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Abstract 
 
This paper analyzes the distributional effect of class size on academic achievement 
using the data and the empirical design in Angrist and lavy (1999), thereby extending 
their results. To do so, instrumental variable quantile regression is used. The 
instrument takes advantage of discontinuities in the rule that determines class size in 
Israel. This way one can see the effect that this variable has at different quantiles of the 
distribution, hence taking into account heterogeneity in the effects. Then a 
counterfactual distributions estimation method under endogeneity is proposed. To do 
so, one needs to rearrange estimated quantile curves in order to have the monotonicity 
property of these curves, which allows to obtain the adjusted quantile of each 
observation. The results found show that class size has in general, but not always, a 
negative effect on grades, and this affects almost the entire distribution. Moreover, the 
counterfactual analysis shows that decreasing the marginal class size would lead to an 
increase in class grades for almost the entire distribution in most cases. 
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1 Introduction

When trying to measure the e�ect of a variable on another, the most widely used
tool has been classical regression, which focuses on the expected value of that
relationship. This method has been adapted to many di�erent frameworks in order
to deal with di�erent characteristics of the data, such as endogeneity. However,
these methods are limited insofar they only deal with the expected e�ect, whereas
quantile regression can be used to get an estimation of the distribution of the
e�ects and not only of that mean e�ect. As long as there is heterogeneity in the
e�ects, quantile regression is a very powerful tool to capture this heterogeneity
and go beyond the mean e�ects, which can be misleading and may signi�cantly
over or underestimate the actual e�ect for a part of the population. In fact, as
Mosteller and Tukey claim, �Just as the mean gives an incomplete picture of a

distribution, so the regression curve gives a corresponding incomplete picture for

a set of distributions�.

One of the aims of this master thesis is to use instrumental variable quantile
regression, a technique recently developed by Chernozhukov and Hansen (2005),
in the estimation of the e�ect of class size on students' performance. We are
going to apply this technique to the data used in the paper written by Angrist
and Lavy (1999). In this paper, these authors estimated the e�ect of class size
on grades by two-stages least squares, and we will now do the estimation exercise
with instrumental variable quantile regression. This way we will be able to capture
the existence of heterogeneity in this e�ect if it exists. In this case, the instrument
we are going to use is Maimonides' Rule, which was a rule present in the Israeli
educational system that determined the number of classes (and therefore, the
number of students per class) for a given number of students enrolled in a school.
This rule creates a discontinuity every forty students are enrolled, and we take
advantage of this fact to use it as an instrument.

Two di�erent models are estimated, a linear model and a log-linear model1.
The results implied by the two models are very similar, and they indicate that
the e�ect of class size on students' performance is mostly negative and it is not
constant accross quantiles. Although there is not a clear pattern, the results show
that it is more likely that classes whose performance conditional on their covariates
is at the top of the distribution are less harmed by an increase of class size than
those who are at the bottom of the distribution. Also, the other covariates used
have e�ects that are not constant accross quantiles. In particular, enrollment has
mostly a positive e�ect, though it is not larger for the upper quantiles, and the
percentage of students of a class coming from a disadvantaged background has a
negative e�ect and it is less negative for the upper quantiles. The goodness of �t
of both models is also very similar.

Another interesting issue is the monotonicity property of quantile curves, which
is not always satis�ed. This property is the following, for a given set of covariates,

1In the log-linear model the explained variable, grades, and one regressor, class size, are
expressed in logs, whereas the rest of the regressors are not.
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the value of the dependent variable should increase as we increase the quan-
tile. Model misspeci�cation and estimation error can lead to estimated quantile
curves that do not satisfy this property. We will explore the occurrence of this
phenomenon and we will rearrange our estimated quantile curves to make them
monotonic following Chernozhukov et al. (2007). This rearrangement will allow
us to identify the adjusted quantile of each individual, which will be used to en-
dogenously estimate counterfactual distributions in a similar way to Machado and
Mata (2005) and Melly (2006). These authors proposed distinct methods to es-
timate counterfactual distributions using quantile regression under an exogenous
setup. However, this can be easily extended to an endogenous setup, which is
done here.

