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Abstract

We consider a model where a large number of potential bidders

consider paying an entry cost at an auction. The value of the object

sold depends on an unknown state of the world, and the bidders have

conditionally i.i.d. signals on the state. We compare �rst- and second-

price auction formats and show that for symmetric equilibria of the

game, �rst price auction results in higher expected revenue to the

seller.

1 Introduction

Bidding in an auction is often costly. At the very least, each bidder loses the

opportunity cost of time spent in preparing the bid and paying attention to

the eventual outcome. When the object for sale is valuable and information

is dispersed among potential bidders, these costs can be substantial.

We consider a setting where a large number of potential bidders have

observed a signal on its true value. The value of the object is common to all

�Prepared for a presentation at CEMFI, Madrid.
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bidders, but the bidders are di¤erentially informed about the true value. For

the most part in this paper, we consider the case where the true value of the

object depends on a binary random variable ! 2 f0; 1g (state of the world),
and we also assume that the signals take binary values �i 2 f�H ; �Lg.
At the beginning of the game. each potential bidder decides whether to

enter the auction at a positive cost c > 0: We consider the case where a

single object is for sale (and discuss extensions to the case of a �xed number

of objects). Furthermore, we assume anonymity on the part of the bidders so

that the entry decisions for a coordination problem. Entry can be pro�table

only when a limited number of other bidders enter.

We analyze the symmetric equilibria of the auction under �rst-price and

second-price auction rules. Not surprisingly, equilibrium entry decisions are

in mixed strategies for both types of auctions. Conditional on entry, optimal

bidding strategies of the bidders are qualitatively quite di¤erent. In the �rst-

price auction, equilibrium bids are mixed strategies for bidders with signals

�H and �L: In the second-price auction, bidding conditional on the more

pessimistic signal �L is in pure strategies, but bidding conditional on �H is

in mixed strategies.

Our main result is that in contrast to most �ndings in common value

auctions, the �rst-price auction dominates the second-price auction in term

of the expected revenue to the seller. To understand this result, it is useful to

consider the entry decisions of a social planner under the constraint of sym-

metric strategies (i.e. conditional on the signal, bidders use identical entry

strategies). Since the model is one of common values, allocative e¢ ciency is

not an issue, and as a result, the planner maximizes the probability of allo-

cating the object weighted by its value in the two states subject to paying

the entry costs.

The planner gains from adding a bidder only when no other bidders are

present. In a second-price auction, bidders with high signals make a positive
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pro�t in the auction if there are no other bidders of high type. If she is the

only bidder in the auction, she receives her entire marginal contribution to

the social welfare. If bidders with low signals are present, she pays a positive

price but still makes a positive expected pro�t due to a more optimistic

signal. Hence the incentives to enter for the bidders with high signals are

stronger than socially optimal.

In a �rst-price auction, each bidder pays her own bid. In any symmetric

equilibrium, an entering bidder must believe that there is a positive prob-

ability that no other bidders enter. This leads to mixed strategy equilibria

in the bidding stage, and hence also to potential complications in evaluat-

ing the expected payo¤s of the two types of bidders. While it is clear that

the bidders with low signals must have zero bids in the support of their bid

distribution, it is more surprising that for some parameter values this is also

the case for the bidders with high signals. Since there are no mass points in

the bid distributions (by standard arguments), this implies that both types

of bidders are willing to place bids that win at zero price if and only if no

other bidder has entered. Hence the expected payo¤ to both types of bidders

coincides with their marginal contribution to social welfare, and as a result

equilibrium entry is at socially optimal level.

Since entry decisions are in mixed strategies, entering bidders must make

a zero expected payo¤. This implies that the seller gets the entire expected

social surplus in revenue. Since the entry decisions in the �rst-price auction

are expected surplus maximizing, the seller must gain relative to the second-

price auction.

It is also possible that zero bids are not in the support of the bidding

strategies for bidders with high signals. For the case of two potential bidders,

we show that the �rst-price auction still dominates the second price auction

in terms of expected revenue. For a large number of potential bidders, we

show that for small entry costs this ranking can be reversed. For high entry
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costs, the �rst-price auction yields a higher revenue in this case as well.

