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Abstract 
 
Despite a wide consensus among researchers and practitioners that teachers 
matter to student achievement in schools, the exact determinants of teacher 
quality remain elusive. This paper follows a recent line of research and 
examines the impact of different teaching practices on student test scores in the 
United States. It does so against the background of a series of proposed 
teaching reforms which call for an increase in the use of “modern” teaching 
practices at the cost of more “traditional” ones, thus implicitly assuming that the 
former are better at raising student achievement. Using student survey data 
from the 2007 wave of the Trends in International Mathematics and Science 
Study and an estimation strategy which allows me to control for the subject-
invariant part of unobserved student ability, I find evidence which points in the 
opposite direction. While my traditional-teaching measure has a substantial 
positive effect on student achievement, the estimated impact of my modern-
teaching measure is much smaller and statistically insignificant. This result is 
robust to a series of robustness checks. 
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1 Introduction

Teachers matter. This is the consensus from a wide range of studies which examine
the impact of teachers on student outcomes. Nevertheless, which teacher attributes
in particular make the difference between a successful teacher and an unsuccessful
one remains unclear. Variables which are commonly observed in data sets such as
teacher education and experience are generally found to have only little impact on stu-
dent achievement (Hanushek, 1986). This is disquieting not least because these char-
acteristics are typically the main determinants of teacher salary and hiring decisions
(Hanushek and Rivkin, 2006). In a renewed attempt to elicit “what makes an effective
teacher” (as in Lavy, 2011), a recent line of research therefore shifts the focus from
teacher attributes to teaching practices, that is, what teachers actually do in the class-
room (Lavy, 2011; Schwerdt and Wuppermann, 2011). The intuition behind this is
that differences in instructional methods may be the reason for the large empirically
observed variation in teacher quality. If this is the case, straightforward and potentially
cost-effective policy changes, such as instructing teachers to teach in a particular way,
could help raise student achievement in schools.

In the United States, the last two decades have seen an unprecedented surge in
proposals for teaching reform from a variety of sources, including national teacher as-
sociations (e.g., National Council of Teachers of Mathematics, 1991) and the National
Research Council (1996). Many of these proposals have also been funded by the De-
partment of Education (Zemelman et al., 2005). Given this diversity in authorship, the
recommendations made are remarkably congruent. In particular, a common element
among almost all of these proposals is the appeal to reduce the reliance on “traditional”
teaching practices such as lecture-style teaching and rote memorization, and to increase
instead the use of more “modern” teaching methods including cooperative group work
among students and teaching based on student questioning (ibid.). The implicit as-
sumption behind these proposed teaching reforms, which are jointly referred to as the
standards movement in teaching practices, is thus that modern teaching practices are
better than traditional ones at raising student achievement - an assumption which has
not been tested empirically so far.1

This paper attempts to fill this gap in the literature and to thereby contribute to the
still sparse evidence on the link between teaching practices and student achievement.

1Schwerdt and Wuppermann (2011) study whether teachers who emphasize lecture-style teaching as
opposed to problem solving are associated with higher student achievement. These two practices can
however not be considered representative of traditional and modern teaching as defined by the standards
movement for reasons that will become clear below.
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Using student survey data from the latest wave of the Trends in International Mathemat-
ics and Science Study (TIMSS), I construct two aggregate teaching-practice measures,
one for traditional teaching and one for modern teaching. I then relate these measures
to student test scores from standardized tests in math and science using an identification
strategy which allows me to control for the subject-invariant part of unobserved student
ability. My results suggest that while there is a substantial positive impact of traditional
teaching on student achievement, the impact of modern teaching is much smaller and
statistically insignificant. While I cannot reject the hypothesis that the effect size of
both measures is equal, my results do not support the hypothesis that modern teaching
is better at raising student achievement than traditional teaching either. This casts doubt
on the usefulness of the recommendations made by the standards movement.

A series of robustness checks, including a redefinition of my teaching-practice mea-
sures and the use of highly flexible econometric specifications, confirm the validity of
my headline results. When I examine the effect of the two measures on math and
science achievement separately, I find that the pattern of a larger positive impact of tra-
ditional teaching holds for both subjects. I also analyze whether the treatment effects
differ for various subgroups of my sample. I find that the effects are roughly equal
across boys and girls. In contrast, there is some evidence pointing towards a more fa-
vorable effect of modern teaching for immigrant students. The remainder of the paper
is structured as follows: Section 2 briefly reviews the most relevant literature. Sec-
tion 3 presents the data. The empirical strategy is described in Section 4. Section 5
presents the headline results. Robustness checks are discussed in Section 6. Section 7
concludes.

2 Related Literature

A wealth of research tries to link measurable teacher characteristics to student outcomes
using observational data. The typical approach to this problem is to set up an educa-
tion production function in which student achievement as measured by some form of
standardized test is related to teacher experience, education and certification. Evidence
from the associated regressions points towards a positive effect of teacher certifica-
tion on test scores (Clotfelter et al., 2010; Dee and Cohodes, 2008). However, teacher
experience and education - the variables most frequently used to inform hiring and
salary decisions - are generally found to have no significant effect on student achieve-
ment (Hanushek, 1971, 1986; Hanushek and Rivkin, 2006). Evidence from recent
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studies which examine the impact of teacher gender is also inconclusive (Dee, 2007;
Holmlund and Sund, 2008). An alternative approach that has become popular during
the last decade therefore avoids the focus on particular teacher characteristics and at-
tempts to identify a generic measure of teacher quality instead. Studies which adopt
this approach typically exploit longitudinal data sets in which teachers face different
groups of students over time. In an equation of student achievement gain, a value-added
measure of teacher quality is then calculated as a teacher fixed effect.2 Researchers
conclude that there is substantial variation in teacher quality and that its impact on stu-
dent achievement is large. However, consistently with the evidence from the education
production function approach, teacher experience and education are found to explain
only very little of the variation in estimated teacher quality (Aaronson et al., 2007;
Rivkin et al., 2005).

