argues are

invalid.

Angrist et al. (1996) discussed the sensitivity of the IV estimand to the LATE assumptions, and

showed that whenever the monotonicity assumption is violated, it is equal to the LATE plus a bias

that depends on the proportion of defiers: the smaller this proportion, the smaller the bias. Later

on, de Chaisemartin (2017) has shown conditions (called the compliers-defiers: CD) that allow the

presence of defiers in the population, and under which the IV estimand identifies the LATE for a

specific subset of the compliers. Indeed, the CD conditions state that there exists a subpopulation

of compliers that has the same proportion of individuals and the same LATE as the defiers.

The above two papers discuss relaxing the LATE monotonicity assumption. This paper studies

the violation of the LATE independence assumption in the sense that the type is confounded.

Moreover, it also discusses relaxing the LATE monotonicity. The paper also complements the work

of Kitagawa (2015), Mourifié and Wan (2017), and Kédagni and Mourifié (2015) as it shows how

one can relax the IV full independence assumption when the statistical tests derived in those papers

reject the instrument validity. Thus, this article also fits in the imperfect instrument literature as it

derives informative bounds on the causal parameters of interest when the instrument is invalid.

Nevo and Rosen (2012) characterized the identified set of the parameters of a single linear regres-

sion model in the presence of an endogenous regressor when the IV condition fails. They assumed

that the IV has the same direction of correlation with the error as the endogenous regressor, but is

less correlated with the error than is this regressor. On the other hand, Manski and Pepper (2000,

2009) derived bounds on the ATE under the monotone IV assumption that the expectation of each

potential outcome variable conditional on the instrument is monotone. See also Altonji, Elder, and

Taber (2005), Altonji, Conley, Elder, and Taber (2011), Conley, Hansen, and Rossi (2012), Hotz,

Mullin, and Sanders (1997). Recently, Kédagni and Mourifié (2016) derived testable implications

of the IV zero-covariance assumption, and showed that whenever an implication is rejected, the

magnitude of its violation can help bound the ATE.

Lee (2009) showed that in the presence of sample selection, even with the aid of a randomized

treatment with full compliance, researchers can only partially identify the average treatment effect for

a subpopulation, the always-employed. Chen and Flores (2015) extended the model by allowing for

noncompliance. They derived bounds on the average treatment effect for a subpopulation that they



TREATMENT EFFECTS IN THE PRESENCE OF CONFOUNDED TYPES 5

called the always-employed compliers. Their papers maintain the unconfounded type assumption.

In this article, I relax this assumption and still partially identify the average treatment effect for the

always-employed compliers.

The identification approach that I develop in this paper relies on the existence of a second in-

strument. The use of a second instrument for identification purpose is not new in the literature.

Mahajan (2006) used an additional instrument, which he called “instrument-like variable (ILV),”

to nonparametrically identify the regression function in models with a misclassified binary regres-

sor. Lewbel (2007) also used a second instrument to nonparametrically identify the ATE when the

treatment is misclassified. Recently, Fricke et al. (2015) have developed a nonparametric method

for evaluating treatment effects in the presence of both treatment endogeneity and attrition/non-

response bias, using two instrumental variables. With the help of a discrete instrument for the

treatment and a continuous instrument for non-response/attrition, they identify the LATE as well

as the ATE under some restrictions. Note that all these papers need valid instruments, while I allow

for invalid ones in my identification strategy. Kolesár et al. (2015) study identification and inference

in the homogeneous effect setup in the presence of many invalid instruments that have direct effects

on the outcome. They instead assume that the direct effects of the instruments are uncorrelated

with their effects on the treatment. In this paper, I consider a different type of invalid instruments

in the heterogeneous effects framework: the instruments are excluded from the outcome equation,

but they are correlated with the first stage unobserved heterogeneity.

Finally, the main driver of my identification strategy is a mixture reformulation of the prob-

lem where mixture weights vary with the instrument, but mixture component distributions do not.

Henry, Kitamura and Salanié (2014), and Jochmans, Henry and Salanié (2017) also consider non-

parametric partial identification of finite mixtures with varying weights and fixed component distri-

butions.

Outline. The remainder of the paper is organized as follows. Section 2 presents the model and

discusses the problem. In Section 3, I discuss the main identification results. Section 4 discusses

some empirical illustrations. Section 5 concludes. Proofs of the main results and extensions are

discussed in the appendix.

2. Analytical Framework

Consider the following triangular system

⎧⎪⎪⎨⎪⎪⎩

Y = g(D,U)
D = h(Z,W,V )

(2.1)

where Y is the outcome variable taking values in Y ⊂ R, D is a binary treatment variable, Z ∈ {0,1}
and W ∈ W ⊂ Rdw (dw is the dimension of W ) are observed variables excluded from the outcome
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equation, U and V are unobserved heterogeneity variables whose dimensions are unrestricted. The

functions g and h are unknown. Instead of assuming that Z is independent of the vector (U,V ) as

is usually the case, I assume that the vector of instruments (Z,W ) is independent of U conditional

on V , while Z and W can be both dependent on V . The goal of this paper is to (partially)

identify traditional causal parameters: LATE, LQTE, ATE, ATT, ATUT. For the sake of clarity, I

drop exogenous covariates from the model. All results derived in the paper hold conditionnally on

covariates.

Here are some economic examples that support the above model.

Example 1 (leading example). Consider the model of optimal schooling choice by individuals

discussed by Card (2001). In this case, the variable Y denotes log earnings (or wage), D an indicator

for college education, and Z a college proximity dummy variable. Card (2001) assumes that the

relationship between the observed earnings and college education D takes the form

Y = U1 +U2D,

where there is heterogeneity in both the level of earnings of people without a college education U1 and

the return to schooling U2. Assume further that the marginal cost of schooling conditional on Z = z,

which subsumes all considerations other than the economic returns to education, is given by

C(z) = V1 + V2(1 − z),

where V2 > 0 almost surely.

Suppose that it is optimal to go to college if the marginal return to college education is greater than

its marginal cost plus an unobserved (dis)taste for schooling V0 (which can be seen as a psychological

cost/benefit), i.e.,

D = 1{U2 > C(Z) + V0} .

This is an extended Roy model with essential heterogeneity, in the terminology of Heckman, Urzua

and Vytlacil (2006), in which agents make their choices based on the gain from treatment. In this

example, U and V in (2.1) are U = (U1, U2) and V = (V0, V1, V2, U2). According to Card (2001),

the exposure to educational institutions or college proximity Z is likely to be correlated with the

unobserved schooling taste V0, which in turn is likely to be correlated with ability factor U2. As I

illustrate in Appendix B.1, ability as measured by IQ appears to be affected by the college proximity

instrument in the NLSYM data. Thus, the independence between college proximity (Z) and the

unobserved heterogeneity (U,V ) is unlikely to hold.

Although the college proximity instrument is controversial, it has been widely used in the literature:

Card (1995), Kane and Rouse (1995), Kling (2001), Currie and Moretti (2003), Cameron and

Taber (2004), and more recently Carneiro and Lee (2009), Carneiro, Heckman and Vytlacil (2011),

among many others.
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In this example, the variable W could be local earnings in the county of residence at age 17

(Cameron and Heckman, 1998; Cameron and Taber, 2004), local unemployment at 17 (Cameron and

Heckman, 1998; Carneiro and Lee, 2009; Carneiro, Heckman and Vytlacil, 2011), local tuition in

public four-year colleges at 17 (Kane and Rouse, 1995; Carneiro and Lee, 2009; Carneiro, Heckman

and Vytlacil, 2011), presence of both parents at home, or school-quality measures such as teacher-to-

student ratio, percent of teachers with advanced degrees, beginning teacher salaries (Ginther, 2000),

etc.

The unobserved heterogeneity (U) in the earnings equation represents post-graduate shocks, and

can then be interpreted as a function of shocks in the schooling decision (V ) and exogenous shocks (ε)
that are unrelated to all variables determining the schooling decision (Z,W,V ). This interpretation

supports the assumption that U is independent of (Z,W ) given V .

Example 2. Suppose that a researcher wants to estimate the effect of a given change in prices (D)
on the demand (Y ) for a differentiated product. The variable U is an unobserved demand shock, Z

a change in prices in the nearest market, W advertising, and V unobserved marginal cost shocks. If

the variable V is a combination of common and idiosyncratic shocks, then prices in other markets

are likely to be correlated with common shocks, implying that Z is potentially correlated with V .

However, after conditioning on common shocks, prices in other markets are likely to be unrelated to

unobserved demand shocks.

Example 3. Suppose that a policy maker is interested in measuring a given change in current

interest rate (D) on investment (Y ). Since interest rate is endogenous, she uses lagged interest rate

as instrument (Z). The variable W could be exchange rate or inflation. It could be the case that

the lagged interest rate is endogenous. For example, lagged interest rate could be correlated with

shocks (V ) in the current interest rate. However, the policy maker can assume that conditional on

those current shocks V , lagged interest rate is independent of investment shocks (U).

Example 4. Suppose that a researcher wants to estimate the causal effect of smoking (D) on

health outcome (Y ) like heart disease, lung cancer, stroke, etc. She observes a network (N) of

connections between agents and she assumes that the health outcome Y is a function of the smoking

decision D, unobserved social characteristics V (which may include local network features, preference

shocks, gregariousness) and some exogenous idiosyncratic health shock ε (genetic characteristics). By

setting U = (V, ε), I have Y = g(D,U). The researcher also assumes that the network N is a function

of the social characteristics V and some exogenous idiosyncratic shock η so that N = ϕ(V, η). Let Z

be the indicator that an individual’s “best” friend smokes and W be his number of friends (degree).

The degree W depends on the agent’s taste for having many friends (gregariousness) and probably

so does her decision to smoke. In this model, the only variable that creates endogeneity is the social

characteristics V . Therefore, conditioning on V would remove endogeneity. Thus, the assumption

that (Z,W ) ⊧ U ∣V is plausible in this example.
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My identification methodology relies on the variation in V induced by W , so that we can mimic

conditioning on V (which is infeasible) using W . However, given that the treatment variable D and

the instrument Z are binary, we can work with a more general version of the structural model (2.1)

known as the potential outcome model (POM):

⎧⎪⎪⎨⎪⎪⎩

Y = Y1D + Y0(1 −D)
D = D1Z +D0(1 −Z)

(2.2)

where Y1 = g(1, U), Y0 = g(0, U), D1 = h(1,W,V ), and D0 = h(0,W,V ). The potential treatments

D0 and D1 divide the population into four unobserved groups, commonly known as the types (as in

Angrist, Imbens and Rubin, 1996) or strata (as in Frangakis and Rubin, 2002, which built on Hirano

et al., 2000). The fact that the instrument Z is correlated with the unobservable V makes the types

endogenous. The relationship between the treatment variable D and the instrument Z describes the

types as follows:

● D = 1 for any Z: always-takers (a)
● D = 0 for any Z: never-takers (n)
● D = Z: compliers (c)
● D = 1 −Z: defiers (df)

Let T denote the random type of an individual with support {a, c, n, df}. For instance, (D0,D1) =
(1,1) means T = a.

Example 1 (continued). In this example, the always-takers are individuals that go to college re-

gardless of the presence of a college in their county of residence at age 17. The compliers are those

who go to college only because of the presence of a college in their county, while the never-takers are

people who will not go no matter how close they are to a college. It is likely that there are no defiers

in this example, that is, people who would not go to college if they lived in an area with a college, but

they would go if they did not (this can be seen if distance to college is a cost as it is in this example).

As I argued above, the type is confounded as Z is correlated with V . In this example, we have:

D1 = 1{U2 > V1 + V0} and D0 = 1{U2 > V1 + V2 + V0}. The always-takers are the set of individuals

for whom Y1 − Y0 > V1 + V2 + V0, the never-takers are those such that Y1 − Y0 ≤ V1 + V0, and the

compliers are those that satisfy V1 + V0 < Y1 − Y0 ≤ V1 + V2 + V0. Therefore, the always-takers can be

interpreted as “high” return people, the never-takers as “low” return ones, and the compliers can be

seen as “marginal” individuals (See Figure 1).

Since the population is partitioned into four types, the independence between the vector (Z,W )
and the potential outcome Yd (d = 0,1) conditional on the types is sufficient to derive my identifica-

tion results. More precisely, I need the following assumption.

Assumption 1 (Conditional independence (CI)). The vector (Z,W ) is independent of Yd given the

type T , i.e., (Z,W ) ⊧ Yd ∣ T , for both d = 0 and d = 1.
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CompliersNever-takers Always-takers

V1+V0 V1+V2+V0

Y1‐Y0
D=0 Dϵ{0,1} D=1

Figure 1. Types.

This is the main assumption in this paper. The following lemma shows that the assump-

tion (Z,W ) ⊧ U ∣V on the structural equation (2.1) is a sufficient condition for Assumption 1 to

hold.

Lemma 1. In the structural model (2.1), the following implication holds:

(Z,W ) ⊧ U ∣ V Ô⇒ (Z,W ) ⊧ Yd ∣ T.

For the rest of the paper, I consider the potential outcome model described in Equation (2.2).

3. Identification results

3.1. Main result. In this subsection, I develop an identification strategy when the type is con-

founded, but the monotonicity assumption below (no defiers) still holds. I relax the monotonicity

assumption in Appendix C.1. I show below that with the help of a second instrument (the variable I

called W , which is also potentially invalid), one can derive sharp bounds on the distributions of the

potential outcomes Y0 and Y1 for compliers. I then derive sharp bounds on the LATE, the LQTE,

the ATT, the ATUT, as well as the ATE.

Assumption 2 (Monotonicity (MON)). There are no defiers, i.e., T ∈ {a,n, c}.

Notation 1. Let (Y,BY) be the measurable space for the outcome Y , Ψ the space of all probability

distributions on (Y,BY). Denote FY (. ∣ X = x) the conditional distribution of Y given X = x, and

Fdt(.) ≡ FYd
(. ∣ T = t), d ∈ {0,1}, t ∈ {a, c, df, n}. Let F (y∣d, z,w) be the cumulative distribution

function (cdf) of Y conditional on (D = d,Z = z,W = w), and F (y∣d, z) that of Y conditional on

(D = d,Z = z). Denote f(y∣d, z,w) and f(y∣d, z) the density or probability mass functions of Y

conditional on (D = d,Z = z,W = w) and (D = d,Z = z), respectively, depending on whether Y is

continuous, discrete or mixed. Define α1(w) ≡ P(T = c ∣ D = 1, Z = 1,W = w), α0(w) ≡ P(T = c ∣ D =
0, Z = 0,W = w).

My strategy in order to bound relevant parameters will be to start from sharp bounds on potential

outcomes distributions. I observe the data (Y,D,Z,W ) and want to identify the potential outcome

distributions for the compliers, i.e., F1c and F0c. The main idea of my identification strategy is
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the following: I first show that under CI (Assumption 1), the identified conditional distribution

F (y∣1,1,w) is a mixture of two distributions of interest F1c and F1a, where only the weights depend

on w, not the component distributions. Afterwards, I exploit variations in w to characterize the

distributions F1c and F1a as functions of two parameters that are partially identified. Finally, I use

the fact F1a is point-identified under MON (Assumption 2) to pin down one of the two parameters.