In this counterfactual analysis, we estimate the marginal distribution of grades
if the class size rule that determined class size in Israel changed, such that the
average class size is reduced. For each of the cases that there are in the data, the
strategy is the following, �rstly the quantile regression estimates of the �rst stage
and second stage equations are computed. Secondly, the conditional distribution
is computed and rearranged for any given covariate, allowing us to identify the
adjusted quantile of each individual in both equations, capturing the endogeneity
of the model. Then we compute the adjusted value of the endogenous regressor,
both under Maimonides' Rule and under a new class size rule, and we compute
the conditional distribution of the dependent variable for every set of covariates.
Then we integrate those conditional distributions over the covariates and we obtain
the marginal distribution, both under Maimonides' Rule and under a new class
size rule. These marginal distributions show that under a new rule that reduces
class size, students' grades are improved. The change in density of the marginal
density function of grades occurs at di�erent points of the distribution in each of
the considered cases, but it is closely related to the estimated e�ect of class size on
grades. It is also possible to estimate distributions conditional on a particular class
size, but since class size is correlated to enrollment, which is one of the variables
used as a regressor in the analysis, these estimated conditional distributions may
not be as interesting from an economic policy perspective.

The contributions of this master thesis are the following: �rstly, the regression
discontinuity design is applied to the quantile estimation by using Maimonides'
Rule; secondly, following Chernozhukov et al. (2007), rearrangement of estimated
quantile curves is done in order to preserve monotonicity; thirdly, an estimation
method for marginal distributions under endogeneity is proposed by taking ad-
vantage of quantile rearrangement and the rule that creates the discontinuities;
�nally, the empirical results found by Angrist and Lavy (1999) are extended with
the help of instrumental variables quantile regression, obtaining a full distribu-
tion of the e�ects of the di�erent covariates on students' performance, as well as
counterfactual marginal distributions of grades under a di�erent maximum class
size rule.

In this paper, it is not intended to do a cost-bene�t analysis about class size:
neither costs of decreasing class size are considered nor the social utility of im-
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proving grades is speci�ed. The only focus is on measuring how class size a�ects
students performance.

The structure of this paper is as follows: In section 2 we review the relation-
ship between class size and academic achievement and the instrument that we use.
Section 3 describes the data set that we are going to use. Section 4 reviews instru-
mental variable quantile regression. Section 5 presents the econometric results. In
section 6 the quantile curves crossings problem is presented and the rearrangement
process is described. Section 7 explains the counterfactual distribution estimation
method and presents the estimated results. Section 8 concludes.

2 Class size and scholastic achievement

The chosen topic has been the e�ects of class size on academic results. There
have been many papers trying to estimate this e�ect, such as Angrist and Lavy
(1999) or Hoxby (2000). This topic has been of much debate, since one of the
major sources of variability in schooling expenses is the number of classes which,
given the number of people in schooling age, is determined by the class size. Many
educators claim that reducing class size would have a positive e�ect on students'
grades, and they argue that the reasons are that teachers can spend more time
with every student individually, it is harder for the students not to pay attention
to the class, etc2.

Knowing this e�ect would have, as a result, some important policy implica-
tions, since transfers to the public schooling system are limited everywhere, and
a better allocation of them could be made. In order to estimate this e�ect we
encounter some problems. For example, it is hard to argue that class size is ex-
ogenous to schooling achievement. We may think that parents who care a lot
about their children's education would be less likely to send them to an over-
crowded school. However, this is not always possible, as in many countries the
school which students must attend is determined by where you live. Again, we
can argue that the decision to live in a certain place might depend on the school
your children have to attend to. As a result, we should not treat class size as an
exogenous variable3.

