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Abstract

Several theoretical contributions have argued that the returns to schooling
within marriage play a crucial role for human capital investments. Our paper
quantifies the evolution of these returns over the last decades. We consider
a frictionless matching framework à la Becker-Shapley-Shubik, in which the
gain generated by a match between two individuals is the sum of a systematic
effect that only depends on the spouses’ education classes and a match-specific
term that we treat as random; following Choo and Siow (2006), we assume the
latter component has an additively separable structure. We derive a complete,
theoretical characterization of the model. We show that if the supermodularity
of the surplus function is invariant over time and errors have extreme value
distributions with time-invariant but education-dependent variances, the model
is overidentified. We apply our method to US data on individuals born between
1943 and 1972. Our model fits the data very closely; moreover, we find that
the deterministic part of the surplus is indeed supermodular and that, in line
with theoretical predictions, the “marital college premium” has increased for
women but not for men over the period.
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1 Introduction

Marital college premium and the demand for higher education The joint evo-
lution of US male and female demand for college education over the recent decades raises
an interesting puzzle. During the first half of the century, college attendance increased for
both genders, although at a faster pace for men. According to Goldin and Katz (2008),
male and female college attendance rates are about 10% for the generation born in 1900,
and reach respectively 55% and 50% for men and women born in 1950. This common
trend, however, breaks down for the cohorts born in the 50s and later. These individuals
faced a market rate of return to schooling (the “college premium”) that was substantially
higher than their predecessors; therefore one would have expected their attendance rate to
keep increasing, possibly at a faster pace. This prediction is born out for women, whose
rate reaches 70% for the generation born in 75. On the contrary, the male rate is all but
flat. As a result, in the recent cohorts women are more educated than men.

To explain this strongly asymmetric responses to identical incentives, Chiappori et al
(2009) stress the role of gender differences in the returns to schooling within marriage1.
They argue that the return to education has two distinct components. One is the stan-
dard market college premium, whereby a college degree significantly increase wages; this
component has evolved in a largely similar way for men and women. Secondly, education
has an impact on a person’s situation on the marriage market; it affects the probability of
getting married, the characteristics of the future spouse, and the size and distribution of
the surplus generated within marriage. Chiappori et al (2009) suggest that this “marital
college premium” may have evolved in a totally asymmetric way between genders, a claim
supported by the substantial improvements in household and birth control technology, as
well as by the changing roles of women within the household, and that this asymmetry
may explain the discrepancies in demand for higher education.

While the marital college premium argument is theoretically consistent, evaluating its
empirical relevance is a challenging task. In contrast to the returns to schooling in the
market that can be recovered from observed wages data, the returns to schooling within
marriage are not directly observed and can only be estimated indirectly from the marriage
patterns of individuals with different levels of schooling.

In this paper, we provide such estimates. Our empirical approach is based on a struc-
tural model of matching on the marriage market that is close, in spirit, to that adopted
by Chiappori et al. (2009). Specifically, we consider a frictionless matching framework a
la Becker-Shapley-Shubik, in which the gain generated by the match of male i and female
j is the sum of a systematic effect, that only depends on the spouses’ education classes,
and a match-specific term that we treat as random. Our crucial identifying assumption,

1Another, largely complementary explanation proposed by Becker, Hubbard and Murphy (2009) relies
on the differences between male and female distributions of unobserved ability. Still, these authors also em-
phasize that educated women must have received some additional, intrahousehold return to their education.
It is precisely that additional term that our approach allows to evaluate.
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similar to that in Choo and Siow (2006), is that the latter term is additively separable
into a male-specific and a female-specific components. A natural interpretation is that
the complementarity properties of the model, which drive the assortativeness of the stable
matching, operate only between classes, and are not affected by the unobservable variables.
While undoubtedly restrictive, this assumption allows us to focus on our main topic of in-
terest, namely matching between education classes; in that sense, our model is essentially
motivated by a concern for parsimony. Moreover, our separability assumption generates
testable restrictions that are consistent with the data2.

Under this separability assumption, we derive a set of necessary and sufficient conditions
for stability, and show that these conditions can be interpreted in terms of a standard,
discrete choice framework. We then discuss the identifiability of our theoretical setup. In a
cross-sectional context, a homoskedastic version of our model is exactly identified; so that
we cannot identify any pattern of heteroskedasticity. If, however, the same structure (as
summarized by the matrix of economic gains by spouses’ education classes) is observed
for subpopulations with different compositions, then a heteroskedastic model is (vastly)
overidentified. In fact, one can identify a more general structure, in which the systematic
component of the surplus involves class-specific temporal drifts; moreover, this generalized
model still generates strong overidentification restrictions.

We apply our model to the US population, for cohorts born between 1943 and 1972 and
married between ages 18 and 35. We show that the marital returns to schooling evolved
non-monotonically over the period. Specifically, we find that they were lower for cohorts
born in the early 50s than for the earliest cohorts; the returns decreased for both men
and women. For younger cohorts, however, the evolution is gender-specific; we find that
the marital premium has increased sharply for women over the period, while it has not
changed much for men. College-educated women have gained relative to less-educated
women in three ways: by marrying at higher rates and by receiving a higher share of a
larger marital surplus. Interestingly, although these findings are not based on a model of
individual demand for education (the premium is estimated exclusively from the observed
marriage patterns), they closely match the argument provided by Chiappori et al (2009)
in their theoretical analysis of investment in higher education.

Finally, we also find that the gains generated by marriages with equally educated part-
ners have declined for all types of marriage, reflecting the general reduction in marriage
over time. However, the smallest decline is in matches when one or both partners have col-
lege education. This finding can be related to empirical work showing that such marriages
are also less likely to break (see Weiss and Willis 1997 and Bruze, Svarer and Weiss 2010).

2While the frictionless nature of our model would be a strong assumption in many contexts, we believe
that it is probably more acceptable in our framework, precisely because of the separability assumption. In
our separable world, the absence of frictions only means that any agent can meet at least one potential
mate from each of the education classes under consideration at (almost) no cost.
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The evolution of assortative matching A related issue is what happened to assor-
tative matching. The observed patterns are quite complex. Overall, the percentage of
couples in which both spouses have a college degree has significantly increased over the
period; however, as women with college degree became more abundant, the proportion of
educated women who marry educated men has declined (because some educated women
had to marry downwards with less educated men), while men with a high school degree
shifted upwards from marrying mostly women with a high school degree (or less) to mar-
rying more often college-educated women. All in all, many observers have nevertheless
concluded that assortative matching was stronger now than four decades ago, and that
this evolution had a deep impact on intrahousehold inequality (see for instance Burtless
1999).

An interesting question is whether this phenomenon is entirely due to the mechanical
effect of the increase in female education, or whether it also reflects a shift in preferences
towards assortative matching (as would be the case, for instance, if the share of public goods
in households rises with time—or income—and similar education facilitates agreements
on the composition and level of these public goods). An important advantage of our
structural approach is that it allows to formally disentangle the two aspects. In this respect,
our conclusions are clear-cut. We do not find any evidence for a change in preferences
for assortative matching. In fact, our model, based on the null that the interaction in
marital gains by level of schooling (as summarized by the supermodularity of the matrix
of systematic gains) has remained stable over time, fits the data remarkably well. To the
extent that we find an increasing proportion of couples in which both partners are educated,
this is not because the gains from having a college degree for both partners (compared with
only one partner having a college degree) have risen over time. We find strong evidence
that for educated women, the additive gains from marriage have shifted over time. One
possible interpretation is that it became less costly for educated women to marry mainly
because household chores have been reduced, so that married women can participate more
in the labor market (see Greenwood, Seshadri and Yorukoglu 2005), and also because birth
control technologies have drastically improved over the period, allowing for better planning
of family fertility (see Michael, 2000, and Goldin and Katz 2002). However, our findings
suggest that these “liberating effects” are more or less independent of the schooling of the
husband. As a by-product of our investigation, we can identify the matrix of systematic
gains; we find that it is, indeed, significantly supermodular.