The elusiveness of measurable determinants of teacher quality and the availabil-
ity of new and richer data has prompted researchers to shift the attention from teacher
characteristics to what teachers do in the classroom very recently. Two studies from
this emergent literature are particularly closely related to this paper. First, Schwerdt
and Wuppermann (2011) use data from the TIMSS 2003 wave for the United States
to contrast the effect of lecture-style teaching with that of solving problems in class
on standardized test scores. The authors find that teachers who spent relatively more
time on lecture-style teaching are associated with higher student achievement. Second,
Lavy (2011) uses student survey data from Israel to examine the effect of five aggre-
gate teaching practices on standardized test scores. He finds that two of these practices,
“instilment of knowledge” and “instilment of applicative, analytical and critical skills,”
which he likens to “traditional teaching” and “modern teaching,” respectively, are posi-
tively related to student achievement. The author concludes that traditional and modern
teaching approaches do not necessarily crowd out each other as is commonly thought,
but that both may coexist in the education production function.

In keeping with this recent line of research, this paper provides additional evi-
dence on the link between teaching practices and student achievement. Similar to
Lavy (2011), I use student survey data from the United States to construct two ag-
gregate teaching-practice measures for traditional and modern teaching. I then relate
these measures to standardized test scores in math and physics. While Schwerdt and
Wuppermann (2011) also study the effect of teaching practices in the United States,
this paper extends beyond their work in two ways. First, while their variable of inter-

2Value-added models of teacher quality have come under harsh criticism recently (Rothstein, 2010).
I discuss these objections in further detail in Section 4 of this paper.
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est is the relative intensity of two teaching practices, my data contains a large amount
of teaching practices, which allows me to adopt a broader definition of traditional and
modern teaching. Second, since this definition is in line with that of the standards
movement, I am able to directly evaluate its policy recommendations.

3 Data

TIMSS is an international assessment of the math and science knowledge of fourth-
and eighth-grade students. It was first carried out in 1995 by the International Associa-
tion for the Evaluation of Educational Achievement (IEA) and has been repeated every
four years thereafter. For reasons that will become clear below, this study focuses on
the 2007 sample of eighth-grade students for the United States, which consists of 7377
individuals in 235 schools. TIMSS 2007 sampled students in a two-stage clustered
sampling design, in which schools were selected in the first stage, and two math classes
were randomly sampled within each of these schools in the second stage.3 Within each
sampled class, in principle all students participated in the assessment. In practice, how-
ever, the number of sampled students may be smaller than the actual class size because
of student nonparticipation (Williams et al., 2009). To account for this complex sam-
pling design, sampling weights need to be applied and a jackknife resampling technique
be employed to calculate standard errors correctly in statistical analysis.

Participating students were administered standardized tests in math and science.
The tests consisted of both multiple-choice questions and constructed-response items,
the latter of which required students to generate and write their own answers. In prac-
tice, the use of an incomplete-booklet design implied that each individual student only
completed a random subset of items from a larger pool of questions. Each student’s test
scores for the overall test were then imputed from her responses, and are made avail-
able in the data in the form of five imputed values (also called plausible values). In
addition to the overall math and science scores, TIMSS reports test scores for the four
subsections of the science test - chemistry, physics, biology, and earth science - for each
student. I use information on science course content from the teacher questionnaire to
select each student’s corresponding test score to be used in my analysis (for instance,
for a student whose teacher reports to have taught a physics class I select her physics
test score).4 I also standardize test scores in each subject, with mean zero and standard

3If there were no more than two eighth-grade math classes in a given school, all of these classes were
selected with certainty.

4The idea behind this is that a physics teacher’s teaching practices should not influence her students’
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deviation equal to one. This lets me interpret the estimated coefficients as fractions of
a standard deviation of the test score distribution.

Besides assessing students’ achievement in math and science, TIMSS collects de-
tailed background information from students, their teachers and their school principals
via questionnaires. In particular, the 2007 wave of TIMSS asked students to rate on
a four-point scale how often they do a range of different activities in their math and
science classes.5 The answers are coded such that a value of 1 corresponds to “never”,
2 to “some lessons”, 3 to “about half of the lessons”, and 4 to “every or almost every
lesson.” To compare these activities to the teaching practices referred to in the stan-
dards movement, I make use of a listing included in Zemelman et al. (2005). This
listing, which is the result of a survey of the standards movement literature, categorizes
teaching practices either as recommended “to be decreased” or as recommended “to be
increased” separately for math and science. Table A1 gives an overview of some of the
items in the listing.

