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Abstract

Labor’s share of income in the United States has trended downward over the last 30
years. This paper develops a model that links automation to the labor share and
provides evidence on the extent to which the fall was due to automation. In the
model, production requires completing a set of tasks that can be performed by either
labor or capital. Aggregating over firms that operate capital with differing degrees of
automation, total output of the economy can be represented as a Constant Elasticity
of Substitution (CES) function with total factor productivity and share parameter (α)
determined by the distribution of automation technology across firms. Using industry-
level data, including a novel measure of aggregate task inputs into production, I find
evidence that automation was a significant driving force of the US labor share between
1972-2010. The proposed model of the aggregate production function can reconcile
three important empirical findings on US production and growth that the canonical
CES model cannot: declining labor shares, aggregate capital-labor complementarity,
and capital-biased technical progress.
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1 Introduction

Labor’s share of income in the United States has fallen over the last 30 years. This paper

develops a theoretical model of the link between automation and the labor share and, through

the lens of the model, provides evidence on the extent to which the observed decline might

have been caused by automation.

Automation in the model is a form of embodied technical progress that enables the

replacement of workers with capital in the completion of production tasks. Firms operate

capital with varying degrees of automation: some firms’ capital can perform a greater range of

production tasks than others. Aggregate output in this economy can be represented using the

canonical constant elasticity of substitution (CES) function with capital and labor aggregates

as inputs; but with parameters that are themselves functions of the level and distribution

of automation technology in the economy. This model of the aggregate production function

delivers a sharp characterization of the effect of automation on the labor share: the labor

share decreases if the most automated firms in the economy become more automated; but

increases if the least automated firms become more automated.

To assess the empirical validity of this prediction, I construct a measure of aggregate

task inputs into production in the US economy by combining census data from the Current

Population Survey with detailed occupation level data from the Occupational Information

Network (O*NET). The use of job task data to study labor market outcomes is by now well

established, notably in the literature following Autor et al. (2003) that studies the effect of

technology on job polarization among other labor market outcomes. Acemoglu and Autor

(2011) combine CPS and O*NET data to construct broad occupational/task categories. But

to my knowledge this is the first paper that uses this type of data as an input into a macro

accounting exercise. I combine the data on task inputs with industry-level income accounts

(from KLEMS, Jorgenson et al. (2012)) to measure the effect of automation on US industry

labor shares in the period 1972-2010.

The empirical findings suggest an important role for automation in the evolution of the

labor share at the industry level, particularly in manufacturing: the fitted model generates

more than half of the decline in the manufacturing labor share.

The aggregate elasticity of substitution - σ in the standard notation - between capital
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and labor is a crucial parameter in macroeconomics and especially in growth theory1. In

particular, the value of σ determines the response of the labor share to changes in the

capital-labor ratio: if σ > 1, so that capital and labor are gross substitutes, the labor share

decreases when the capital-labor increases, and vice versa for σ < 1. This is an important

relationship because the period over which the labor share has fallen coincides with a period

of rapid improvement in the quality of capital goods, which is usually modeled as capital-

or investment-biased technical change.

As shown by Karabarbounis and Neiman (2014), if this biased technical change leads to

increased capital accumulation and an increase in the capital-labor ratio, σ > 1 is required

to explain the falling labor share. The preponderance of empirical estimates however point

to σ < 12. Oberfield and Raval (2014) show that, since this implies that capital accumula-

tion would increase the labor share, other forces must be driving the observed fall. In the

model of aggregate production function developed in Section 2, capital and labor are gross

complements. The dynamic model in Section 3 shows how the investment, entry and exit

decisions of firms operating capital with differing degrees of automation endogenously deter-

mine the parameters of the aggregate production function. Viewed from the perspective of

the aggregate production function, capital biased technical change in the form of increased

automation lowers the labor share by increasing the capital share parameter α.

The empirical analysis in this paper focuses on industry-level labor shares. Figure 1,

which plots shares for a subset of industries, shows that trends in industry labor shares level

are both significant and markedly different across sectors. The empirical analysis in this

paper uses industry-level data in order to make use of the information contained in this

divergence: the conjecture that underpins the exercise is that it reflects, at least in part, the

extent to which automation of production tasks has affected industries differentially.

Related literature This paper contributes to a growing literature that explores the link

between automation, growth, productivity and factor shares building on task-based produc-

tion models and studying the effect of automation on the aggregate production function. An

early contribution in this vein is Zeira (1998), who starts with the observation that labor re-

placing embodied technical progress is a long run phenomenon and develops an elegant model

1de La Grandville (2016) is a comprehensive treatment of the importance of σ.
2See Chirinko (2008) for a survey of estimates of σ.
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Source: US KLEMS data. Labor share is compensation divided by value added. Series are HP filtered (filter parameter 6.25)

Figure 1: Labor shares for 6 industries, 1970-2010

in which task automation (effectively) changes the exponents of the aggregate Cobb-Douglas

production function, but also necessarily implies increasing capital shares and accelerating

economic growth.

The model in this paper starts from different primitives but has features in common

with Acemoglu and Restrepo (2016). The authors introduce a comprehensive theory of

automation featuring endogenous automation and creation of new tasks that only labor can

perform (the “race” to which the title refers), and when these two forces are evenly matched,

the economy has a balanced growth path. A closely related condition has to hold for the

dynamic model described in Section 3 to have a balanced growth path.

Aghion et al. (2017) present a model of automation that builds on the structure of Zeira

(1998). The authors examine the ability of such a model to generate dynamics consistent

with the Kaldor growth facts. Among other insights, the model connects automation with

the emergence of a Baumol (1967) “cost disease”; the authors also explore the effect of a

possible technological singularity leading to an explosion in economic growth. Zeira (1998).

Hemous and Olsen (2016) develop a model of automation and horizontal innovation that

endogenously links automation to the rise in the skilled-unskilled wage premium. Susskind
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(2017) develops a model of automation in which labor is eventually completely immiserated

due to the development of “advanced capital” that can replace labor in advanced tasks.

This paper makes two main contributions to this literature. First, starting from an

explicit micro task production technology, the aggregation procedure I employ generates

a canonical aggregate CES production function with parameters that are determined by

the distribution of automation in the economy. This approach facilitates comparison with

the extant literature and can help to explain how the canonical model might be able to

accommodate features of economic growth that are at apparent odds from the perspective of

a model with a fixed aggregate production function. Second, the model in this paper delivers

a sharp characterization of the link between automation and the labor share that is simple

enough to be taken to data.

The model in this paper draws from a variety of theoretical foundations. The micro task

production function that I propose is closely related to that of Becker and Murphy (1992)

and to models in which production is organized as a hierarchy, starting with Garicano (2000)

and Garicano and Rossi-Hansberg (2006). To my knowledge, Geerolf (2017) is the first paper

to make explicit the link between a Garicano (2000)-type production function and the Pareto

distribution, an insight which I apply in my aggregation procedure.

The aggregation procedure I implement was first introduced in Houthakker (1955), which

shows that aggregation of micro-production units operating a Leontieff technology with

Pareto-distributed productivities results in a Cobb-Douglas aggregate production function.

Levhari (1968) and Sato (1975) extend the result to general CES functions, in a static

setting in which the productivity distribution itself is the primitive. Jones (2005) applies

this aggregation result in a growth context to think about how the aggregate production

changes over time, and how technological change matters for the shape of the production

function. This paper’s central concern is similar in spirit, but my focus is on automation

specifically. The model in this paper is closest to Lagos (2006), who develops an aggregative

model of total factor productivity. The model of Section 2 can be thought of as extending

his work to a model of both TFP and the share parameter (α).

The dynamic version of the model features a putty-clay vintage capital structure, first

introduced in Johansen (1959). The implementation of the putty-clay technology in this

model is similar to Gilchrist and Williams (2000). As in Jovanovic and Yatsenko (2012), and

in contrast to many vintage capital models, the model in this paper features investment in
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both old and new vintages of capital.

This paper explores the link between the US labor share and automation; a burgeoning

literature documents recent movements in the US labor share and proposes several explana-

tions for its decline. Rognlie (2015) shows that the fall in the labor share is largely accounted

for by increased rents accruing to housing. Gutierrez (2017), Barkai (2017), Caballero et al.

(2017) and Loecker and Eeckhout (2017) focus on increased rents and market power. Autor

et al. (2017) and Kehrig and Vincent (2017) document that changes in the distribution of

industry output towards lower labor share firms are responsible for the overall decline. Koh

et al. (2016) suggest that the aggregate decline in the labor share is largely accounted for

by increased depreciation of intangible capital. Karabarbounis and Neiman (2014) focus on

capital-labor substitution driven by the sustained decline in the relative price of capital; in

cross-country regressions they estimate the elasticity of substitution parameter of a CES

production function σ > 1, consistent with their hypothesis.