This finding seems to contradict results in the sociological literature that have shown,
using log-linear models, that even after accounting for changes in the relative number of
men and women in each skill group, homogamy has increased in the US and several other
countries (see for instance Schwartz and Mare, 2005). However, these conclusions were
drawn from reduced-form models with no direct economic interpretation and can therefore
be quite misleading. To check this, we used our model to generate marriage data and we
ran it through the type of log-linear regression adopted in the sociological literature. The
results (spuriously) suggest that preferences for homogamy have changed, even though our
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model rules out such changes. These findings further outline the importance of a structural
approach to guide the interpretation of the empirical results.

Finally, another outcome of our structural approach is the identification of the group
specific “prices” that determine the division of the gains from marriage between husbands
and wives of different types. We find that in couples in which both spouses have a college
degree, the share of the wife in the gains from marriage has increased over time, despite
the rise in the number of educated women relative to educated men. This happened
because the marginal contribution of educated women to the surplus with educated men
has increased over time. Moreover, this increase is mainly due to the variable component:
educated women became more productive relative to less educated women in all marriages,
irrespective of the type of the husband. This finding confirms the analysis of Chiappori
et al. (2009), according to which the increase in the marital component of the education
premium for women could explain the spectacular increase in female demand for higher
education.

Related literature The analysis of the marriage market as a matching process, which
dates back to Becker’s pioneering contributions (see Becker 1973, 1974 and 1991), has re-
cently attracted renewed attention. Fox (2010) provides a nonparametric approach that
does not require an explicit modeling of the stochastic structure of the model; instead, it
relies on a “rank order” property, which postulates a stochastic structure such that assign-
ments that generate more surplus in a deterministic model are more likely to be observed.
In contrast, our approach is explicitly parametric; we follow the seminal contribution by
Choo and Siow (2006), who proposed one of the first implementations of a Becker-Shapley-
Shubik model based on a discrete choice model3. Our paper extends their contribution
in three directions. First, we clarify the underlying theoretical structure, in particular by
working out the assumptions needed on the fundamentals of the model (i.e., the matrix of
systematic gain) and their implications for the endogenous variables (individual utilities at
the stable match). Secondly, we consider a model that allows for interclass heteroskedas-
ticity of the random components. Thirdly, we study the evolution of matching patterns
throughout time, in a framework that also allows the gains for marriage to evolve in a
class-specific way. Our ultimate goal is to study matching on education and, more specif-
ically, to provide a dynamic perspective on the evolution of these matching patterns over
several decades.

Evaluating how the “marital college premium” evolves over time obviously necessitates
a dynamic analysis of the marriage market. It also requires comparing (expected) utilities
between classes, a task for which the homoskedasticity assumption of the standard version
is potentially inappropriate. In Choo and Siow’s approach, the basic, homoskedastic ver-
sion is exactly identified, implying that any generalization will face severe identifiability

3For other applications of the same technique, see for instance Botticini and Siow (2008) and Siow (2009).
The reader is referred to Graham (2011) for a general presentation of econometric inference in matching
models.
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problems. We show that these problems can however be overcome in a more dynamic
context, provided that the structure driving assortative matching remains constant. In
particular, our identification strategy is original.

Another related approach is due to Galichon and Salanié (2010), who provide a the-
oretical and econometric analysis of multicriterion matching under the same separability
assumption. Their focus is different: while our paper considers a small number of classes,
they seek to provide a general method to estimate and test flexible parametric specifications
of the gains from marriage when many covariates are available4.

Section 2 presents some stylized facts. Then we introduce our theoretical framework in
Section 3, and section 4 describes the basic principles underlying its empirical implementa-
tion. In Section 5, we discuss identification issues and present our main theoretical results
on that topic. Section 6 describes the matching patterns in the data, and our empirical
findings are presented in Section 7.

2 Some stylized facts

We first briefly describe some raw facts about the evolution of matching by education over
the last decades. To do this, we use the American Community Survey, a representative
extract of the Census, which we downloaded from IPUMS (see Ruggles et al (2008).) Unlike
earlier waves of the survey, the 2008 survey has information on current marriage status,
number of marriages, and year of current marriage. Of the 3,000,057 observations in our
original sample, we only keep white adults (aged 18 to 70) who are out of school; the
resulting sample at this stage has 1,307,465 observations and is 49.5% male. We used the
“detailed education variable” of the ACS to define three subcategories5:

1. High School Dropouts (HSD)

2. High School Graduates (HSG)

3. Some College (SC).

When studying matching patterns, we have to decide which match to consider: the
current match of a couple, or earlier unions in which the current partners entered? also,
do we define a single as someone who never married, or as someone who is currently not
married?

It is notoriously hard to model divorce and remarriage in an empirically credible man-
ner. Since this is not the object of this paper, we chose instead to only keep first matches,
and never-married singles. Given this sample selection, in each cohort we miss:

4In another paper, Galichon and Salanié (2011) generalize the Choo and Siow framework to arbitrary
distributions; they also explicitly derive the social surplus function and they discuss identification in this
more general framework.

5A finer classification would be desirable, but cell sizes shrink fast.
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• those individuals who died before the 2008 Survey;

• those who are single in 2008 but were married before: there are

– 36,094 individuals who are separated from their spouse

– 218,839 who are divorced

– 143,963 who are widowed.

• those who are married in 2008, but not in a first marriage—more precisely, in Table 1,
we only kept the top left cell.

Number of marriages 1 2 ≥ 3 Total

1 384,291 42,147 5,945 432,383
2 46,773 56,210 14,146 117,129
≥ 3 7,250 15,334 9,069 31,653

Total 438,314 113,691 29,160 581,165

Table 1: Men in rows, women in columns

Outcomes are truncated in our data, since young men and women who are single in 2008
may still marry; in our figures (and later in our estimates) we circumvent this difficulty by
stopping at the cohort born in 1972—the first union occurs before age 35 for most men and
women. To examine marriage patterns, we dropped the small number of couples where
one partner married before age 16 or after age 35 (recall that these are first unions.)

This leaves us with 179,353 couples, 44,344 single men, and 32,985 single women. The
increasing level of education of women is shown on Figure 1: in cohorts born after 1955
more women than men go to college. Not coincidentally, the proportion of marriages in
which the husband is more educated than the wife has fallen quite dramatically. Figure 2
shows that while husbands used to “marry down”, husbands born after 1955 are more likely
to be married to a wife with a higher level of education than theirs (this figure uses 4 levels
of education.)6

Figures 3 and 4 describe changes in the level of education of the partners of married
men (resp. women) between the earlier cohorts (born in the early 40s) and the most recent
cohorts in our sample (born in the early 70s.) Figure 3 shows that college-educated men
now find a college-educated wife much more easily; and in fact even less-educated men are
now more likely to marry a college-educated woman—if they marry at all. On the other
hand, the marriage patterns of women are remarkably stable, as evidenced in Figure 4.