I am able to unambiguously match six math activities and seven science activities
from the TIMSS student questionnaire to the teaching practices in Table A1. I group
activities categorized as “to be decreased” under the heading “traditional teaching,”
and those categorized as “to be increased” under the heading “modern teaching.” The
matched class activities and their grouping are displayed in Table A2.6 Note that some
of the activities are common to math and science - for instance, the math activity “We
memorize formulas and procedures” corresponds to the science activity “We memorize
science facts and principles” - while others do not have an obvious counterpart in the
other subject. In the main part of my analysis, I use all of the matched activities for
each subject to create my two teaching-practice measures of interest. Later, I redefine
the measures to include only matched activities which are common to both subjects and
repeat my analysis using these measures as a robustness check.

For each subject and heading, I calculate the mean of each student’s answers across

performance in, say, the biology part of the science test. I should note that the variable from which I
draw the information on science course content contains a large number of missing values. In order not
to reduce my sample size too much, I select the overall science score for students whose teachers did not
provide the necessary information.

5Note that in contrast to Lavy (2011), where students answer to which share of their teachers a
particular teaching practice applies, students here respond separately for each subject (and thus separately
for each teacher, as will become clear below).

6Note that from the information in Table A1, Schwerdt and Wuppermann’s (2011) “lecture-style
teaching” activity can be unambiguously matched to the traditional-teaching category in Table A2. How-
ever, it is not clear where their comparison activity “problem solving” belongs in the standards movement
classification: for instance, solving routine problems is considered a practice “to be decreased”, while
tackling complex problems which require new solution paths is “to be increased.”
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activities, and then compute the class-level mean of these means for each student while
excluding the student’s own (mean) answer.7 The resulting measures of traditional
teaching and modern teaching share a common scale, which naturally ranges from 1 to
4. Unfortunately, the categorical nature of students’ answers implies that the two mea-
sures do not stand in a mechanical trade-off to each other: scoring one point higher on
the traditional-teaching measure does not necessarily imply that the modern-teaching
measure decreases by one point. In fact, correlation plots reveal that the two measures
are positively correlated both at the student and at the class level. Nevertheless, these
measures let me reasonably address my question of interest, namely whether modern
teaching is indeed better than traditional teaching at raising student achievement as the
standards movement supposes.

Out of the initial 7377 individuals in my sample, 295 either could not be linked to
their teachers or have more than one teacher in math or science. I exclude these students
from my analysis. Moreover, I restrict my sample to classes with at least three students
and drop individuals with missing information on the two teaching-practice measures
of interest (that is, I drop students of whom no classmate answered the questions used
to construct the teaching-practice measures). This leaves me with 6843 students in 234
schools. For ease of exposition in the following discussion, I will refer to this reduced
sample as the full sample. Missing values for control variables are a common concern
in survey data, and the TIMSS data are no exception. I therefore specify parsimonious
sets of control variables at the student-, teacher- (i.e. class-), and school level and
delete observations with missing information on any of these variables. The resulting
estimation sample consists of 4642 eighth-grade students with 271 math teachers and
303 science teachers in 182 schools.

Table 1 shows descriptive statistics for my traditional-teaching and modern-teaching
measures, teacher controls, and class controls separately for math and science classes
and for both the full sample of 6843 students and the reduced estimation sample of
4642 students. Mean differences between subjects are reported in the respective final
column of each sample’s panel. Comparing the statistics for the full sample with those
of the estimation sample reveals no great differences between the two samples. This
makes me confident that the reduced estimation sample is still representative of the tar-
get population of eighth-grade students in the United States. The following discussion
is based on the figures from the estimation sample as these are of the most interest to
me.

7I also experimented with including the student’s own answer in the class-level mean and with not
aggregating answers at the class level at all. In both cases, my results did not change much.
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Examining first the two teaching-practice measures, I find that the means of tradi-
tional teaching in math and science are exactly equal at 3.07 points. In contrast, modern
teaching in math is 0.15 points lower than in science at 2.66 points, a difference which
is statistically significant. The teacher controls used in my regressions are drawn from
the TIMSS teacher questionnaires and comprise a relatively standard set of variables: a
gender dummy, four categorical age dummies, three dummies for teaching experience,
and a dummy for teachers who majored in the field they teach during their studies.
Note that I decided to group teacher experience into three categories even though it is
reported as a continuous variable in the data set. This categorization reflects the com-
monly observed fact that any gains in student achievement associated with teaching
experience take place in the first five years, with the largest part of these gains occur-
ring in the first year (e.g., Clotfelter et al., 2010; Harris and Sass, 2011). The two class
controls included in my regressions are the number of minutes per week that the subject
is taught (drawn from the teacher questionnaire) and the number of students observed
in the class. As the last column of Table 1 reports, the share of female teachers, the
number of minutes per week taught, and the number of students are significantly higher
in math classes than in science classes.

Table 2 displays descriptive statistics for student controls and school controls sep-
arately for the full sample and the estimation sample. As with the teacher controls in
Table 1, a comparison of the means and standard deviations reveals no large differ-
ences between the two samples. The student controls used in my regressions are drawn
from the TIMSS student questionnaire. They comprise a gender dummy, the student’s
age, two dummies for black and hispanic students, a dummy for students born out-
side the United States, and a dummy for students who report that English is not the
primary language spoken at home. Moreover, I include in the controls the number of
books at home as a proxy for parental background since the parental education vari-
able contained many missing values and its inclusion would have drastically reduced
my sample size. Cross-correlations of the two variables reveal that as expected, higher
parental education is correlated with a higher reported number of books at home.8 I
also include in my regressions the following school controls, which I draw from the
TIMSS school questionnaire that was given to participating schools’ principals: three
dummies of parental involvement, a dummy indicating whether more than fifty percent
of students at the school were eligible for free lunch, and the total student enrollment
in grade eight.