Thus, F1c is identified up to a scale parameter that is partially identified. A similar reasoning using

the conditional distribution F (y∣0,0,w) leads to partial identification of F0c.

Before stating the results, I now give a heuristic derivation following the structure outlined above.

Suppose that CI holds. Then, I have:

F (y∣1,1,w) = P(T = c∣D = 1, Z = 1,W = w) ∗ FY1(y∣T = c,Z = 1,W = w)

+P(T = a∣D = 1, Z = 1,W = w) ∗ FY1(y∣T = a,Z = 1,W = w),

= P(T = c∣D = 1, Z = 1,W = w) ∗ F1c(y)

+P(T = a∣D = 1, Z = 1,W = w) ∗ F1a(y),

where the first equality follows from the law of iterated expectations using the fact that P(T = n∣D =
1, Z = 1,W = w) = 0 and P(T = df ∣D = 1, Z = 1,W = w) = 0, and the second holds under CI. Similar

expressions hold for F (y∣0,0,w), F (y∣0,1,w), and F (y∣1,0,w). Hence, I have four mixtures with

two components each.

In addition, assume that MON holds. Then any individual for whom D = 1 and Z = 0 is an

always-taker, and anyone for whom D = 0 and Z = 1 is a never-taker. Therefore, under CI the

distribution of Y1 for the always-takers is point-identified by the distribution of observed earnings

for the subgroup (D = 1, Z = 0), i.e., F1a(y) = F (y∣1,0), and that of Y0 for the never-takers is

point-identified by the distribution of observed earnings for the subgroup (D = 0, Z = 1), i.e.,

F0n(y) = F (y∣0,1).

The remaining two mixtures are

F (y∣1,1,w) = α1(w)F1c(y) + (1 − α1(w))F1a(y), (3.1)

F (y∣0,0,w) = α0(w)F0c(y) + (1 − α0(w))F0n(y), (3.2)

where α1(w) and α0(w) defined in Notation 1 are mixture weights. Let me consider Equation (3.1)

first. Equation (3.2) is treated analogously. This is a two-component mixture model in which the

mixture distributions F1c(y) and F1a(y) do not depend on w, while only the weight α1(w) does.

If for some w̃ in the support W, α1(w̃) = 1, then F1c(y) is point-identified: F1c(y) = F (y∣1,1, w̃).
This identification strategy is known as identification at infinity. Now, I am going to use a differ-

ent approach, which does not rely on a large support assumption. I use variation in the second

instrument W as follows:

F (y∣1,1,w) − F (y∣1,1,w′) = [α1(w) − α1(w′)] [F1c(y) − F1a(y)] , (3.3)
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for all w, w′ ∈ W, and y ∈ Y. I assume that the instrument W affects the treatment variable D so

that there exist w1
1 and w1

0 in the support W such that α1(w1
1) ≠ α1(w1

0). In other words, W affects

the proportion of compliers within the subgroup defined by D = 1 and Z = 1.

Notation 2. Define θ1 ≡ 1/(α1(w1
1) − α1(w1

0)), η1 ≡ α1(w1
0)/(α1(w1

1) − α1(w1
0)), and Λ1(w) ≡

(α1(w) − α1(w1
0))/(α1(w1

1) − α1(w1
0)); θ0, η0 and Λ0 are defined similarly.

Equations (3.1) and (3.3) imply that F1a and F1c are identified up to the two parameters θ1

and η1:

F1a(y) = F (y∣1,1,w1
0) − η1 [F (y∣1,1,w1

1) − F (y∣1,1,w1
0)] ,

F1c(y) = F (y∣1,1,w1
0) + (θ1 − η1) [F (y∣1,1,w1

1) − F (y∣1,1,w1
0)] , (3.4)

α1(w) = 1

θ1
(η1 +Λ1(w)) .

At this point, I have shown that the potential outcomes distributions are nonparametrically identified

up to scalars θ1 and η1. So, from now on, I will be interested in identifying these two parameters. I

know by definition that θ1 and η1 have the same sign and θ1 belongs to (−∞,−1] ∪ [1,+∞).

If F (y∣1,1,w1
1) = F (y∣1,1,w1

0) for all y, then the distributions F1c and F1a are identical and

therefore point-identified: F1c(y) = F1a(y) = F (y∣1,1). Consider now the case where for some

y1
1 ∈ Y, F (y1

1 ∣1,1,w1
1) ≠ F (y1

1 ∣1,1,w1
0). Then Λ1(w) is identified as follows:

Λ1(w) = F (y1
1 ∣1,1,w) − F (y1

1 ∣1,1,w1
0)

F (y1
1 ∣1,1,w1

1) − F (y1
1 ∣1,1,w1

0)
.

Let me use the fact that F1a is point-identified. Then, η1 is identified and

F1c(y) = F (y∣1,0) + θ1 [F (y∣1,1,w1
1) − F (y∣1,1,w1

0)] .

It is easy to see that the right-hand side of the above equality is right-continuous, has 0 as limit at

−∞ and 1 as limit at ∞. The only constraint that remains for this right-hand side to be a cdf is the

following monotonicity condition:

f(y∣1,0) + θ1 [f(y∣1,1,w1
1) − f(y∣1,1,w1

0)] ≥ 0, (3.5)

where f(y∣d, z) and f(y∣d, z,w) are defined in Notation 1. Also, because the weight function α1(w)
is nonnegative and less than 1, we must have

0 ≤ 1

θ1
(η1 +Λ1(w)) ≤ 1 (3.6)

for all w ∈ W. At this point, all quantities in (3.4) are point identified except θ1 and inequalities (3.5)

and (3.6) characterize the identified set for θ1, as stated below and formally proven in Appendix A.2.

Now, I am going to summarize the above discussion in a theorem. I state the following rank and

relevance assumptions:
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Assumption 3.a (Relevance (REL)). For d ∈ {0,1}, there exist wd0 and wd1 in the support W such

that αd(wd1) ≠ αd(wd0).

Assumption 3.b (Rank (RAN)). For d ∈ {0,1}, there exist wd0 and wd1 in the support W and ydd

in the support Y such that F (ydd ∣d, d,wd0) ≠ F (ydd ∣d, d,wd1).

Under the CI assumption, the rank condition RAN (Assumption 3.b) implies the relevance as-

sumption REL (Assumption 3.a). RAN is a testable sufficient condition for REL.

Theorem 1. Under CI and MON, the distribution of the potential outcome Y1 is point-identified

for the always-takers, while that of Y0 is point-identified for the never-takers: F1a(y) = F (y∣1,0)
and F0n(y) = F (y∣0,1).

Under CI, MON and REL, the distribution of the potential outcome Yd for the compliers satisfies

the following: Fdc(y) = F (y∣d,1 − d) + θd [F (y∣d, d,wd1) − F (y∣d, d,wd0)], where θd is set-identified:

θd ∈ Θd =
⎧⎪⎪⎨⎪⎪⎩

[θd` , θdu] if RAN holds

(−∞,−1] ∪ [1,+∞) otherwise,

with θd` and θdu defined in Notation 3 in Appendix A.2. The set Θd is the (sharp) identified set.

The theorem shows nonparametric partial identification of potential outcome distributions for

compliers, where the latter are given in closed form as a scalar parameter family. As you can see

from the closed form expression, Fdc is fixed once the value of θd is.

Comments.

(1) If assumptions CI, MON and REL hold and the RAN assumption does not, then the

distribution of the potential outcome Yd is point-identified for compliers: Fdc(y) = F (y∣d, d),
and the following must hold: F (y∣d, d) = F (y∣d,1 − d).

(2) If either Θ1 or Θ0 is empty, then at least one of the assumptions CI, MON and REL is

violated.

(3) If the type is unconfounded conditional on W , i.e., Z ⊧ T ∣W , the weight α1(w) is identified,

and so is the parameter θ1 since θ1 = [α1(w1
1) − α1(w1

0)]
−1

. Therefore, the distribution

F1c(y) is also identified. In this case, one can test this conditional unconfoundedness type

assumption by checking whether the point-identified θ1 lies within the identified set Θ1.

More generally, the unconfoundedness assumption Z ⊧ T is testable. Indeed, under this

assumption combined with CI, MON and REL, the distributions F1c and F0c are point-

identified. Therefore, these point-identified distributions must lie within their respective

identified sets.
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I transform Θd into an equivalent moment inequality model. It is more conducive to inference.

For the sake of clarity of exposition, suppose first that the second instrument W is discrete. Define

c0 = 1/E[D(1−Z)], c1 = 1/E[DZ1{W = w1
1}], and c2 = 1/E[DZ1{W = w1

0}]. The following corollary

holds.

Corollary 1. Under CI, MON and RAN, the identified set Θ1 is equal to the set of θ1 satisfying:

⎧⎪⎪⎨⎪⎪⎩

infy∈Y E[m1
0(θ1,D,Z,W )∣Y = y] ≥ 0

infw∈W E[m1
1(θ1, Y )∣D = 1, Z = 1,W = w] ≥ 0

(3.7)

where m1
0(θ1,D,Z,W ) = c0D(1 −Z) + θ1 (c1DZ1{W = w1

1} − c2DZ1{W = w1
0}) and

m1
1(θ1, Y ) =

⎡⎢⎢⎢⎢⎢⎢⎣

sign(θ1) (θ1 − 1{Y ≤y11}−E[1{Y ≤y
1
1}∣D=1,Z=0]

E[1{Y ≤y11}∣D=1,Z=1,W=w1
1]−E[1{Y ≤y11}∣D=1,Z=1,W=w1

0]
)

sign(θ1) 1{Y ≤y11}−E[1{Y ≤y
1
1}∣D=1,Z=0]

E[1{Y ≤y11}∣D=1,Z=1,W=w1
1]−E[1{Y ≤y11}∣D=1,Z=1,W=w1

0]

⎤⎥⎥⎥⎥⎥⎥⎦

,

and symmetrically for Θ0.

Comments. When W is continuous, the event {W = w1
`} (` = 0,1) in the above derivation could

be replaced by the event {W ∈ A1
`}, where A1

` is any mesurable set such that F (y1
1 ∣1,1,A1

0) −
F (y1

1 ∣1,1,A1
1) ≠ 0 and P(W ∈ A1

`) > 0.

Inference can be performed using the intersection bounds framework of Chernozhukov, Lee and

Rosen (2013, CLR). One can use the stata packages of Chernozhukov, Kim, Lee and Rosen (2015,

CKLR) or Andrews, Kim and Shi (2016) built on Andrews and Shi (2013).

Throughout the rest of the paper, I use the following example to illustrate my results.

Numerical illustration. I specify the joint distribution p(z,w) of the instruments Z and W (both

binary),

p(1,1) = 0.3, p(1,0) = 0.2, p(0,1) = 0.2,

the conditional distribution of the types p(t∣z,w),
p(a∣1,1) = 0.2, p(c∣1,1) = 0.5, p(n∣1,1) = 0.3,

p(a∣1,0) = 0.1, p(c∣1,0) = 0.4, p(n∣1,0) = 0.5,

p(a∣0,1) = 0.4, p(c∣0,1) = 0.2, p(n∣0,1) = 0.4,

p(a∣0,0) = 0.35, p(c∣0,0) = 0.45, p(n∣0,0) = 0.20,

and the potential outcomes distributions conditional on the types and the instruments Fd(y∣t, z,w)
over the support Y = [0,∞),

F1(y∣a, z,w) = y
y+1

, F1(y∣c, z,w) = y2

y2+1
, F1(y∣n, z,w) = y3

y3+1
,

F0(y∣a, z,w) = y2

y2+1
, F0(y∣c, z,w) = y3

y3+1
, F0(y∣n, z,w) = y3/2

y3/2+1
.

More details about this data generating process (DGP) are shown in Appendix A.9.
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It can be shown that the type is confounded. For instance, P(T = c∣Z = 1) ≠ P(T = c∣Z = 0). It is

easy to see that CI holds. I have an uncountable number of distributions F1c and F0c. I discretize

the identified sets Θ1 and Θ0. Figure 2 displays bounds on distributions of the potential outcomes

Y0 and Y1 for compliers. As you can see, even with binary instruments, the bounds on the compliers’

potential outcomes distributions are tight.

 

 

Figure 2. Bounds on the distributions F1c and F0c.

I obtain nontrivial bounds on expectations even without bounded support assumption on the

outcome Y . Indeed, under RAN, the identified set Θd for the parameter θd is compact, and the

distribution Fdc(y) is linear in θd, hence continuous in θd. Now, I am going to derive bounds on

other commonly used parameters of interest in the treatment effect literature.

3.2. Sharp bounds on LATE and LQTE. In this subsection, I derive bounds on the local average

treatment effect, LATE = E[Y1 − Y0∣T = c], and the local quantile treatment effects for compliers,

LQTE(p) = F −1
1c (p)−F −1

0c (p), for p ∈ (0,1), where F −1
dc denotes the generalized inverse of the cdf Fdc.

Before I proceed, I explain why the standard IV can no longer be interpreted as the LATE in the

framework of this paper.

Under the LATE assumptions (unconfounded type: Z ⊧ T , conditional independence: Z ⊧ Yd∣T ,

and monotonicity: no defiers), the distributions of the potential outcomes Y0 and Y1 are point-

identified for compliers, and LATE is identified and equal to the standard IV estimand αIV .
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When the type is confounded, the IV estimand may become a biased estimator for LATE (even

asymptotically). LATE retains a causal interpretation while the IV estimand αIV does not. See

Appendix A.10 for details.

I now show the bounds that I derive for the LATE and the LQTE. As in the previous subsection,

Θd, d ∈ {0,1}, is the sharp identified set for θd. Each parameter θd in Θd uniquely characterizes a

distribution function in the identified set for Fdc, which I denote F θ
d

dc . I was interested in identifying

a distribution function, which is an infinite-dimensional object. Now, I turn this into a scalar

parameter identification problem. This helps derive closed-form expressions for the bounds on the

LATE and the LQTE. Let µθ
d

dc denote the expectation of the distribution F θ
d

dc . Then the following

proposition holds.

Proposition 1. Under CI, MON and REL, we have the following bounds for the average and

quantile treatment effects for compliers:

inf
θ1∈Θ1

µθ
1

1c − sup
θ0∈Θ0

µθ
0

0c ≤ E [Y1 − Y0∣T = c] ≤ sup
θ1∈Θ1

µθ
1

1c − inf
θ0∈Θ0

µθ
0

0c ,

and

inf
θ1∈Θ1

(F θ
1

1c )
−1

(p) − sup
θ0∈Θ0

(F θ
0

0c )
−1

(p) ≤ (F −1
1c − F −1

0c ) (p) ≤ sup
θ1∈Θ1

(F θ
1

1c )
−1

(p) − inf
θ0∈Θ0

(F θ
0

0c )
−1

(p),

for all p ∈ (0,1), where (F θddc )
−1

denotes the generalized inverse of the cdf F θ
d

dc (d = 0,1), and Θd is

defined in Theorem 1.

These bounds are sharp.