Oberfield and Raval (2014) show that, given that their estimate of the aggregate elasticity

of substitution between labor and capital in manufacturing is smaller than one, increased

capital accumulation in response to the declining relative price of capital cannot explain the

decrease in the labor share in manufacturing. In fact, they find the opposite to be true: since

σ < 1, a higher capital-labor ratio increases the labor share. They conclude that another

mechanism, which they term generically the bias of technical change, must be at work.

Lawrence (2015) is also concerned with studying the fall in the US labor share through

the capital-labor substitution channel; his study presents evidence that growth in human

capital, and hence in the quantity of effective hours supplied by labor, has been so large as

to reduce capital-labor ratios, which has the effect of reducing the labor share when σ < 1.

The rest of the paper is organized as follows. Section 2 develops a static model that

presents, in the simplest possible setting, the main analytical results in the paper: the

connection between moments of the size distribution of firms operating capital with differing

degrees of automation to the parameters of an aggregate CES production function. Section

3 embeds this static production structure into a dynamic model which, in aggregate, closely

resembles the standard neoclassical growth model, and derives the requirements for existence

and properties of a balanced growth path of the economy. In Section 4 I present the empirical

approach; Section 5 presents evidence of the model’s fit to US industry-level data and the

implications for the impact of automation on the US industry-level and aggregate labor
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shares in the past 40 years. Section 6 concludes.

2 Static Model

I start with a static version of the model in order to simplify the exposition of the firm

level technology and the aggregation result that yields a constant elasticity of substitution

(CES) macro production function. The static economy consists of a continuum of firms,

each operating a firm-specific technology to produce a homogeneous good that is sold in a

competitive market. To produce, firms must hire labor, which is supplied by homogeneous

workers in a competitive labor market.

2.1 Firms

A continuum of competitive firms produce a unique final good Y . A firm i is characterized

by its technology ãi and capital stock ki. Technology is embodied in the capital stock, so a

firm’s capital consists of ki units of capital that embody the technology level ãi. I assume

that each firm owns exclusive rights to its technology, so there is one firm per technology ãi.

Technology Production of one final good requires the completion of a continuum of all

tasks in an interval [0, q]3. Tasks can be produced by both workers and machines. Workers

can perform all tasks in [0, q],4 whereas a machine of type ã can perform tasks in [0, ã], with

ã < q. So to produce one unit of the final good using a machine of type ã, a worker has to

complete the remaining tasks [ã, q]. If it takes workers one unit of time to complete all tasks

in [0, q], a worker-machine pair would produce 1/ (q − ã) goods in one unit of time; I further

assume that the productivity of a worker-machine pair is increasing in the quantity of tasks,

and that the productivity gains from worker specialization are governed by a parameter

3Following Becker and Murphy (1992), the production function in terms of tasks is the Leontieff function,

y = min
0<x<q

y (x)

with the interpretation that producing y goods requires that each task x be performed y (x) times.
4Assuming that workers can perform all tasks is not essential to the results but simplifies notation and

algebra. What is important is that there are some tasks that only workers can perform.
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γ > 1. With these assumptions, the productivity of a worker-machine pair is given by:

z (a) =

(
q

q − ã

)γ
=

(
1

1− a

)γ
(1)

Where I define a ≡ ã
q

as the fraction of total tasks that the machine can complete, which

I call the machine’s (and firm’s) degree of automation. When referring to machine types,

I will adopt the notational convention that variables with a tilde measure the highest level

of task that a machine can perform, whereas variables without a tilde measure the fraction

of total production tasks that a machine can perform (this distinction will become critical

in the dynamic version of the model). The function z (a) is related to the span of control

in models in which production is organized in knowledge hierarchies as in Garicano (2000)

and Garicano and Rossi-Hansberg (2006). In those papers, productivity gains arise from

employing more knowledgeable workers at higher levels in hierarchy of production. Here,

productivity gains come from pairing workers with machines because workers are essential

to production (since ã < q) and machines save worker time by performing a portion of the

tasks required in production. The degree of productivity gains are scaled by the parameter

γ, which I interpret in the spirit of Becker and Murphy (1992) as capturing returns to worker

specialization.

Firm production function and profit maximization Each firm i is characterized by

its technology ãi (equivalently, its degree of automation ai) and capital stock ki. At the

firm level, I assume that the number of (effective) worker hours per machine is technologi-

cally constrained to be in fixed proportion, resulting in the following (Leontieff) production

function for firm i:

yi = z (ai) min (ki, H · ni) , (2)

where ki and ni are the firm’s capital stock and labor input. H is labor-augmenting pro-

ductivity, common to all workers, so that H · ni is the efficiency adjusted number of hours

worked by firm i’s workers.

Firm size distribution I assume that each firm has exclusive use of a technology, so there

is a one-to-one correspondence between i and ai, and I can model the firm size distribution

as the measure of capital at each degree of automation ai. I denote this measure k (a), and
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assume that it has bounded support a ∈ [a`, ah], so that a` and ah are, respectively, the least

and most automated types of capital in the economy. Since a is a fraction and I have assumed

that at least some level of worker-only tasks are needed in production, the bounds satisfy

0 ≤ a` < ah < 1. Anticipating the discussion of aggregation in the following section, the

integral of k (a) is the aggregate capital stock of the economy, K =
∫ ah
a`
k (a) da. Normalizing

the firm size distribution by aggregate capital, I define the PDF f (a) ≡ k(a)
K

, the density

function of degrees of automation in the economy. Further, I define the density g (z) as the

distribution of the function z (a) given that a has density f (a). The density function g (z)

is the measure of productivities associated with a given distribution of automation. Since

f (a) is bounded, so too is g(z), with lower bound z` ≡ z (a`) and upper bound zh ≡ z (ah).

2.2 Aggregation and Equilibrium

I start by solving for aggregate labor demand. The profit maximization problem for a firm

with productivity z is:

max
n

zmin (k (z) , H · n)− w · n (3)

It follows that the optimal choice of hours as a function of z is :

n (z) =


k(z)
H

if z ≥ w
H

0 if z < w
H

Since z is a function of a, I can rewrite the optimal choice of hours in terms of the degree of

automation of the marginal firm.

n (a) =


k(a)
H

if a ≥ aw

0 if a < aw

Where aw = 1−
(
w
H

)σ−1
.

Aggregate labor demand, N , is the integral over firm labor choices, N =
∫ zh
z`
n (z) dz.

Substituting in the optimal choice of hours, and k (z) = K · g (z), the integral becomes

N = K
H

∫ zh
w/H

g (z) dz. Denoting by G (·) the CDF of z, integrating gives aggregate labor

demand as:

N =
K

H

[
1−G

(w
H

)]
(4)
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Aggregate labor demand is the product of the total capital stock, divided by worker efficiency,

times the fraction of active firms (1 minus the CDF at w
H

, the term in square brackets). I

assume that workers’ preferences give a labor supply function N s (w), increasing in the wage;

equating N s (w) to labor demand as in Equation 4 gives the equilibrium wage. With the

equilibrium wage in hand, aggregate output Y can be solved for as the integral over firm-level

output, Y =
∫ zh
w/H

zk (z) dz = K
∫ zh
w/H

zg (z) dz, which can be expressed as:

Y = K
[
1−G

(w
H

)]
EG
(
z|z ≥ w

H

)
(5)

Aggregate output is the product of three terms: the capital stock, the fraction of active

firms, and the average productivity of active firms, given by the third term (EG
(
z|z ≥ w

H

)
=[

1−G
(
w
H

)]−1 ∫ zh
w/H

zg (z) dz).

2.3 From Automation to a CES Aggregate Production Function

Equation 5 gives aggregate output as a function of the equilibrium wage. In order to express

aggregate output in a more familiar form, as a function of capital, labor and technology, I

start with an assumption about the distribution of degrees of automation f (a). In particular,

I assume that f (a) is a 3 parameter beta distribution5, characterized by one shape parameter,

ρ, and lower and upper bounds a` and ah. The following lemma characterizes the distribution

of z(a) using this assumption.

Lemma 1. If a ∼ B (1, ρ; a`, ah), so that the PDF of a, f (a) = ρ (ah−a)ρ−1

(ah−a`)ρ
, then z (a) =(

1
1−a

)γ
is distributed with CDF G (z):

G (z) = 1−

1−
1−

(
z`
z

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

(6)

and z ∈ [z`, zh], with z` =
(

1
1−a`

)γ
and zh =

(
1

1−ah

)γ
.

Proof. See Appendix A.1

5The standard Beta distribution is bounded in [0, 1] and characterized by two shape parameters. I restrict
one of the shape parameters to equal 1 and set the bounds to 0 < a` < ah < 1.
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With γ = 1, this lemma is equivalent to the derivation in Geerolf (2017) of a Pareto-

distributed span of control in an economy with a simplified Garicano (2000) production

function and a Beta distribution for worker skills. The distribution G (z), known to statisti-

cians as a truncated Beta-Pareto distribution6, is closely related to the Pareto distribution;

indeed with ρ = 1, G (z) is exactly a Pareto distribution with tail parameter 1
γ

and lower

bound z`, truncated at an upper bound zh.