6Note that these results are exactly in line with the existing literature (see for instance Goldin and
Katz (2008, p. 252), suggesting that the selection into our sample does not affect the main patterns under
consideration.
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Figure 1: Education levels of men and women

8



1945 1950 1955 1960 1965 1970

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Year of  birth of husband

P
ro

po
rt

io
n

Husband more educated
Same education
Husband less educated

Figure 2: Relative education of partners

9



Proportion

Man: HSD

Man: HSG

Man: SC

0.0 0.2 0.4 0.6 0.8 1.0

Born 1943−45

0.0 0.2 0.4 0.6 0.8 1.0

Born 1970−72

HSD HSG SC

Figure 3: Marriage patterns of men who marry
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Figure 4: Marriage patterns of women who marry
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We illustrate the decline in marriages by plotting the percentage of individuals of a
given cohort who never married in Figures 5 and 6. They show that a higher education
has tempered the decline in marriage, especially for women; and that high-school dropouts
on the other hand have faced a very steep decline in marriage rates.
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Figure 5: Proportion of men who never married
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3 Theoretical framework

The basic structure We consider a frictionless, Becker-Shapley-Shubik matching game
between a male population M , endowed with some measure dµM , and a female population
F , endowed with some measure dµF . Each population is partitioned into a finite number
of classes, I = 1, ..., N for men and J = 1, ...,M for women. The gain generated by the
match of Mr. i, belonging to class I, and Mrs. j, belonging to class J , is the sum of two
components, one common to all individuals in the same class, the other match specific:

gij = ZIJ + εIJij

with the notation I = 0, J = 0 for singles; here, ZIJ denotes the common component
and εIJij is a random shock with mean zero. Although our model is static, ZIJ may be
interpreted as the present value of (expected) future surplus; as such, it would include
expectations about fertility, divorce and remarriage probabilities, etc. In that sense, our
approach, although structural in the static context, is reduced form regarding dynamic
aspects.

A matching consists of

(i) a measure dµ on the set M × F , such that the marginal of dµ over M (resp. F ) is
dµM (dµF ), and

(ii) a set of payoffs (or imputations) {ui, i ∈M} and {vj , j ∈ F} such that

ui + vj = gij for any (i, j) ∈ Supp (µ) .

In words, a matching indicates who marries whom (note that the allocation may be
random, hence the measure), and how any married couple shares the gain generated by
their match.

A matching is stable if one can find neither a man i who is currently married but would
rather be single, nor a woman j who is currently married but would rather be single, nor
a woman j and a man i who are not currently married together but would both rather be
married together than remain in their current situation. Formally, we must have that:

ui + vj ≥ gij for any (i, j) ∈M × F (1)

which translate the fact that for any possible match (i, j), the realized gain gij cannot
exceed the sum of utilities respectively reached by i and j in their current situation.

As is well known, a stable matching of this type is equivalent to a maximization problem;
specifically, a match is stable if and only if it maximizes total gain,

∫
gdµ, over the set of

measures whose marginal over M (resp. F ) is dµM (dµF ). A first consequence is that
existence is guaranteed under mild assumptions. Moreover, the dual of this maximization
problem generates, for each male i (resp. female j), a ‘shadow price’ ui (resp. vj), and
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the dual constraints these variables must satisfy are exactly (1); in other words, the dual
variables exactly coincide with payoffs associated to the matching problem.

Finally, is the stable matching unique? With finite populations, the answer is no; in
general, the payoffs ui and vj can be marginally altered without violating the (finite) set of
inequalities (1). However, when the populations become large, the intervals within which ui
and vj may vary typically shrink; in the limit of continuous populations, (the distributions
of) individual payoffs are exactly determined. On all these issues, the reader is referred to
Chiappori, McCann and Nesheim (2009) for precise statements.

The main empirical assumption We now introduce a simplifying assumption that
will be crucial in what follows:

Assumption 1 Assumption S (separability): the idiosyncratic component εij is addi-
tively separable:

εIJij = αIJi + βIJj (S)

where E
[
αIJi
]

= E
[
βIJj
]

= 0.

In words, the match specific term is the sum of two contributions. The male contri-
bution is individual specific and may depend on both his and his spouse’s class—but it
does not depend on the precise identity of i’s spouse; and the same property holds for the
female contribution. Note that this assumption is equivalent to the following property: for
any i, ı́′ ∈ I and any j, j′ ∈ J ,

gij + gi′j′ = gij′ + gi′j

This property implies that within each pair of classes, (I, J), any matching would be stable.
In practice, this means that we exclusively concentrate on the marital patterns between
classes (although this can be relaxed by the introduction of covariates, see below).

Each male i is thus fully characterized by the realization of the vector αi =
(
α11
i , ..., α

MN
i

)
.

For notational consistency, we define

αI0i = εI0i0 and β0Jj = ε0J0j

(and similarly for women).
Then we have the following Lemma:

Lemma 1 Assume the ε satisfy the separability property (S). For any stable matching,
there exist numbers U IJ and V IJ , I = 1, ...,M, J = 1, ..., N , with

U IJ + V IJ = ZIJ (2)

satisfying the following property: for any matched couple (i, j) such that i ∈ I and j ∈ J ,

ui = U IJ + αIJi

and (L)

vj = V IJ + βIJj
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Proof. Assume that i and i′ both belong to I, and are both matched with a spouse (resp.
j and j′) belonging to J . Stability requires that:

ui + vj = ZIJ + αIJi + βIJj (1)

ui + vj′ ≥ ZIJ + αIJi + βIJj′ (2)

ui′ + vj′ = ZIJ + αIJi′ + βIJj′ (3)

ui′ + vj ≥ ZIJ + αIJi′ + βIJj (4)

Subtracting (1) from (2) and (4) from (3) gives

βIJj′ − βIJj ≤ vj′ − vj ≤ βIJj′ − βIJj

hence
vj′ − vj = βIJj′ − βIJj

It follows that the difference vj − βIJj does not depend on j, i.e.:

vj − βIJj = V IJ for all i ∈ I, j ∈ J

The proof for ui is identical.

In words: the differences ui − αIJi and vj − βIJj only depend on the spouses’ classes,

not on who they are. The U IJ and V IJ denote how the common component of the gain is
divided between spouses; then a spouse’s utility is the sum of their share of the common
component and their own, idiosyncratic contribution. Note, incidentally, that (L) is also
valid for singles if we set U I0 = ZI0 and V 0J = Z0J .

An intuitive interpretation of U IJ (or equivalently of V IJ) would be the following.
Assume that a man randomly picked in class I is forced to marry a woman belonging to
class J (assuming that the populations are large, so that this small deviation from stability
does not affect the equilibrium payoffs). Then his expected utility is exactly U IJ (the
expectation being taken over the random choice of the individual within the class). Note,
however, that this value does not coincide with the average utility of men in class I who
end up being married to women J at a stable matching. The latter value is larger than U IJ

(reflecting the fact that an agent chooses his wife’s class), and will be computed below.

Stable matching: a characterization Under this separability assumption, the empir-
ical characterization of the stable match becomes much easier. We first provide a simple
translation of the stability properties:

Proposition 1 A set of necessary and sufficient conditions for stability is that
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1. for any matched couple (i ∈ I, j ∈ J) one has

αIJi − αIKi ≥ U IK − U IJ for all K (3)

αIJi − αI0i ≥ U I0 − U IJ (4)

and

βIJj − βKJj ≥ V KJ − V IJ for all K (5)

βIJj − β0Jj ≥ V 0J − V IJ (6)

2. for any single male i ∈ I one has

αIJi − αI0i ≤ U I0 − U IJ for all J (7)

3. for any single female j ∈ J one has

βIJj − β0Jj ≤ V 0J − V IJ for all J (8)

Proof. The proof is in several steps. Let (i ∈ I, j ∈ J) be a matched couple. Then:

1. First, male i must better off than being single, which gives:

U IJ + αIJi ≥ U I0 + αI0i

hence

αIJi − αI0i ≥ U I0 − U IJ

and the same must hold with female j. This shows that 4, 6, 7 and 8 are necessary.

2. Take some female j′ in J , currently married to some i′ in I. Then i must be better
off matched with j than j′, which gives:

U IJ + αIJi ≥ zij′ − vj′ = zIJ + αIJi + βIJj −
(
V IJ + βIJj′

)
and one can readily check that this inequality is always satisfied as an equality, reflect-
ing the fact that i is indifferent between j and j′, and symmetrically j is indifferent
between i and i′.