Comments. Proposition 1 provides bounds on the average treatment effect for the subpopulation

whose treatment status is affected by the instrument Z, namely the compliers. It is not always a

parameter of interest for a policy maker. Below, I explain that the LATE may be of interest in

Example 1.

Example 1 (continued). Suppose that a policy maker notices that the average income is low in

some region of the country, and thinks that one possible reason could be the fact that most people

in this region did not get a college degree. Then, she wants to build a campus in this region to

encourage people to go to college. In this case, she might be interested in the effect of college degree

on the earnings of individuals who obtained a degree only because they lived close to college (i.e., the

LATE).

Numerical illustration (continued). In the numerical example, the identified set for the LATE

is [0.18,0.92]. The IV estimand is -1.82 (negative), while the actual LATE is 0.38 (positive). As

can be seen, the IV estimand does not belong to the identified set of the LATE, meaning the LATE

assumptions are violated and that the IV estimand has no causal interpretation. A researcher that

ignores the fact that the type is confounded would make the wrong inference that the causal effect
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is negative while it is, in fact, positive. An analyst that takes this information into account and uses

my methodology will accurately infer the direction of the effect of the treatment on the outcome (as

the lower bound is positive).

Now, I change the conditional probabilities of the type T so that it is unconfounded given W :

p(a∣1,1) = 0.2, p(c∣1,1) = 0.5, p(n∣1,1) = 0.3,

p(a∣1,0) = 0.1, p(c∣1,0) = 0.4, p(n∣1,0) = 0.5,

p(a∣0,1) = 0.2, p(c∣0,1) = 0.5, p(n∣0,1) = 0.3,

p(a∣0,0) = 0.1, p(c∣0,0) = 0.4, p(n∣0,0) = 0.5.

The IV estimand is now 0.38, which is exactly the LATE. The sharp bounds on the LATE are

[0.21,1.01]. The sign of the causal effect is still identified in this case using my identification

approach, which does not use the information that type is unconfounded.

3.3. Sharp bounds on the ATT, the ATUT and the ATE. In this section, I show that the

counterfactual distributions FY0(y∣D = 1,W = w) and FY1(y∣D = 0,W = w) are partially identified.

From there, I derive sharp bounds on the ATT, the ATUT, and the ATE conditional on W . I

summarize the results in the following proposition.

Proposition 2. Under CI, MON and REL, the identified sets for the counterfactual distributions

are defined by:

FY0(y∣D = 1,W = w) = [P(Z = 0∣D = 1,W = w) + P(Z = 1∣D = 1,W = w)(1 − α1(w))]ψ0(y)

+ P(Z = 1∣D = 1,W = w)α1(w)F θ00c (y),

FY1(y∣D = 0,W = w) = [P(Z = 1∣D = 0,W = w) + P(Z = 0∣D = 0,W = w)α0(w)]ψ1(y)

+ P(Z = 0∣D = 0,W = w)(1 − α0(w))F θ11c (y),

where ψd ∈ Ψ, α1(w) is defined in Equation (3.4), α0(w) is defined similarly, and θd ∈ Θd, d = 0,1.

These bounds are sharp and bounds on the conditional potential outcomes distributions of Y0

and Y1 are obtained trivially.

Bounds on FY1(y) and FY0(y) can be obtained by integrating out bounds on FY1(y∣W = w)
and FY0(y∣W = w) with respect to the distribution of W , respectively.

Unlike the case of LATE, we now need bounds on the support of Y for nontrivial bounds on ATT ,

ATUT , and ATE. Denote Y = [y`, yu] the support of the outcome Y , where y` and yu are lower and

upper bounds of the support, respectively. Note that y` and yu could be infinite. I partially identify

the average treatment effect on the treated ATT (w) = E[Y ∣D = 1,W = w] −E[Y0∣D = 1,W = w], the

average treatment effect on the untreated ATUT (w) = E[Y1∣D = 0,W = w] − E[Y ∣D = 0,W = w],
and the average treatment effect ATE(w) = P(D = 1∣W = w)ATT (w) + P(D = 0∣W = w)ATUT (w).
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On can easily obtain bounds on ATT and ATUT by integrating out the bounds on ATT (w) and

ATUT (w) with respect to the distribution of W . Bounds on ATE are then obtained from those on

ATT and ATUT . The following proposition holds.

Corollary 2. Under CI, MON and REL, the ATT, the identified sets for the ATUT and the ATE

are defined by:

ATT (w) = E[Y ∣D = 1,W = w] − [P(Z = 0∣D = 1,W = w) + P(Z = 1∣D = 1,W = w)(1 − α1(w))] δ1

−P(Z = 1∣D = 1,W = w)α1(w)µθ00c ,

ATUT (w) = [P(Z = 1∣D = 0,W = w) + P(Z = 0∣D = 0,W = w)α0(w)] δ0

+P(Z = 0∣D = 0,W = w)(1 − α0(w))µθ11c −E[Y ∣D = 0,W = w],

where θd ∈ Θd and δd ∈ [y`, yu] , d = 0,1.

These bounds are sharp.

3.4. Point-identification under tail restrictions. So far, I have shown under assumptions CI,

MON and REL that each of the distributions F0c and F1c is identified up to a parameter for which I

derived sharp bounds. I need one more constraint to point-identify this parameter. I show that under

the following tail restrictions, the potential outcomes distributions F0c and F1c for the compliers are

point-identified.

Assumption 3 (Tail restrictions (TR)). limy↓y`
F0c(y)
F0n(y)

= 0 and limy↑yu
1−F1c(y)
1−F1a(y)

= 0, where y` and

yu are lower and upper bounds of the support Y, repectively.

Example 1 (continued). In this example, an interpretation of the assumption limy↑yu
1−F1c(y)
1−F1a(y)

= 0

is that among people who went to college, the high earners among the always-takers (high return

individuals) earn an order of magnitude more than high earners among the compliers (marginal

individuals).

Numerical illustration (continued). The DGP in the numerical illustration satisfies this as-

sumption. For instance, limy↑∞
1−F1c(y)
1−F1a(y)

= limy↑∞
f1c(y)
f1a(y)

= 0: f1c goes to zero faster than f1a as seen

in Figure 3.

The first constraint imposed by Assumption TR (Assumption 3) fixes θ0 and the second pins

down θ1. The following proposition summarizes these results.

Theorem 2. Under CI, MON, REL and TR, the distributions F1c(y) and F0c(y) are point-identified

as follows:

F0c(y) = F (y∣0,0,w0
0) + 1

1−ζ0(w0
1,w

1
0)

[F (y∣0,0,w0
1) − F (y∣0,0,w0

0)] ,

F1c(y) = F (y∣1,1,w1
0) + 1

1−π1(w1
1,w

1
0)

[F (y∣1,1,w1
1) − F (y∣1,1,w1

0)] ,
(3.8)
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where

ζ0(w0
1,w

0
0) = lim

y↓y`

F (y∣0,0,w0
1)

F (y∣0,0,w0
0)
, and π1(w1

1,w
1
0) = lim

y↑yu

1 − F (y∣1,1,w1
1)

1 − F (y∣1,1,w1
0)
.

Comments. From Theorem 2, the LATE and the LQTE are point-identified under the additional

TR assumption. Note that the monotonicity assumption is not necessary for this theorem to hold.

However, the interpretation I give for the TR assumption makes more sense under this monotonicity

assumption.

Assumption TR is testable under the maintained assumptions CI, MON and REL. Indeed, under

these four assumptions, the results of Theorem 2 as well as those of Theorem 1 hold. Hence, the

parameters θ1 and θ0 are point-identified, which should lie within the identified set Θ0 and Θ1

defined in Theorem 1.

3.4.1. Bounds on ATT, ATUT and ATE under conditional monotone treatment response. Under

Assumption TR, the ATT, the ATUT and the ATE are still partially identified. The bounds on

these parameters are the same as those derived in Corollary 2, except that θd and αd(w) (d = 0,1)
are point-identified. These bounds could still be wide depending on the application. I discuss below

some assumptions under which the bounds can be tightened.

Assumption 4 (CMTR). For each type t ∈ {a, c, n}, E[Y1∣T = t] ≥ E[Y0∣T = t].

This assumption is identical to Chen, Flores and Flores-Lagunes’s (2012) monotonicity in D of

average outcomes of types, except that I assume here that the direction of the monotonicity is

known. It is a weak version of Manski’s (1997) monotone treatment response (MTR): Y1 ≥ Y0. For
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instance, in the leading example 1, if V1 + V0 > 0, the Manski (1997) MTR is a sufficient condition

for the CMTR assumption to hold. In this example, the CMTR assumption is equivalent to saying

that the average gross return to college is positive for each type.

Under TR, α1(w), α0(w), F0c and F1c are identified, as are θ1 and θ0. Assumption CMTR

implies

E[Y0∣T = a] ≤ E[Y1∣T = a] = E[Y ∣D = 1, Z = 0],
E[Y1∣T = n] ≥ E[Y0∣T = n] = E[Y ∣D = 0, Z = 1].

Therefore, the following proposition holds:

Proposition 3. Under CI, MON, REL, TR and CMTR, tighter bounds on ATT and ATUT are ob-

tained from nontrivial bounds on the parameters δ1 and δ0 in Corollary 2: δ1 ∈ [y`,E[Y ∣D = 1, Z = 0]]
and δ0 ∈ [E[Y ∣D = 0, Z = 1], yu].

The proof of this proposition is straightforward from Proposition 2 and is therefore omitted. An

implication of the CMTR assumption is E[F0c] ≤ E[F1c], which is testable in this case since F0c and

F1c are identified. The CMTR assumption tightens the bounds on ATT and ATUT by reducing

the upper bound for δ1 and increasing the lower bound for δ0.

3.4.2. Bounds on ATT, ATUT and ATE under conditional monotone treatment selection. Another

type of additional restriction introduced by Manski and Pepper (2000) is the monotone treatment

selection (MTS). It states that E[Yd∣D = 1] ≥ E[Yd∣D = 0]. Notice that {D = 1} = {a, c} and

{D = 0} = {n, c}. Instead of assuming MTS over the sets {a, c} and {n, c}, I assume it only over the

sets a and n.

Assumption 5 (CMTS). E[Yd∣T = a] ≥ E[Yd∣T = n] ∀ d ∈ {0,1}.

This assumption has also been considered in Chen et al. (2012), which they called a mean

dominance assumption. In the leading example 1, this assumption is equivalent to saying that the

average earnings level of people with the highest gross returns is no less than that of people with

the lowest gross returns.

Assumptions CI, MON and CMTS imply

E[Y1∣T = n] ≤ E[Y1∣T = a] = E[Y ∣D = 1, Z = 0],
E[Y0∣T = a] ≥ E[Y0∣T = n] = E[Y ∣D = 0, Z = 1].

The following proposition holds.

Proposition 4. Under CI, MON, REL, TR and CMTS, tighter bounds on ATT and ATUT are ob-

tained from nontrivial bounds on the parameters δ1 and δ0 in Corollary 2: δ1 ∈ [E[Y ∣D = 0, Z = 1], yu]
and δ0 ∈ [y`,E[Y ∣D = 1, Z = 0]].
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The CMTS assumption tightens the bounds on ATT and ATUT by increasing the lower bound

for δ1 and reducing the upper bound for δ0.

Remark 1. The CMTR and CMTS assumptions together imply tighter bounds on δ1 and δ0: δ1, δ0 ∈
[E[Y ∣D = 0, Z = 1],E[Y ∣D = 1, Z = 0]].

4. Empirical illustration: Returns to college

4.1. Data. In this application, I use Card’s (1995) data set. The data are drawn from the NLSYM.

The Young Men’s cohort includes 5,225 men who were ages 14-24 when first interviewed in 1966,

with follow-up surveys through 1981. Due to sample attrition, Card (1995) used labor market

information from the 1976 interview. The 1976 sample represents 71 percent of the original sample

and has the advantage that all respondents were directly asked their educational attainment during

the interview.

The outcome variable Y is the log hourly wage (lwage) while the treatment variable D is the

indicator that the individual has a four-year college degree (college). The presence of a four-year

college in the county of residence (nearc4) is the instrument Z and the family structure: presence

of both parents at home at age 14 (momdad14) is the instrument W . The latter instrument has

been used by Ginther (2000). The author has argued that this variable lowers the cost of schooling

because two-parent families usually have higher incomes than single parent families. However, when

I test the validity of the LATE assumptions for this instrument using Mourifié and Wan (2017), I

find rejection of the assumptions. Kitagawa (2015) and Mourifié and Wan (2017) have rejected the

LATE assumptions for the college proximity instrument. In this sense, both college proximity and

presence of both parents at home are invalid instruments. The descriptive statistics are summarized

in Table 1 below.

Table 1. Summary Statistics

Total

Observations 3,010

lwage 6.2618 (0.4438)
college 0.2714 (0.4448)
nearc4 0.6821 (0.4658)
momdad14 0.7894 (0.4078)
age 28.1196 (3.1370)
black 0.2336 (0.4232)

Average and standard deviation (in parentheses)

College proximity reduces the marginal cost of schooling (see Example 1) and therefore increases

the likelihood of getting a college degree. Likewise, the presence of both parents at home increases
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the taste for schooling and thus the likelihood of going to college. Below, I run two regressions (linear

probability and logit) of the college degree variable on the instruments college proximity and the

presence of both parents at home to check these implications. It turns out that both instruments are

positively associated with the probability of obtaining a college degree (see Table 2). The association

seems stronger for the presence of both parents at home.

Table 2. College degree, college proximity and both parents at home

college Linear probability Logit

nearc4 0.0685∗∗∗ 0.3670∗∗∗

(0.0172) (0.0924)
momdad14 0.1700∗∗∗ 1.0298∗∗∗

(0.0196) (0.1239)

n 3010 3010

Standard errors (in parentheses); *** stands for 1% significant.

4.2. Empirical bounds for the LATE. For simplicity, I fix w0
0 = 0 = w1

0, and w0
1 = 1 = w1

1. I

implement the confidence set for the parameters θ1 and θ0 using the clrbound command of CKLR.

Afterwards, I construct confidence sets for the expectations E[Y1∣T = c], E[Y0∣T = c] and then for the

LATE using bounds on the densities f1c and f0c, which are generated by the clrbound command. I

assume that the sample {(Yi,Di, Zi,Wi)}ni=1 is i.i.d., and I use the estimators ĉ0 = 1/∑ni=1Di(1−Zi),
ĉ1 = 1/∑ni=1DiZi1{Wi = w1

1}, and ĉ2 = 1/∑ni=1DiZi1{Wi = w1
0} in place of c0 = 1/E[D(1 − Z)],

c1 = 1/E[DZ1{W = w1
1}], and c2 = 1/E[DZ1{W = w1

0}] to make the CLR inferential procedure

feasible. The validity of this plug-in approach within the CLR method has been shown by Mourifié

and Wan (2017).