Two additional features of the symmetric second-price equilibria with

many potential bidders deserve special mention. The equilibrium bid condi-

tional on a low signal is not uniquely determined and the bids conditional

on high signal are mixed. In order to understand these results, it is useful to

recall winners curse for common value auctions. As usual, the equilibrium

bid in a second price auction is given by the expected value of the object

conditional on having the highest bid, conditional on tying the second high-

est bid and conditional on winning the object. Suppose that all the high

type bidders submit the same bid. With uniform rationing, the probability

of winning is the highest when the number of tying bids is the smallest. Since

the signals are a¢ liated with the true value of the object, this is bad news on

the expected value. By deviating to a slightly higher price, a bidder with a

high signal wins in all cases including those in which there are large numbers

of other bidders. Hence a pure strategy equilibrium cannot exist.

Consider next the incentives of the low type bidders. In a second price

auction, they can win only in the cases where no bidders with high signal

have entered. If all low type bidders pool at the same bid, winning is more

likely when there are fewer other bidders with low signals. Again by a¢ liated

values, this is positive news on the value of the object. By deviating to a

slightly higher price, a low type bidder wins the object in all cases with

no bidders with high signals present. In a sense, low bidders experience a

winner�s blessing at the pooled bid and as a consequence, a continuum of

pooled equilibrium prices exists.

1.1 Related Literature

Auctions with endogenous entry have been modeled in two separate frame-

works. In the �rst, entry decisions are taken at an ex ante stage where

4



all bidders are identical. Potential bidders learn their private information

only upon paying the entry cost. Hence these models can be though of

as games with endogenous information acquisition. French and McCormick

(1981) gives the �rst analysis of an auction with an entry fee in the IPV case.

Harstad (1990) and Levin and Smith (1994) analyze the a¢ liated values case.

These papers show that due to business stealing, entry is excessive relative to

social optimum. They also show that second-price auctions results in higher

expected revenues than the �rst-price auction.

In the other strand, bidders decide on entry only after knowing their own

signals. Samuelson (1985) and Stegeman (1996) are early papers in the IPV

setting where this question has been taken up. Due to revenue equivalence in

the IPV case, comparisons across auction formats are not very interesting. To

the best of our knowledge, common values auctions have not been analyzed

in this setting. Hence our paper is the �rst to ask how the auction format

a¤ects information aggregation through entry.

Finally some recent papers have analyzed common values auctions with

some similarities to our paper. Lauermann and Wolinsky (2012, 2013) an-

alyze �rst-price auctions where an informed chooses the number of bidders

to invite to an auction. In their setting, it is also important to account for

the winner e¤ect when computing the expected value of the object. Atakan

and Ekmekci (2013) consider a common value auction where the winner in

the auction has to take an additional action after winning the auction. This

leads to a non-monotonicity in the value of winning the auction that has some

resemblance to the forces in our model that lead to non-monotonic entry (i.e.

bidders with both types of signals enter with positive probability).
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2 Binary model

We start by laying out the basic model. The state of the world is a binary

random variable ! 2 f0; 1g with a priori probability

q = Prf! = 1g:

The common value of the object in state ! is v (!) for all the bidders, and

we assume that v (1) > v (0) > 0:

At the outset, each potential bidder i observes a binary signal �i 2
f�h; �lg: Let Pr (� = l j! = 0) = Pr (� = h j! = 1) = � > 1=2 and denote

by qh := Pr
�
! = 1

��� = �h � and ql := Pr �! = 1 ��� = �l � the posterior based
on a high and low signal, respectively. For example, if prior is q = 1=2, then

ql = 1 � � and qh = �. The signals are assumed to be i.i.d. conditional on
the state of the world.1

After observing �i; each i decides whether to pay an entry cost c > 0 with

c < v (0) and submit a bid bi in an auction for a single object or whether to

stay out and receive a certain payo¤ of 0. At the moment of bidding, i does

not know how many other bidders have chosen to participate in the auction.