The distribution G (z) generalizes the distribution derived by Sato (1969) (which in turn

extends the result in Levhari (1968)) for z` > 0. In contrast to those papers, I do not start

with G (z) as a primitive, but instead derive it from the underling distribution F (a) and

productivity function z (a). These differences are crucial since they allow me to develop a

theoretical link between automation and the aggregate production function, and are also

important in proving the existence of a balanced growth path and its associated stationary

distribution in the dynamic model presented in Section 3.

Before proceeding I make a further restriction on parameters: for the remainder of the

paper, I assume that γ = ρ+ 1. This is not an innocuous restriction, since in the logic of the

model γ can be thought of as a deep technological parameter that governs firm-level returns

to automation, whereas ρ is the shape parameter of the automation distribution, which makes

it closer to an equilibrium object. The gain from imposing this restriction is substantial:

as shown in Proposition 1, with this parametrization aggregate output in the economy can

be represented exactly as a canonical CES production function. The connection between a

knife edge parametrization of the model and the aggregation result may seem mysterious,

but is in fact rather prosaic: it is only in the knife-edge case that the integral in Equation

5 can be solved in closed form. I have verified numerically that the results presented in

this section and the next are not substantially affected by deviations from the knife edge

parametrization. To economize on notation and consistency with the literature, I also define

ρ ≡ σ
1−σ (σ will correspond exactly to the elasticity parameter of the CES). In sum, I make

the following assumptions about the distributions F (a) and G (z):

Assumption 1: Distributions F (a) and G (z) The automation distribution F (a) and

its associated productivity distribution G (z), with z (a) =
(

1
1−a

) 1
1−σ , are:

6Akinsete et al. (2008) and Lorenzutti et al. (2012) derive moments, MGF, etc for this distribution. I
show some of its properties in Appendix C.
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F (a) =

(
ah − a
ah − a`

) σ
1−σ

and G (z) = 1−

1−
1−

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

The following proposition shows that, given this assumption, aggregate output can be

represented by a CES production function with elasticity of substitution 0 < σ < 1.

Proposition 1. Using Assumption 1, aggregate output for this economy can be represented

as the CES production function with elasticity of substitution 0 < σ < 1,

Y = A
(
αK

σ−1
σ + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

(7)

where H is labor-augmenting productivity and the capital (K) and labor aggregates (N) are:

K =

∫
Z

k (z) dz and N =
K

H

[
1−G

(w
H

)]
where w is the market clearing wage that solves N s (w) = N . The total factor productivity

term A and capital distribution parameter α are functions of parameters of the productivity

distribution G (z):

A = (zh)
1−σ (z`)

σ (8)

α = 1−
(
z`
zh

)1−σ

(9)

Proof. See Appendix A.2.

Proposition 1 contains 3 linkages between the parameters of the automation distribution

F (a) and the aggregate production function. I discuss each of these in turn.

Elasticity of substitution σ The elasticity of substitution σ of the aggregate production

function is related to the shape parameter of the underlying beta distribution7. Inspecting

7I have imposed γ = 1
1−σ so strictly speaking σ is also related to the returns to automation at the firm

level. In describing the effect of varying σ I have in mind a local approximation leaving γ unchanged and
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the CDF of a B
(
1, σ

1−σ

)
distribution, F (x) = (1− x)

σ
1−σ , the effect of increasing σ is to

shift mass towards the left tail of the distribution, which in the model means that firms

with relatively low automation are relatively larger. The intuition for why this translates

into a higher elasticity of substitution is that the higher is σ, the larger is the mass of firms

in the neighborhood of the cutoff level of automation aw, and consequently the higher is

the mass of firms that go from active to idle in response to a small increase in the cutoff

aw (corresponding to a small increase in the wage). Because firms in the neighborhood of

this cutoff require more labor per unit of output, in the aggregate the economy becomes

more capital intensive when these firms shut down. In other words, the aggregate economy

substitutes towards capital in response to an increase in the wage, and this effect is stronger

the higher is σ.

The aggregation result in Proposition 1 requires that σ be smaller than 1. The discussion

in the previous paragraph provides a hint as to why that is the case: σ > 1 would imply that

the economy becomes more labor intensive as the wage increases. Sato (1969) shows that

this is a general existence requirement in this class of aggregative models (Mangin (2015)

proves a similar result using a very different approach). This is an interesting theoretical

insight in the long-running debate about the value of σ in a macro model with an aggregate

production function.

A and α The TFP parameter A and distribution parameter α are functions of moments

of the productivity distribution G (z); as shown in the appendix, A is the mean of z and

as such is increasing in both the lower and upper bounds of the productivity distribution.

TFP is therefore increasing in both ah and a`: the more automated the capital stock, the

higher is total factor productivity. Substituting for zh and z`, the distribution parameter α

can be expressed in terms of ah and a`, α = ah−a`
1−a`

. The distribution parameter is therefore

increasing in ah and decreasing in a` - I relegate the interpretation of this result to the

discussion of Proposition 2 below.

Proposition 2. The labor share in this economy is given by

varying the shape parameter of the Beta distribution. The resulting aggregate production function is not an
exact CES function, but is very close to CES for small deviations.
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LS =
1− ah
1− aw

(10)

Proof. The labor share with a CES production function can be expressed as:

LS = (1− α)σ Aσ−1
(w
H

)1−σ

Substituting in for A and α from Equations 8 and 9, and replacing zh =
(

1
1−ah

) 1
1−σ

and

w
H

=
(

1
1−aw

) 1
1−σ

gives the result after some algebraic manipulation.

Proposition 2 provides an easily interpretable expression for the labor share in terms of

the task distribution: the labor share is given by the ratio of the fraction of worker tasks at

the most automated firm (1− ah) over the fraction of worker tasks at the least automated

firm (1− aw).

Both the numerator and denominator of this ratio can be thought of as measures of

automation, but capturing different margins. An increase in ah can be interpreted as an

extensive margin of automation, since an increase in ah implies that new automation tech-

nologies have been discovered and embodied as capital goods. On the other hand, an increase

in aw can be interpreted as an increase along an intensive margin: some fraction of the least

automated technologies installed in the economy is left idle, which means that the average

automation level of firms that are still active increases.

This interpretation is related to the dynamics at work in models of innovation and diffu-

sion. Increasing ah is analogous to innovation - a jump in the technology frontier. Increasing

aw corresponds to diffusion, since the technology of the lowest active firm is closer to the

frontier after an increase in aw. To make the analogy to the diffusion literature more specific:

Benhabib et al. (2017) develop a model in which the firm productivity distribution has a

finite upper bound, so that both innovation (growth at the frontier) and diffusion (catch up

from firms in the left tail of the distribution) are present; they find that the presence of a

finite upper bound affects the key properties of the BGP equilibrium. By analogy, the model

in this paper shares uses the same firm level technology as Lagos (2006), but in the models

of that paper firm productivities are not bounded above (so only the “diffusion” margin is
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active). At a conceptual level, adding the upper bound allows me to derive model of both

the TFP term A and capital share parameter α of the aggregate production function.

3 Dynamic Model and Balanced Growth

In this section, I embed the static structure described in the previous section into a dynamic

model that, in the aggregate, closely resembles a standard neoclassical growth model. I

add households to the model; as usual, households supply labor and make consumption and

savings decisions that determine the evolution of the capital stock.

I introduce growth into the model by assuming exogenous growth paths for three vari-

ables: the number of tasks required for the production of the final good, qt; the frontier

level of automation technology ãh,t and labor productivity Ht. In addition to these three

exogenous states, the endogenous aggregate states of the dynamic economy are the aggregate

capital stock Kt and the distribution of automation technology Ft (a).

The set up of the dynamic model is such that the distribution Ft (a) stays within the

Beta family that allows aggregation as per Proposition 1, which reduces the state vector from

the entire distribution Ft (a) to the three parameters that characterize the Beta: the shape

parameter σ and the upper
(
ah,t =

ãh,t
qt

)
and lower

(
a`,t =

ã`,t
qt

)
bounds of the automation

distribution. Further, the assumptions will also keep the shape parameter σ constant, so that

the distribution can be summarized by its upper and lower bounds. From Proposition 1, this

will ensure that the aggregate production function will be CES with elasticity of substitution

σ, but the TFP parameter At and capital distribution parameter αt will be state dependent

through their dependence on the bounds of the automation distribution.