3. Take some female k in K 6= J , currently married to some i′ in I. Then “i is better
off matched with j than with k” gives:

U IJ + αIJi ≥ zik − vk = zIK + αIKi + βIKk −
(
V IK + βIKk

)
which is equivalent to

αIJi − αIKi ≥ U IK − U IJ

and we have proved that the conditions 3 are necessary. The proof is identical for 5.
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4. We now show that these conditions are sufficient. Assume, indeed, that they are
satisfied. We want to show two properties. First, take some female j′ in J , currently
married to some l in L 6= I. Then i is better off matched with j than j′. Indeed,

U IJ + αIJi ≥ zij′ − vj′ = zIJ + αIJi + βIJj −
(
V LJ + βLJj′

)
is a direct consequence of 5 applied to l. Finally, take some female k in K 6= J ,
currently married to some l in L 6= I. Then i is better off matched with j than j′.
Indeed, it is sufficient to show that

U IJ + αIJi ≥ zik − vk = zIK + αIKi + βIKj −
(
V LK + βLKk

)
But from 5 applied to k we have that:

βLKk − βIKk ≥ V IK − V LK

and from 3 applied to i:
αIJi − αIKi ≥ U IK − U IJ

and the required inequality is just the sum of the previous two.

In summary, under our separability assumption, stability can readily be translated into
a set of inequalities, each of which relates to one agent only. This property is crucial,
because it implies that the model can be estimated using standard statistical procedures
applied at the individual level, without considering conditions on couples. This separa-
tion is possible because the endogenous factors U IJ and V IJ adjust to make the separate
individual choices consistent with each other. We now see how these insights can be im-
plemented in practice.

4 Empirical implementation

4.1 Probabilities

Assume, first, that the classes are large, so that while the α and β are random the U IJ

and V IJ are not. Given the computations above, it is natural to make the following
assumption7:

7Gumbel distributions are better known to economists under the clumsier name of “type-I extreme value
distributions.”
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Assumption 2 (Heteroskedastic Gumbel) : The random terms α and β are such that

αIJi = σI .α̃IJi

βIJi = µJ .β̃
IJ
i

where the α̃IJi and β̃
IJ
j follow independent Gumbel distributions G (−k, 1), with k ' 0.577

the Euler constant so that Eα̃IJi = Eβ̃
IJ
j = 0.

In particular, the α̃IJi and β̃
IJ
j have mean zero and variance π2

6 , therefore the αIJi and

βIJj have mean zero and respective variance π2

6

(
σI
)2

and π2

6

(
µJ
)2

. The previous Lemma
then implies:

Proposition 2 A set of necessary and sufficient conditions for stability is that

1. for each matched couple (i ∈ I, j ∈ J),

αIJi − αIKi ≥ U IK − U IJ

σI
for all K (9)

αIJi − αI0i ≥ U I0 − U IJ

σI
(10)

and

βIJj − βKJj ≥ V KJ − V IJ

µJ
for all K (11)

βIJj − β0Jj ≥ V 0J − V IJ

µJ
(12)

2. for each single male i ∈ I,

αIJi − αI0i ≤
U I0 − U IJ

σI
for all J (13)

3. for each single female j ∈ J ,

βIJj − β0Jj ≤
V 0J − V IJ

µJ
for all J (14)

A direct consequence of this result is that, for any I and any i ∈ I:

aIJ = Pr (i matched with a female in J)

=
exp

(
U IJ/σI

)∑
K exp (U IK/σI) + 1
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and

aI0 = Pr (i single)

=
1∑

K exp (U IK/σI) + 1

where U I0 has been normalized to 0. Similarly, for any J and any female j ∈ J :

bIJ = P (j matched with a male in I) (15)

=
exp

(
V IJ/µJ

)∑
K exp (V KJ/µJ) + exp (V 0J/µJ)

and (16)

b0J = P (j single) =
1∑

K exp (V KJ/µJ) + 1

where V 0J = 0.
These formulas can be inverted to give:

exp
(
U IJ/σI

)
=

aIJ

1−
∑

K a
IK

(17)

and

exp
(
V IJ/µJ

)
=

bIJ

1−
∑
bKJ

(18)

therefore:

U IJ = σI ln

(
aIJ

1−
∑

K a
IK

)
V IJ = µJ ln

(
bIJ

1−
∑
bKJ

)
In what follows, we assume that there are singles in each class: aI0 > 0 and b0J > 0

for each I, J , implying that
∑

K a
IK < 1 and

∑
K b

KJ < 1 for all I, J . Note that a direct
consequence of these results is that, knowing the ZIJ and the population sizes, we can
algebraically compute U IJ/σI and V IJ/µJ for all (I, J).

Finally, define:

ūI = E

[
max
J

(
U IJ + σI α̃IJi

)]
In words, ūI is the expected utility of an agent in class I, given that this agent will chose a
spouse in his preferred class. From the properties of Gumbel distributions, we have that:

ūI = σIE

[
max
J

(
U IJ/σI + α̃IJi

)]
= σI ln

(∑
J

exp
(
U IJ/σI

)
+ 1

)
= −σI ln

(
aI0
)

(19)
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and similarly

v̄J = µJ ln

(∑
I

exp
(
V IJ/µJ

)
+ 1

)
= −µJ ln

(
b0J
)

(20)

4.2 Why does heteroskedasticity matter?

An important property of the model just presented is heteroskedasticity: the variance of
the unobserved heterogeneity parameters is class-specific. This property may in principle
matter for various reasons. For one thing, the expected utility of an arbitrary agent in
class I, as given by (19), is directly proportional to the standard deviation of the random
shock. Indeed, remember that the agent chooses the class of his spouses so as to maximize
his utility; and the expectation of the max of i.i.d variables increases with their variance.
It follows that the utility obtained by an average man of type I on the marriage market
cannot be exclusively measured by his probability of remaining single (reflected in the
− ln

(
aI0
)

term).
This remark, in turn, has important consequences for measuring the marital college

premium. To see why, start from a model in which the random component of the marital
gain is homoskedastically distributed (i.e., the variance is the same across categories: σI =
µJ = 1 for all I, J). The marital college premium is measured by the difference ūI − ūK ,
where I is the college education class whereasK is the high school graduate class. Condition
(19) then implies that

ūI − ūK = ln

(
aK0

aI0

)
In words, the gain can directly be measured by the (log) ratio of singlehood probabilities in
the two classes. The intuition is that people marry if and only if their (idiosyncratic) gain is
larger than some threshold. If these random gains are homoskedastically distributed, then
there is a one-to-one correspondence between the mean of the distribution for a particular
class and the percentage of that class that is below the threshold, i.e. that remains single:
the higher the mean, the smaller the proportion (see Figure 7). For instance, if one sees that
college graduate are more likely to remain single than high school graduates (aI0 > aK0,
implying that ln

(
aK0/aI0

)
< 0), we can conclude that the expected marital gain is smaller

for college graduates (ūI < ūK), therefore that the marital college premium is negative.
Consider, now, the heteroskedastic version. Things are different here, because the

percentage of single depends on both the mean and the variance. If educated women are
more likely to remain single, it may be because the gain is on average smaller, but it may
also be that the variance is larger (even with a higher mean), as illustrated in Figure 8.
The one-to-one relationship needs not hold, and a higher percentage does not necessarily
imply a smaller mean. One has to compute the respective variances—which, in turn, may
affect the computation of the marital college premium. Technically, we now have

ūI − ūK = σK ln
(
aK0

)
− σI ln

(
aI0
)

(21)

21



 



Figure 7: Homoskedastic random gains

If aI0 > aK0 and σI ≤ σK , one can conclude that ūI − ūK < 0; but whenever σI > σK the
conclusion is not granted, and estimates of the σ’s are needed.