One way to deal with this is to rely on instruments, but these are hard to �nd.
Maimonides' rule can be used as an instrument in order to estimate this e�ect,
since it satis�es the two conditions that every instrument requires: exogeneity
(this rules dates from the XII century) and relevance, since this rule has been put
into practice since 1969 in Israel, though class sizes tend to be slightly smaller than
what is predicted from the rule. It might be important to note that class size is
mid year class size, whereas school enrollment is measured at the beginning of the
year. In general, enrollment at the beginning of the year di�ers from enrollment

2See Angrist and Lavy for further discussion of this topic.
3A more in-depth discussion about the endogeneity of class size and grades is carried out in

Angrist and Lavy (1999).
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at mid year, as some students can change school, some may drop out and some
can enroll. This is one reason why the average class size predicted by Maimonides'
Rule di�ers from actual average class size. Maimonides' Rule states that every 40
students, an extra class should be added. Thus, if we select one school with 40
students and one class, adding another student would result in two classes and an
average of 20.5 students per class. Similarly, if we are at a school with 80 students
and two classes, adding an extra student would lead to an average class size of
26.67 students per class, and so forth. Therefore, this rule presents a discontinuity
every 40 enrolled students.

As it was said before, the aim here is to see the e�ect at di�erent quantiles of
class size on academic achievement, since we can be interested also in the e�ect at
di�erent quantiles and see if, for example, the e�ect is constant across quantiles
or not.

3 Data

The data used for the application of the e�ect of class size on school achievement
is the same that Angrist and Lavy (1999) used in their paper. The data comes
from a national testing program in Israeli elementary schools. It took place in
1991 and it measures mathematical and verbal (reading) abilities.

The unit of analysis is the class. Hence, the observations in our data set
measure the average grade for the class. We have data for fourth and �fth grade
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Table 1: Descriptive statistics
Quantiles

Variable Mean SD 0.10 0.25 0.50 0.75 0.90
5th year
Class size 29.95 6.60 21.00 26.00 31.00 35.00 38.00
Enrollment 77.71 38.80 31.00 50.00 72.00 100.00 128.00

Percentage disadvantaged 14.10 13.49 2.00 4.00 9.00 19.00 35.00
Average verbal 74.45 8.08 64.16 69.86 75.43 79.85 83.34

Average mathematics 67.32 10.03 54.84 61.13 67.80 74.10 79.41
4th year
Class size 30.33 6.39 22.00 26.00 31.00 35.00 38.00
Enrollment 78.36 37.74 31.00 51.00 74.00 101.75 128.00

Percentage disadvantaged 13.84 13.35 2.00 4.00 9.00 19.00 35.00
Average verbal 72.48 7.99 62.16 67.67 73.33 78.21 82.00

Average mathematics 68.86 8.77 57.50 63.58 69.32 74.97 79.38

courses. The grading system for both the mathematics and verbal tests goes from
1 (lowest grade) to 100 (highest grade). Here we present a table with a summary
of the data4.

The dataset contains the following variables for each course: average mathe-
matical and verbal test scores of a class, (mid year) class size, (start of the year)
enrollment, percentage of students coming from a disadvantaged background5 and
a town ID.

4 Instrumental variable quantile regression

Before we start, it is convenient to de�ne some concepts:
τ is the quantile or quantile index. It takes values on the interval (0, 1) and it

states the relative position on a distribution.
τ̂ is the adjusted quantile, i.e. the estimated quantile for an individual, the

relative position of an individual in the distribution of Y , conditional on the
observed variables.

β (τ) is the value that the parameter β takes at quantile τ .
β̂ (τ) is the adjusted value of the previous parameter at quantile τ .
QY (τ |X) is the value of Y conditional on X at quantile τ . We will also refer

to this expression as the conditional quantile of Y .
Q̂Y (τ |X) is the adjusted value of Y conditional on X at quantile τ . We

will also refer to this expression as the adjusted conditional quantile of Y or the
adjusted value of Y at quantile τ .