The production and investment technology in the dynamic model are closely related

to models with putty-clay technology and irreversible investment, introduced by Johansen

(1959). The vintage capital structure in a putty-clay model with irreversible investment

is a natural way to model an economy in which different types of capital coexist in the

economy at any given time. In this model, a type or vintage of capital corresponds to

capital with different levels of automation. The implementation of putty-clay technology in

this model is closely related to that of Gilchrist and Williams (2000): the firm-level Leontieff

production function leads to variable utilization, and old (less automated) capital is scrapped

endogenously as newer (more automated) capital in installed.
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3.1 Firms: entry, exit and investment

Firms are characterized by two state variables: a technology level ãi and a firm-specific capital

stock ki,t (for simplicity I refer to a unit of capital as a machine). I start by describing the

production and investment decision of an incumbent firm, followed by the endogenous exit

and entry decisions.

Incumbent firms A firm is characterized by its level of automation ai,t = ãi
qt

and capital

stock ki,t and produces final output by combining capital and labor (ni,t) in the Leontieff

production function yi,t = z (ai,t) min [ki,t, Ht · ni,t], where z (ai,t) =
(

1
1−ai,t

) 1
1−σ

. Given the

Leontieff technology, the firms’ optimal choice of hours is given by a cutoff rule: firms with

productivity z (ai,t) <
wt
Ht

do not hire labor in period t, so their capital remains idle. The

firm’s profit function is therefore given by:

π (ai,t) = max

[
z (ai,t)−

wt
Ht

, 0

]
(11)

A firm’s technology level ãi is fixed when it enters (firm entry is described in detail below).

Each firm has a monopoly on the operation of its technology and on the creation of new

machines that embody that technology. However, because the number of tasks required to

produce final output, qt, changes over time, a firms degree of automation, ai,t = ãi
qt

is not

constant over time. In particular, the degree of automation of a machine that can perform

tasks up to ãi decreases over time if qt grows, since that machine is less automated relative

to the number of tasks that workers perform. This gives rise to technological obsolescence

and endogenous scrapping (described below). The law of motion for ai,t is:

ai,t+1 =
ãi
qt+1

=
qt
qt+1

ai,t (12)

At the end of each period, the firm has to pay a maintenance cost κ > 0 per machine

to keep a machine operational. If the firm does not pay the maintenance cost, the machine

depreciates completely at the end of the period. In addition, machines fail with i.i.d. proba-

bility δ. I denote the value of a firm with capital ki,t and automation ai,t by V (ai,t, ki,t) and

the value of one machine of type ai,t by v (ai,t). The value function v (ai,t) is given by:
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v (ai,t) = π (ai,t) + 1 [(1− δ) βRt+1v (ai,t+1)− κ] (13)

The indicator function captures the firm’s decision to either pay the maintenance cost or

scrap the machine. The continuation value of the machine is the discounted value net of

the maintenance cost. Incumbent firms with machines that have positive (net) continuation

value invest and grow their capital stock. Each firm solves the following investment decision,

subject to a non-negativity constraint on investment:

max
ii,t

ii,tβRt+1V (ai,t+1, ki,t+1)− φ (ai,t+1)

2
(ιi,t)

2 (14)

s.t. ιi,t ≥ 0

Where φ is an increasing, convex function such that the marginal cost of creating machines is

increasing in the level of automation. The function φ determines the quantity of investment

at each level of automation, so is important in determining the evolution of the distribution of

automation. I return to this point in Section 3.2. With this specification for the investment

adjustment cost, the value function for a firm is homogeneous of degree one in the firm capital

stock, so that the value of the firm is simply the value of each of its machines multiplied by

its capital stock. V (a, k) = k · v (a) The FOC for the investment decision is:

φ (ai,t+1) ιi,t = βRt+1v (ai,t+t) (15)

which gives that at the optimum level of investment, the marginal cost of creating a new

machine is equated to the marginal benefit, which is the value of the new machine. Since

the discounted value on the right hand side is strictly positive (otherwise machines of that

type would have been scrapped), and 0 < φ (at+1) < ∞, ιi,t > 0. This implies that the

non-negativity constraint does not bind, and that any firm that does not scrap its capital

has strictly positive investment. The law of motion for firm-specific capital is:

ki,t+1 = (1− δ) ki,t + ιi,t (16)
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Scrapping and firm exit The scrapping threshold at the end of the period is defined

implicitly by

(1− δ) βRt+1v (a`,t+1) = κ (17)

The automation level of the lowest machine installed at the beginning of time t is a`,t, so the

scrapping threshold condition implies that machines in (a`,t, a`,t+1] are scrapped each period,

and the firms that own those technologies exit. In terms of the CDF of the automation

distribution, the fraction of capital that is scrapped at the end of time t is ςt = Ft (a`,t+1).

New automation technologies and firm entry In each period, new automation tech-

nologies (ãh,t, ãh,t+1) are discovered. Each of these new technologies are allocated at random

to new firms, so that ãh,t+1 − ãh,t new firms are created each period. The new firms create

capital goods that embody these new technologies, solving the following initial investment

problem:

max
ki,t+1

ki,t+1βRt+1v (ai,t+1)− φN (ai,t+1)

2
(ki,t+1)2 (18)

The FOC for this problem is:

φN (ai,t+1) ki,t+1 = βRt+1v (ai,t+1) (19)

As with investment by incumbents, the FOC equates the marginal benefit to the marginal

cost of new capital.

3.2 Dynamics of the automation distribution Ft (a)

The evolution of the automation distribution Ft (a) is determined by the investment decisions

of incumbents and new entrants, and the scrapping decision of exiting firms. Denoting by

Jt (a) the distribution of investment, the law of motion of F (a) in general is a complicated

map from (Ft (a) , Jt (a)) to Ft+1 (a). I vastly reduce this complexity by making assumptions

that ensure that the aggregate production function of the economy is a CES function with

invariant elasticity of substitution at all times, which in turn implies that Ft (a) is a beta

distribution with invariant shape parameter for all t. Further, given the assumption of

exogenous growth in ãh,t and qt, the upper bound of Ft evolves exogenously. The problem of
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tracking the automation distribution is therefore reduced to the law of motion of the lower

bound a`,t of the distribution.

The necessary assumptions are implemented through the functions φ (a) and φN (a), the

marginal cost of capital for incumbents and new entrants, respectively. Since I will not be

studying the dynamics of the model outside the balanced growth path, I do not specify

functional forms for φ (a) and φN (a) outside the steady state.

3.3 Households

The representative household chooses consumption Ct, investment It and labor supply Nt

every period to maximize the following intertemporal problem:

max
Ct,It,Nt

∞∑
t=0

βtU (Ct, Nt) (20)

Subject to the budget constraint:

Ct + PI,tIt = wtNt + rK,tKt (21)

Where PI,t is the price of investment goods and rK,t is the rental rate of capital. The

equilibrium conditions from household optimization are the standard intratemporal labor

supply condition and an intertemporal Euler equation:

UN,t = −UC,twt (22)

UC,t = β

[
UC,t+1

(
PI,t+1 (1− δ) (1− ςt+1) + rK,t+1

PI,t

)]
(23)

Where the utility function U (C,N) satisfies the conditions required for balanced growth (as

in King et al. (1988)). The aggregate capital stock has the following law of motion:

Kt+1 = (1− δ) (1− ςt)Kt + It (24)

Where δ is exogenous depreciation and ςt is the fraction of the capital stock that is scrapped

every period due to obsolescence.
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3.4 Equilibrium and balanced growth

An equilibrium of the dynamic model consists of sequences of: (i) prices {wt, PI,t, rK,t};
(ii) aggregate allocations {Ct, It, Nt}; (iii) firm allocations {ιi,t, n,it}; and (iv) firm exit

decisions, such that household and firm equilibrium conditions are satisfied and markets for

the final good and savings clear. Market clearing in final goods requires that total final goods

output is either consumed or invested:

Yt = Ct + PI,tIT (25)

and savings market clearing requires that savings PI,tIt equal aggregate investment expen-

ditures:

PI,tIt =

∫ ah,t+1

a`,t+1

pt (a) ιt (a) da (26)

Where ιt (a) is the investment choice of a firm with automation level a.

Balanced Growth I now show that the model has a steady state with constant growth

that satisfies the Jones and Scrimgeour (2008) definition of a balanced growth path. Namely,

quantities {Yt, Ct, It, Kt} grow at constant rates and factor shares are constant and strictly

positive. I add to the usual definition of the balanced growth path the requirement that the

automation distribution F (a) is stationary. In fact, as shown below, stationarity of F (a) is

a necessary and sufficient condition for a balanced growth path.

Since aggregate output in this economy can be represented as the following CES produc-

tion function with elasticity of substitution σ < 1:

Yt = At

(
αtK

σ−1
σ

t + (1− αt) (Ht ·Nt)
σ−1
σ

) σ
σ−1

the conditions for the existence of a balanced growth path follow from the Uzawa (1961)

growth theorem, which states that the balanced growth path exists only if all technological

growth is labor augmenting. This requires that the TFP term At = (zh,t)
1−σ (z`,t)

σ is constant

in steady state. Substituting in the definitions for zh and z` in terms of the bounds of the

automation distribution F (a) gives At =
(

1
1−ah,t

)(
1

1−a`,t

) σ
1−σ

. Constant TFP therefore

requires that ah =
ãh,t
qt

and a` =
ã`,t
qt

are both constant in the steady state, so qt, ãh,t, ã`,t
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must grow at the same rate; and that σ is constant. Since ah, a` and σ fully characterize

the distribution F (a), the conditions for constant TFP in the steady state and stationarity

of the distribution F (a) are the same.