8I nevertheless repeated my regressions including parental education instead of the number of books
at home. This did not change my results much.
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4 Empirical Strategy

The challenge in using observational data to identify the causal effect of a particular
teaching practice on student achievement is to deal with the potential nonrandom as-
signment of students and teachers to classrooms. If students with high unobserved
ability are systematically paired with teachers using a particular teaching practice, for
example, then the estimated coefficient on this practice will be biased upward. Studies
linking other teacher characteristics to student outcomes have typically addressed this
issue by using panel data on students, where the fact that individuals are observed
for several consecutive periods allows one to introduce student fixed effects which
control for time-invariant unobservables at the student level. The matched-pairs na-
ture of the TIMSS data - students are observed twice, once in math and once in sci-
ence - lets me use a related identification strategy: between-subject differencing. As
Rothstein (2010) points out in the context of panel data, the use of student fixed effects
does not resolve the sorting problem when time-varying unobservable determinants of
student achievement are correlated with classroom assignment. The equivalent con-
cern with between-subject differencing is that student ability may be subject-specific

(Clotfelter et al.,2010). I discuss this issue in more detail below.
My analysis parts from a relatively standard education production function, which

relates student i’s test scores in subject jε{m,s} in school k, yi jk, to the teaching-
practice measures of interest, T Pi j, student traits, Xi, teacher and class characteristics,
Tj, and school characteristics, Sk:

yi jk = α j +T P′i jβ1 j +X ′i β2 j +T ′j β3 j +S′kβ4 j + εi jk. (1)

The error term εi jk contains the unobservable determinants of student i’s test score. In
particular, it can be written as the sum of student unobservables, ηi j, teacher and class
unobservables, τ j, school unobservables, θk j, and an idiosyncratic part, νi jk:

εi jk = ηi j + τ j +θ jk +νi jk. (2)

Note that equation (2) allows student- and school unobservable determinants to vary
across subjects.

If I estimated equation (1) by ordinary least squares, any correlation between the
unobservable determinants in the error term and the teaching-practice measures would
cause a bias in the estimate of β1. I can eliminate some of these potential sources of
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bias by assuming that unobserved student and school traits are equal across subjects,
that is, ηim = ηis and θim = θis. Differencing between subjects then leads to:

yimk− yisk = ∆yi = (αm−αs)+T P′imβ1m−T P′isβ1s +X ′i (β2m−β2s)

+T ′imβ3m−T ′isβ3s +S′i(β4m−β4s)

+(τm− τs)+(νimk−νisk). (3)

That is, differencing eliminates unobserved student and school traits and thus controls
for between- and within-school sorting of students. Note that identification of β1 in
equation (3) relies on the variation of the teaching-practice measures across subjects for
each student. This motivates the focus on eighth-grade students in my analysis: fourth-
grade students in the United States typically have a single teacher for all subjects, which
implies that the necessary between-subject variation in teaching practices does not exist
for them.

A typical assumption made at this point (e.g., Dee, 2007; Schwerdt and
Wuppermann, 2011) is that all observables influence student achievement equally across
subjects, that is, β.m = β.s. This implies that observable student and school traits drop
out of equation (3), and that the rest of the terms may be summarized to yield:

∆yi = (αm−αs)+(T P′im−T P′is)β1 +(T ′im−T ′is)β3 +(τm− τs)+(νimk−νisk). (4)

While I also estimate equation (4), my headline specification allows the coefficients
on student and school observables to differ between subjects. That is, my headline
specification reads

∆yi = (αm−αs)+(T P′im−T P′is)β1 +X ′i β2

+(T ′im−T ′is)β3 +S′iβ4 +(τm− τs)+(νimk−νisk). (5)

Bias in this specification may arise from any of three sources. First, if student un-
observables are subject-specific (e.g., subject-specific ability), ηim−ηis remains in the
error term, and if correlated with the difference in the teaching-practice measures will
cause a bias in the estimated coefficient of β1. As an example, if students who are
unobservably more able in say, math, are systematically assigned to math teachers that
emphasize traditional teaching practices, the estimated coefficient on the traditional-
teaching measure will be biased upward. Related to this concern is an implicit assump-
tion in the between-subject identification strategy: since my data do not allow me to
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control for prior achievement in the education production function, I de facto assume
that students’ initial knowledge in each subject is negligible. While I cannot address
these concerns definitely with the TIMSS data - that is, I cannot test the assumption
that E(ηim−ηis)(T P′im−T P′is) = 0 - I should emphasize again that any overall ability
effect on achievement is captured by my identification strategy.