4For a more detailed description of the data, see Angrist and Lavy (1999)
5This variable is constructed from an index de�ned by the Ministry of Education of Israel.
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Moreover, it is convenient to brie�y recall what quantile regression does. Fol-
lowing Koenker (2005), quantile estimates solve the following minimization prob-
lem:

β̂ (τ) = argminb∈RK
1

n

n∑
i=1

ρτ (Yi −Xib) (1)

where ρτ (·) is the check function

ρτ (a) = a (τ − 1 (a ≤ 0)) (2)

and 1 (·) is the indicator function.
This problem is one of linear programming, and it is solved using methods

like simplex. The quantile estimates from equation (1) tell us the e�ect that the
regressors take at several points in the distribution, such as the median or the �rst
quartile. These estimates have been shown to be consistent and asymptotically
normal, but the variance varies a lot accross quantiles, since the more density
there is around the quantile, the more precise the estimates will be. Hence, the
estimates of extreme quantiles tend to have a larger variance than those around the
median. Another interesting property of quantile regression is that the median is
less sensitive to outliers than OLS. This is so because of the loss function, which in
OLS is the error term to the square, thus becoming steeper as we increase the error.
This quantile regression method, however, only works under exogeneity of the
regressors. To overcome this problem, Instrumental Variable Quantile Regression
can be used.

First of all, let us assume that conditional quantiles are linear on the covariates
(hereafter we will refer to this model as the baseline model or the linear model).
The potential outcome of an individual, Yd, is de�ned as:

Yd = QY (τ |d,X) ≡ d′α (τ) +X ′β (τ) (3)

where τ is the quantile, which satis�es τ ∈ (0, 1).
In practice, we do not observe Yd for d = 1, ..., L, since we only observe every

unit for d = D. In our case, Yd is the average grade of a class, and d, class size,
takes values between 7 and 44. For simplicity, we will assume that the e�ect
of class size is linear for the same quantile across di�erent class sizes, but not so
across quantiles, i.e. the e�ect on average class grades of increasing class size from
10 to 11 is the same as the e�ect of increasing class size from 38 to 39 if we hold
the quantile �xed, but the e�ect of increasing class size by one can be di�erent at
quantiles 0.3 and 0.5. This is going to allow us to compute heterogeneous e�ects.
In fact, we will compute a distribution of the e�ect of each variable used in the
regression.

X denotes all the exogenous variables of the model. In our case, these are going
to be the percentage of pupils in a school coming from a disadvantaged background
(PD), enrollment (E) and an intercept. Again, the e�ect of these controls on the
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potential outcome is going to be heterogeneous, and we will compute a distribution
of these e�ects.

Since we are in an endogenous setup, we will also need to state where this
endogeneity arises. Let us de�ne the selection function as D = δ (Z,X, τ ′), where
Z is the instrumental variable and τ ′ is the quantile of the selection function, which
is not independent of τ . This means that individuals self select themselves and
the choice of D is not independent of their potential outcomes. Thus, the e�ect
of the variable D on class size is not the e�ect computed by standard quantile
regression, since in that case we are not taking into account the endogeneity of
that variable. This is the reason why we need to use instrumental variable quantile
regression. On the other hand, conditional on X, Z is independent of τ , which
allows us to identify the proposed e�ects. In our case, Z is the class size predicted
by Maimonides' Rule given the enrollment of the school.

Another assumption that we need in order to do instrumental variable quantile
regression is that τ is equally distributed across di�erent values of d. That is, if
we denote by τd the quantile that an individual would have in case he chose
treatment d and τd′ as the quantile under treatment d′, we would have that τd is
equally distributed as τd′ .

Under those assumptions, instrumental quantile regression identi�es the fol-
lowing for any quantile τ :

P [Y ≤ d′α (τ) +X ′β (τ) |X,Z] = τ (4)

or equivalently,

E [1 (Y ≤ d′α (τ) +X ′β (τ)) |X,Z] = τ (5)

where 1 (·) is the indicator function.
Now we review the estimation method. This review is a brief one, and it does

not intend to substitute the thorough explanation of this method which can be
found in Chernozhukov and Hansen (2004).