Assuming that the labor-augmenting factor Ht grows at a constant growth rate 1 + g =
Ht+1

Ht
, in the balanced growth path {Yt, Ct, It, Kt} also grow at rate g. This implies that

there is no long run growth from automation, and that the distribution of automation F (a)

does not affect the steady state growth rate. The automation distribution does, however,

determine factor shares in the balanced growth path. From Proposition 2, the labor share

is LS = 1−ah
1−aw . Since balanced growth is consistent with any ah and aw (as long as 0 < aw <

ah < 1), the model has a continuum of balanced growth paths indexed by the steady state

labor share. In terms of the parameters of CES aggregate production function, there is a

balanced growth path for any α ∈ (0, 1).

At a conceptual level the model can therefore rationalize trends in factor shares as tran-

sitions between balanced growth paths brought about by periods of unbalanced growth in

the number of tasks required in production, qt, and the frontier automation technology ãh,t.

4 Measuring Automation in the Data

In this section I show how to take the model of automation presented above to data, with

the objective of measuring the contribution of automation to changes in labor’s share of US

GDP. To do so I apply the model described in Section 3 to industry-level data. I will think of

each industry in the US economy as consisting of firms operating firm-specific technologies

to produce an industry-specific good, and of the wage in each industry as being determined

in an industry-specific labor market. In the background, preferences and the investment

technology aggregate the output of the different industries into a final consumption and

investment good, but I do not model these explicitly; instead, to aggregate the output

and labor shares of all industries I use output shares directly from the data. Denoting by

Y Sj an industry’s share of overall output and by LSj an industry’s labor share, one can

decompose the change in the aggregate labor share into “shift” and “share” components
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Decade ∆LSUS Shift Share
1972-80 -0.01 -0.00 -0.01
1980-90 0.02 0.01 0.01
1990-00 0.01 0.00 0.01
2000-10 -0.06 -0.06 0.00

Source: US KLEMS. Calculations exclude public sector and FIRE.

Table 1: Shift and Share Components of Change in US Labor Share, 1972-2010

around expansion points Y Sj and LSj:

∆LSUS =
∑
j

Y Sj∆LSj︸ ︷︷ ︸
Shift

+
∑
j

LSj∆Y Sj︸ ︷︷ ︸
Share

(27)

The shift component measures the contribution of within-sector changes, and the share

component measures the contribution of cross-industry reallocation. The objective of the

empirical exercise in Section 5 is to explore the model’s ability to explain the shift component,

taking the share component from the data.

As Table 1 shows, the share component is certainly an important one: trends in the

industrial composition of the US economy have a first order effect on the macro aggregates

that I study. But explaining these trends is a significant challenge in its own right and

beyond the scope of this paper.

Applying Equation 10 to each sector j, the labor share expressed in terms of the frontier

(ah) and marginal (aw) automation technologies is:

LSj,t ≡
wj,tNj,t

Yj,t
=

1− ah,j,t
1− aw,j,t

(28)

I detail below the steps taken to take this sharp prediction implied by the model to the data.

To do so, I combine macro- and micro-data at the industry level with detailed occupation-

level task data to measure task inputs into production at the industry level. I start by

deriving model measurements of total and machine task inputs into production before de-

scribing the measurement of these objects in the data.
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4.1 Task production in the model

I start by deriving model expressions for the aggregate amount of worker and machine tasks

required to produce a given level output.

Starting at the firm level, to produce one unit of output, workers at a a firm operating

capital that can complete tasks up to ãi have to complete tasks qt − ãi8. Firm i’s workers

therefore complete a total of

λi,t ≡ yi,t (qt − ãi) = yi,tqt (1− ai,t) (29)

tasks. Firm i’s machines complete the complementary fraction of tasks,

µi,t ≡ yi,tqtai,t (30)

Total task production at the firm level λi,t + µi,t = qtyi,t is increasing in the total number

of tasks required for production and in the quantity of output. To obtain aggregate task

inputs, I integrate λi,t and µi,t over the set of firms. In Appendix B.1, I derive the following

expressions for total worker (Λt) and capital (Mt) task inputs per unit of effective labor

input:

Λt =qtEF,t [1− a|a > aw,t] (31)

Mt = qtEF,t [a|a > aw,t] (32)

The expressions are intuitive: the total number of worker (capital) tasks per effective worker

hour (Ht ·Nt) is the total number of tasks qt times the average fraction of worker (capital)

tasks among active firms (firms with a > aw,t).

4.2 Model measurement equations

Assuming we can observe Λt and Mt in the data, Equations 31 and 32 form a system of two

observables and three latent variables: qt, ah,t and aw,t. Taking the ratio Λt
Mt

eliminates one

8To economize on subscripts, I omit the industry subscript j except when necessary to avoid confusion.
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of these latest variables, qt, since the ratio of worker to machine tasks doesn’t scale with

the total number of tasks qt. Taking this ratio as a departure, I show in Appendix B.1 how

to derive the following measurement equation by making a log-linear approximation around

ah,t−1 and aw,t−1

∆ log Λt −∆ logMt = χh,t∆ log ah,t + χw,t∆ log aw,t (33)

Where ∆ denotes the time difference operator and χh,t and χw,t are time dependent coeffi-

cients (the time dependence comes from successively approximating around the lagged values

ah,t−1 and aw,t−1). Equation 33 is one measurement equation that I will take to the data. To

obtain a second, I start with the definition of aw,t as the level of automation of the marginal

active firm, wt
Ht

=
(

1
1−aw,t

) 1
1−σ

. Solving for 1− aw,t gives:

1− aw,t =

(
wt
Ht

)σ−1

(34)

Assuming ∆ log Λt, ∆ logMt, wt and Ht are observable, Equations 33 and 34 form a system

of two measurement equations and two latent variables, aw,t and ah,t. The following section

describes the measurement of the required variables in the data.

4.3 Data

I use three data sources to measure wages (wj,t), labor augmenting productivity (Hj,t),

workers tasks (∆ log Λj,t), and machine tasks (∆ logMj,t). Table 2 summarizes the data used

in the empirical exercise.

Data Source

ŵj,t Real hourly wage KLEMS

Ĥj,t Labor services per hour KLEMS

Λ̂j,t Total task inputs CPS and O*NET

Λ̂M,t Automatable task inputs CPS and O*NET

Table 2: Data Used in Empirical Exercise

Industry wages wj,t and labor input quality Hj,t come from the World KLEMS database
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for the US, as described in Jorgenson et al. (2012). I also use KLEMS data to construct

industry-level labor and value added shares. I measure ∆ log âw,j,t by taking a first order

approximation of Equation 34, and using KLEMS data on wages and labor services per hour.

∆ log âw,j,t = (1− σ)
1− âw,j,t−1

âw,j,t−1

(
∆ log ŵj,t −∆ log Ĥj,t

)
(35)

4.3.1 Measuring task inputs into production

To measure task inputs into production, I combine Current Population Survey (CPS) data

obtained from the IPUMS-USA database (Sarah Flood and Warren (2017)) and task data

from the US Occupational Information Network (O*NET). This is done in two steps: from

the CPS I measure hours worked by employees in different occupations by year and industry;

from O*NET I obtain measures of task inputs in each occupation. Multiplying year-industry-

occupation hours by the corresponding measure of task inputs, I obtain a measure of worker

task inputs in production. I now describe this procedure in detail.

The O*NET database consists of detailed data on a large number (approximately 1100) of

individual occupations in the US economy. Each occupation is described by several numerical

evaluations of the tasks performed by workers, as well as the the knowledge, skills, and

abilities required to perform said tasks. To construct my baseline measure of task input

in each occupation, I add the number of tasks reported as relevant for each occupation,

weighted by each tasks relevance score. The score corresponds the fraction of workers in

that occupation that reported that a given task is relevant to their job. At the level of detail

at which I construct this measure, there are approximately 330 different tasks.

Using CPS data from 1972-2010, I construct measures of hours worked by year, indus-

try and occupation. I multiply these occupation level variables by the corresponding task

input measure from O*NET and sum over occupations to construct year-industry-task hour

variables. The sum over tasks of this measure, divided by the total number of hours worked

within each industry and the labor input quality from KLEMS, is my data counterpart to

Λj,t as defined in equation 31.

Λ̂j,t ≡
∑
Tasks

∑
Occ

(
Occupation Hoursj,t ×Occupation Task Input

Ĥj,tN̂j,t

)
(36)
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The final step is to construct a data counterpart to ∆ logMj.t, the log change in machine

tasks. To do so, I designate a subset of the total tasks in the O*NET sample as automatable.