In other words, education operates on marital prospects through four different channels:
it increases marriage probabilities; it changes the potential “quality” (here education) of
the future spouses; and it affects the size and the distribution of surplus within the house-
hold. In the basic, homoskedastic version of the model, due to the assumptions made on
the distributions of the random terms, these three channels are intrinsically mixed, and the
expected utility of each spouse is fully determined by the percentage of persons in the same
education class that remains single. The heteroskedastic version is much richer; welfare im-
pacts go beyond the sole probability of marriage, and involve other considerations. Clearly,
the conclusions drawn from the model may significantly depend on the assumptions made
regarding its homoskedasticity properties. It is therefore important that these assumptions
be testable rather than ad hoc - i.e., that homoskedasticity be imposed by the data (or at
least compatible with them) rather than assumed a priori. In that sense, the estimation of
the variances is a crucial part of the identification process.8

8Note, however, that if the variances are assumed constant across time, then the variations in singlehood
probability must still reflect similar changes in the expected gains from marriage. In other words, if we find
that the percentage of, say, college-educated women remaining single has increased between two cohorts c
and c′, we can unambiguously conclude that the gains from marriage have diminished for these women over
the period.
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Figure 8: Heteroskedastic random gains

4.3 Extension: Covariates

The basic framework just described can be extended to the presence of covariates; i.e.,
we may specify the εik (hence the α and β) as a function of individual characteristics
(other than the matching ones). Let Xi be a vector of such characteristics of man i, and
Yj of woman j. We may use the following stochastic structure (where, for simplicity, we
disregard heteroskedasticity):

αIJi = Xi.ζ
IJ
m + α̃IJi

αI0i = Xi.ζ
I0
m + α̃I0i

βIJj = Yj .ζ
IJ
f + β̃

IJ
j

β0Jj = Yj .ζ
0J
f + β̃

0J
j

where ζIJm , ζ
IJ
f are vector parameters, with the normalization U I0 = ζI0m = 0 and V 0J =

ζ0Jf = 0, and where as above the α̃IJi (resp. β̃
IJ
j ) follow independent, type 1 extreme

values distributions G (−k, 1). Then the computations are as above. In other words, we
can estimate for i ∈ I:

aIJ = Pr (i matched with a female in J) =
exp

(
U IJ +Xi.ζ

IJ
m

)∑
K exp

(
U IK +Xi.ζ

IK
m

)
+ exp

(
U I0 +Xi.ζ

I0
m

)
aI0 = Pr (i single) =

exp
(
U I0 +Xi.ζ

I0
m

)∑
K exp

(
U IK +Xi.ζ

IK
m

)
+ exp

(
U I0 +Xi.ζ

I0
m

)
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and the conclusions follow. In particular, these models can be estimated running standard
(multinomial) logits.

5 Identification

We now consider the identification problem. In practice, we observe realized matching—
i.e., populations in each classes and the corresponding marital patterns. To what extent
can one recover the fundamentals, that is the surplus matrix Z and the heteroskedasticity
parameters σ and µ? the answer turns out to crucially depend on the type of data available.

We first consider a static context, in which population sizes are fixed. We show that
in that case, the model is exactly identified if we assume complete homoskedasticity, and
not identified otherwise. Much more interesting is the situation in which population sizes
vary over time while (some of) the structural parameters remain constant. Then one
can identify both the surplus matrix Z and the heteroskedasticity parameters σ and µ,
provided that they remain constant over time; actually, one can even introduce either time
varying heteroskedasticity or a drift in the surplus matrix without losing identifiability;
and finally, the model generates strong overidentifying restrictions. We consider the two
cases successively.

5.1 The static framework

We start with a purely static framework. Define a model M as a set
(
ZIJ , σI , µJ

)
such

that
gij = ZIJ + εIJij

with
εIJij = σIαIJi + µJβIJj (S)

and where the αIJi and βIJj follow independent Gumbel distributions G (−k, 1). Note that

the model is clearly invariant when the
(
ZIJ , σI , µJ

)
are all multiplied by a common,

positive constant.
The following result is valid for static (cross-sectional) data:

Proposition 3 Assume that a model M =
(
ZIJ , σI , µJ

)
generates some matching proba-

bilities
(
aIJ , bIJ

)
, and let U IJ , V IJ denote the corresponding dual variables. Then

U IJ = σI log
aIJ

1−
∑

K a
IK

(22)

and

V IJ = µJ log
bIJ

1−
∑

K b
KJ

(23)
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therefore

ZIJ = σI log
aIJ

1−
∑

K a
IK

+ µJ log
bIJ

1−
∑

K b
KJ

Moreover, for any positive
(
σ̄I , µ̄J

)
, the model N =

(
Z̄IJ , σ̄I , µ̄J

)
where

Z̄IJ =
σ̄I

σI
U IJ +

µ̄J

µJ
V IJ (24)

generates the same matching probabilities, and the corresponding, dual variables are

Ū IJ =
σ̄I

σI
U IJ (25)

V̄ IJ =
µ̄J

µJ
V IJ (26)

Conversely, if two models M =
(
ZIJ , σI , µJ

)
and N =

(
Z̄IJ , σ̄I , µ̄J

)
generate the same

matching probabilities, then the conditions (24), (25) and (26) must hold.
Proof. From the previous calculations, there is a one-to-one relationship between the aIJ

and the υIJ ; the result follows.

The previous result is essentially negative; it states that in a static context, the het-
eroskedastic version of the model is not identified. The heteroskedasticity parameters(
σI , µJ

)
can be chosen arbitrarily; for any value of these parameters, one can find values{

ZIJ , I = 1, ..., N, J = 1, ...,M
}

that exactly rationalize the data. An interpretation of the
non identifiability result is in terms of utility scales. The unit in which the Us and V s
are measured is not determined unless we make assumptions on the variances of the αs
and βs. This negative result is important, in particular, for welfare comparisons. In a
cross-sectional setting, comparing welfare between males and females or between individ-
uals belonging to different classes is highly problematic, since it can only rely on arbitrary
choices of the units.

5.2 Changes in population sizes

Much more promising is a situation in which one can observe the market over different
periods (or for different cohorts), when the various populations change in respective sizes
over the periods. Then a richer model can actually be estimated. We start with the
benchmark case, then consider the generalized version that will be taken to data later.

5.2.1 The benchmark version

Let us now assume that the previous, heteroskedastic structural model M =
(
ZIJ , σI , µJ

)
holds for different cohorts of agents, c = 1, ..., T , with varying class compositions. The
basic structure becomes:

gij,c = ZIJ + εIJij,c
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with
εIJij,c = σIαIJi,c + µJβIJj,c (S)

Also, assume for the time being that each man marries a woman within his cohort.9

As before, the matching model defines, for each cohort, a matching problem associated to
shadow prices; the latter are now cohort specific. Under the same assumptions as above,
the previous construct applies for each cohort, leading to the definition of U IJc and V IJ

c .
Then

aIJc = Pr (i ∈ I matched with a female in J in cohort c) =
exp

(
U IJc /σI

)
1 +

∑
K exp (UKJc /σK)

aI0c = Pr (i ∈ I single) =
1

1 +
∑

K exp (UKJc /σI)

therefore

exp
(
U IJc /σI

)
=

aIJc
1−

∑
K a

IK
c

(27)

and similarly:

bIJc = Pr (j ∈ J matched with a female in I in cohort c) =
exp

(
V IJ
c /µJ

)
1 +

∑
K exp (V IK

c /µK)

bI0c = Pr (j ∈ J single) =
1

1 +
∑

K exp (V IK
c /µK)

implying that

exp
(
V IJ
c /µJ

)
=

bIJc
1−

∑
K b

IK
c

(28)

Moreover, we have

U IJc + V IJ
c = ZIJ (29)

Now, let pIJc = U IJc /σI and qIJc = V IJ
c /µJ . The crucial remark is that from (27) and

(28), the pIJc and qIJc are directly observable from the data. It follows that (29) has a
direct, testable implications. Indeed, define the vectors:

pIJ =
(
pIJ1 , ..., pIJT

)
qIJ =

(
qIJ1 , ..., qIJT

)
and

1 = (1, ..., 1)

9Empirically, women tend to marry slightly older men: in our data the wife of a man in cohort c on
average belongs to cohort (c + 1). This will be taken into account in the empirical application, but we
ignore it for the time being.
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Then for each pair (I, J), the vectors pIJ , qIJ and 1 must be colinear:

σI pIJ + µJ qIJ − ZIJ1 = 0 (30)

which generates a first testable restriction - namely that for each (I, J), the determinant

DIJ =
∣∣pIJ ,qIJ ,1∣∣

must be zero.
If that restriction is satisfied, assume that either pIJ or qIJ is not constant over the

cohorts. Then the vectors pIJ and 1 (or qIJ and 1) are linearly independent, so that the
linear combination in (30) is unique up to a common multiplicative constant. Since, in
our case, the constant is pinned down by the normalization σ1 = 1, we conclude that for
each pair (I, J), the regression exactly identifies σI , µJ and ZIJ . Finally, since each σI but
σ1 (resp. each µJ) is identified from N (M) different regressions, the model generates a
second set of overidentifying restrictions.