Let ‖x‖A =
√
x′Ax. The estimates of our model θ̂ (τ) ≡

(
α̂ (τ) , β̂ (τ)

)
≡(

α̂ (τ) , β̂ (α̂ (τ) , τ)
)
are the following:

α̂ (τ) = arginf ‖γ̂ (α, τ)‖A(τ) (6)(
β̂ (α, τ) , γ̂ (α, τ)

)
= arginf Qn (τ, α, β, γ) (7)

where Qn (τ, α, β, γ) ≡
∑n

i=1 ρτ

(
Yi −D′iα (τ)−X ′iβ (τ)− Φ̂i (τ)′ γ (τ)

)
· V̂i (τ),

ρ (·) is the check function, Φ̂i (τ) is a transformation of the instruments and the
covariates and V̂i (τ) is the weight of each individual in the objective function.

In practice, the estimation works as follows:
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1. For a given τ , we create a grid of size J {αj, j = 1, ..., J} and run ordinary

QR of Yi − D′iαj on Xi and Φ̂i (τ) to obtain the coe�cients β̂ (αj, τ)and
γ̂ (αj, τ)

2. Choose the α̂ (τ) that makes ‖γ̂ (αj, τ)‖A(τ) closest to zero. Then β̂ (τ) =

β̂ (α̂ (τ) , τ)

The intuition behind this model is the following: imagine that we knew the true
value of α (τ). If that were the case, by regressing Yi −D′iα (τ) on Xi and Φ̂i (τ),
we would get that the estimates γ̂ (τ) would be equal to zero by the exclusion
restriction. Since we do not know α (τ), we can select a grid of values and then see
which one of them makes the γ̂ (τ) be closer to zero, i.e. the exclusion restriction
is closer to be satis�ed.

It is important to notice that no explicit form of the selection function is
needed. In fact, all we can choose are Φ̂i (τ) and V̂i (τ). In our case, we have
chosen Φ̂i (τ) to be the linear projection of Dj on [Zj Xj] and to give the same

weight to each individual in the sample: V̂i (τ) = 16.
The computation of the standard errors is as in Chernozhukov and Hansen

(2006). We compute them for every quantile. Brie�y, we start by computing the
following covariance matrix:

Ω̂ (τ) = Ĵ (τ)−1 Ŝ (τ, τ)
[
Ĵ (τ)−1

]′
(8)

where

Ŝ (τ, τ) =
(
τ − τ 2

) 1

n

n∑
i=1

Ψ̂i (τ) Ψ̂i (τ)′ (9)

Ψ̂i (τ) = V̂i (τ)
[
Φ̂i (τ)′ X ′i

]′
(10)

Ĵ (τ) =
1

2nh

n∑
i=1

I (|ε̂i (τ)| ≤ h) Ψ̂i (τ) [D′i X
′
i] (11)

ε̂i (τ) = Yi −D′iα̂ (τ) +X ′iβ̂ (τ) (12)

Another model is considered. In this second model (hereafter log-linear model),
Y is the natural logarithm of average class scores, D is the natural logarithm of
class size and Z is the natural logarithm of the class size predicted by Maimonides'
Rule. Notice that this is not a monotonic transformation of the linear model7.

ln (Yd) = Qln(Y ) (τ |ln (d) , X) ≡ ln (d)′ α (τ) +X ′β (τ) (13)

6For further discussion about the appropriate choice ofΦ̂i (τ) and V̂i (τ), see Chernozhukov
and Hansen (2004).

7It is worth remembering that a monotonic transformation of the model would yield the same
estimates for quantile regression
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Figure 2:
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Estimates of equation (3) using instrumental variable quantile regression for the fourth year

mathematics case.

5 Econometric results

The method presented before, just like standard quantile regression can be e�ec-
tively computed for any quantile belonging to the (0, 1) interval. However, since
there is an in�nite number of quantiles, we have computed the percentiles 1 to 99.
This way we get 99 estimates of every parameter in each regression. By plotting
them together, we get an approximation of the distribution of the e�ect.