Second, a similar argument can be made for unobservable teacher characteristics in
case E(τm− τs)(T P′im−T P′is) 6= 0. That is, even after differencing between subjects,
teacher unobservables τm− τs remain in the error term. If correlated with both student
achievement and the teaching-practice measures, this again will generate a bias in the
estimate of β1. As an example, it might be the case that more motivated teachers sort
into modern teaching practices. If teacher motivation is at the same time positively re-
lated to student achievement, this will lead to an upward bias in the estimated coefficient
on the modern-teaching measure. Again, my data do not allow me to test the assump-
tion that E(τm− τs)(T P′im− T P′is) = 0. Finally, a third concern is that teachers may
adjust their teaching practices according to the students they face. This very plausible
idea casts doubt on the source of variation in the teaching-practice measures. As a con-
sequence, I refrain from interpreting my estimates as causal effects. Rather, I advocate
an interpretation of β1 as a measure unlikely to be driven by between- or within-school
sorting, but which may partly be determined by teacher sorting into particular teaching
practices based on unobservable teacher characteristics.

5 Results

Table 3 shows the results of the between-subject estimation. All regressions in this
and the successive tables include five dummies to control for teacher-reported science
course content, one each for integrated or general science, chemistry, physics, biology,
and earth science.9 I start out with a very basic specification using only the teaching-
practice measures as explanatory variables in column 1, and successively add more
control variables in the following columns.10 In particular, the results in column 2 cor-

9Given the large amount of missing information in the corresponding teacher-questionnaire variable,
I incorporated nonresponse into the “integrated or general science” category. While this practice may
be criticized, the fact that my results hardly change when I do not include any science course-content
dummies implies that my conclusions do not depend on this step. The data also include a variable on
math course content, which however suffers from even more severe teacher nonresponse. I therefore
refrain from including any dummies for math course content in my regressions.

10I also experimented with including each of the measures separately in the regressions. The resulting
coefficient estimates were very similar to the ones presented in the main text.
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respond to the model in equation (4), and my headline results in column 4 correspond
to the model in equation (5). The dependent variable in each of the regressions is the
within-student difference between her standardized math and science test score.

The estimated coefficients on both teaching-practice measures are positive across
all specifications. It is interesting to see that the coefficient on traditional teaching
hardly changes with the addition of controls: its effect size fluctuates around ten per-
cent of a standard deviation of the test score distribution, and it is significant at the 5
percent level in all four regressions. In contrast, the estimated coefficient on modern
teaching decreases from 0.033 in column 1 to 0.023 in my headline specification and
it is not statistically significant at any common significance level in any specification.
Consistently with the previous literature, most of the control variables at the teacher
level are found to have small and statistically insignificant effects on student achieve-
ment. The only exception is that teachers who majored in the field they teach positively
influence student achievement in that subject. This finding is in line with that of Dee
and Cohodes (2008), but not with that of Goldhaber and Brewer (1997) who find no
significant effect of a subject-specific major. Moving to the class controls, the effect of
total teaching time has the expected sign - more teaching time is associated with higher
student achievement - but its estimated coefficient is small and statistically insignifi-
cant. Finally, the number of students does not have any statistically significant impact
on student achievement in my headline specification.

The results discussed in the previous paragraph give no support to the implicit claim
by the standards movement that modern teaching is better than traditional teaching at
raising student achievement. In fact, taken at face value the estimates suggest that
the opposite is true. A natural question is therefore whether the estimated effect sizes
of the two teaching-practice measures are statistically distinguishable. I test this as a
linear hypothesis using a Wald test; the last row of Table 3 presents the corresponding
p value for each specification. It turns out that across all specifications, the p value
is too large to reject the null of equal effects at any common significance level. This
means that I cannot conclude that traditional teaching is better than modern teaching.
At the same time, however, my findings imply that modern teaching is not better than
traditional teaching either, a result which casts doubt on the usefulness of the standard
movement’s recommendations.

Two more points are worth noting with respect to the results in Table 3. First, a
natural concern is that the observed effects may be driven by some sort of student or
teacher sorting. As discussed in Section 4, my data do not allow me to address this
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concern definitively. However, the fact that the coefficient estimates do not change
much with the inclusion of additional controls may be seen as evidence that sorting is
not the underlying mechanism here: if one believes that the selection on unobservables
reflects this selection on observables, one may conclude that my results are unlikely to
be confounded by unobserved student, teacher, or school traits. Second, my results are
in line with the previous findings of the literature. Like Lavy (2011), I find that more
traditional teaching is associated with higher student achievement. This result is also
consistent with that by Schwerdt and Wuppermann (2011), who proxy for traditional
teaching by lecture-style teaching. While I do not find a statistically significant positive
effect of modern teaching on test scores as Lavy (2011) does, my results do not point
in the opposite direction either.

6 Robustness Checks and Heterogeneous Effects

Starting from my headline specification in equation (5), in this section I implement a
total of six robustness checks which address potential reservations about the validity of
the results presented in Table 3. Later, I also examine whether there is heterogeneity
in the treatment effects across different subgroups of my sample. In the top panel of
Table 4, I present estimation results from regressions which use alternatively-defined
versions of my two teaching-practice measures.11 First, I redefine the measures so as to
include only those activities from the student questionnaire which are common to math
and science teaching (that is, I only include activities marked in Table A2). I thereby
address a potential concern about the comparability of the measures across subjects.
As the results in the left column show, my findings are robust to this redefinition: the
estimated coefficient on the traditional-teaching measure hardly changes compared to
the one in column 4 of Table 3, while the coefficient on the modern-teaching measure
decreases to basically zero.