Furthermore, we distinguish between two alternative auction formats: the

�rst-price auction (FPA) and the second-price auction (SPA).

We denote by

�i : f�h; �lg ! [0; 1];

the entry strategy of potential bidder i: We use ��i for �i (�
�) and since we

concentrate on symmetric equilibria, we often omit subscripts. Similarly a

bid strategy is a function

bi : f�h; �lg ! �(R+) ;
1We consider the symmetric case with Prf� = �h j! = 1g = Prf� = �l j! = 0g for

notational simplicity. The results in this paper go through with asymmetric speci�cations

too.
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where we have again allowed for randomized bids.

The bidders are risk neutral and bid to maximize their expected pro�t

from the auction. Denote by v
�
�i; bi; b

(1)
�i

�
the expected value of the object

for bidder i if she wins the object after observing signal �i and conditional

on knowing that her bid bi is the highest and that the highest bid amongst

the other bidders is b(1)�i :

3 A two-player version

We start the analysis with the simple case where there are only two potential

bidders. There are now just two players, and we look for a symmetric mixed

strategy equilibrium. We are interested in seeing how the equilibrium entry

decisions depend on the format of the auction chosen.

We start by characterizing the e¢ cient solution, i.e. the symmetric entry

probabilities that a utilitarian planner would choose. Since we are in a com-

mon values model, the optimum cannot be in pure strategies since c < v (0) :

The planner�s problem is to

max q
h�
1�

�
1� ��h � (1� �)�l

�2�
v (1)� 2

�
��h + (1� �)�l

�
c
i

+(1� q)
h�
1�

�
1� (1� �)�h � ��l

�2�
v (0)� 2

�
��l + (1� �)�h

�
c
i
:

Solving for the �rst-order conditions in this concave optimization problem

gives:

b�h =
1

2�� 1

�
�
v (1)� c
v (1)

� (1� �) v (0)� c
v (0)

�
;

b�l =
1

2�� 1

�
�
v (0)� c
v (0)

� (1� �) v (1)� c
v (1)

�
:

This is a valid solution if b�l � 0 and b�h � 1: These restrictions are satis�ed
if

�
v (0)� c
v (0)

� (1� �) v (1)� c
v (1)
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and
�

1� � �
v (1)

v (0)
:

Notice that the second inequality is not going to be a problem in the model

with a large number of potential bidders. If the �rst inequality is violated,

then only high signal players enter in the e¢ cient solution. We shall see that

in this case competitive entry followed by the SPA and the FPA also result

in e¢ cient entry levels and identical expected revenues to the seller. In the

case of an interior solution, we shall see that FPA dominates SPA in terms

of expected revenue.

3.1 Entry game with second-price auction

With only two bidders, equilibrium inference about the value of the good

is straightforward. As usual in common value auctions, the optimal bid is

obtained by assuming that both bidders have submitted the same bid. It is

clear that these can arise only if the bidders have observed the same signals

and hence if both types enter in equilibrium, we can write

bh = E![v (!)
���1 = �2 = �h ];

bl = E![v (!)
���1 = �2 = �l ]:

The bidding strategies of both types are thus pure. If only high type bidders

enter in equilibrium, then their bids remain as above and low type bidders

bid any amount below bh in any sequentially rational continuation following

a deviation since they want to win only conditional on having entered alone.