The results that we get indicate that, in general, class size has a negative
e�ect. This e�ect however is not always signi�cantly di�erent from zero, and in
some cases it can be even slightly positive (though not signi�cant). Figures 2-4
plot the instrumental variable quantile regression estimates for the linear model
at the computed quantiles. The bands represent the 95% con�dence interval of
each parameter at each quantile.

Let us focus on the upper left corner of each �gure, the e�ect of class size.
As we can see, the e�ect of class size is negative for almost the complete dis-
tribution in three of the four cases, just in the fourth year mathematics exam
is this relationship di�erent. One noticeable result is that this e�ect is far from
constant across quantiles. Clearly, we can see that in the �fth year, increasing
class size on a class located in the lower part of the distribution has a much more
negative e�ect than if it were located in the upper part of the distribution. In the
fourth year it is slightly di�erent, since for the mathematics exam it is the other
way around, and for the verbal exam there is no clear increasing or decreasing
shape. In any case, the e�ect di�ers in all the cases at di�erent quantiles, which
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Figure 3:
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verbal case.

Figure 4:
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Figure 5:
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case.

highlights the usefulness of quantile regression in capturing heterogeneous e�ects.
The e�ect for the fourth year in mathematics is not signi�cant for the most part
of the distribution. This is something which is in line with what Angrist and
Lavy (1999) found, since they found an average e�ect of -0.05 with an standard
deviation of 0.07. Nevertheless, we can see that even in this case the e�ect can
be di�erent from zero. In fact, it ranges approximately between 0.2 and -0.2, and
this e�ect is signi�cant for a small set of quantiles around the 90th percentile.
The di�erence in the size of the e�ect can be seen very clearly with a simple ex-
ample: if we increase a class size of �fth grade by ten students, this will result in
a decrease of the average verbal grade of the class of approximately �ve points if
the class is located at quantile 0.1, but the decrease will be of approximately one
point if the class is located at quantile 0.9. This highlights the importance of the
heterogeneity of the e�ects, which implies that quantile regression is adding some
important information when trying to get the e�ect of class size on grades.

Regarding the rest of the covariates, they have a very similar e�ect in the four
cases. Percentage disadvantaged always has a negative and signi�cant e�ect, and
this e�ect is more negative at the lower quantiles. This e�ect is very similar to that
of class size, ranging from -0.1 to -0.9 approximately. Enrollment has a positive
e�ect almost everywhere, but it is not always signi�cant and the distribution is
a bit erratic, it does not have the upward shape of percentage disadvantaged. It
is more signi�cant in the �fth year cases, especially for the two lower thirds of
the distribution. The e�ect in the fourth year, although mostly positive, it is not
signi�cant for almost the whole distribution. Moreover, the e�ect of enrollment
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tends to be very small in all cases. The only exception is �fth year verbal, where
it is around 0.5 for some of the lowest quantiles. Note, however, that even in
this case this e�ect is negative for the highest quantiles. Something which would
be interesting to look at would be to include town dummies or a variable that
measures the population of the town where the school is located, since it could be
the case that students coming from big towns tend to be in schools with bigger
enrollment rates. This way one could di�erentiate between the town size e�ect
and the enrollment e�ect on grades. Finally, the intercept has a positive e�ect and
it is signi�cant for the whole distribution in the four cases. It is very remarkable
that this variable is responsible for a big share of the total variation.

It can also be of interest to see the mean e�ect implied by these quantile
estimates and compare it to Angrist and Lavy's original estimates. These �gures
would be equal in case we computed the estimates at all quantiles and integrated
them over τ ∈ (0, 1), but since we are computing just 99 quantiles, we can expect
these �gures to be slightly di�erent.

Table 2: Estimated mean e�ects
Recovered mean e�ect Angrist and Lavy's estimates

Fourth year mathematics -0.0366 -0.050
Fourth year verbal -0.1314 -0.133

Fifth year mathematics -0.2221 -0.230
Fifth year verbal -0.2617 -0.275

As we can see in table 2, the recovered mean e�ect of class size is very similar
to those that Angrist and Lavy got, and on average the mean e�ect is negative
in all cases. It is also important, however, to note that the mean e�ect is not as
informative as the e�ect at di�erent quantiles. To see this, let us look at some
interquantile ranges of the estimates of the e�ect of class size on grades.