Second, in the construction of my teaching-practice measures and in the interpreta-
tion of my results I implicitly assumed that student answers are measured on a linear
scale. However, arguably the difference in teaching time needed to employ a teaching
practice “about half the lessons” instead of “some lessons” is smaller than the differ-
ence in teaching time needed to employ it “every or almost every lesson” instead of
“about half the lessons.” To address this concern, I recode the student answers in the

11For the sake of conciseness, Table 4 only reports the estimated coefficients on the teaching-practice
measures and their standard errors.
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data, assigning a value of 5 instead of 4 to the “every or almost every lesson” category.
I then construct my teaching-practice measures as described in Section 3 and include
them in a regression of equation (5). The results, which are displayed in the right col-
umn of the top panel of Table 4, show that both the estimated coefficient on traditional
teaching and the one on modern teaching are now smaller than in my headline results.
Nevertheless, the combination of a relatively large and statistically significant coeffi-
cient on traditional teaching and a small and statistically not significant coefficient on
modern teaching carries over to these results. I therefore conclude that my findings do
not depend on the exact scaling of students’ answers.

In the middle panel of Table 4, I implement two sample restrictions. First, a
teacher’s choice of her teaching practices may be constrained by the teaching time she
has available. If this is the case, large differences in teaching time between math and
science classes may drive my findings. To test this hypothesis, I limit my sample to stu-
dents with a between-subject difference in teaching time of at most two hours per week.
As the results in the left column show, repeating my regression for this restricted sample
does not change my results much, implying that the hypothesis does not hold. Second,
another concern might be that peer effects, whose importance is widely acknowledged
in the education literature, account for my results. To address this issue, I restrict my
sample to classes with the same student composition in math and science. If peers in-
fluence student achievement equally in both subjects - and there is no reason to believe
that this is not the case - the between-subject differencing takes care of this effect.12

Re-estimating equation (5) for this restricted sample, I find that the results, which are
reported in the right column of the middle panel of Table 4, differ only slightly from
the findings from my headline specification. I therefore conclude that peer effects are
not the driving mechanism of my results.

In the bottom panel of Table 4, I relax the assumptions on the coefficients in my
model in two ways. First, the left column presents estimated coefficients for the teaching-
practice measures from a specification in which I allow β3 to vary across subjects (that
is, I allow teacher controls to influence achievement in math and science differently).
Again, the findings do not differ much from my headline results in Table 3. Second, and
more interestingly, I estimate a specification in which I let β1 vary across subjects, thus
allowing the teaching-practice measures to have different impacts on math and science
achievement. The results of this regression are reported in the right column of the bot-
tom panel of Table 4. Focusing first on the estimated coefficients for math, I find that

12More formally, if I introduced a peer fixed effect in my education production function, this effect
would drop out in the between-subject differenced equation.
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the coefficient on traditional math teaching is approximately fifty percent higher than
the main effect of traditional teaching in my headline specification. To obtain a better
idea of this effect size, the coefficient implies that moving students from the minimum
exposure (2) to the maximum exposure (4) of traditional math teaching observed in the
data is associated with a thirty percent of a standard deviation increase in their math
test score ((4-2)*0.151). In contrast, and consistently with my headline story, modern
math teaching seems to have almost no effect on student achievement.13

Turning to the estimated coefficients for science, note that since all science vari-
ables enter with a minus sign in equation (5), a negative coefficient implies a positive
relationship between the teaching practice and student achievement in science. The
estimated coefficient on traditional science teaching is only about half the size of the
main effect of traditional teaching in my headline results, and only a third of the size
of the corresponding math effect. Moreover, the effect is not statistically significant at
any common significance level. In contrast, the coefficient on modern science teaching
is about fifty percent higher than the corresponding main effect at 0.036. I therefore
conclude that the pattern from my headline results - traditional teaching has a larger
estimated effect than modern teaching on student achievement - also exists for math
and science teaching separately. However, this effect seems to be driven mainly by the
large positive impact of traditional math teaching on students’ math test scores.

Finally, I examine whether the treatment effects are heterogeneous across different
subgroups of my sample. For this purpose, I first split my sample by students’ gender
and run the regression in equation (5) separately for boys and girls. The results, which
are shown in the left panel of Table 5, display no large differences in the effect sizes
between the two groups. In a second step, I split my sample by students’ origin, distin-
guishing between those born in United States and those born abroad. Given the small
number of foreign-born students in my sample (406 out of 4642 students), the regres-
sion results for the USA-born students, which are shown in the right panel of Table 5,
simply reflect my headline results. In contrast, the results for the foreign-born students
point in an interesting direction: while the estimated coefficient on traditional teach-
ing is basically zero for this group, the coefficient on modern teaching is about three
times as large as in my headline results. This suggests that my headline story of a more
favorable effect of traditional teaching is reversed for foreign-born students (although

13Note that in a Wald test of equality of the effect sizes of modern and traditional math teaching, I
can now reject the null of equal effects at the 10 percent level. As Table 4 shows, however, similar tests
for the other robustness checks in this section did not lead to any further rejections of the null at any
common significance level.
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I should note that none of the coefficients is statistically significant due to the small
sample size). In search for an explanation for this effect, I re-estimated equation (5)
for students who reported that English is not the main language spoken at home. The
results, which I do not report here, were in line with those of my headline specification,
which suggests that language difficulties cannot explain the more favorable effect of
modern teaching for foreign-born students.