Implementation. For each candidate θ1 in [−M,−1] or [1,M], where M is arbitrarily large, check

if it belongs to the identified set Θ1 using the clrbound command to test the moment inequality

(3.7) in Corollary 1. I know that θ1 has the same sign as η1, which is identified. Hence, the sign of

the empirical analog of η1 helps identify the sign of θ1. The set Θ1 is convex. From the clrbound

command, I obtain the estimate m̂1
0(y; θ1) of E[m1

0(θ1,D,Z,W )∣Y = y], its standard error ŝ1
0(y; θ1)

and the critical value k0.95. From there, I get the estimate of the density f1c:

f̂0.95
1c (y; θ1) = [m̂1

0(y; θ1) + k0.95ŝ
1
0(y; θ1)] f̂(y),

where f̂(y) = 1
nh ∑

n
i=1K(y−Yi

h
), K(u) = 3

4
√

5
(1 − 1

5
u2)1{∣u∣ ≤

√
5}, h = n−1/5 [0.9 min(σY , Q3−Q1

1.349
)],

σY , Q1, Q3 are empirical standard deviation, first and third quartiles of Y , respectively.

Table 3 shows that the 2SLS estimate is 2.27 log points (i.e., 871.53% average increase in hourly

wages) and lies outside the confidence set of the LATE, meaning that it cannot be interpreted as a

causal effect of college degree on wages. This is also evidence for rejection of the assumption that



22 TREATMENT EFFECTS IN THE PRESENCE OF CONFOUNDED TYPES

college proximity is independent of the type. As can be seen, the effect of college degree on the log

wage is positive for the compliers and ranges from 0.32 to 0.58. This means that the effect of college

degree on wages varies between 37.8% and 79.0% for people who obtained the degree only because

they lived in a county that had a four-year college. Results for the case where the treatment group

Table 3. Confidence sets for parameters

Parameters Estimates 95% conf. LB 95% conf. UB

θ1 1 2.3

θ0 -8.4 -1
E[Y1∣T = c] 6.4016 6.4248
E[Y0∣T = c] 5.8425 6.0813
LATE 0.3204 0.5824
2SLS 2.2737∗∗∗ 1.1463 3.4012

(0.5750)
OLS 0.2282∗∗∗ 0.1935 0.2630

(0.0177)

Standard errors (in parentheses); *** stands for 1% significant;

conf.: confidence; LB: lower bound; UB: upper bound.

is the indicator that the individual has some college education (at least 13 years of education) while

the control group is the indicator that she is a high school graduate (12 years of education) are

shown in Appendix B.2.2.

Note that the 95% confidence set for the LATE based on the instrument presence of both parents

at home is [0.39,0.65] (i.e., 47.7–91.6% increase) and the 2SLS estimate is 0.89 (with standard error

0.14). In this case, the 2SLS estimate still lies outside the confidence bounds for the LATE, meaning

that it does not have a causal interpretation either. The two confidence sets for the two LATEs

overlap, suggesting that without further information we cannot reject the hypothesis that the effect

of college degree on earnings is homogeneous across individuals.

Adding controls. I control for age and race, and it turns out that the effect does not seem different

for black and non-black people (see Table 4). However, the minimum effect of college degree on

wages is higher for black compliers (0.21 log points vs 0.10). I compute the LATE for four groups of

age and race: (black=1, age ≤ 28), (black=1, age ≤ 28), (black=0, age > 28) and (black=1, age > 28).

The bounds cross for the group (black=1, age ≥ 28), suggesting that the identifying assumptions

are rejected for this group. Thus, adding covariates may invalidate the identifying assumptions.

The bounds for the group (black=1, age ≤ 28) are so tight that the upper bound is less than the

lower bound of the group (black=0, age ≤ 28). This suggests that the return is higher for nonblack

compliers in the subpopulation of individuals aged less than 28.
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Table 4. Confidence sets for LATE

Parameters 95% conf. LB 95% conf. UB

black=0 0.0955 0.3465
black=1 0.2130 0.3957
black=0, age ≤ 28 0.0715 0.2240
black=1, age ≤ 28 0.0586 0.0589
black=0, age > 28 0.1371 0.3089
black=1, age > 28 empty

conf.: confidence; LB: lower bound; UB: upper bound.

4.3. Point-identified estimates under tail restrictions. Under the tail restrictions that the

distribution of Y0 for the never-takers left tail dominates that for the compliers, while the distri-

bution of Y1 for the always-takers right tail dominates that for the compliers, I point-identify the

distributions of Y0 and Y1 for the compliers according to Theorem 2. I use estimation results in

Jochmans, Henry and Salanié (2017, JHS) to estimate returns to college degree on later earnings

for the marginal individuals, i.e., the compliers. See Appendix A.8 for more details. The estimated

distributions F0cn and F1cn are depicted in Figure 4.
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Figure 4. Estimates of the distributions F1c and F0c.

From Figure 4, it can be seen that the distribution of Y1 first order stochastically dominates that

of Y0 for the compliers, implying that the LATE, as well as the LQTE are positive. The estimate of

the LATE is 0.22 log points, meaning that college degree increases the average hourly wage for the

compliers by 24.6%. However, the fact that the LATE estimate (0.22) under Assumption TR lies

outside the LATE confidence bounds ([0.32, 0.58]) suggests that this assumption is rejected.
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5. Summary and discussion

In this paper, I develop a new identification strategy when the LATE independence assumption

is violated in the sense that the instrument is correlated with the compliance status. I show that

when the instrument is independent of the potential outcomes conditional on the type, an addi-

tional (invalid) instrument allows to partially identify the potential outcomes distributions for the

compliers. Under some testable tail restrictions, these distributions are point-identified. I also show

how one can extend my results to settings where the LATE monotonicity assumption does not hold.

Moreover, I extend the model to account for the sample selection problem that arises in the return

to schooling literature.

Finally, I apply the results on data from the National Longitudinal Survey of Young Men to

estimate the returns to college education for the compliers. I find that getting a college degree has

a positive effect on the log hourly wage. The evidence suggests that college degree increases the

hourly wage of the compliers by 38–79%. The 2SLS estimate is an 872% increase, suggesting that

the college proximity instrument is invalid.

I explain in Appendix C.2 how to extend my approach to continuous instruments. However, the

marginal treatment effect would be of greater interest in this case than the LATE. This would rely

on continuous mixture partial identification result.

Appendix A. Proofs of the main results

A.1. Proof of Lemma 1.

Proof. From (Z,W ) ⊧ U ∣V , we have U ⊧ (Z,W )∣V,W . Then for any A ∈ BY , z ∈ {0,1}, and w ∈ W,

P(Yd ∈ A∣T = c,Z = z,W = w) = P(g(d,U) ∈ A∣h(0,W,V ) = 0, h(1,W,V ) = 1, Z = z,W = w),

= P(g(d,U) ∈ A∣(V,W ) ∈ h−1(0,0) ∩ h−1(1,1), Z = z,W = w),

= P(g(d,U) ∈ A∣(V,W ) ∈ h−1(0,0) ∩ h−1(1,1)),

= P(Yd ∈ A∣T = c),

where h−1(z, d) = {(v,w) ∶ h(z,w, v) = d}, and the third equality holds because U ⊧ (Z,W )∣V,W .

The reasoning is similar for the other types a, df, n. �

Notation 3. Define

r1(y) ≡ f(y∣1,1,w1
1)

f(y∣1,1,w1
0)
, r1 ≡ infy∈Y r

1(y), r1 ≡ supy∈Y r
1(y).

The quantity r1(y) is the likelihood ratio evaluated at y of the distribution of Y conditional on (D =
1, Z = 1,W = w1

1) and (D = 1, Z = 1,W = w1
0), respectively. We have ∫ (r1(y)−1)f(y∣1,1,w1

0)dy = 0,
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which implies that r1 < 1 and r1 > 1.

f1
∗ ≡ − 1

r1−1
, f∗1 ≡ 1

1−r1
, Λ

1 ≡ supw∈W Λ1(w), Λ1 ≡ infw∈W Λ1(w),

θ1
` =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1
∗ + η1 if Λ

1 ≤ −η1 ≤ f∗1

Λ
1 + η1 if f1

∗ ≤ −η1 ≤ Λ1

+∞ otherwise

and θ1
u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Λ1 + η1 if Λ
1 ≤ −η1 ≤ f∗1

f∗1 + η1 if f1
∗ ≤ −η1 ≤ Λ1

−∞ otherwise

A.2. Proof of Theorem 1.

Proof. I have to show that the constraints on the distributions F1a, F0n, F1c and F0c are valid and

sharp under CI, MON and REL.

Validity: As shown in the main text, F1a(y) = F (y∣1,0) and F0n(y) = F (y∣0,1) under CI and MON.

Consider the mixture model (3.1)

F (y∣1,1,w) = α1(w)F1c(y) + (1 − α1(w))F1a(y),

where 0 ≤ α1(w) ≤ 1.

Under RAN, Equation (3.4) holds with the following constraints on (θ1, η1) according to Theo-

rem 1 of HKS:

f1
∗ ≤ min (θ1 − η1,−η1) ≤ Λ1, and Λ

1 ≤ max (θ1 − η1,−η1) ≤ f∗1.

Now, adding the constraint F1a(y) = F (y∣1,0), the parameter η1 is identified as follows:

η1 = F (y1
1 ∣1,1,w1

0) − F (y1
1 ∣1,0)

F (y1
1 ∣1,1,w1

1) − F (y1
1 ∣1,1,w1

0)
,

and we have the following constraints on the remaining parameter θ1

f1
∗ + η1 ≤ min (θ1,0) ≤ Λ1 + η1, and Λ

1 + η1 ≤ max (θ1,0) ≤ f∗1 + η1. (A.1)

Because Λ1 ≤ 0 and Λ
1 ≥ 1, the following holds: If Λ

1 ≤ −η1 ≤ f∗1, then θ1 < 0 and f1
∗ + η1 ≤ θ1 ≤

Λ1 + η1; If f1
∗ ≤ −η1 ≤ Λ1, then θ1 > 0 and Λ

1 + η1 ≤ θ1 ≤ f∗1 + η1. Indeed, if Λ
1 ≤ −η1 ≤ f∗1, then

Λ
1 + η1 ≤ 0, which implies that Λ1 + η1 < 0, and therefore θ1 < 0. Similarly, if f1

∗ ≤ −η1 ≤ Λ1, then

Λ1 + η1 ≥ 0, which implies that Λ
1 + η1 > 0, and thus θ1 > 0.

Hence, θ1
` ≤ θ1 ≤ θ1

u, where θ1
` and θ1

u are defined in Notation 3 above. Analogously for θ0, we

have θ0
` ≤ θ0 ≤ θ0

u, where θ0
` and θ0

u are defined in a similar way as θ1
` and θ1

u, respectively.

If RAN does not hold, then we have trivial bounds on θ1, i.e., θ1 ∈ (−∞,−1] ∪ [1,+∞), in which

case F1c is point-identified: F1c(y) = F (y∣1,0). Similar results hold for θ0 and F0c.
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Note that the constraints on the distribution Fdc (d = 0,1) do not depend on the choices of wd0

and wd1 . Under RAN, refer to the proof of Theorem 1 in HKS for details. If RAN does not hold,

this is straightforward.

Sharpness: It remains to show that for any pair (θ0, θ1) ∈ Θ0×Θ1, there exists a joint distribution of

(Y0, Y1, T,Z,W ) that generates the joint distribution of the data (Y,D,Z,W ) through the potential

outcome model (2.2) and satisfies assumptions CI, MON and REL. Assumption REL is satisfied as

long as Θd is well-defined.

Define α1(w), α0(w), F1c(y), F0c(y), F1a(y) and F0n(y) as above. It is clear that α1(w) and

α0(w) lie within [0,1], and F1c(y), F0c(y), F1a(y) and F0n(y) are cdfs. Denote Fd(y, t∣z,w) ≡
P(Yd ≤ y, T = t∣Z = z,W = w), d = 0,1, p(t∣z,w) ≡ P(T = t∣Z = z,W = w). Define the conditional

probabilities of the types

p(c∣1,w) ≡ α1(w)P(D = 1∣Z = 1,W = w),

p(c∣0,w) ≡ α0(w)P(D = 0∣Z = 0,W = w),

p(a∣0,w) ≡ P(D = 1∣Z = 0,W = w),

p(a∣1,w) ≡ (1 − α1(w))P(D = 1∣Z = 1,W = w),

p(n∣1,w) ≡ P(D = 0∣Z = 1,W = w),

p(n∣0,w) ≡ (1 − α0(w))P(D = 0∣Z = 0,W = w),

and the joint distributions of (Y0, Y1, T ) conditional on (Z = z,W = w)

P(Y0 ≤ y0, Y1 ≤ y1, T = c∣Z = z,W = w) ≡ F0c(y0)F1c(y1)p(c∣z,w),

P(Y0 ≤ y0, Y1 ≤ y1, T = a∣Z = z,W = w) ≡ F0a(y0)F1a(y1)p(a∣z,w),

P(Y0 ≤ y0, Y1 ≤ y1, T = n∣Z = z,W = w) ≡ F0n(y0)F1n(y1)p(n∣z,w),

where F0a and F1n are abitrary cdfs defined on the measurable space (Y,BY). It is straightforward

that the above joint distribution satisfies CI and MON. Assumption MON is satified by construction.

For CI, we have for instance

P(Y1 ≤ y1∣T = c,Z = 1,W = w) = P(Y1 ≤ y1, T = c∣Z = z,W = w)
P(T = c∣Z = z,W = w) ,

= limy0↑∞ P(Y0 ≤ y0, Y1 ≤ y1, T = c∣Z = z,W = w)
limy0↑∞ limy1↑∞ P(Y0 ≤ y0, Y1 ≤ y1, T = c∣Z = z,W = w) ,

= F1c(y1)p(c∣1,w)
p(c∣1,w) ,

= F1c(y1).
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Finally, this joint distribution of (Y0, Y1, T ) conditional on (Z = z,W = w) induces the joint

distribution of (Y,D) conditional on (Z = z,W = w).

P(Y ≤ y,D = 1∣Z = 1,W = w) = P(Y1 ≤ y,D1 = 1∣Z = 1,W = w),

= P(Y1 ≤ y, T = c∣Z = 1,W = w) + P(Y1 ≤ y, T = a∣Z = 1,W = w),

= F1c(y)p(c∣1,w) + F1a(y)p(a∣1,w),

= [α1(w)F1c(y) + (1 − α1(w))F1a(y)]P(D = 1∣Z = 1,W = w).

This reasoning is similar for P(Y ≤ y,D = 1∣Z = 0,W = w), P(Y ≤ y,D = 0∣Z = 1,W = w), and

P(Y ≤ y,D = 0∣Z = 0,W = w). This completes the proof. �

A.3. Proof of Corollary 1.

Proof. Recall that the bounds on θ1 have been derived using only the constraints that the cdf F1c(y)
is nondecreasing as in (3.5), and the weight function α1(w) lies between 0 and 1 as in (3.6). Under

RAN, the parameter η1 and the function Λ1 are point-identified:

η1 = F (y11 ∣1,1,w
1
0)−F (y11 ∣1,0)

F (y11 ∣1,1,w
1
1)−F (y11 ∣1,1,w

1
0)
, and Λ1(w) = F (y11 ∣1,1,w)−F (y11 ∣1,1,w

1
0)

F (y11 ∣1,1,w
1
1)−F (y11 ∣1,1,w

1
0)
.