Since the expected pro�t to the deviating low type bidder is exactly her

contribution to the expected social surplus, she will choose to stay out of the

market if high types enter e¢ ciently whenever the planner�s solution is not

an interior solution. Notice that high signal bidders also collect exactly their

expected marginal contribution at the e¢ cient pro�le. We conclude that
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e¢ cient entry is an equilibrium in the entry game followed by second-price

auction as long as b�l = 0 in the e¢ cient solution.
Suppose next that b�l > 0: In this case, the social planner gains from

a high type entry if and only if there are no other bidders present in the

market. In the SPA, high type bidders make a positive pro�t whenever there

are no other high type bidders present. With b�l > 0; this private pro�t

exceeds the social bene�t due to a business stealing e¤ect. Hence for anyb�l > 0; equilibrium level of �h exceeds the conditional social optimum (i.e.

optimum given �l). Since the low type bidders make a positive pro�t only

when there are no other bidders present, their private pro�t coincides with

their marginal social contribution. Since the conditionally e¢ cient level of

�l
�
�h
�
is decreasing in �h; we conclude that:

Proposition 1 Suppose b�l > 0: Then the entry equilibrium
�
�hS; �

l
S

�
fol-

lowed by a second-price auction is characterized by: i) �hS > b�h and ii)
�lS < b�l:
3.2 Entry game with �rst-price auction

Consider next the case of a �rst-price auction. Using standard arguments, we

can show that symmetric equilibria in this case must be in atomless mixed

strategies. Denote by �s (p) the probability that player i has observed signal

�i = �
s for s 2 fh; lg; entered the auction, and placed a bid above level p:

A �rst simple observation is that if both types of potential bidders enter

with a positive probability and a bid of 0 is in the support of their bid

distributions, then entry must be at e¢ cient level. Since there are no atoms,

a bid of zero wins only if there are no other active bidders. If this bid is in the

support of both types, we conclude that potential bidders of both types earn

an expected pro�t exactly equal to their marginal contribution and hence

entry must be at e¢ cient level. We consider next the case where 0 is not
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necessarily in the support of the bid distributions.

Suppose that both types of bidders enter with positive probability and

that a bid p is in the support of the bid strategies of both types of potential

bidders. Since both must be indi¤erent between entering and not, and since

the two types of bidders have di¤erent assessments of the relative probabilities

of the two states, we must have indi¤erence between entering with bid p and

staying out for each of the two states. In other words, the following must

hold: �
1� ��h (p)� (1� �)�l (p)

�
(v (1)� p)

=
�
1� ��l (p)� (1� �)�h (p)

�
(v (0)� p) = c;

which leads to

�h (p) =
1

2�� 1

�
�
v (1)� p� c
v (1)� p � (1� �) v (0)� p� c

v (0)� p

�
;

�l (p) =
1

2�� 1

�
�
v (0)� p� c
v (0)� p � (1� �) v (1)� p� c

v (1)� p

�
:

If this indi¤erence holds over an entire interval, then we can di¤erentiate

to get:

d�h (p)

dp
=

1

2�� 1

�
� �c

(v (1)� p)2
+

(1� �) c
(v (0)� p)2

�
d�l (p)

dp
=

1

2�� 1

�
� �c

(v (0)� p)2
+

(1� �) c
(v (1)� p)2

�
and second derivatives:

d2�h (p)

dp2
=

2

2�� 1

�
� �c

(v (1)� p)3
+

(1� �) c
(v (0)� p)3

�
d2�l (p)

dp2
=

2

2�� 1

�
� �c

(v (0)� p)3
+

(1� �) c
(v (1)� p)3

�
We see here that

d�l (p)

dp
< 0 for all p,
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and that the following implication holds:

d�h (p)

dp
� 0 =) d2�l (p)

dp2
> 0:

These properties ensure that whenever the �rst-price auction is not e¢ -

cient, i.e. bidding zero is not one of the supports, then the bid supports of

low and high type bidders are disjoint, connected intervals. In other words,

we have an equilibrium, where the low type is active within [0; p0] and high

type is active within [p0; p]. Our next result compares revenues between the

two auction formats in this case.

Proposition 2 In the binary model with two potential bidders, �rst-price

auction yields always a higher expected revenue than the second price auction.