7 Conclusion

Recent proposals for teaching reform in the United States advocate the decrease of “tra-
ditional” and the increase of “modern” teaching practices, thereby implicitly assuming
that the latter are better at raising student achievement in schools. This paper examines
empirically whether this assumption holds and presents evidence which points in the
opposite direction: aggregate measures of teaching practices constructed from student
surveys indicate that while traditional teaching has a large positive effect on student
achievement, the same is not true for modern teaching. This result is robust to a serious
of robustness checks, and is unlikely to be driven by between- or within-school sorting
of students. However, the empirical strategy used in this paper does not allow me to
control for unobserved teacher effects. As a consequence, I refrain from interpreting
my results as causal and do not formulate any policy recommendations. My analysis
further suggests that for foreign-born students, modern teaching may have a more fa-
vorable effect than for USA-born students. This result is unlikely to be due to language
difficulties by the former group, and more research is needed to disentangle the under-
lying reason for this finding. Finally, this paper adds to the still sparse evidence on
the importance of teaching methods for student outcomes, and its results point towards
teaching practices as a potentially important determinant of teacher quality.
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Table A1
Categorization of Teaching Practices

Math Science

Practices Rote memorization of rules, formulas, and procedures. Memorizing detailed vocabulary, definitions, and 
to be Teaching by telling.      explanations without thorough connection to broader ideas.

decreased Instruction based mainly on lecture and information giving.
Dependence on textbooks and lockstep patterns of instruction.

Practices Cooperative group work. Collaborative small-group work.
to be Justifying answers and solution processes. Students' reflection to realize concepts and processes learned.

increased Connecting mathematics to other subjects in the real world. Application, either to social issues or further scientific questions.
Word problems with a variety of structures and solution paths. Observation activity, often designed by students, aimed at real 

     discovery, employing a wide range of process skills.

Note: The items presented here are extracted from Zemelman et al. (2005), who summarize the recommendations made by the standards movement in teaching practices 
over the past two decades.



Table A2
Matched Student Questionnaire Items

Math Science

We read our science textbooks and other resource materials.

We decide on our own procedures for solving complex problems. We design or plan an experiment or investigation.
We make observations and describe what we see.

Traditional 
teaching

We memorize formulas and procedures.┼ We memorize science facts and principles.┼

We listen to the teacher give a lecture-style presentation.┼ We listen to the teacher give a lecture-style presentation.┼

Modern 
teaching

We work together in small groups.┼ We work in small groups on an experiment or investigation.┼

We relate what we are learning in mathematics to our daily lives.┼ We relate what we are learning in science to our daily lives.┼

We explain our answers.┼ We give explanations about what we are studying.┼

Note: Students responded to the question, “How often do you do these things in your mathematics lesson (in your science lesson)?” Answers are coded on a four-point scale, 
with 1 corresponding to “never”, 2 to “some lessons”, 3 to “about half the lessons”, and 4 to “every or almost every lesson.”  Items marked ┼ are considered to be common 
among math and science and are included in the redefined teaching-practice measures which are used in the robustness checks.



Table 1
Descriptive Statistics: Teaching-Practice Measures, Teacher Controls, and Class Controls
                                                   

Full Sample (N=6843) Estimation Sample (N=4642)

Math Science Difference Math Science Difference
Mean SD Mean SD Mean SD Mean SD

Teaching-practice measures
Traditional teaching 3.07 0.31 3.07 0.33 0.00 3.08 0.31 3.06 0.33 0.01
Modern teaching 2.68 0.30 2.81 0.37 -0.13*** 2.66 0.30 2.81 0.37 -0.15***

Teacher controls
Female teacher 0.69 0.46 0.58 0.49 0.11** 0.70 0.46 0.60 0.49 0.10* 
Teacher younger than 30 0.20 0.40 0.15 0.36 0.05 0.21 0.41 0.16 0.36 0.06
Teacher aged 30 – 39 0.29 0.45 0.30 0.46 -0.01 0.26 0.44 0.29 0.45 -0.03
Teacher aged 40 – 49 0.26 0.44 0.25 0.43 0.01 0.27 0.45 0.25 0.43 0.03
Teacher older than 49 0.25 0.43 0.30 0.46 -0.05 0.26 0.44 0.31 0.46 -0.05
Teaching experience <1 year 0.06 0.24 0.06 0.24 0.00 0.06 0.23 0.06 0.24 0.00
Teaching experience 1 – 5 years 0.20 0.40 0.23 0.42 -0.03 0.20 0.40 0.22 0.41 -0.02
Teaching experience >5 years 0.74 0.44 0.71 0.45 0.03 0.74 0.44 0.72 0.45 0.02
Teacher majored in field taught 0.46 0.50 0.39 0.49 0.08* 0.50 0.50 0.45 0.50 0.05

Class controls
Number of students in class 15.7 4.5 13.1 5.2 2.6*** 15.6 4.4 12.9 5.0 2.7***
Teaching time (min/week) 247.4 78.7 230.5 62.8 16.9*** 246.6 79.2 231.3 63.6 15.3***

Note: Each parameter estimate presented in the “Difference” columns is obtained from a separate regression. */**/*** denotes significance at the 10/5/1 percent level. 