I can then equivalently rewrite condition (3.6) as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sign(θ1) (θ1 − E[1{Y ≤y11}∣D=1,Z=1,W=w]−E[1{Y ≤y11}∣D=1,Z=0]

E[1{Y ≤y11}∣D=1,Z=1,W=w1
1]−E[1{Y ≤y11}∣D=1,Z=1,W=w1

0]
) ≥ 0

sign(θ1) E[1{Y ≤y11}∣D=1,Z=1,W=w]−E[1{Y ≤y11}∣D=1,Z=0]

E[1{Y ≤y11}∣D=1,Z=1,W=w1
1]−E[1{Y ≤y11}∣D=1,Z=1,W=w1

0]
≥ 0

where sign(θ1) = 1{θ1 > 0} − 1{θ1 < 0}. Therefore, the identified set for θ1 is fully characterized by

the following inequality:

inf
(y,w)∈Y×W

β1(y,w) ≥ 0, (A.2)

where

β1(y,w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(y∣1,0) + θ1 [f(y∣1,1,w1
1) − f(y∣1,1,w1

0)]

sign(θ1) (θ1 − E[1{Y ≤y11}∣D=1,Z=1,W=w]−E[1{Y ≤y11}∣D=1,Z=0]

E[1{Y ≤y11}∣D=1,Z=1,W=w1
1]−E[1{Y ≤y11}∣D=1,Z=1,W=w1

0]
)

sign(θ1) E[1{Y ≤y11}∣D=1,Z=1,W=w]−E[1{Y ≤y11}∣D=1,Z=0]

E[1{Y ≤y11}∣D=1,Z=1,W=w1
1]−E[1{Y ≤y11}∣D=1,Z=1,W=w1

0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let f(y) denote the density (probability mass) function of Y . Using Bayes’ rule, we have:

f(y∣d, z,w) = P(D = d,Z = z,W = w∣Y = y)f(y)
P(D = d,Z = z,W = w) ,

for all d, z ∈ {0,1} and w ∈ W. Therefore, for all y ∈ Y such that f(y) > 0, condition (3.5) is equivalent

to:

P(D = 1, Z = 0∣Y = y)f(y)

P(D = 1, Z = 0)
+ θ1 [

P(D = 1, Z = 1,W = w1
1 ∣Y = y)f(y)

P(D = 1, Z = 1,W = w1
1)

−
P(D = 1, Z = 1,W = w1

0 ∣Y = y)f(y)

P(D = 1, Z = 1,W = w1
0)

] ≥ 0,
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which in turn is equivalent to:

c0E[D(1 −Z)∣Y = y] + θ1 [c1E[DZ1{W = w1
1} ∣Y = y] − c2E[DZ1{W = w1

0} ∣Y = y]] ≥ 0,

where c0 = 1/E[D(1 − Z)], c1 = 1/E[DZ1{W = w1
1}], and c2 = 1/E[DZ1{W = w1

0}]. This last

inequality can be rewritten as:

E [c0D(1 −Z) + θ1 (c1DZ1{W = w1
1} − c2DZ1{W = w1

0}) ∣Y = y] ≥ 0.

�

A.4. Proof of Proposition 1.

Proof. We have E [Y1 − Y0∣T = c] = E [Y1∣T = c] − E [Y0∣T = c] = E [F1c] − E [F0c]. From Theorem 1,

there exists (θ1, θ0) ∈ Θ1 × Θ0 such that F1c = F θ
1

1c and F0c = F θ
0

0c . Therefore, the bounds hold. It

remains to show their sharpness. We have

E [F1c] = E [Y ∣1,0] + θ1 (E[Y ∣1,1,w1
1] −E[Y ∣1,1,w1

0]) ,

E [F0c] = E [Y ∣0,1] + θ0 (E[Y ∣0,0,w0
1] −E[Y ∣0,0,w0

0]) ,

and

inf
(θ1,θ0)∈Θ1×Θ0

{E [F θ
1

1c ] −E [F θ
0

0c ]} = inf
θ1∈Θ1

E [F1c] − sup
θ0∈Θ0

E [F0c] .

If RAN does not hold, the bounds on Fdc (d = 0,1) do not depend on θd as Fdc is point-identified.

In this case, sharpness is straightforward.

Under RAN, since the expectation E[Fdc] is continuous in θd and Θd is compact for all d ∈
{0,1}, the infimum and the supremum are attainable, say at θ1∗ and θ0∗, respectively. Define

F ∗
1c(y) = F θ

1∗

1c (y), F ∗
0c(y) = F θ

0∗

0c (y). Set F ∗
0a = F ∗

1a = F (y∣1,0), F ∗
1n = F ∗

0n = F (y∣0,1), and

F ∗
(Y1,Y0)∣T=t,Z=z,W=w(y1, y2) = F ∗

1t(y1) × F ∗
0t(y2) for all t ∈ {a, c, n}. Then F ∗

(Y1,Y0)∣T,Z,W
achieves

the lower bound. Similar reasoning works for the upper bound. Therefore, the bounds on the LATE

are sharp.

In the same way, since Fdc(y) is continuous in θd and Θd is compact, so is the quantile function

F −1
dc for all d ∈ {0,1} if the outcome Y is continuous and has compact support (see Lemma 2 below).

By similar reasoning, the bounds on the LQTE are attained. This completes the proof. �

This result is probably attained in the literature, but since I could not find a reference, I give a

proof for completeness.

Lemma 2. Let F (y; θ) be a cumulative distribution function of a real-valued random variable Yθ

with compact support Y. Assume that F (y; θ) is continuous in y for all θ and continuous in θ for

all y. Then, the generalized inverse F −1(p; θ) defined for every p ∈ (0,1) by

F −1(p; θ) = inf {y ∈ Y ∶ F (y; θ) ≥ p}
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is also continuous in θ for all p.

Proof of Lemma 2.

Proof. Notice that F −1(p; θ) is the unique solution of the following optimization problem:

min f(θ, y) ≡ y s.t. y ∈ Γ(θ) = {y ∈ Y ∶ F (y; θ) ≥ p}

I use the Theorem of the Maximum (Theorem 3.6 of Stokey and Lucas p.62). Define h(θ) =
miny∈Γ(θ) y = −maxy∈Γ(θ) −y and G(θ) = {y ∈ Γ(θ) ∶ f(θ, y) = h(θ)} The function f is continuous.

I am going to show that the correspondence Γ is compact-valued and continuous.

Compactness: Γ(θ) ⊂ Y compact. Then, Γ(θ) is bounded. Now, take yn ∈ Γ(θ) s.t. yn → y. Let

us show that y ∈ Γ(θ).

yn ∈ Γ(θ) ⇒ F (yn; θ) ≥ p

⇒ lim
n→∞

F (yn; θ) ≥ p

⇒ F ( lim
n→∞

yn; θ) ≥ p by continuity of F (y; θ) in y

⇒ F (y; θ) ≥ p

⇒ y ∈ Γ(θ)

Then, Γ(θ) is closed. Thus, Γ(θ) is compact.

Continuity: I show that Γ(θ) is lower hemicontinuous (l.h.c.) and upper hemicontinuous (u.h.c.).

I use the definitions in Stokey and Lucas p.56. Γ(θ) is nonempty for all θ.

l.h.c.: Take y ∈ Γ(θ). Then, F (y; θ) ≥ p. Let θn be a sequence s.t. θn → θ. By continuity of

F (y; θ) in θ, F (y; θn) → F (y; θ). That is, ∀ ε > 0, ∃ nε ∶ ∀ n > nε, ∣F (y; θn) − F (y; θ)∣ < ε, which

implies that F (y; θn) > F (y; θ) − ε ≥ p − ε. Hence, for ε → 0, ∃ n0 ∶ ∀ n > n0, F (y; θn) ≥ p. Then,

considering the sequence {yn = y}∞n=n0
, we have yn → y and yn ∈ Γ(θn). This shows that Γ(θ) is

l.h.c..

u.h.c.: Take θn → θ and yn ∈ Γ(θn). I am going to show that there exists a subsequence {yk} →
y ∈ Γ(θ). We have F (yn; θn) ≥ p ∀ n. Moreover, yn ∈ Y, which is compact. Then, by Bolzano-

Weierstrass theorem, there exists a subsequence {yk} s.t. yk → y. Now, it remains to show that

y ∈ Γ(θ). Indeed, we have the following implications:

F (yk; θn) ≥ p ∀ n, ∀ k ⇒ lim
n→∞

F (yk; θn) ≥ p

⇒ F (yk; lim
n→∞

θn) = F (yk; θ) ≥ p by continuity in z

⇒ lim
k→∞

F (yk; θ) ≥ p

⇒ F ( lim
k→∞

yk; θ) = F (y; θ) ≥ p by continuity in y

⇒ y ∈ Γ(θ).
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Then, Γ(θ) is u.h.c..

Therefore, by the Theorem of Maximum, the function h(θ) is continuous and the correspondence

G(θ) is nonempty, compact-valued and u.h.c.. Since F −1(p; θ) is the unique solution of the problem,

F −1(p; θ) is continuous in θ. �

A.5. Proof of Proposition 2.

Proof. The necessity of the bounds is shown as follows. We have

FY0(y∣D = 1,W = w) = P(Z = 0∣D = 1,W = w)FY0(y∣D = 1, Z = 0,W = w)

+ P(Z = 1∣D = 1,W = w)FY0(y∣D = 1, Z = 1,W = w),

and

FY0(y∣D = 1, Z = 0,W = w) = P(T = a∣D = 1, Z = 0,W = w)FY0(y∣T = a,Z = 0,W = w)

+ P(T = df ∣D = 1, Z = 0,W = w)FY0(y∣T = df,Z = 0,W = w)

= FY0(y∣T = a,Z = 0,W = w)

= FY0(y∣T = a),

where the first equality follows from the law of iterated expectations (LIE), the second holds under

MON, and the last holds under CI.

We also have

FY0(y∣D = 1, Z = 1,W = w) = P(T = a∣D = 1, Z = 1,W = w)FY0(y∣T = a,Z = 1,W = w)

+ P(T = c∣D = 1, Z = 1,W = w)FY0(y∣T = c,Z = 1,W = w)

= P(T = a∣D = 1, Z = 1,W = w)FY0(y∣T = a)

+ P(T = c∣D = 1, Z = 1,W = w)FY0(y∣T = c),

where the first equality follows from the LIE, and the second holds under CI. This second equality

can be rewritten as follows:

FY0(y∣D = 1, Z = 1,W = w) = (1 − α1(w))FY0(y∣T = a) + α1(w)FY0(y∣T = c).

Therefore,

FY0(y∣D = 1,W = w) = [P(Z = 0∣D = 1,W = w) + P(Z = 1∣D = 1,W = w)(1 − α1(w))]FY0(y∣T = a)

+ P(Z = 1∣D = 1,W = w)α1(w)FY0(y∣T = c).

The worst case bounds on FY0(y∣T = a) ([0,1]), the sharp bounds on α1(w) and the sharp bounds

on FY0(y∣T = c) imply nontrivial bounds on F (Y0∣D = 1,W = w).
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Similarly,

FY1(y∣D = 0,W = w) = [P(Z = 1∣D = 0,W = w) + P(Z = 0∣D = 0,W = w)α0(w)]FY1(y∣T = n)

+ P(Z = 0∣D = 0,W = w)(1 − α0(w))FY1
(y∣T = c).

Take (θ1, θ0) ∈ Θ1 ×Θ0, ψ1 ∈ Ψ, and ψ0 ∈ Ψ. Define

F θ
0

0a = ψ0 ∈ Ψ, and F θ
1

1n = ψ1 ∈ Ψ,

F̃(Y1,Y0)∣T=t,Z=z,W=w = F θ
1

1t × F θ
0

0t for all t ∈ {a, c, n} , z ∈ {0,1} , w ∈ W.

The conditional joint distribution F̃(Y1,Y0)∣T,Z,W achieves each element in the identified sets of

FY0(y∣D = 1,W = w) and FY1(y∣D = 0,W = w). �

A.6. Proof of Corollary 2.

Proof. We have

ATT (w) = E[Y1 − Y0∣D = 1,W = w],

= E[Y1∣D = 1,W = w] −E[Y0∣D = 1,W = w],

= E[Y ∣D = 1,W = w] −E [F (Y0∣D = 1,W = w)] ,

= E[Y ∣D = 1,W = w] − [P(Z = 0∣D = 1,W = w) + P(Z = 1∣D = 1,W = w)(1 − α1(w))] δ

− P(Z = 1∣D = 1,W = w)α1(w)µθ
0

0c .

Similarly,

ATUT (w) = E[Y1 − Y0∣D = 0,W = w],

= E[Y1∣D = 0,W = w] −E[Y0∣D = 0,W = w],

= E [F (Y1∣D = 0,W = w)] −E[Y ∣D = 0,W = w],

= [P(Z = 1∣D = 0,W = w) + P(Z = 0∣D = 0,W = w)α0(w)] δ

+ P(Z = 0∣D = 0,W = w)(1 − α0(w))µθ
1

1c −E[Y ∣D = 0,W = w].

The rest of the proof is straightforward as Θ0 and Θ1 are sharp. �

A.7. Proof of Theorem 2.

Proof. From Theorem 1, we have

F1a(y) = F (y∣1,0),

F1c(y) = F (y∣1,1,w1
0) + (θ1 − η1) [F (y∣1,1,w1

1) − F (y∣1,1,w1
0)] .

Then

lim
y↑yu

1 − F1c(y)
1 − F1a(y)

= lim
y↑yu

1 − F (y∣1,1,w1
0)

1 − F (y∣1,0) + (θ1 − η1) [ lim
y↑yu

1 − F (y∣1,1,w1
1)

1 − F (y∣1,0) − lim
y↑yu

1 − F (y∣1,1,w1
0)

1 − F (y∣1,0) ] .



32 TREATMENT EFFECTS IN THE PRESENCE OF CONFOUNDED TYPES

Therefore,

lim
y↑yu

1 − F1c(y)
1 − F1a(y)

= 0⇒ θ1 − η1 = 1

1 − π1(w1
1,w

1
0)
,

where

π1(w1
1,w

1
0) = lim

y↑yu

1 − F (y∣1,1,w1
1)

1 − F (y∣1,1,w1
0)
.

The reasoning is similar for d = 0. This completes the proof. �

Now, I show that Theorem 2 still holds under only CI, REL and TR without MON.

Proof. Under CI, Equation (3.1) holds and we have

1 − F (y∣1,1,w) = α1(w) [1 − F1c(y)] + (1 − α1(w)) [1 − F1a(y)] .

Under REL, at least one of the weights α1(w1
1) and α1(w1

0) is different from 1. Assume without

loss of generality that α1(w1
0) ≠ 1. Then

lim
y↑yu

1 − F (y∣1,1,w1
1)

1 − F (y∣1,1,w1
0)

= lim
y↑yu

α1(w1
1)

1−F1c(y)
1−F1a(y)

+ 1 − α1(w1
1)

α1(w1
0)

1−F1c(y)
1−F1a(y)

+ 1 − α1(w1
0)

= 1 − α1(w1
1)

1 − α1(w1
0)

≡ π1(w1
1,w

1
0),

where the second equality holds under TR.