Proof (sketch): Things are clear if �rst price auction is e¢ cient. Consider

the case where �rst price equilibrium is distorted. Then, as we have seen,

equilibrium consists of support (0; p0) for low type bids, and (p0; p00) for high

type bids. Take �rst price equilibrium entry rates. Switch to second price

auction mechanism. Low type is still indi¤erent, because in �rst price auction

she is indi¤erent between bidding 0 and p0, and by bidding 0 she gets the

same allocation and price as in the second price auction. On the other hand,

the low type is indi¤erent between bidding p0, so that she obtains the good

for sure at price p0 if and only if the opponent is not of the high type.

Thus, consider the following allocation and contrast two price realizations.

Allocation: get the object if and only if no high type present. Price: 1) p0 for

sure, and 2) 0 if no low type presents, and E (v; � = l; a low type present).

Low type is indi¤erent between these two situations by the fact that both of

these cases are in the support of the �rst-price auction equilibrium bid. But

then high type prefers case 2), because she �nds it more likely that p = 0.

Since high type is just OK with situation 1) (because of the assumed price

patterns in �rst-price equilibrium), she �nds situation 2) strictly pro�table.
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Therefore, in equilibrium of second price auction, high type entry rate must

increase. This implies that distortion is increased.

4 Many potential bidders

We consider directly the limiting model where the number of potential bid-

ders N !1: By usual arguments, the realized number of entering agents of
both types converges to a Poisson random variable. In addition to the distri-

bution of entering bidders, equilibrium must also characterize the symmetric

bid strategies for bidders with both types of signals.

As in the previous section, we start by considering the social planner�s

problem: Choose entry intensities �l and �h to maximize social surplus net

of entry cost. The objective function of the social planner is given by:

W
�
�l; �h

�
= q

h�
1� e���h�(1��)�l

�
v (1)�

�
��h + (1� �)�l

�
c
i

+(1� q)
h�
1� e�(1��)�h���l

�
v (0)�

�
(1� �)�h + ��l

�
c
i
:

The �rst term in square brackets computes the bene�t and cost of entry if

the state is high and the second corresponds to the low state. To simplify

the formulas slightly, write

� (1) = ��h + (1� �)�l;

� (0) = (1� �)�h + ��l;

for the entry intensities conditional on the state of the world.

This is a concave problem with �rst-order conditions for interior solutions

given by:

q�
�
e��(1)v (1)� c

�
+ (1� q) (1� �)

�
e��(0)v (0)� c

�
= 0;

q (1� �)
�
e��(1)v (1)� c

�
+ (1� q)�

�
e��(0)v (0)� c

�
= 0:
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This is satis�ed when

e��(1)v (1) = c;

e��(0)v (0) = c;

or

�h =
1

2�� 1

�
� log

�
v (1)

c

�
� (1� �) log

�
v (0)

c

��
;

�l =
1

2�� 1

�
� (1� �) log

�
v (1)

c

�
+ � log

�
v (0)

c

��
:

For this to yield a valid solution, we must have �l > 0, so our assumption

in terms of model parameters is:

� log

�
v (0)

c

�
> (1� �) log

�
v (1)

c

�
or

�

1� � >
log (v (1))� log (c)
log (v (0))� log (c) .

Note: as c! 0, the right hand side converges to 1. Therefore, we always

have �l > 0 for low enough c. On the other hand, by increasing c towards

v (0), at some point �l reduces to zero and we get a corner solution where

only high types enter.

Note also:

�h � �l = 1

2�� 1 log
�
v (1)

v (0)

�
.

4.1 Second-price auction with unobserved entry

With more than two potential bidders, the e¤ect of conditioning upon win-

ning the auction is more complicated than in the standard case of a �xed

number of bidders with a continuum of signal. In the standard case, the

conditioning is based upon the event where the winner�s bid ties with the
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highest bid amongst other bidders. Under increasing strategies this again

translates into having a tie between the two highest signals.

In our case, winning the auction gives also information about the number

of other entrants to the auction. In accordance with our interest in symmetric

equilibria, we also consider symmetric rationing in case of tied bids. This

implies that a bidder is more likely to win the object if there are fewer

bidders. This in turn gives information on the value of the object for sale if

entry takes place at di¤erent rates for di¤erent signals.