Table 2
Descriptive Statistics: Student Controls and School Controls
                                                   

Mean SD Mean SD
Student controls
Female 0.51 0.50 0.51 0.50
Age 14.30 0.48 14.30 0.48
Black 0.12 0.33 0.12 0.33
Hispanic 0.23 0.42 0.21 0.41
Foreign-born 0.10 0.29 0.08 0.27
English not main language at home 0.09 0.29 0.08 0.27
Number books at home: 0 – 10 0.17 0.38 0.16 0.37
Number books at home: 11 – 25 0.21 0.40 0.21 0.41
Number books at home: 26 – 100 0.28 0.45 0.28 0.45
Number books at home: 101 – 200 0.17 0.37 0.17 0.38
Number books at home: >200 0.17 0.38 0.17 0.38

School controls
Parental involvement: low 0.33 0.47 0.31 0.46
Parental involvement: medium 0.43 0.50 0.46 0.50
Parental involvement: high 0.23 0.42 0.22 0.42
Share free-lunch eligible >50% 0.41 0.49 0.38 0.49
Total enrollment grade eight 257.9 181.4 247.8 169.9

Full Samplea Estimation Samplea

a Number of observations is 6843 in the full sample and 4642 in the estimation sample.



Table 3
Estimation Results: Between-Subject Differencing

(1) (2) (3) (4)

Traditional teaching 0.107*** 0.096** 0.101** 0.096**
(0.044) (0.043) (0.042) (0.043)

Modern teaching 0.033 0.030 0.010 0.023
(0.037) (0.037) (0.036) (0.037)

Female teacher 0.002 0.008 0.009
(0.022) (0.021) (0.021)

Teacher younger than 30 0.042 0.040 0.031
(0.036) (0.036) (0.035)

Teacher aged 30 – 39 -0.016 -0.014 -0.019
(0.023) (0.022) (0.023)

Teacher older than 49 -0.010 -0.016 -0.019
(0.024) (0.023) (0.022)

Teaching experience <1 year -0.007 -0.010 0.003
(0.044) (0.043) (0.043)

Teaching experience 1 – 5 years -0.027 -0.033 -0.031
(0.029) (0.029) (0.029)

Teacher majored in field taught 0.035* 0.035* 0.036*
(0.020) (0.020) (0.019)
0.098 0.116 0.117
(0.135) (0.134) (0.137)

Number of students in class 0.007** 0.006* 0.004
(0.003) (0.003) (0.003)

Student controls  
School controls 

Observations 4642 4642 4642 4642
0.005 0.010 0.034 0.038
0.260 0.298 0.142 0.247

Teaching time (min/week) x 10-3

Average R2

H
0
: Traditional = Modern (p value)

Note: The dependent variable is the difference between math and science test scores. Each 
regression is run five times (once for each plausible value); the second but last row presents the 
average R2  from these regressions. All regressions include dummies for science course content. 
Variables included in student and school controls are listed in Table 2. See text for the definition 
of the traditional-teaching and modern-teaching measures. Standard errors in parentheses are 
calculated using the appropriate jackknife procedure and allow for clustering at the school level. 
*/**/*** denote significance at the 10/5/1 percent level.



Table 4
Robustness Checks                                                   
Redefinition of teaching-practice measures

Traditional teaching 0.101 (0.049)* 0.068 (0.030)**
Modern teaching 0.004 (0.033) 0.007 (0.027)

Observations 4642 4642
0.037 0.036
0.129 0.178

Sample restrictions

Same peers

Traditional teaching 0.098 (0.047)* 0.110 (0.047)*
Modern teaching 0.019 (0.042) 0.014 (0.050)

Observations 3747 2775
0.039 0.039
0.242 0.207

Heterogeneous effects

Traditional teaching 0.099 (0.048)*
Modern teaching 0.013 (0.037)

Traditional teaching math 0.151 (0.046)***
Traditional teaching science - 0.053 (0.064)
Modern teaching math 0.006 (0.054)
Modern teaching science - 0.036 (0.040)

Observations 4642 4642
0.039 0.038
0.211

0.054
0.84

Only common 
elements

“Almost always” 
equals 5

Average R2

H
0
: Traditional = Modern (p value)

Δ teaching time 
<2 hours

Average R2

H
0
: Traditional = Modern (p value)

β
3
 varies across 

subjects
β

1
 varies across 

subjects

Average R2

H
0
: Traditional = Modern (p value)

H
0
: Trad. math = modern math (p value)

H
0
: Trad. science = modern science (p value)

Note: all regressions are variations of the specification in column 4 of Table 3 – see the 
corresponding note to that table for further information. For details of the restrictions imposed in 
these regressions, see text.



Table 5
Heterogeneous Effects                                                   

Gender Country of birth

Girl Boy USA Abroad

Traditional teaching 0.092 (0.055)* 0.104 (0.062) 0.106 (0.047)** 0.001 (0.122)
Modern teaching 0.011 (0.045) 0.027 (0.063) 0.014 (0.037) 0.072 (0.099)

Observations 2372 2270 4236 406
0.030 0.026 0.038 0.073
0.308 0.440 0.160 0.686

Average R2

H
0
: Traditional = Modern (p value)

Note: all regressions are variations of the specification in column 4 of Table 3 – see the corresponding note to that table for 
further information.
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