Under REL, we have 1
1−π1(w1

1,w
1
0)

= 1−α1
(w1

0)

α1(w1
1)−α

1(w1
0)

. Then

1
1−π1(w1

1,w
1
0)

[F (y∣1,1,w1
1) − F (y∣1,0,w1

0)] = α1
(w1

1)−α
1
(w1

0)

1−π1(w1
1,w

1
0)

[F1c(y) − F1a(y)] ,

= (1 − α1(w1
0)) [F1c(y) − F1a(y)] ,

= F1c(y) − F (y∣1,1,w1
0),

where the first equality follows from Equation (3.3), the second from the above equality, and the

last holds from (3.1). Thus,

F1c(y) = F (y∣1,1,w1
0) +

1

1 − π1(w1
1,w

1
0)

[F (y∣1,1,w1
1) − F (y∣1,0,w1

0)] .

The reasoning is similar for F0c. This completes the proof. �

A.8. Estimation under TR (JHS). The following derivation is directly from JHS and is given

for completeness. Recall that

F0c(y) = F (y∣0,0,w0
0) +

1

1 − ζ0(w0
1,w

1
0)

[F (y∣0,0,w0
1) − F (y∣0,0,w0

0)] ,

F1c(y) = F (y∣1,1,w1
0) +

1

1 − π1(w1
1,w

1
0)

[F (y∣1,1,w1
1) − F (y∣1,1,w1

0)] ,

where

ζ0(w0
1,w

0
0) = limy↓y`

F (y∣0,0,w0
1)

F (y∣0,0,w0
0)
, and π1(w1

1,w
1
0) = limy↑yu

1−F (y∣1,1,w1
1)

1−F (y∣1,1,w1
0)
.
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Define

Fn(y∣d, z,w) ≡ n−1
dzw

n

∑
i=1

1{Yi ≤ y,D = d,Z = z,W = w} ,

where ndzw ≡ ∑ni=1 1{D = d,Z = z,W = w} for d, z,w ∈ {0,1}.

From JHS, a consistent estimator1 for ζ0(1,0) is

ζ0
n(1,0) =

Fn(ln000 ∣0,0,w0
1)

Fn(ln000 ∣0,0,w0
0)
,

where ln000 denotes the (ιn000 + 1)th order statistics of Y conditional on (D = 0, Z = 0,W = 0), ιn000

being chosen such that ln000 ↓ −∞ as n ↑ ∞. Similarly, a consistent estimator for π1(1,0) is

π1
n(1,0) =

1 − Fn(rn110 ∣1,1,w1
1)

1 − Fn(rn110 ∣1,1,w1
0)
,

where rn110 denotes the (n110 − κn110)th order statistics of Y conditional on (D = 1, Z = 1,W = 0),
κn110 being chosen such that rn110 ↑ ∞ as n ↑ ∞.

Therefore, we have the following estimators for F0c and F1c:

F0cn(y) = Fn(y∣0,0,w0
0) +

1

1 − ζ0
n(1,0)

[Fn(y∣0,0,w0
1) − Fn(y∣0,0,w0

0)] ,

F1cn(y) = Fn(y∣1,1,w1
0) +

1

1 − π1
n(1,0)

[Fn(y∣1,1,w1
1) − Fn(y∣1,1,w1

0)] .

Asymptotic normality results for ζ0
n(1,0), π1

n(1,0), Fdcn(y), d ∈ {0,1}, are given in JHS. As in the

simulation experiments of JHS, I use ιn000 = C0(n000 ln lnn000)0.6 and κn110 = C1(n110 ln lnn110)0.6

for reasonable choices of the constants C0 and C1. In the application, I choose C0 = 1 and C1 = 0.5.

A.9. Numerical illustration. In what follows, I use the following notation: Fd(y∣t, z,w) ≡ P(Yd ≤
y∣T = t,Z = z,W = w), p(t∣z,w) ≡ P(T = t∣Z = z,W = w), t ∈ {a, c, n}, p(z,w) ≡ P(Z = z,W = w),
z,w ∈ {0,1}. I consider DGP: Y = [0,∞),

p(a∣1,1) = 0.2, p(c∣1,1) = 0.5, p(n∣1,1) = 0.3,

p(a∣1,0) = 0.1, p(c∣1,0) = 0.4, p(n∣1,0) = 0.5,

p(a∣0,1) = 0.4, p(c∣0,1) = 0.2, p(n∣0,1) = 0.4,

p(a∣0,0) = 0.35, p(c∣0,0) = 0.45, p(n∣0,0) = 0.20.

p(1,1) = 0.3, p(1,0) = 0.2, p(0,1) = 0.2, and p(0,0) = 0.3.

F1(y∣a, z,w) = y
y+1

, F1(y∣c, z,w) = y2

y2+1
, F1(y∣n, z,w) = y3

y3+1
,

F0(y∣a, z,w) = y2

y2+1
, F0(y∣c, z,w) = y3

y3+1
, F0(y∣n, z,w) = y3/2

y3/2+1
.

1under some assumptions that I omit here. See JHS for more details.
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It can be shown that the type is confounded. For instance, P(T = c∣Z = 1) = 0.46 ≠ 0.35 = P(T =
c∣Z = 0). It is easy to see that CI holds. After computing the identfied set numerically, I find

Θ1 = [−11.79,−9.33], and Θ0 = [−2.79,−1.93]. We have an uncountable number of distributions F1c

and F0c. I discretize the identified sets Θ1 and Θ0. Figure 5 displays distributions of the potential

outcomes Y0 and Y1 for four values of the parameters θ0 and θ1, including their bounds.
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Figure 5. Bounds on the distributions F1c and F0c.

A.10. LATE and IV estimand. By definition, the IV estimand is

αIV = E [Y ∣Z = 1] −E [Y ∣Z = 0]
E [D∣Z = 1] −E [D∣Z = 0] .

When the type is confounded, the IV estimand becomes:

αIV = p(c∣1)E[Y1∣T = c] − p(c∣0)E[Y0∣T = c]
p(c∣1) + p(a∣1) − p(a∣0)

+[p(a∣1) − p(a∣0)]E[Y1∣T = a]
p(c∣1) + p(a∣1) − p(a∣0) + [p(n∣1) − p(n∣0)]E[Y0∣T = n]

p(c∣1) + p(a∣1) − p(a∣0) ,

where p(t∣z) denotes P(T = t∣Z = z), t ∈ {a, c, d, n} and z ∈ {0,1} . As can be seen, the IV estimand

does not have a clear interpretation in this case. If the treatment effect is the same accross all

individuals, i.e. α = Y1 − Y0 is constant, the IV estimand is

αIV = α + E[Y0∣Z = 1] −E[Y0∣Z = 0]
p(c∣1) + p(a∣1) − p(a∣0) .

We observe that the IV estimand does not identify a causal effect unless E[Y0∣Z = 1] = E[Y0∣Z = 0],
which is unlikely to hold when the type is confounded.
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Appendix B. Additional empirical results

B.1. Relationship between IQ and college proximity. Table 5 shows that ability as measured

by IQ appears to be affected by the college proximity instrument in the NLSYM data. Cameron and

Taber (2004) as well as Carneiro and Heckman (2002) have also shown that distance to college in

the NLSY79 data is correlated with a measure of ability (Armed Forces Qualifcation Test (AFQT)).

Table 5. Relationship between IQ and College proximity

Dependent variable IQ (1) (2)

Near 4-year college 2.60 1.73
(0.75) (0.73)

Other Controls No Yes
n 2,061 1,619

Notes: The controls are parental education, age, race, and family structure.

B.2. Results with college attendance (at least 13 years of education).

B.2.1. Some college vs. no college. In this subsection, I consider college attendance as treatment

variable and no college attendance as control group. The results are summarized in Table 6.

Table 6. Confidence sets for parameters

Parameters Estimates 95% conf. LB 95% conf. UB

θ1 1 9

θ0 -8.6 -1
E[Y1∣T = c] 6.3437 6.4597
E[Y0∣T = c] 5.8791 6.0763
LATE 0.2674 0.5806
2SLS 1.2787∗∗∗ 0.8418 1.7155

(0.2228)

Standard errors (in parentheses); *** stands for 1% significant;

conf.: confidence; LB: lower bound; UB: upper bound.

B.2.2. Some college (at least 13 years) vs. high school (12 years). In this subsection, I consider some

college as treatment group and high school as control group. The results are summarized in Table 7.
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Table 7. Confidence sets for parameters

Parameters Estimates 95% conf. LB 95% conf. UB

θ1 1 11

θ0 -4.7 -1.5
E[Y1∣T = c] 6.3455 6.4713
E[Y0∣T = c] 6.0270 6.1171
LATE 0.2284 0.4443
2SLS 1.3702∗∗∗ 0.5952 2.1451

(0.3952)

Standard errors (in parentheses); *** stands for 1% significant;

conf.: confidence; LB: lower bound; UB: upper bound.

B.3. Possible comparison with Card’s (1995) results. Card (1995) considered a linear con-

stant return to years of schooling model where the return is the same for each individual and each

additional year of education. Using college proximity as instrument, he found an estimate of 0.132

log points increase for each additional year of schooling. In this paper, I consider a different frame-

work where the return could be nonlinear and heterogenous across individuals. Even though the

two settings are different, I try an extrapolation of Card’s (1995) results in Table 8 to allow for a

possible comparison with my results. I consider three cases: college degree vs. no college degree,

some college vs. no college, and some college vs. high school. I display the bounds on LATE that I

get (in percent) using my methodology and an aproximate of Card’s (1995) point-estimate in each

case. For instance, to obtain a Card’s estimate in the first case (college degree vs. no college degree),

I compute the average difference in years of schooling for the two groups, which I multiply by Card’s

coefficient (0.132) to get the average return in log points. While Card’s estimate for the case college

degree vs. no college degree is outside my bounds, the estimates for the two other cases lie within

my bounds.

Table 8. Comparison

Parameters Estimates Returns my LB my UB

Card (1995) coefficient for each year 0.132 14.1%
mean(educ ≥ 16)-mean(educ < 16) 4.705 86.1% 38% 79%
mean(educ ≥ 13)-mean(educ < 13) 4.251 75.3% 31% 79%
mean(educ ≥ 13)-12 3.366 55.9% 26% 56%

Return for 4.705 years of schooling: exp(4.705*0.132)-1=86.1%;

LB: lower bound; UB: upper bound.
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Appendix C. Extensions

C.1. Relaxing monotonicity. As before, denote α0
1(w) ≡ P(T = df ∣D = 0, Z = 1,W = w), α0

0(w) ≡
P(T = c∣D = 0, Z = 0,W = w), α1

1(w) ≡ P(T = c∣D = 1, Z = 1,W = w), and α1
0(w) ≡ P(T = df ∣D =

1, Z = 0,W = w). We have:

F (y∣0,1,w) = α0
1(w)F0df(y) + (1 − α0

1(w))F0n(y),

F (y∣0,0,w) = α0
0(w)F0c(y) + (1 − α0

0(w))F0n(y),

F (y∣1,1,w) = α1
1(w)F1c(y) + (1 − α1

1(w))F1a(y),

F (y∣1,0,w) = α1
0(w)F1df(y) + (1 − α1

0(w))F1a(y).

Assumption 6 (RELM). There exist w0
dz and w1

dz in the support W and y1
dz in the support Y such

that F (y1
dz ∣d, z,w0

dz) ≠ F (y1
dz ∣d, z,w1

dz) for all d, z ∈ {0,1}.

Define

Λdz(w) ≡ F (y1
dz ∣d, z,w) − F (y1

dz ∣d, z,w0
dz)

F (y1
dz ∣d, z,w1

dz) − F (y1
dz ∣d, z,w0

dz)
, φdz ≡ αdz(w0

dz), ψdz ≡ αdz(w1
dz) − αdz(w0

dz),

Λ
d

z ≡ sup
w

Λdz(w), Λdz ≡ inf
w

Λdz(w),

rdz(y) ≡
f(y∣d, z,w1

dz)
f(y∣d, z,w0

dz)
, rdz ≡ inf

y∈Y
rdz(y), rdz ≡ sup

y∈Y
rdz(y),

f∗
d
z ≡ −

1

rdz − 1
, and f∗

d
z ≡

1

1 − rdz
for all d, z ∈ {0,1} .

The following proposition holds.

Proposition 5. Under CI and RELM, the following holds for all y ∈ Y:

F0c(y) = F (y∣0,0,w0
00) + (θ0

0 − η0
0ρ

0
1) [F (y∣0,0,w1

00) − F (y∣0,0,w0
00)] ,

F1c(y) = F (y∣1,1,w0
11) + (θ1

1 − η1
1ρ

1
0) [F (y∣1,1,w1

11) − F (y∣1,1,w0
11)] ,

F0n(y) = F (y∣0,0,w0
00) − η0

0ρ
0
1 [F (y∣0,0,w1

00) − F (y∣0,0,w0
00)] ,

F1a(y) = F (y∣1,1,w0
11) − η1

1ρ
1
0 [F (y∣1,1,w1

11) − F (y∣1,1,w0
11)] ,

F0df(y) = F (y∣0,1,w0
01) + (θ0

1 − ρ0
1) [F (y∣0,1,w1

01) − F (y∣0,1,w0
01)] ,

F1df(y) = F (y∣1,0,w0
10) + (θ1

0 − ρ1
0) [F (y∣1,0,w1

10) − F (y∣1,0,w0
10)] ,
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where

f1
∗1 + η1

1ρ
1
0 ≤ min (θ1

1,0) ≤ Λ1
1 + η1

1ρ
1
0,

Λ
1

1 + η1
1ρ

1
0 ≤ max (θ1

1,0) ≤ f∗1
1 + η1

1ρ
1
0,

f0
∗0 + η0

0ρ
0
1 ≤ min (θ0

0,0) ≤ Λ0
0 + η0

0ρ
0
1,

Λ
0

0 + η0
0ρ

0
1 ≤ max (θ0

0,0) ≤ f∗0
0 + η0

0ρ
0
1,

f0
∗1 + ρ0

1 ≤ min (θ0
1,0) ≤ Λ0

1 + ρ0
1,

Λ
0

1 + ρ0
1 ≤ max (θ0

1,0) ≤ f∗0
1 + ρ0

1,

f1
∗0 + ρ1

0 ≤ min (θ1
0,0) ≤ Λ1

0 + ρ1
0,

Λ
1

0 + ρ1
0 ≤ max (θ1

0,0) ≤ f∗1
0 + ρ1

0,

and

η0
0 = F (y1

00∣0,0,w0
00)

F (y1
00∣0,1,w0

01)
∗ F (y1

01∣0,1,w1
01) − F (y1

01∣0,1,w0
01)

F (y1
00∣0,0,w1

00) − F (y1
00∣0,0,w0

00)
,

η1
1 = F (y1

11∣1,1,w0
11)

F (y1
10∣1,0,w0

10)
∗ F (y1

10∣1,0,w1
10) − F (y1

10∣1,0,w0
10)

F (y1
11∣1,1,w1

00) − F (y1
11∣1,1,w0

11)
.