It is easy to show that in any symmetric equilibrium of the SPA, bidders

with low signals must bid below the bidders with high signals. If high sig-

nal bidders bid according to a pure strategy, the probability of winning is
1
nh
; where nh is the (random) number of entrants with high signals. Hence

winning is evidence of low nh and by a¢ liated signals this is also evidence in

favor of f! = 0g: By the usual logic of SPA, the equilibrium bid must equal

the conditional expected value of the object upon winning. By a small up-

ward deviation, any bidder with a high signal wins the object for sure. Under

this conditioning event, the value of the object is strictly larger than when

submitting the assumed common equilibrium bid. Hence bidders with high

signals cannot use the same pure bid in equilibrium, and we must consider a

mixed strategy equilibrium for those bidders.

Bidders with low signals face a di¤erent updating. Again with symmetric

rationing winning the object gives evidence of a small number of bidders in

the auction. In contrast to the bidders with high signals, this is now good

news about the value of the object. This translates into a multiplicity of

symmetric pure equilibrium bids for bidders with low signals. By deviating

to a higher price (still below the lowest bid of the high signal biders), any

low signal bidder wins regardless of the number of other low signal bidders

(as long as there are no high type bidders). But the expected value of the

object is smaller under the new conditioning event. This �winner�s blessing�
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e¤ect makes it possible to sustain di¤erent pure symmetric equilibrium bids

for the bidders with low signals.

It is clear that equilibrium entry is always distorted if bidders with both

signals enter with positive intensity. To see this, assume e¢ cient entry. But

then, at least the high type gets more than her contribution to social welfare.

It is also possible that low type gets more (in a good equilibrium). So it might

be possible that both types enter too much (traditional business stealing

e¤ect).

Let us derive the equilibrium, where given entry rates, the low signal type

bids the highest bid consistent with equilibrium. The low type bid is denoted

bl
�
�l; �h

�
.

First, conditional on state, entry rate of low type is

�low (!) =

(
(1� �)�l for ! = 1
��l for ! = 0

Probability of getting the object (for a low type), conditional on state and

conditional on no high types entering is (for simplicity denote � = �low (!)):

Pr (win j! and no high type enters)

= 1e�� +
1

2
�e�� +

1

3

�2

2!
e�� +

1

4

�3

3!
e�� + :::

=
1

�

�
�e�� + e�� + �e�� + �

2

2!
e�� +

�3

3!
e�� +

�4

4!
e��+

�
=

1

�

�
1� e��

�
.

For the right conditioning event, we need the probability of winning when

at least one other low type enters, so we need

Pr (win and at least one other low type bidder enters j! and no high type enters)

=
1

�

�
1� e��

�
� e�� = 1

�

�
1� e�� � �e��

�
.
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Then we can compute the likelihood ratio for a low type that gets the object

at price bl (this decomposes information into 1) prior, 2) own signal, 3) no

high types enter, 4) other low types enter + winner e¤ect) :

ql

1� ql =
q

1� q
1� �
�

e���
h

e�(1��)�h

1
(1��)�l

�
1� e�(1��)�l � (1� �)�le�(1��)�l

�
1
��l

�
1� e���l � ��le���l

�
=

q

1� q
e���

h

e�(1��)�h
1� e�(1��)�l � (1� �)�le�(1��)�l

1� e���l � ��le���l
: = L:

Similarly, we can compute the belief ratio for high type who gets the object

at price bl:

qh

1� qh =
q

1� q
�

1� �
e���

h

e�(1��)�h
1� e�(1��)�l

1� e���l
> L.

Low bid in the "best equilibrium" is:

bl
�
�l; �h

�
=

L

1 + L
v (1) +

1

1 + L
v (0) .