Finally, a more parsimonious version of the model obtains by imposing that the σs and
the µs are identical across classes (i.e., σI = σ for all I and µJ = µ for all J), although
these values may be different for men and women (i.e., we do not impose that σ = µ).
Condition (30) is then strengthened: if we define the vectors p, q and 1IJ in RN×M×T by:

p =
(
p11, ...,pNM

)
,q =

(
q11, ...,qNM

)
and 1IJ = (0, ...0, 1, ..., 1, 0, ...0)

then (keeping the normalization σ = 1):

p = −µ q +
∑
I,J

ZIJ1IJ (31)

This requires that (2 +NM) vectors be colinear in a space of dimension NMT , a strong
restriction as soon as T ≥ 2; moreover, if this property is satisfied, then µ and the ZIJ are
identified.

We conclude that whenever the populations are not constant across cohorts, both the
homoskedastic and the heteroskedastic versions of the benchmark structural model are
(vastly) overidentified.

5.2.2 Extension: category-specific drifts

The previous, overidentification result suggest that a more general version of the model
may actually be identifiable. We now proceed to show that this is indeed the case. Specif-
ically, we now relax the assumption that the ZIJc are constant across cohorts; we therefore
introduce category-specific drifts, whereby the ZIJs vary according to:

ZIJc = ζIc + ξJc + ZIJ (32)
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This is equivalent to assuming that, for all (I, J) and (K,L), the second difference:

ZIJc − ZILc − ZKJc + ZKLc = ZIJ − ZIL − ZKJ + ZKL

is independent of c. Clearly, what we are assuming is therefore that the supermodularity
properties of the marital gains are constant over time.

There are many reasons to expect that the surplus generated by marriage would vary
across time. One is that technological innovations have drastically altered the technology
of domestic production, therefore the respective gender roles within the household (see
Greenwood, Seshadri and Yorukoglu 2005). Another important factor was the evolution of
fertility control, a point emphasized, among others, by Michael (2000) and Goldin and Katz
(2002). Finally, remember that in our framework, the systematic part of the surplus, ZIJ ,
can be interpreted as a reduced form for more dynamic interactions, including divorce
and remarriage; as a consequence, changes in divorce laws or remarriage probabilities
may affect the surplus. It is therefore important to stress what the proposed extension
allows and what it rules out. Under (32), the benefits of marriage may evolve over time
(although the variances do not); and these evolutions may be both gender- and education-
specific. In words, we allow, for instance, the gains generated by marriage to decrease less
for an educated women than for an unskilled man. However, the components reflecting
complementarity (or supermodularity) between education classes—the second differences(
ZIJ − ZIL

)
−
(
ZKJ − ZKL

)
—are left invariant. In particular, the forces driving the

assortativeness of the match are supposed to be constant for the various cohorts. Our
challenge is precisely to test whether this hypothesis is compatible with the evolutions in
marital patterns observed over the last decades.

Normalizations The form (32) requires additional normalizations. We normalize ζI1 =
ξJ1 = 0 so that ZIJ = ZIJ1 . Also, note that for any c > 1, the ζIc and ξJc are only defined
up to a (common) additive constant; i.e. for any given scalar k, one can replace

(
ζIc , ξ

J
c

)
with

(
ζIc + k, ξJc − k

)
for all (I, J) without changing (32). We can therefore normalize ξ1c

to be zero for all c.

Testing the framework Under (32), equation (29) becomes:

σI pIJc + µJ qIJc = ζIc + ξJc + ZIJ ∀I, J, c (33)

This implies that for all I and all J ≥ 2, we have:

σI
(
pIJc − pI1c

)
+ µJ qIJc − µ1 qI1c = ξJc + ZIJ − ZI1 (34)

Computing this expression for I = 1 and differencing:

σI
(
pIJc − pI1c

)
−σ1

(
p1Jc − p11c

)
+µJ

(
qIJc − q1Jc

)
−µ1

(
qI1c − q11c

)
= ZIJ−ZI1−Z1J +Z11.

(35)
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This requires a normalization since all terms can be multiplied by the same factor. We
could choose for instance σ1 = 1, so that

p1Jc − p11c = σI
(
pIJc − pI1c

)
+ µJ

(
qIJc − q1Jc

)
− µ1

(
qI1c − q11c

)
−
(
ZIJ − ZI1 − Z1J + Z11

)
From this, we derive a first testable restriction. To simplify notation, denote

D2Z
IJ = ZIJ − ZI1 − Z1J + Z11

the second difference of the mean surplus; and define the vectors:

PIJ =
(
pIJ1 − pI11 , ..., pIJT − pI1T

)
QIJ =

(
qIJ1 − q1J1 , ..., qIJT − q1JT

)
RIJ =

(
p1J1 − p111 , ..., p1JT − p11T

)
and

1 = (1, ..., 1)

Then for each pair (I > 1, J > 1):

RIJ = σI PIJ + µJ QIJ − µ1QI1 −D2Z
IJ1 (36)

and RIJ belongs to the subspace generated by
{
PIJ ,QIJ ,QI1,1

}
, a first testable restric-

tion for each (I > 1, J > 1). A second set of testable restrictions comes from the fact that
when we decompose RIJ over the basis

{
PIJ ,QIJ ,QI1,1

}
, the coefficient of P IJ (resp.

QIJ ,resp. QI1) does not depend on J (resp. I, resp. is constant).
In practice, we first estimate the probabilities of the various marital outcomes directly

from the data, and we use them to construct estimates of the vectors P,Q and R; then
we choose the heterogeneity parameters ((σI), (µJ)) and the second differences (D2Z

IJ)
so as to minimize the deviations from the conditions in (36). This minimum distance
estimation technique also allows us to test the model by evaluating the distance function
at its minimum. In our application there are 116 conditions in (36), and only 9 free
parameters; this is quite a stringent test since the probabilities of the various matches are
estimated from a large sample and thus very precisely.

Once we have estimated the heterogeneity parameters σI and µJ we can also reconstruct
the left-hand side of equation (33):

ÂIJc = σ̂I pIJc + µ̂J qIJc . (37)

Our theory (and more specifically equation (33)) states that in an ANOVA regression of
this ÂIJc , only 1- way and 2-way effects should appear. To put this in terms more familiar
to applied econometricians: a regression of ÂIJc on fixed effects for I, for J , and for c (the
1-way effects) and on fixed effects for the interactions (I, J), (I, c) and (J, c) (the 2-way
effects) should have an R2 of one. This is an alternative way of evaluating departures from
the theory, based more on economic significance than on statistical significance.
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Identification: the main result Finally, should we fail to reject, the model is identified.
To see why, note that the decomposition of RIJ over

{
PIJ ,QIJ ,QI1,1

}
is generically

unique; the σI and µJ are therefore (over) identified as the respective coefficients of the first
two vectors in the decomposition, and µ1 as minus the coefficient of the third. Rewriting
(33) for c = 1 gives

σI pIJ1 + µJ qIJ1 = ZIJ

which shows that the ZIJ are identified. Last, applying (33) identifies ζIc for all I since we
set ξ1c ≡ 0; and (34) then identifies ξJc for all J ≥ 2.