Proof. Suppose Assumption CI and RELM holds. Then Theorem 1 by HKS applies:

α1
1(w) = φ1

1 + ψ1
1Λ1

1(w),

F1a(y) = F (y∣1,1,w0
11) −

φ1
1

ψ1
1

[F (y∣1,1,w1
11) − F (y∣1,1,w0

11)] ,

F1c(y) = F (y∣1,1,w0
11) +

1 − φ1
1

ψ1
1

[F (y∣1,1,w1
11) − F (y∣1,1,w0

11)] ,

where

f1
∗1 ≤ min ((1 − φ1

1)/ψ1
1 ,−φ1

1/ψ1
1) ≤ Λ1

1,

Λ
1

1 ≤ max ((1 − φ1
1)/ψ1

1 ,−φ1
1/ψ1

1) ≤ f∗1
1 .

Similarly, we have

α0
0(w) = φ0

0 + ψ0
0Λ0

0(w),

F0n(y) = F (y∣0,0,w0
00) −

φ0
0

ψ0
0

[F (y∣0,0,w1
00) − F (y∣0,0,w0

00)] ,

F0c(y) = F (y∣0,0,w0
00) +

1 − φ0
0

ψ0
0

[F (y∣0,0,w1
00) − F (y∣0,0,w0

00)] ,

where

f0
∗0 ≤ min ((1 − φ0

0)/ψ0
0 ,−φ0

0/ψ0
0) ≤ Λ0

0,

Λ
0

0 ≤ max ((1 − φ0
0)/ψ0

0 ,−φ0
0/ψ0

0) ≤ f∗0
0 ;
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α0
1(w) = φ0

1 + ψ0
1Λ0

1(w),

F0n(y) = F (y∣0,1,w0
01) −

φ0
1

ψ0
1

[F (y∣0,1,w1
01) − F (y∣0,1,w0

01)] ,

F0df(y) = F (y∣0,1,w0
01) +

1 − φ0
1

ψ0
1

[F (y∣0,1,w1
01) − F (y∣0,1,w0

01)] ,

where

f0
∗1 ≤ min ((1 − φ0

1)/ψ0
1 ,−φ0

1/ψ0
1) ≤ Λ0

1,

Λ
0

1 ≤ max ((1 − φ0
1)/ψ0

1 ,−φ0
1/ψ0

1) ≤ f∗0
1 ;

α1
0(w) = φ1

0 + ψ1
0Λ1

0(w),

F1a(y) = F (y∣1,0,w0
10) −

φ1
0

ψ1
0

[F (y∣1,0,w1
10) − F (y∣1,0,w0

10)] ,

F1df(y) = F (y∣1,0,w0
10) +

1 − φ1
0

ψ1
0

[F (y∣1,0,w1
10) − F (y∣1,0,w0

10)] ,

where

f1
∗0 ≤ min ((1 − φ1

0)/ψ1
0 ,−φ1

0/ψ1
0) ≤ Λ1

0,

Λ
1

0 ≤ max ((1 − φ1
0)/ψ1

0 ,−φ1
0/ψ1

0) ≤ f∗1
0 .

We can summarize the identified set as follows:

F0c(y) = F (y∣0,0,w0
00) +

1 − φ0
0

ψ0
0

[F (y∣0,0,w1
00) − F (y∣0,0,w0

00)] ,

F1c(y) = F (y∣1,1,w0
11) +

1 − φ1
1

ψ1
1

[F (y∣1,1,w1
11) − F (y∣1,1,w0

11)] ,

F0n(y) = F (y∣0,0,w0
00) −

φ0
0

ψ0
0

[F (y∣0,0,w1
00) − F (y∣0,0,w0

00)] ,

F1a(y) = F (y∣1,1,w0
11) −

φ1
1

ψ1
1

[F (y∣1,1,w1
11) − F (y∣1,1,w0

11)] ,

F0df(y) = F (y∣0,1,w0
01) +

1 − φ0
1

ψ0
1

[F (y∣0,1,w1
01) − F (y∣0,1,w0

01)] ,

F1df(y) = F (y∣1,0,w0
10) +

1 − φ1
0

ψ1
0

[F (y∣1,0,w1
10) − F (y∣1,0,w0

10)] ,



40 TREATMENT EFFECTS IN THE PRESENCE OF CONFOUNDED TYPES

where

f1
∗1 ≤ min ((1 − φ1

1)/ψ1
1 ,−φ1

1/ψ1
1) ≤ Λ1

1,

Λ
1

1 ≤ max ((1 − φ1
1)/ψ1

1 ,−φ1
1/ψ1

1) ≤ f∗1
1 ,

f0
∗0 ≤ min ((1 − φ0

0)/ψ0
0 ,−φ0

0/ψ0
0) ≤ Λ0

0,

Λ
0

0 ≤ max ((1 − φ0
0)/ψ0

0 ,−φ0
0/ψ0

0) ≤ f∗0
0 ,

f0
∗1 ≤ min ((1 − φ0

1)/ψ0
1 ,−φ0

1/ψ0
1) ≤ Λ0

1,

Λ
0

1 ≤ max ((1 − φ0
1)/ψ0

1 ,−φ0
1/ψ0

1) ≤ f∗0
1 ,

f1
∗0 ≤ min ((1 − φ1

0)/ψ1
0 ,−φ1

0/ψ1
0) ≤ Λ1

0,

Λ
1

0 ≤ max ((1 − φ1
0)/ψ1

0 ,−φ1
0/ψ1

0) ≤ f∗1
0 ,

and

φ0
0

ψ0
0

/φ
0
1

ψ0
1

= F (y1
00∣0,0,w0

00)
F (y1

00∣0,1,w0
01)

∗ F (y1
01∣0,1,w1

01) − F (y1
01∣0,1,w0

01)
F (y1

00∣0,0,w1
00) − F (y1

00∣0,0,w0
00)

,

φ1
1

ψ1
1

/φ
1
0

ψ1
0

= F (y1
11∣1,1,w0

11)
F (y1

10∣1,0,w0
10)

∗ F (y1
10∣1,0,w1

10) − F (y1
10∣1,0,w0

10)
F (y1

11∣1,1,w1
00) − F (y1

11∣1,1,w0
11)

.

Set θji = 1

ψj
i

, and ρji =
φj
i

ψj
i

for i, j = 0,1. Then the result follows. This completes the proof. �

C.2. Continuous instruments. Suppose that I have a continuous instrument X. Define Z =
1{X > x0} and W = (X1{X > x0} ,X1{X ≤ x0}) for some x0 ∈ X = Supp(X). Then, I can apply

the methodology described in this paper to derive bounds on the potential outcome distributions

for compliers defined based on Z. From there, I get bounds on the ATE: LB(x0) ≤ ATE ≤ UB(x0).
Thus, tighter bounds on ATE can be obtained by varying x0 over the support of X:

sup
x0∈X

LB(x0) ≤ ATE ≤ inf
x0∈X

UB(x0).

C.3. Accounting for sample selection. Now, I extend the model to account for sample selection,

for instance self-selection into employment. Then, we have the following model:

Y = SY ∗,
Y ∗ = Y ∗

1 D + Y ∗
0 (1 −D),

S = S1D + S0(1 −D),
D = D1Z +D0(1 −Z),

(C.1)

where S is the selection variable (e.g. employment status); S0 and S1 the potential selection when

the treatment D is 0 and 1, respectively; Y ∗ is the outcome variable (e.g. wage-offer), Y ∗
1 and Y ∗

0

the potential outcomes. Y is observed, Y ∗ is not.

Define the type variable as T ∗ = (D0,D1, S0, S1). Then, we have 16 types: {a, c, df, n} ×
{EE,EN,NE,NN}, where EE, EN, NE and NN are defined in Table 9.

I use the following assumptions for identification.
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Table 9. Employment status subgroups

subgroups S0 S1 Notion

EE 1 1 Always-employed
EN 1 0 Employed-nonemployed
NE 0 1 Nonemployed-employed
NN 0 0 Never-employed

Assumption 7. The vector (Z,W ) is independent of Y ∗
d given the type T ∗, i.e., (Z,W ) ⊧ Y ∗

d ∣T ∗,

d = 0,1.

Assumption 8 (Monotonicity of S in D). S1 ≥ S0 a.s. (i.e., there are no EN).

I derive bounds on the local average treatment effect and the local quantile treatment effects

for the always-employed compliers: E[Y ∗
1 − Y ∗

0 ∣T ∗ = cEE] and F ∗
1
−1
cEE(α) − F ∗

0
−1
cEE(α), respectively.

Denote F ∗
dt ≡ F (Y ∗

d ∣T = t), d ∈ {0,1}, t ∈ {a, c, df, n} × {EE,EN,NE,NN} . Under Assumptions

2 (no defiers), 7 (conditional independence), and 8 (no employed-nonemployed), T ∗ ∈ {a, c, n} ×
{EE,NE,NN} and we have for all w ∈ W:

FY (y∣S = 1,D = 0, Z = 1,W = w) = FY ∗0 (y∣T ∗ = nEE),

FY (y∣S = 1,D = 0, Z = 0,W = w) = P(D1 = 0∣S0 = 1,D0 = 0, Z = 0,W = w)FY ∗0 (y∣T ∗ = nEE)

+ P(D1 = 1∣S0 = 1,D0 = 0, Z = 0,W = w)FY ∗0 (y∣T ∗ = cEE),

FY (y∣S = 1,D = 1, Z = 0,W = w) = P(S0 = 0∣S1 = 1,D0 = 1, Z = 0,W = w)FY ∗1 (y∣T ∗ = aNE)

+ P(S0 = 1∣S1 = 1,D0 = 1, Z = 0,W = w)FY ∗1 (y∣T ∗ = aEE),

and

FY (y∣S = 1,D = 1, Z = 1,W = w) = P(S0 = 0,D0 = 0∣S1 = 1,D1 = 1, Z = 1,W = w)FY ∗1 (y∣T ∗ = cNE)

+ P(S0 = 0,D0 = 1∣S1 = 1,D1 = 1, Z = 1,W = w)FY ∗1 (y∣T ∗ = aNE)

+ P(S0 = 1,D0 = 0∣S1 = 1,D1 = 1, Z = 1,W = w)FY ∗1 (y∣T ∗ = cEE)

+ P(S0 = 1,D0 = 1∣S1 = 1,D1 = 1, Z = 1,W = w)FY ∗1 (y∣T ∗ = aEE).
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Identification. I rewrite the model as follows:

F (y∣S = 1,D = 0, Z = 1,W = w) = F ∗
0nEE(y), (C.2)

F (y∣S = 1,D = 0, Z = 0,W = w) = τ(w)F ∗
0nEE(y) + (1 − τ(w))F ∗

0cEE(y), (C.3)

F (y∣S = 1,D = 1, Z = 0,W = w) = γ(w)F ∗
1aNE(y) + (1 − γ(w))F ∗

1aEE(y), (C.4)

F (y∣S = 1,D = 1, Z = 1,W = w) = λ0(w)F ∗
1cNE(y) + λ1(w)F ∗

1aNE(y)

+ λ2(w)F ∗
1cEE(y) + λ3(w)F ∗

1aEE(y). (C.5)

Equation (C.2) shows that the distribution of the potential outcome of the untreated that are never-

takers and always-employed (F ∗
0nEE) is point-identified. On the other hand, the distributions F ∗

0cEE ,

F ∗
1aNE , F ∗

1aEE , F ∗
1cNE and F ∗

1cEE are only partially identified. I use Theorem 1 in the main text

to derive sharp bounds on F ∗
0nEE and F ∗

0cEE combining Equations (C.2) and (C.3). Afterwards,

I apply Theorem 1 of HKS on the mixture model of Equation (C.4) to get bounds on F ∗
1aNE and

F ∗
1aEE , while I apply their Theorem 2 on Equation (C.5) to derive bounds on F ∗

1cNE , F ∗
1aNE , F ∗

1cEE

and F ∗
1aEE . I then use the fact F ∗

1aNE and F ∗
1aEE must satisfy the constraints imposed by (C.4) and

(C.5) to get sharp bounds on the distributions F ∗
1cNE , F ∗

1aNE , F ∗
1cEE and F ∗

1aEE . Hence, I get sharp

bounds on the average treatment effect for the always-employed compliers E[Y ∗
1 − Y ∗

0 ∣T = cEE].

Let me start with Equation (C.5). For any (y,w,w0),

F (y∣S = 1,D = 1, Z = 1,W = w) − F (y∣S = 1,D = 1, Z = 1,W = w0)

= (λ1(w) − λ1(w0)) (F ∗
1aNE(y) − F ∗

1cNE(y))

+ (λ2(w) − λ2(w0)) (F ∗
1cEE(y) − F ∗

1cNE(y))

+ (λ3(w) − λ3(w0)) (F ∗
1aEE(y) − F ∗

1cNE(y)) .

Denote

ψ(w) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

λ1(w) − λ1(w0)
λ2(w) − λ2(w0)
λ3(w) − λ3(w0)

⎤⎥⎥⎥⎥⎥⎥⎦

, and δ(y) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

F ∗
1aNE(y) − F ∗

1cNE(y)
F ∗

1cEE(y) − F ∗
1cNE(y)

F ∗
1aEE(y) − F ∗

1cNE(y)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Then

F (y∣S = 1,D = 1, Z = 1,W = w) − F (y∣S = 1,D = 1, Z = 1,W = w0) = ψ(w)tδ(y),

where ψ(w)t denote the transpose of ψ(w). The following assumption is needed for identification.

Assumption 9 (Relevance). There exist (w0,w1,w2,w3) in the support W of W such that the 3×3

matrix Ψ with jth column ψ(wj), j = 1,2,3, is invertible.

Assumption 9 is the same as Assumption 5 in HKS. It requires that the support W of the

instrument W have four distincts points. Denote F (y∣s, d, z,w) ≡ F (y∣S = s,D = d,Z = z,W = w)
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for all s, d, z = 0,1, w ∈ W, and

hu(y) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

F (y∣1,1,1,w1) − F (y∣1,1,1,w0)
F (y∣1,1,1,w2) − F (y∣1,1,1,w0)
F (y∣1,1,1,w3) − F (y∣1,1,1,w0)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Therefore, hu(y) = Ψtδ(y), and δ(y) = (Ψt)−1
hu(y). Denote φ ≡ [λ1(w0) λ2(w0) λ3(w0)]t. From

Equation (C.5), I have F (y∣1,1,1,w0) = F ∗
cNE(y) +φtδ(y). And I know that

⎡⎢⎢⎢⎢⎢⎢⎣

F ∗
1aNE(y)
F ∗

1cEE(y)
F ∗

1aEE(y)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

F ∗
1cNE(y)
F ∗

1cNE(y)
F ∗

1cNE(y)

⎤⎥⎥⎥⎥⎥⎥⎦

+ δ(y).