I follow the extensive literature on automation and job polarization starting with Autor et al.

(2003), in designating routine tasks as automatable. I denote the sum of this subset of tasks

Λ̂M,j,t, defined analogously to Λ̂j,t:

Λ̂M,j,t ≡
∑

Auto Tasks

∑
Occ

(
Occupation Hoursj,t ×Occupation Task Input

Ĥj,tN̂j,t

)
(37)

To obtain the log change in tasks performed by machines (∆ log M̂j,t) from the log change

in automatable tasks ∆ log Λ̂M,j,t, I derive the following expression in Appendix B.1:

∆ log M̂j,t = −Λ̂M,j,t−1

Λ̂j,t−1

Λ̂j,t−1

M̂j,t−1

∆ log Λ̂M,j,t (38)

With these expressions in hand, I solve for

∆ log âh,j,t =
1

χh,j,t

(
∆ log Λ̂j,t −∆ log M̂j,t − χw,j,t∆ log âw,j,t

)
which allows me to derive the model-implied labor share in each sector.

5 Automation and the Labor Share

In this section I describe the procedure used to fit the model to industry level data and

present the results.

5.1 Fitting the model to data

In this section I explore the fit of model implied labor shares to industry labor share data

from KLEMS. Given the data set
{
ŵj,t, Ĥj,t, ∆ log Λ̂j,t ,∆ log M̂j,t

}T
t=1

for each sector j, two

parameters fully determine the model-implied path of industry labor shares: the elasticity of

substitution, σj, and the automation level of the lowest active firm at the start of the sample,

âw,j,0. With these two parameters, the entire sequence of âh,j, âw,j and hence L̂Sj =
1−âh,j
1−âw,j

can be solved for each industry j as follows:
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1. Solve for âh,j,0 using the labor share from the data at time zero and âw,j,0, âh,j,0 =

1− LSj,0 (1− aw,j,0)

2. Solve for
{

∆ log âw,j,t = (1− σ)
1−âw,j,t−1

âw,j,t−1

(
∆ log ŵj,t −∆ log ÂN,j,t

)}T
t=1

starting from

âw,j,0 and updating âw,j,t+1 = âw,j,t × exp (∆ log âw,j,t).

3. Iteratively solve for ∆ log âh,j,t = 1
χh,j,t

(
∆ log Λ̂jt −∆ log M̂jt − χw,j,t∆ log âw,j,t

)
and

update âh,j,t+1 = âh,j,t × exp (∆ log âh,j,t). The iteration is necessary because the coef-

ficients χh,j,t and χw,j,t depend on âh,j,t−1 and âw,j,t−1.

4. Construct L̂Sj =
1−âh,j
1−âw,j

To find the best fit of the model to the data, I numerically solve the following quadratic

distance minimization problem between the model implied and KLEMS data industry labor

share:

min
σ̂j ,âw,j,0

T∑
t=0

(
L̂Sj,t − LSj,t

)2

(39)

The σ̂j and âw,j,0 that minimize 39 are found by iterating over steps 1-4 above.

5.2 Results

In mapping the data to the model I am thinking of the economy as being on its balanced

growth path at each point of observation. To focus on these low frequency movements, I filter

the data using an HP filter with parameter 6.25 (the recommended parameter for annual

data in Ravn and Uhlig (2002)).

Figure 2 plots the data and model-implied labor shares for 12 industries (comprising the

business sector excluding finance, insurance and real estate) by value added in 1972. Table

3 shows the data and model implied change in the industry labor share, R2, best fit σ̂ and

model-implied increase in âh and âw for those industries for which the model has a positive

R2. The fit of the model to the low frequency dynamics of industry-level labor shares varies

significantly between industries. Of the 6 largest sectors by value added share in 1972, the

model does reasonable well in fitting the low frequency trends in manufacturing, health and

professional and business services, but poorly for retail and wholesale trade, construction

and education. The model does not resort to extreme values of σ to fit the low frequency

27



dynamics; for example the value of σ̂ for manufacturing is 0.86; Oberfield and Raval (2014)

estimate a σ in manufacturing around 0.75 in 2007. To form an idea of the overall fit of

the model, Figure 3 plots the model implied aggregate labor share taking the value added

of each sector from the KLEMS data.

Industry ∆LS (data) ∆LS (model) R2 σ̂ ∆âh ∆âw

Manufacturing -0.18 -0.11 0.58 0.86 0.12 0.03
Health 0.08 0.09 0.81 0.93 -0.07 0.03

Prof. and Bus. Services 0.08 0.11 0.63 0.95 -0.05 0.02
Agriculture 0.05 0.08 0.71 0.84 -0.06 0.03
Information -0.19 -0.15 0.63 0.91 0.18 0.05

Accommodation and Food -0.12 -0.09 0.27 0.73 0.10 0
L-R: Change in LS in KLEMS data; change in LS in model; R2 of fitted model; best fit σ; model implied change in ah; model

implied change in aw. All data are fed into model after HP filtering with filter parameter 6.25.

Table 3: Results Fitting Model to KLEMS labor share data, 1972-2010

To illustrate the effect of automation on the industry and aggregate labor shares, Fig-

ure 4 plots the aggregate labor share and the labor share in manufacturing keeping âh,t in

manufacturing constant at its time zero value. The interpretation of this counterfactual is

that the margin of automation that operates through the discovery of improved automation

technologies is held constant, but the margin that operates through varying the lowest level

of automation remains active. Within manufacturing, the labor share increases by approxi-

mately 0.02 in the counterfactual scenario, so is approximately 0.12 higher by 2010 than in

the model baseline; the aggregate labor share is 0.02 higher in the counterfactual than in

the baseline.

A concern with the analysis as it applies to manufacturing is that it is also by far the

sector that is most exposed to import competition and offshoring of jobs. Gutierrez and

Philippon (2017) present evidence on the effect of competition from China on the US man-

ufacturing industry. The authors show that mean import penetration of Chinese imports

across manufacturing was close to zero in 1990, had risen to around 4% by 2000, and in-

creased to 20% by 2015. Other measures of the effect of Chinese competition, such as entry

and exit rates by exposure to Chinese competition, show a similar temporal pattern: a slow

increase from a low base between 1990-2000, and a sharp acceleration thereafter. My results

on the effect of automation on the manufacturing labor share (see top left panel of Figure
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1) fail to match the sharp decline in the labor share that is evident in the KLEMS data

post-2000, which may be due to the increased influence of offshoring and other effects of

foreign competition.

Overall, the empirical exercise provides suggestive evidence of an important role for

automation in driving industry-level labor shares. One salient discrepancy between model

and data is that the model fails to match most of the steep post-2000 drop in the aggregate

labor share.

6 Conclusion

This paper develops a model of the aggregate production function in which the parameters

of a CES production function are determined by moments of an underlying distribution of

automation technologies. Automation in the model is a form of embodied technology which

allows machines to replace workers in the production of tasks.

The balanced growth path of the model closely resembles that of a neo-classical growth

model with a CES aggregate production function with sub-unitary elasticity of substitution

and growth coming from labor augmenting technical progress, with one crucial difference: the

labor share in the steady state is determined by the distribution of automation technology,

and a balanced growth path exists for any strictly positive labor share. The model can

rationalize trends in the labor share as arising from transitions between balanced growth

paths, caused by periods of unbalanced growth between automation technology and human

task inputs into production.

In the empirical exercise, the model is used to measure the effect of automation on

industry-level labor shares in the US economy. To do so, I introduce a novel measure

of aggregate task inputs into production, constructed using CPS data and O*NET. The

model fits the HP-filtered trend in industry labor shares reasonably well for some important

industries, and the fitted model implies that automation was a significant force driving

fluctuations in the labor share in data from 1972-2010.
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KLEMS data and model implied aggregate labor shares for 12 US industries

Figure 2: KLEMS and model implied labor shares for 12 US Industries, 1972-2010
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KLEMS data and model implied aggregate labor shares. The model aggregate is constructed using value added shares from the

data to construct the aggregate from the model-implied industry level shares.

Figure 3: KLEMS and model implied aggregate labor share, 1972-2008
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Model implied labor shares of the fitted model and a counterfactual in which the ah in manufacturing is held constant, but aw

follows its fitted path. The interpretation of the counterfactual is that the technological innovation margin of automation in

manufacturing is held constant but the endogenous scrapping margin follows its fitted path. The left panel plots the aggregate

labor share and the right panel the labor share in manufacturing.

Figure 4: Model implied labor share and model counterfactual with constant ah in manufac-
turing
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A Proofs

A.1 Proof of Lemma 1

Start with the CDF G (z).

G (z) = 1−


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

The random variable ũ = G (z) is uniformly distributed in [0, 1] (by the probability integral
transformation).