A more parsimonious version Coming back to the parsimonious version introduced
above (σI = σ for all I and µJ = µ for all J), condition (35) becomes (with the same
notation as above):

σ
((
pIJc − pI1c

)
−
(
p1Jc − p11c

))
+ µ

( (
qIJc − q1Jc

)
−
(
qI1c − q11c

))
= ZIJ − ZI1 − Z1J + Z11

In this case, the computation of µ has a simple and intuitive interpretation. For any
(I ≥ 1, J ≥ 1), let ∆2a

IJ
c denote the second difference of the logarithm of the probability

aIJc that a man in I marries a woman in J , taking for instance the first category as a
benchmark for both genders:

∆2a
IJ
c = ln aIJc − ln aI1c − ln a1Jc + ln a11c

Clearly, the use of such second differences refers to the supermodularity properties of the
(log) probabilities. In particular, if ln aIJc is additively separable:

ln aIJc = sIc + tJc

then ∆2a
IJ
c = 0 for all (I, J, c).

Now, let ∆3a
IJ
c denote the variation of this second difference over cohorts:

∆3a
IJ
c = ∆2a

IJ
c+1 −∆2a

IJ
c

We can similarly define ∆2b
IJ
c and ∆3b

IJ
c for women. Then the parsimonious model implies

that:
∆3a

IJ
c

∆3bIJc
= −µ

σ

In other words, the ratio ∆3a
IJ
c /∆3b

IJ
c should not depend on the classes I and J nor on

the cohort - and the ratio µ/σ has then a natural interpretation in terms of minus this
ratio (remember that some normalization, say σ = 1, is still needed). For instance, the
ratio is close to zero if the second difference ∆2 varies much less across cohorts for men
than for women.10

10This property could in principle be used to construct both a specification test and a non parametric
estimator of the ratio. In our data, however, the power of the test is quite weak, due to insufficient variations
in the second difference across cohorts.
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Actually, more complex models can in principle be tested and estimated in this frame-
work. For instance, one may assume a uniform drift in the Zs but allow for cohort-specific
variances; the model would then become:

gij,c = ZIJ + ζc + σIcα
IJ
i,c + µJc β

IJ
j,c

Again, one can show that this model (i) generates testable restrictions and (ii) is identified
up to simple normalizations (a formal proof is available from the authors).

6 Results

We estimate the Pr(J |I, c) and Pr(I|J, c) probabilities by the obvious nonparametric tech-
nique of counting numbers of marriages in cells, assuming that a man of cohort c marries a
woman of cohort (c+ 1) (the one-year gap is both the mode and the median age difference
at marriage.) We ran the analysis for cohorts of men born between 1943 to 1971.

Then we reconstitute the p and q terms and we run the minimum distance procedure,
taking I and J = 3 rather than 1 as reference, since category 1 (high-school dropouts)
becomes less numerous over time. We also found it more convenient to normalize estimates
using the restriction

Z33 + Z11 − Z13 − Z31 = 1,

which scales the constant part of the joint surplus by making the largest cross-difference
term equal to one. This allows us to maintain the symmetry between men and women.

Minimum distance estimation amounts to choosing the heterogeneity parameters and
the second difference so as to minimize the length of the residuals in (36). As usual, the
optimal choice of a norm is the inverse of the variance-covariance matrix of the residuals.
Since we use 29 cohorts and we have three categories, the vector of residuals has dimension
29 ∗ (3− 1) ∗ (3− 1) = 116, and its variance-covariance matrix is rather unwieldy. To avoid
relying too much on imprecise estimates of some off-diagonal elements of the variance
matrix, we only used its diagonal elements11. Using the full matrix does not materially
alter our results.

6.1 Tests

There are two different ways of evaluating the empirical fit of the model. First, we can
use the value of the distance function at its minimum; as explained in section 5.2.2, this
generates a χ2 specification test. The value of the statistic is 189.8, for 109 degrees of
freedom, which strongly rejects the model. While this sounds like a disappointing out-
come, the ANOVA procedure described in section 5.2.2 gives much more positive results.

11Our estimator of these diagonal elements relies on a first-step minimum distance estimator based on
weighting the residuals by the observed number of marriages. In computing it, we neglect the correlation
between the estimated P and Q.
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Remember that the main implication of our framework is that, according to equation (33),
σI pIJc + µJ qIJc can be expressed as a linear combination of terms involving either 1-way
effects (i.e., fixed effects for the husband’s education, the wife’s education and the cohort)
or 2-way effects (i.e., interactions of any two of the previous terms). Since we can recon-
struct the estimator ÂIJc = σ̂I pIJc + µ̂J qIJc , this property can directly be tested. We find
that in a direct ANOVA regression12 the main effects are the 1-way effects on I and J (for
a total of 46.2% of the variance), the 1-way cohort effect (for 13.8%), and the 2-way (I, J)
effect (for 37.4%).

More strikingly, the residual, which in practice measures the deviation from our theory
(i.e. the part of the observed patterns that cannot be explained by 1- or 2-ways effects),
accounts for only 0.5% of the variance of ÂIJc . This is a remarkably small number, since the
3-way interaction terms comprise 104 degrees of freedom, for 3 ∗ 3 ∗ 29 = 261 observations.
As an illustration, we generated randomly 1,000 samples of 261 such observations (drawn
from iid N(0, 1) distributions); performing the same ANOVA regressions on these random
samples, we find that the 3-way interaction accounts for no less than 43% of the variance
on average (with a dispersion of 3%).

These apparently divergent results are a striking illustration of the difference between
statistical significance and economic significance. Since we use rather large samples of
men and women, the odds ratios pIJc and qIJc are very precisely estimated, and any small
deviation from the theory (the 0.5% of the variance above) results in a very large value of
the test statistic, and thus a spectacular statistical rejection. Thus the statistical rejection
of our theory is a minor distraction, and we pursue our analysis of the 99.5% of the variance
in marriage patterns that we manage to explain.

6.2 Estimated Heterogeneities

Table 2 gives our estimates of the σI and µJ terms. The model in Choo-Siow (2006)
imposes that they all be equal; on the contrary, we find clear and significant variations
across our estimates. In particular, each estimated µ is larger than the corresponding σ;
and the hypothesis that each σ equals the corresponding µ is strongly rejected. There also
appears to be much less heterogeneity among high-school graduates than for the other two
categories; given the discussion in section 4.2, this will play an important role in what
follows.

6.3 Estimated Surpluses

The reconstructed values13 of the ZIJ (the cohort-independent part of the joint surplus)
are in Table 3. We ran “supermodularity tests” by evaluating the 9 cross-difference terms

ZKL + ZIJ − ZIL − ZKJ
12We weighted each (I, J, c) observation by the corresponding number of marriages in the data.
13The estimated standard errors are between 0.01 and 0.04.
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Group σI µJ

HSD 0.089 0.148
(0.017) (0.027)

HSG 0.060 0.071
(0.017) (0.018)

COLL 0.087 0.137
(0.014) (0.017)

Table 2: σI in rows, µJ in columns

with K > I and L > J . Rather strikingly, they were all positive. Since the joint surplus

ZIJ + ξIc + ζJc

adds to Z a part which is additively separable in I and J and therefore cannot alter its
supermodularity properties, we can conclude that the joint surplus is supermodular in
educations.