Given bl
�
�l; �h

�
, we can compute payo¤s V l and V h(since we concentrate on

the "best equilibrium", the low type value V l is independent of bl
�
�l; �h

�
).The

low type gets positive payo¤ only if no other bidders present, so V l is easy

to compute:

V l = qle���
h�(1��)�lv (1) +

�
1� ql

�
e�(1��)�

h���lv (0) :

The high type payo¤ is:

V h = qhe���
h
�
v (1)�

�
1� e�(1��)�l

�
bl
�

+
�
1� qh

�
e�(1��)�

h
�
v (0)�

�
1� e���l

�
bl
�
;

where bl depends on �l and �h (see equation above). In equilibrium, �l and

�h must be such that V l = V h = c. I don�t have closed form solutions for
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equilibrium �l and �h, but it can be shown that �h > ��h and �l < ��l, where

star denotes e¢ cient levels. So, entry of high type is distorted upwards and

entry of low type is distorted downwards.

4.2 First price auction with unobserved entry

We construct the symmetric equilibrium by considering di¤erent price re-

gions. We us use notation �h (p) and �l (p) to denote Poisson entry intensity

of high and low type, who bid above p. In other words, if F � (p) is the cdf of

price distribution chosen by type � who enters, then �� (p) =
�
1� F � (p)

�
��,

where �� is the entry intensity as above. Of course, �� (p) must be decreasing

in p. Entry intensities are given by �� = �� (0).

4.2.1 Price range that contains both types

If p is within the equilibrium price support for both players, then it must be

the case that both types are indi¤erent between state realization. Therefore,

posteriors qh and ql play no role, and we have:

e���
h(p)�(1��)�l(p) (v (1)� p) = c

e�(1��)�
h(p)���l(p) (v (0)� p) = c

or

��h (p) + (1� �)�l (p) = log

�
v (1)� p

c

�
(1� �)�h (p) + ��l (p) = log

�
v (0)� p

c

�
and we get

�h (p) =
1

2�� 1

�
� log

�
v (1)� p

c

�
� (1� �) log

�
v (0)� p

c

��
; (1)

�l (p) =
1

2�� 1

�
� (1� �) log

�
v (1)� p

c

�
+ � log

�
v (0)� p

c

��
: (2)
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For this to work, these must be decreasing in p. Derivatives with respect

to p are:

�hp (p) =
1

2�� 1

�
1� �
v (0)� p �

�

v (1)� p

�
;

�lp (p) =
1

2�� 1

�
1� �
v (1)� p �

�

v (0)� p

�
.

� log

�
v (0)

c

�
> (1� �) log

�
v (1)

c

�
We have always �h (p) > 0, and �lp (p) < 0. To have a simple equilibrium,

we should have �hp (p) < 0 for p < p
0, where p0 =

�
p : �l (p) = 0

	
. This is the

case for c high enough. For low c, equilibrium must be more complicated.

Second derivatives are:

�hpp (p) =
1

2�� 1

�
1� �

(v (0)� p)2
� �

(v (1)� p)2
�
;

�lpp (p) =
1

2�� 1

�
1� �

(v (1)� p)2
� �

(v (0)� p)2
�
.

We see here that the following implication holds:

�hp (p) � 0 =) �hpp (p) > 0;

which implies that the only possible ine¢ cient equilibrium is the "alternating

one": low types bid support is [0; p0] and high type bid support is [p0; p00] for

some p00 > p0.

4.2.2 Highest possible price

The highest possible price, p, can be easily solved by considering the highest

bidding high type bidder. He is certain to get the good, so upon getting it his

belief is unchanged. On the other hand, free entry means that his value-price

margin must be c. So, we have

qh (v (1)� p) +
�
1� qh

�
(v (0)� p) = c
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or

p = qhv (1) +
�
1� qh

�
v (0)� c

= qh�v + v (0)� c;

where �v := v (1)� v (0).

4.2.3 Price range above low type

Take p such that high type is active, but no low type is willing to price that

high. Then, we have �l (p) = 0, and �h (p) > 0. Low type must have negative

payo¤:

qle���
h(p) (v (1)� p) +

�
1� ql

�
e�(1��)�

h(p) (v (0)� p) < c

and high type must make zero:

qhe���
h(p) (v (1)� p) +

�
1� qh

�
e�(1��)�

h(p) (v (0)� p) = c:

For this to hold, we must have

e���
h(p) (v (1)� p) > c > e�(1��)�h(p) (v (0)� p) .