ũ = 1−


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

u = 1− ũ =


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

If ũ ∼ U [0, 1], then u = 1− ũ is also u ∼ U [0, 1]. Now, express z as a function of u:

u
1
ρ =

(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ

(
z`
zh

) 1
γ

+

(
1−

(
z`
zh

) 1
γ

)
u

1
ρ =

(z`
z

) 1
γ

((
1

zh

) 1
γ

+

((
1

z`

) 1
γ

−
(

1

zh

) 1
γ

)
u

1
ρ

)−γ
= z

By the probability integral transform, the random variable χ̃ = u
1
ρ is distributed B(ρ, 1),

χ̃ ∈ [0, 1]. It follows that the random variable χ = z
− 1
γ

h +

(
z
− 1
γ

` − z
− 1
γ

h

)
χ̃ is distributed

B(ρ, 1) with support χ ∈
[
z
− 1
γ

h , z
− 1
γ

`

]
. So z = χ−γ has distributionG (z). Now, let a ≡ 1−χ.

37



Since χ ∼ B

(
ρ, 1; z

− 1
γ

h , z
− 1
γ

`

)
, a ∼ B (1, ρ; a`, ah), with a` ≡ 1 − z

− 1
γ

` and ah ≡ 1 − z
− 1
γ

h .

Finally, let ã = qa. Then, ã ∼ B (1, ρ; ã`, ãh), with a` = ã`
q

and ah = ãh
q

9, and

z =

(
q

q − ã

)γ
=

(
1

1− a

)γ
A.2 Proof of Proposition 1

I first show how to derive the distributionG (z) from the desired CES production function.

A.2.1 From CES Production Function to Distribution

Want a production function of the form:

Y =
(
κK

σ−1
σ + νN

σ−1
σ

) σ
σ−1

Dividing both sides by K,

Y

K
=

(
κ+ ν

(
N

K

)σ−1
σ

) σ
σ−1

Define y ≡ Y
K

and n ≡ N
K

.

y =
(
κ+ νn

σ−1
σ

) σ
σ−1

(40)

Express y and n as functions of w̃:

9Proof:

f (χ) =
ρ
(
χ−H− 1

γ

)ρ−1

(
L− 1

γ −H− 1
γ

)ρ
Substitute in a = 1− χ

f (x) =
ρ
(

1− a−H− 1
γ

)ρ−1

(
L− 1

γ −H− 1
γ

)ρ =
ρ ((1− ah)− a)

ρ−1(
(1− ah)−

(
1− L− 1

γ

))ρ =
ρ (ah − a)

ρ−1

(ah − a`)ρ

So x ∼ B (1, ρ; `, h, 1− ah). Now, let ã = qx.

f (ã) =
1

q

ρ
(
ah − ã

q

)ρ−1

(ah − a`)ρ
=

1

qρ
ρ (qah − ã)

ρ−1

(ah − a`)ρ
=
ρ (ãh − ã)

ρ−1

(ãh − ã`)ρ
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y (w̃)
σ−1
σ = κ+ νn (w̃)

σ−1
σ (41)

Total derivative w.r.t. w̃,(
σ − 1

σ

)
y (w̃)−

1
σ
∂y

∂w̃
=

(
σ − 1

σ

)
νn (w̃)−

1
σ
∂n

∂w̃

It is convenient to define y ≡ Y
K

and n ≡ N
K

:

y =

∫ H

w̃

zg (z) dz (42)

n =
1

q
(1−G (w̃)) (43)

From equations (42) and (43),
∂y

∂w̃
= −w̃g (w̃)

∂n

∂w̃
= −1

q
g (w̃)

Substituting,

−y (w̃)−
1
σ w̃g (w̃) = −νn (w̃)−

1
σ

1

q
g (w̃)

y (w̃)−
1
σ =

(
ν

qw̃

)
n (w̃)−

1
σ

y (w̃)−1 =
( ν

H · w̃

)σ
n (w̃)−1

y (w̃) =

(
H · w̃
ν

)σ
n (w̃)
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Substituting into equation (41):((
H · w̃
ν

)σ
n (w̃)

)σ−1
σ

= κ+ νn (w̃)
σ−1
σ(

H · w̃
ν

)σ−1

n (w̃)
σ−1
σ = κ+ νn (w̃)

σ−1
σ((

H · w̃
ν

)σ−1

− ν

)
n (w̃)

σ−1
σ = κ

n (w̃)
σ−1
σ = κ

((
H · w̃
ν

)σ−1

− ν

)−1

n (w̃) = κ
σ
σ−1

((
H · w̃
ν

)σ−1

− ν

)− σ
σ−1

= κ
σ
σ−1

((
H · w̃
ν

)σ−1

− ν

) σ
1−σ

Substitute in from equation (43),

1

H
(1−G (z)) = κ

σ
σ−1

((
H · z
ν

)σ−1

− ν

) σ
1−σ

G (z) = 1−H · κ
σ
σ−1

((
H · z
ν

)σ−1

− ν

) σ
1−σ

By definition, G is a CDF and z ∈ [z`, zh], so G (H) = 1 and G (L) = 0. To solve for κ and
ν, evaluate at the boundaries:

1 = G (zh)

0 = H · κ

((
H · zh
ν

)σ−1

− ν

) σ
1−σ

0 =

(
H · zh
ν

)σ−1

− ν

νσ = (H · zh)σ−1
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ν = (H · zh)
σ−1
σ (44)

Substitute in,

G (z) = 1−H · κ
σ−1
σ

( H · z
(H · zh)

σ−1
σ

)σ−1

− (H · zh)
σ−1
σ

 σ
1−σ

= 1−H · κ
σ−1
σ

(
(H · zh)

σ−1
σ
(
(H · zh)1−σ (H · z)σ−1 − 1

)) σ
1−σ

= 1−H · κ
σ−1
σ (H · zh)−1 (((H · zh)1−σ (H · z)σ−1 − 1

)) σ
1−σ

= 1− κ
σ−1
σ z−1

h

((zh
z

)1−σ
− 1

) σ
1−σ

Evaluate G (L):

0 = G (z`)

1 = κ
σ
σ−1 z−1

h

((
zh
z`

)1−σ

− 1

) σ
1−σ

κ
σ
σ−1 = zh

((
zh
z`

)1−σ

− 1

) σ
σ−1

κ = z
σ−1
σ

h

((
zh
z`

)1−σ

− 1

)
(45)

Substitute in,
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G (z) = 1−

(
z
σ−1
σ

h

((
zh
z`

)1−σ

− 1

)) σ
σ−1

z−1
h

((zh
z

)1−σ
− 1

) σ
1−σ

= 1− zh

((
zh
z`

)1−σ

− 1

) σ
σ−1

z−1
h

((zh
z

)1−σ
− 1

) σ
1−σ

= 1− 1((
zh
z`

)1−σ
− 1

) σ
1−σ

((zh
z

)1−σ
− 1

) σ
1−σ

= 1−

 ( zhz )1−σ − 1(
zh
z`

)1−σ
− 1


σ

1−σ

= 1−


(
z`
zh

)1−σ ((
zh
z

)1−σ − 1
)

(
z`
zh

)1−σ
((

zh
z`

)1−σ
− 1

)


σ
1−σ

= 1−


(
z`
z

)1−σ −
(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

Rearrange:

G (z) = 1−

1−
1−

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

With ρ = σ
1−σ and γ = σ

1−σ + 1 = 1
1−σ ,

G (z) = 1−

1−
1−

(
z`
z

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

A.2.2 The CES production function in normalized form

Substitute ν and κ from equations (44) and (45) into the CES production function (41):

42



y =
(
κ+ νn

σ−1
σ

) σ
σ−1

y =

(
z
σ−1
σ

h

((
zh
z`

)1−σ

− 1

)
+ (zhH)

σ−1
σ n

σ−1
σ

) σ
σ−1

y = zh

(((
zh
z`

)1−σ

− 1

)
+ (H · n)

σ−1
σ

) σ
σ−1

Define:

α ≡

(
zh
z`

)1−σ
− 1(

zh
z`

)1−σ
− 1 + 1

=

(
zh
z`

)1−σ
− 1(

zh
z`

)1−σ = 1−
(
z`
zh

)1−σ

1− α ≡ 1−

(
1−

(
z`
zh

)1−σ
)

=

(
z`
zh

)1−σ

Substitute:

y = zh

((
zh
z`

)1−σ
) σ

σ−1 (
α + (1− α) (H · n)

σ−1
σ

) σ
σ−1

y = zh

(
zh
z`

)−σ (
α + (1− α) (H · n)

σ−1
σ

) σ
σ−1

y =
(
(zh)

1−σ (z`)
σ) (α + (1− α) (H · n)

σ−1
σ

) σ
σ−1

Multiply both sides by K,

Y =
(
(zh)

1−σ (z`)
σ) (αK σ−1

σ + (1− α) (H · n)
σ−1
σ

) σ
σ−1

Y = A
(
αK

σ−1
σ + (1− α) (H · n)

σ−1
σ

) σ
σ−1

Where A = (zh)
1−σ (z`)

σ; α = 1−
(
z`
zh

)1−σ
. Now, substitute in the definitions of H and L.