Group HSD HSG COLL

HSD 0.331 0.193 −0.128
HSG 0.195 0.272 0.098
COLL −0.028 0.233 0.468

Table 3: Z values: men in rows, women in columns

Our method also yield estimates of the ξ and ζ terms, so that for any value of (I, J) we
can reconstruct changes in the joint surplus across cohorts. Figure 9 focuses on “diagonal”
matches I = J . The dashed horizontal lines give the values of ZII , and the curves add
ξIc + ζIc . The differences that prevailed for the older cohorts are dwarfed by the evolutions
since then: while all categories of matches have become less attractive (relative to staying
single), the fall is much steeper for high-school dropouts.

Our estimates also allow us to reconstruct changes in U IJc and V IJ
c over time. Again,

we focus on diagonal terms I = J , which are plotted in Figures 10 (for men) and 11 (for
women).

6.4 Interpretation

All these estimates have immediate structural interpretations. In practice, the marital
college premium can be decomposed into several components. First, education affects the
probability of being married. Second, conditional on being married, it also affects the
education of the spouse (or more exactly its distribution); intuitively, we expect educated
women to find a “better” husband, at least in terms of education, and conversely. Third,
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the impact on the total surplus generated by marriage is twofold. Take women for instance.
A wife’s education has a direct impact on the surplus; this impact can be measured, for
college education, by the difference (ZI3c −ZI2c ), where I denotes the husband’s education.
In addition, since a more-educated woman is more likely to marry a more educated husband,
the husband’s higher expected education further boosts the surplus, by the average of these
(ZI3c −ZI2c ) terms weighted by the difference in probability of marrying a college-educated
husband instead of a high school graduate.

Finally, the share of the surplus going to the wife in any given match is also affected
by her education. Consider the average surplus form a match between an I-man of cohort
c and a J-woman of cohort (c + 1)—recall that we assumed a fixed age difference. This
average surplus is the expected value of

E
(
ZIJc + σIαIJi,c + µJβIJj,c

)
,

conditional on i and j marrying each other in equilibrium. Given the additive structure of
our theory, it can also be rewritten as the sum of two conditional expectations: that of

max
K

(U IKc + σIαIKi,c )

conditional on the maximum being achieved on K = J ; and that of

max
K

(V KJ
c + µJβKJj,c )

conditional on the maximum being achieved on K = I. But given the peculiar nature of
type-I extreme value errors, the first expectation is ūIc , independently of the value of J ;
and the second one is v̄Jc , independently of the value of I. Therefore the ratio

v̄Jc
ūIc + v̄Jc

measures the share of the surplus that goes to the wife in an (I, J) marriage, in expected
terms.

All these components can readily be computed from our estimates. Focus on women
who are either high-school graduates or have some college education. Table 4 presents some
marital outcomes for such women. We record the percentage of women who are married,
how many of the married women have a college-educated husband, the total surplus in
such a marriage, and the wife’s share of the marital surplus.

For the early cohort, we see that:

1. College education reduced the probability of marrying: it was 93.9% for a high school
graduate, but only 89.6% after college.
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Cohort born 1944-46 1970-72

Education HSG COLL HSG COLL

Married 0.933 0.896 0.791 0.818
College-educated husband 0.380 0.833 0.376 0.841
Marital surplus 0.191 0.464 -0.041 0.330
Wife’s share 0.419 0.570 0.404 0.625

Table 4: Marital outcomes for women in early and in recent cohorts

2. It allowed women who did marry to get a better-educated partner: for instance, the
conditional probability of marrying a college-educated man jumped from 38.0% for
a high school graduate. to 83.3% for a college-educated woman.

3. The marriage of a college-educated husband with a college-educated wife generated
a total surplus that was 0.464 on average, as opposed to only 0.191 if the wife did
not attend college.

4. Finally, still in the case of a college-educated husband, the wife’s share of total
surplus was 57.0% on average if she was college-educated, while a high school graduate
received only 41.9% of the smaller surplus.

Note that in contrast to items 1 and 2, which are directly observed, an explicit model
is needed to infer items 3 and 4 from the data.

With the passage of time, we find some marked changes in these estimated patterns:

1. College education now increases the probability of marrying (it is 79.1% for a high
school graduate and 81.8% for a college graduate)

2. Its impact on the husband’s education is pretty much unchanged: the conditional
probabilities of marrying a college-educated man are 37.6% for a high school graduate
and 84.1% for a college graduate.

3. Regarding the direct impact of female education on total surplus, the marriage of
a high school graduate wife with a college-educated man generates negative total
surplus on average (−0.041); if the wife attended college, the total surplus is 0.289.
At 0.330, the difference is much larger than it was for early cohorts (0.273).

4. The wife’s share of the total surplus in a marriage with a college-educated man has
decreased for high school graduates, at 40.4% now; and it has markedly increased for
college-educated women—it is now 62.5%.

All in all, the impact of education on a person’s marital situation is quite complex: it
involves changes in the marriage probabilities, but also in the “quality” of the spouse, in the
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size of the surplus generated by marriage and ultimately in the distribution of this surplus
between spouses. These various components may not all push in the same direction. A
spouse’s expected gain, on which the definition of the marital college premium is based,
must take all these elements into account; as a result, even the direction of its evolution
may in principle be quite difficult to figure out.

An obvious advantage of our structural model, though, is that the value of this expected
gain can be directly computed from the data. For the main concepts at stake, the model
actually provides explicit expressions that can readily be evaluated from our estimates. For
instance, the marital college premium for any generation c is given by equation (21) above:

MCPmc = ū3c − ū2c = σ2 ln
(
a20c
)
− σ3 ln

(
a30c
)

for men and
MCPwc = v̄3c − v̄2c = µ2 ln

(
b20c
)
− µ3 ln

(
b30c
)

for women.
Figures 12 and 13 plot the evolution over cohorts of the expected gains ūIc and v̄Jc for

the various education classes under consideration. They show, in particular, that the fate
of high-school dropouts has deteriorated for both genders, while that of college-educated
women has improved.

The latter point is confirmed on Figure 14, which plots the evolution of the “marital
college premium” (ū3c − ū2c) and (v̄3c − v̄2c ) over cohorts for both genders. Beyond the year-
to-year changes, the nonparametric smoothers in dashed lines tell a clear story: the marital
college premium of women started to increase sharply for cohorts born around 1955, who
graduated from college around 1980; and it has crept upwards ever since. No such change
can be seen for men: their marital college premium has remained remarkably flat over the
period.

7 Conclusion

It has been recognized since Becker’s seminal contributions that the division of the surplus
generated by marriage should be analyzed as an equilibrium phenomenon. As such, it
responds to changes in the economic environment; conversely, investments made before
marriage are partly driven by agents’ current expectations about the division of surplus
that will prevail after marriage. Theory shows that such considerations may explain the
considerable differences in male and female demand for higher education. In a nutshell,
when deciding whether to go to college, agents take into account not only the market
college premium (i.e., the wage differential resulting from a college education) but also the
“marital college premium” which represents the impact of education on marital prospects;
the later includes not only marriage probabilities, but also the expected “quality” of the
future spouse and the resulting distribution of marital surplus. Our first contribution is
to provide a simple but rich model in which these components can be econometrically
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identified. Our framework generalizes a previous contribution by Choo and Siow (2006);
we show, in particular, that it can be (over)identified using temporal variations in the
compositions of the populations at stake. We take our model to US data and we show
that it does a remarkably good job at explaining observed evolutions. In fact, we explain
no less than 99.5% of total variance. Our main identifying assumption—that the gains
from assortative matching, as measured by level of supermodularity in the marital surplus,
remain constant over time—therefore fits the data very well.

We can then fully identify the structural model. While the gains from marriage have
declined over the period, the decline has been smaller for educated agents. In particular, the
“marital college premium” has markedly increased for women in cohorts born after 1955,
while remaining stable for men. These empirical findings closely match the theoretical
argument in Chiappori et al. (2009).
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