Therefore,

F ∗
1cNE(y) = F (y∣1,1,1,w0) + (e0 −φ)t (Ψt)−1

hu(y),

F ∗
1aNE(y) = F (y∣1,1,1,w0) + (e1 −φ)t (Ψt)−1

hu(y),

F ∗
1cEE(y) = F (y∣1,1,1,w0) + (e2 −φ)t (Ψt)−1

hu(y), (C.6)

F ∗
1aEE(y) = F (y∣1,1,1,w0) + (e3 −φ)t (Ψt)−1

hu(y)

where e0 ≡

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

, e1 ≡
⎡⎢⎢⎢⎢⎢⎣

1

0
0

⎤⎥⎥⎥⎥⎥⎦
, e2 ≡

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

, e3 ≡

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

. Now, assume that the following holds.

Assumption 10 (Rank). There exist (y1, y2, y3) in the support Y of Y such that the 3×3 matrix ∆

with jth column δ(yj), j = 1,2,3, is invertible.

Assumption 10 is the same as Assumption 6 in HKS. It requires that the support Y of the outcome

Y have four distincts points, which is in general true when the ouctome is wage, earnings. However,

it excludes binary outcomes. Lemma 1 in HKS states that Assumptions 9 and 10 are jointly testable

since they are equivalent to Assumption 11 below.

Assumption 11. There exist (w0,w1,w2,w3) in the support W and (y1, y2, y3) in the support Y
such that the 3 × 3 matrix H with jth column hu(yj), j = 1,2,3, is invertible.

Note that the matrices Ψ and ∆ are both unobservable quantities while the matrix H is an

observable one. Since Assumption 11 relates directly to the data, the researcher can check whether

it holds or not. If it does, then Assumptions 9 and 10 hold and we can identifiy the mixture weights

λ1(w), λ2(w), and λ3(w) as follows:

F (y∣1,1,1,w) − F (y∣1,1,1,w0) = ψ(w)t (Ψt)−1
hu(y).
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Denote hl(w) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

F (y1∣1,1,1,w) − F (y1∣1,1,1,w0)
F (y2∣1,1,1,w) − F (y2∣1,1,1,w0)
F (y3∣1,1,1,w) − F (y3∣1,1,1,w0)

⎤⎥⎥⎥⎥⎥⎥⎦

, λ(w) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

λ1(w)
λ2(w)
λ3(w)

⎤⎥⎥⎥⎥⎥⎥⎦

. Therefore,

hl(w) = ψ(w)t (Ψt)−1
H, (C.7)

and

λ(w) = φ +ψ(w) = φ +ΨΛ(w), (C.8)

where the first equality of (C.8) holds by definition and the second from (C.7), with Λ(w) ≡
(Ht)−1

hl(w).

Equations (C.6) and (C.8) combined with sharp bounds for (φ,Ψ) yield the identified set for the

distributions F ∗
1cNE(y), F ∗

1aNE(y), F ∗
1cEE(y), F ∗

1aEE(y) and the vector of mixture weights λ(w).
As in HKS, bounds for (φ,Ψ) are obtained by imposing probability constraints on λ(w), and

monotonicity constraints on the distributions F ∗
1cNE(y), F ∗

1aNE(y), F ∗
1cEE(y), F ∗

1aEE(y).

Probability constraints: 0 ≤ λ(w) and 1tλ(w) ≤ 1.

Monotonicity constraints: F ∗
1cNE(y), F ∗

1aNE(y), F ∗
1cEE(y), F ∗

1aEE(y) should be nondecreasing,

right-continuous, have left and right limits 0 and 1. The last two properties are satisfied from

Equations (C.6). That is why I only need the monotonicity constraints. For convenience, suppose

now that the following assumption holds.

Assumption 12. The outcome variable Y is continuously distributed conditional on (S,D,Z,W ).

Denote f(y∣s, d, z,w) the density of Y conditional on (S = s,D = d,Z = z,W = w), and hl
′(y) the

derivative of hl(y). The density of F ∗
1cNE(y), F ∗

1aNE(y), F ∗
1cEE(y), F ∗

1aEE(y) should be positive,

i.e.,

for all j = 0,1,2,3, f(y∣1,1,1,w0) + (ej −φ)t (Ψt)−1
hl
′(y) ≥ 0 for all y ∈ Y.

These restrictions are linear in Ωj ≡ (ej −φ)t (Ψt)−1
. Therefore, they only need to be checked at the

extreme points of the range of the function Π(y) ≡ −hl
′(y)/f(y∣1,1,1,w0) defined on the support

of Y given (S = 1,D = 1, Z = 1,W = w0).

Under Assumptions 7, 11, and 12, Theorem 2 in HKS applies and the identification regions for

F ∗
1cNE(y), F ∗

1aNE(y), F ∗
1cEE(y), F ∗

1aEE(y) and λ(w) are the twelve parameter family defined by

Equations C.6 and (C.8) along with the following constraints on (φ,Ψ):

● The linear constraints φ+Ψe > 0 and 1t(φ+Ψe) < 1 for all extreme points e of the convex

hull of the range of the identified function w ↦ Λ(w) = (Ht)−1hl(w).
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● For all extreme points π of the convex hull of the range of the known function y ↦Π(y) ≡
−hu

′(y)/f(y∣1,1,1,w0),

πtΨ−1(ej −φ) ≤ 1 for all j = 0,1,2,3. (C.9)

I now consider Equation (C.4):

F (Y ∣S = 1,D = 1, Z = 0,W = w) = γ(w)F ∗
1aNE + (1 − γ(w))F ∗

1aEE .

As before, the following assumption is needed for identification.

Assumption 13. There exist w̃0 and w̃1 in the support W and ỹ1 in the support Y such that

F (ỹ1∣1,1,0, w̃0) ≠ F (ỹ1∣1,1,0, w̃1).

Define

Λ1(w) ≡ F (ỹ1∣1,1,0,w) − F (ỹ1∣1,1,0, w̃0)
F (ỹ1∣1,1,0, w̃0) − F (ỹ1∣1,1,0, w̃0)

, φ̃1 ≡ γ(w̃0), ψ̃1 ≡ γ(w̃1) − γ1(w̃0),

Λ1 ≡ sup
w

Λ1(w), Λ1 ≡ inf
w

Λ1(w),

r1(y) ≡
f(y∣1,1,0, w̃1)
f(y∣1,1,0, w̃0)

, r1 ≡ inf
y∈Y

r1(y), r1 ≡ sup
y∈Y

r1(y),

f∗1 ≡ −
1

r1 − 1
, and f∗1 ≡ 1

1 − r1

.

Then I can apply Theorem 1 by HKS:

γ(w) = φ̃1 + ψ̃1Λ1(w), (C.10)

F ∗
1aEE(y) = F (y∣1,1,0, w̃0) −

φ̃1

ψ̃1

[F (y∣1,1,0, w̃1) − F (y∣1,1,0, w̃0)] , (C.11)

F ∗
1aNE(y) = F (y∣1,1,0, w̃0) +

1 − φ̃1

ψ̃1

[F (y∣1,1,0, w̃1) − F (y∣1,1,0, w̃0)] , (C.12)

where

f∗1 ≤ min ((1 − φ̃1)/ψ̃1,−φ̃1/ψ̃1) ≤ Λ1, (C.13)

and

Λ1 ≤ max ((1 − φ̃1)/ψ̃1,−φ̃1/ψ̃1) ≤ f∗1 . (C.14)

Combining Equations (C.6) and (C.11), I get

− φ̃1

ψ̃1

=
F (ỹ1∣1,1,1,w0) + (e3 −φ)t (Ψt)−1

hu(ỹ1) − F (ỹ1∣1,1,0, w̃0)
F (ỹ1∣1,1,0, w̃1) − F (ỹ1∣1,1,0, w̃0)

.
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Similarly, combining (C.6) and (C.12), I obtain

1 − φ̃1

ψ̃1

=
F (ỹ1∣1,1,1,w0) + (e1 −φ)t (Ψt)−1

hu(ỹ1) − F (ỹ1∣1,1,0, w̃0)
F (ỹ1∣1,1,0, w̃1) − F (ỹ1∣1,1,0, w̃0)

.

Therefore, the constraints (C.13) and (C.14) become

f∗1 ≤ min [
F (ỹ1∣1,1,1,w0) + (e1 −φ)t (Ψt)−1

hu(ỹ1) − F (ỹ1∣1,1,0, w̃0)
F (ỹ1∣1,1,0, w̃1) − F (ỹ1∣1,1,0, w̃0)

, (C.15)

F (ỹ1∣1,1,1,w0) + (e3 −φ)t (Ψt)−1
hu(ỹ1) − F (ỹ1∣1,1,0, w̃0)

F (ỹ1∣1,1,0, w̃1) − F (ỹ1∣1,1,0, w̃0)
] ≤ Λ1,

and

Λ1 ≤ max [
F (ỹ1∣1,1,1,w0) + (e1 −φ)t (Ψt)−1

hu(ỹ1) − F (ỹ1∣1,1,0, w̃0)
F (ỹ1∣1,1,0, w̃1) − F (ỹ1∣1,1,0, w̃0)

, (C.16)

F (ỹ1∣1,1,1,w0) + (e3 −φ)t (Ψt)−1
hu(ỹ1) − F (ỹ1∣1,1,0, w̃0)

F (ỹ1∣1,1,0, w̃1) − F (ỹ1∣1,1,0, w̃0)
] ≤ f∗1 ,

respectively.

Thus, the following proposition holds.

Proposition 6. Under Assumptions 2, 7, 8, 11, 12, and 13, the identified set for F ∗
1cNE(y),

F ∗
1aNE(y), F ∗

1cEE(y), and F ∗
1aEE(y) is given by equations (C.6), along with the constraints (C.15)

and (C.16) on (φ,Ψ) such that:

● For all extreme points e of the convex hull of the range of the identified function w ↦ Λ(w) =
(Ht)−1hr(w), φ +Ψe > 0 and 1t(φ +Ψe) < 1.

● For all extreme points π of the convex hull of the range of the known function y ↦Π(y) ≡
−hu

′(y)/f(y∣1,1,1,w0), πtΨ−1(ej −φ) ≤ 1 for all j = 0,1,2,3.

Finally, I derive bounds on F ∗
0cEE using the two equations (C.2) and (C.3) as I do in Subsection 3.1.

Indeed, the model is as follows:

F (Y ∣S = 1,D = 0, Z = 0,W = w) = τ(w)F ∗
0nEE + (1 − τ(w))F ∗

0cEE ,

F (Y ∣S = 1,D = 0, Z = 1,W = w) = F ∗
0nEE .

As before, similar to Assumption 13, the following is needed for identification.

Assumption 14. There exist w0 and w1 in the support W and y1 in the support Y such that

F (y1∣1,0,0,w0) ≠ F (y1∣1,0,0,w1).
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Define

Λ0(w) ≡ F (y1∣1,0,0,w) − F (y1∣1,0,0,w0)
F (y1∣1,0,0,w0) − F (y1∣1,0,0,w0)

, φ0 ≡ γ(w0), ψ0 ≡ γ(w1) − γ1(w0),

Λ0 ≡ sup
w

Λ0(w), Λ0 ≡ inf
w

Λ0(w),

r0(y) ≡
f(y∣1,0,0,w1)
f(y∣1,0,0,w0)

, r0 ≡ inf
y∈Y

r0(y), r0 ≡ sup
y∈Y

r0(y),

f∗0 ≡ −
1

r0 − 1
, and f∗0 ≡ 1

1 − r0

.

Therefore, I use Theorem 1 in the main text to obtain the following bounds:

τ(w) = 1

θ0
(η0 +Λ0(w)) ,

F ∗
0nEE(y) = F (y∣1,0,1),

F ∗
0cEE(y) = F (y∣1,0,0,w0) + (θ0 − η0) [F (y∣1,0,0,w1) − F (y∣1,0,0,w0)] ,

where

η0 =
F (y1∣1,0,0,w0) − F (y1∣1,0,1)

F (y0∣1,0,0,w1) − F (y1∣1,0,0,w0)
,

f∗0 + η0 ≤ min (θ0,0) ≤ Λ0 + η0, (C.17)

and

Λ0 + η0 ≤ max (θ0,0) ≤ f∗0 + η0. (C.18)

Denote Θ0 the set of all parameters θ0 that satisfy constraints (C.17) and (C.18), Ω the set of

all (φ,Ψ) that satisfy all constraints in Proposition 6, and F θdT ∗ the distribution of Y ∗
d conditional

on the type T ∗ that is associated with the parameter θ.

Proposition 7. Under Assumptions 2, 7, 8, 11, 12, 13, and 14, we have the following bounds for

the average and quantile treatment effects for the always-employed compliers:

inf
ω∈Ω

E [Fω1cEE] − sup
θ∈Θ0

E [F θ0cEE] ≤ E [Y ∗
1 − Y ∗

0 ∣T ∗ = cEE] ≤ sup
ω∈Ω

E [Fω1cEE] − inf
θ∈Θ0

E [F θ0cEE] ,

and

inf
ω∈Ω

(Fω1cEE)−1 (α) − sup
θ∈Θ0

(F θ0cEE)−1 (α) ≤ (F ∗−1
1cEE − F ∗−1

0cEE) (α) ≤

sup
ω∈Ω

(Fω1cEE)−1 (α) − inf
θ∈Θ0

(F θ0cEE)−1 (α),

for all α ∈ (0,1).

These bounds are sharp.
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C.4. Allowing for misclassified treatment. In this subsection, I allow for measurement errors

on the treatment. Let D∗ be the true (unobserved) treatment. I consider the same specification as

in Ura (2015):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D∗ =D∗
1Z +D∗

0(1 −Z)
Y = Y1D

∗ + Y0(1 −D∗)
D =D1D

∗ +D0(1 −D∗)
(C.19)

Assume that (Z,W ) ⊧ (Yd∗ ,Dd∗)∣(D∗
0 ,D

∗
1) and D∗

1 ≥ D∗
0 almost surely. Denote F (y, d∣Z = z,W =

w) ≡ P(Y ≤ y,D = d∣Z = z,W = w) and Fd∗t∗(y, d) ≡ P(Yd∗ ≤ y,Dd∗ = d∣T ∗ = t∗), where T ∗ ≡
(D∗

0 ,D
∗
1) ∈ {a, c, d, n} is the type variable. One can show the following:

F (y,1∣Z = 1,W = w) = λ1
10(w)F1a(y,1) + λ1

11(w)F1c(y,1) + (1 − λ1
10(w) − λ1

11(w))F0n(y,1),

F (y,0∣Z = 1,W = w) = λ0
10(w)F1a(y,0) + λ0

11(w)F1c(y,0) + (1 − λ1
10(w) − λ0

11(w))F0n(y,0),

F (y,1∣Z = 0,W = w) = λ1
00(w)F1a(y,1) + λ1

01(w)F0c(y,1) + (1 − λ1
00(w) − λ1

01(w))F0n(y,1),

F (y,0∣Z = 0,W = w) = λ0
00(w)F1a(y,0) + λ0

01(w)F0c(y,0) + (1 − λ0
00(w) − λ0

01(w))F0n(y,0),

where 0 ≤ λjlk ≤ 1 and 0 ≤ 1 − λjl0(w) − λjl1(w) ≤ 1 for j, l, k ∈ {0,1}. The same technique that I

use throughout the paper can also be used to derive sharp bounds on the LATE defined here as

E[Y1 − Y0∣D∗
0 = 0,D∗

1 = 1].
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