43



A.2.3 A, α in terms of distribution of a

A = (zh)
1−σ (z`)

σ

=

((
1

1− ah

) 1
1−σ
)1−σ((

1

1− a`

) 1
1−σ
)σ

=
1

1− ah

(
1

1− a`

) σ
1−σ

=
1

1− ah
(1− a`)

σ
σ−1

= (1− a`)
1

σ−1

(
1− a`
1− ah

)

α = 1−
(
z`
zh

)1−σ

= 1−


(

1
1−a`

) 1
1−σ(

1
1−ah

)


1−σ

= 1−

(
1

1−a`

)
(

1
1−ah

)
= 1− 1− ah

1− a`
=

1− a` − 1 + ah
1− a`

=
ah − a`
1− a`

A.2.4 Labor share

Labor share of the CES production function:

LS = (1− α)

(
Y

A ·H ·N

) 1−σ
σ
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Substituting in for A and α gives:

LS = (1− ah)
(w
H

)1−σ

A.2.5 From Distribution to CES Production Function

y =

∫ zh

w/H

zg (z) dz

=

∫ zh

w/H

σ

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ

1−
1−

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ−1

dz

=


(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ 0− zh

(
1−

(
w/H

zh

)1−σ
) σ

1−σ


=


(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ zh(1−
(
w/H

zh

)1−σ
) σ

1−σ


= (zh)
1−σ (z`)

σ

1−
(
w/H
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

= (zh)
1−σ (z`)

σ

 1−
(
z`
zh

)1−σ

1−
(
w/H
zh

)1−σ


σ
σ−1
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Note

1−G (w̃) =


(
z`
w̃

)1−σ −
(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

(H · n)
1−σ
σ =

(
zh
w/H

)1−σ (
z`
zh

)1−σ
− (1− α)

α

(H · n)
1−σ
σ =

(
zh
w/H

)1−σ
(1− α)− (1− α)

α

α (H · n)
1−σ
σ + (1− α)

1− α
=

(
zh
w/H

)1−σ

(
zh
w/H

)1−σ

= 1 +
α

1− α
(H · n)

1−σ
σ(

zh
w/H

)1−σ

=
α

(1− α) (H · n)
σ−1
σ

+ 1

=
α + (1− α) (H · n)

σ−1
σ

(1− α) (H · n)
σ−1
σ(

w/H

zh

)1−σ

=
(1− α) (H · n)

σ−1
σ

α + (1− α) (H · n)
σ−1
σ

1−
(
w/H

zh

)1−σ

= 1− (1− α) (H · n)
σ−1
σ

α + (1− α) (H · n)
σ−1
σ

=
α + (1− α) (H · n)

σ−1
σ − (1− α) (H · n)

σ−1
σ

α + (1− α) (H · n)
σ−1
σ

=
α

α + (1− α) (H · n)
σ−1
σ

Substitute in
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y = (zh)
1−σ (z`)

σ

 1−
(
z`
zh

)1−σ

1−
(
w/H
zh

)1−σ


σ
σ−1

= A

 α
α

α+(1−α)(H·n)
σ−1
σ

 σ
σ−1

= A
(
α + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

Multiply both sides by K:

Y = A
(
αK

σ−1
σ + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

B Derivations

B.1 Task production

B.1.1 Aggregate and machine task production

Worker task input λi at firm i:

λi = (q − ãi) yi = q (1− ai) yi
= q (1− ai) z (ai) k (ai)

= qK (1− ai) z (ai) f (ai)

= q
HN

1− F (aw)
(1− ai) z (ai) f (ai)

= qHN (1− ai)
(

1

1− ai

)ρ+1
f (ai)

1− F (aw)

= qHN

(
1

1− ai

)ρ
f (ai)

1− F (aw)

= qHN

(
1

1− ai

)ρ
(ah − a)ρ−1

(ah − aw)ρ

Where I have used k (a) ≡ Kf (a), K = HN

1−G( wH )
= HN

1−F (aw)
, F (a) =

(
ah−a
ah−a`

)ρ
, z (a) =
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(
1

1−a

)ρ+1

Λ =

∫
λi di

HN
= q

∫ ah

aw

(
1

1− a

)ρ
(ah − a)ρ−1

(ah − aw)ρ
da

Noting that
∫ ah
aw

(
1

1−a

)ρ (ah−a)ρ−1

(ah−aw)ρ
da = 1

1−F (aw)

∫ ah
aw

(1− a) dFa = EF (1− a|a > aw), it follows
that:

Λ = qEF [1− a|a > aw]

Similarly, machine task input µi at firm i:

µi = ãiyi = qaiyi

= qHNai

(
1

1− ai

)ρ+1
(ah − a)ρ−1

(ah − aw)ρ

M =

∫
µi di

HN
= q

∫ ah

aw

a

(
1

1− a

)ρ+1
(ah − a)ρ−1

(ah − aw)ρ
da

And as above,
M = qEF [a|a > aw]

The ratio of aggregate worker to machine task inputs:

Λ

M
=

∫ ah
aw

(
1

1−a

)ρ
(ah − a)ρ−1 da∫ ah

aw
a
(

1
1−a

)ρ+1
(ah − a)ρ−1 da

(46)

Taking a first order expansion around q, ah and aw,

∆ log Λ = ∆ log q + χΛ,h∆ log ah + χΛ,w∆ log aw (47)

∆ logM = ∆ log q + χM,h∆ log h+ χM,w∆ log aw (48)

Subtracting 48 from 47:

∆ log Λ−∆ logM = (χΛ,h − χM,h) ∆ log ah + (χΛ,w − χM,w) ∆ log aw

= χh,t∆ log ah,t + χw,t∆ log aw,t

B.1.2 Measuring change in machine tasks ∆ logM in the data

To approximate ∆ logM in the data, I designate a subset of tasks as automatable. I
denote the sum of these tasks at time t as Λ̂M,t, and I assume that the level change in
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machine tasks is equal to the (negative of) the level change change in automatable human
tasks:

M̂t − M̂t−1 = −
(

Λ̂M,t − Λ̂M,t−1

)
Some algebra to get percentage changes in M̂ and Λ̂,

M̂t − M̂t−1

M̂t−1

= −Λ̂M,t−1

M̂t−1

Λ̂M,t − Λ̂M,t−1

Λ̂M,t−1

Approximating percentage changes with log differences,

∆ log M̂t = −Λ̂M,t−1

M̂t−1

∆ log Λ̂M,t

And finally, substituting
Λ̂M,t−1

M̂t−1
=

Λ̂M,t−1

Λ̂t−1

Λ̂t−1

M̂t−1
,

∆ log M̂t = −Λ̂M,t−1

Λ̂t−1

Λ̂t−1

M̂t−1

∆ log Λ̂M,t

I measure the ratio
Λ̂M,t−1

Λ̂t−1
directly from the data and Λ̂t−1

M̂t−1
by computing the following

integrals:

Λ̂t−1

M̂t−1

=

∫ ĥt−1

ŵt−1

(
1

1−a

)ρ̂ (
ĥt−1 − a

)ρ̂−1

da∫ ĥt−1

ŵt−1
a
(

1
1−a

)ρ̂+1
(
ĥt−1 − a

)ρ̂−1

da

Where ρ̂ = σ̂
σ̂−1

.

B.2 Investment distribution in steady state

C Mathematical Appendix

C.1 Characterizing G (z)

The CDF of z is:

G (z) = 1−

1−
1−

(
z`
z

) 1
γ

1−
(
z`
zh

) 1
γ


ρ
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The CDF of the truncated Pareto is F
(
z; 1

γ
, z`, zh

)
=

1−( z`z )
1
γ

1−
(
z`
zh

) 1
γ

, so:

G (z) = 1− (1− F (z))ρ (49)

The survival function Ḡ (z) = 1−G (z) is

Ḡ (z) = F̄ (z)ρ

The PDF of z is:

g (z) = ρf (z) (1− F (z))ρ−1 (50)

C.1.1 Moments and Hazard Rate of G (z)

With ρ = σ
1−σ , the mean of z is

EG (z) = H1−σLσ (51)

The hazard rate of G is

g (z)

1−G (z)
=

σ

1− σ
f (z)

1− F (z)

= σ
z1−σ
h

z
(
z1−σ
h − z1−σ

)
g (z)

1−G (z)
=

σ

z

(
1−

(
z
zh

)1−σ
)

So the hazard rate of G is equal to a constant times the hazard rate of the truncated Pareto
distribution with tail parameter 1 − σ. If σ > 1

2
(σ < 1

2
), G (z) has higher (lower) hazard

rate than F (z)for all z, in which it has thinner (fatter) tails. For σ = 1
2
, the hazard rates

(and hence distributions) are identical, so G (z) is exactly the truncated Pareto for σ = 1
2
.
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