It is clear that for p < p, the indi¤erence equation for high type is solved

by some decreasing function �h (p). But at some point, low type wants to

enter. Indeed, there is some p0 < p such that

qle���
h(p) (v (1)� p) +

�
1� ql

�
e�(1��)�

h(p) (v (0)� p) > (<) c

for p < (>) p0. We �nd p0 by requiring

qle���
h(p) (v (1)� p) +

�
1� ql

�
e�(1��)�

h(p) (v (0)� p)

= qhe���
h(p) (v (1)� p) +

�
1� qh

�
e�(1��)�

h(p) (v (0)� p)
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and this is of course satis�ed when

e���
h(p) (v (1)� p) = e�(1��)�h(p) (v (0)� p) = c:

Clearly there is a unique p0 that satis�es it, and p0 < p. So, the range of

prices where only high type enters, is [p0; p].

If c is high enough, we have a simple equilibrium, where low type is active

within [0; p0] and high type is active within [0; p].

Note: since �h (0) and �l (0) given in (1) and (2) are equal to the e¢ -

cient entry rates, this equilibrium is e¢ cient, and hence maximizes expected

revenue to the seller across all possible mechanisms.

4.2.4 Price range where only low type is active

Suppose that there is some price range [p0; p00] where only low type is active

(p0 could well be 0). Let �h := �h (p00) denote the constant entry intensity

above p for high type. High type does not want to enter and low type is

indi¤erent, so

qhe���
h�(1��)�l(p) (v (1)� p) +

�
1� qh

�
e�(1��)�

h���l(p) (v (0)� p) < c;

qle���
h�(1��)�l(p) (v (1)� p) +

�
1� ql

�
e�(1��)�

h���l(p) (v (0)� p) = c .

So, for this to hold, we must have

e�(1��)�
h���l(p) (v (0)� p) > c > e���h�(1��)�l(p) (v (1)� p) .

With some parameters, we have an equilibrium with low type active

within some [0; p00] and high type active within [0; p0][ [p00; p], where p0 < p00.
This equilibrium is also e¢ cient.

But with some parameters, we have �h (p0) > �h. In such a case, we have

an equilibrium, where low type is active within [0; p0] and high type is active

within [p0; p]. Since price support of high type does not extend to zero, this

equilibrium is not e¢ cient.
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4.3 Revenue comparisons

We have shown that for some cases where both types of bidders enter with

positive intensity, zero bids are in the support of the bid distribution for

both bidder types. Hence the �rst-price auction results in socially optimal

entry in this case. Since the bidders�expected surplus is zero by construc-

tion, expected revenue must equal expected social surplus. This implies that

FPA gives the highest possible revenue to the seller subject to individual

rationality by the bidders.

We also showed that all equilibria of the SPA involve distorted entry

pro�les. Since the bidders still make a zero expected pro�t, this implies that

the expected revenue in any symmetric equilibrium of the SPA falls below

the expected revenue in FPA.

For small c > 0; we have found a numerical example where a symmetric

equilibrium of the SPA dominates the FPA in terms of expected revenue.

Hence the clean revenue ranking of the two-bidder game no longer holds. We

can show, however, that FPA dominates for high enough entry costs.

5 Further remarks

5.1 More signals

The case with more signals (e.g. a continuum) seems relatively easily handled

in the case of a large number of bidders. The planner can concentrate on the

two signals with the highest and the lowest likelihood ratios for the states.

By mixing these appropriately, any feasible entry pro�le can be generated.

Equilibria in �rst-price and second-price auctions can then be constructed

where only bidders with these signals enter.
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5.2 More objects

We are currently working on an extension to the case with k objects for sale.

A comparison of discriminatory auctions and k + 1st price auctions is then

possible. This also raises the interesting issue of information aggregation for

large k:

6 References

To be added.
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