Table 3: Interquantile ranges
P90-P10 P75-P25 Angrist and Lavy's estimates

Fourth year mathematics -0.2168 -0.0770 -0.050
Fourth year verbal -0.0085 0.0180 -0.133

Fifth year mathematics 0.2589 0.1376 -0.230
Fifth year verbal 0.3902 0.0756 -0.275

If we consider the �rst column of table 3, i.e. the e�ect at percentile 90
minus the e�ect at percentile 10, in three out of the four cases the interquantile
ranges are larger in absolute value that the estimates of Angrist and Lavy (again,
in absolute value). This tells us that ignoring these e�ects can lead to a very
di�erent picture, the quantile analysis has a lot of information to add. In two
cases these interquantile ranges are positive, which means that class size has a
more negative e�ect in those schools that are located in the lower part of the
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distribution relative to those located in the upper part of the distribution, while
in the other two the sign is negative. In the second column, we have a similar
picture, where the only sign change happens in the fourth year verbal interquantile
ranges. These results are in line with what was presented before in �gures 2 to
5, where the distribution of the e�ect of class size was �atter in the fourth year
verbal case, it was negatively sloped in the fourth year mathematics case and
positively sloped in the remaining two. This is a very important aspect to take
into account from an economic policy perspective, since the government might
be more interested in reducing inequality8 or to foster the improvement of those
schools that have worse results (conditional on the covariates).

One interesting issue is the di�erence between ordinary quantile regression and
instrumental variable quantile regression. This is covered in appendix A, where
it is included the estimates for the previous parameters using quantile regression
plus some distributions of the counterfactual analysis.

Now we present the estimated results of the log-linear model. In order not to
�ood the text with graphs, just two �gures will be shown. The �rst one includes
the estimated e�ect of (log) class size on (log) grades for the four cases, and the
second one includes the e�ect of the other three covariates just for one of the
cases: �fth year mathematics. In any case, the estimates in the other three cases
are very similar. The estimates of the log-linear model will be denoted by .̃

Figure 6:
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Estimates α̃ (τ) from equation (13) for the four cases considered.

The results for the log-linear model are quite similar to those of the linear
model. Notice, however, that we cannot directly compare these estimates, since

8Notice that since our data is at a class level, we cannot talk of inequality among students,
but of inequality among schools.
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Figure 7:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-14

-12

-10

-8

-6

-4

-2

x 10
-3 Percentage disadvantaged

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-5

0

5

10

15

x 10
-4 Enrollment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.5

3

3.5

4

4.5

5

Intercept

Estimates β̃ (τ) from equation (13) for the fourth year mathematics case. The estimates of the
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they are referring to completely di�erent things. However, something we can do
is to look at the patterns of the estimates. We can see that the main di�erence
with the linear case is that the estimates for class size tend to be less negative
(or even positive) and less signi�cant. There are some minor di�erences in the
shape of the distributions. For instance, fourth year verbal exhibits a downward
sloped e�ect more similar to fourth year mathematics than in the linear model.
Fifth year mathematics and verbal now tend to be more constant e�ects, and it is
also remarkable that �fth year mathematics is now positive for almost the entire
distribution.

There is a way in which we can compare the estimates of the linear model with
those of the log-linear model. To do so, we just need to realize that the estimates
of the linear model are the derivative of the outcome variable, grades, with respect
to one regressor, class size. This derivative can be also computed for the second
model. One drawback of this derivative is that it is not constant and will take
di�erent value not only for di�erent class sizes, but also for di�erent values of
enrollment and percentage disadvantaged. Hence, a natural way to proceed is to
compute this derivative for each individual and each quantile and then take the
average for each quantile. This enables a direct comparison of the estimates of
the two models.

In the log-linear model, the expression of our computed quantiles is

Qlog(Yi) (τ |Xi, Di) = X ′iβ (τ) + log (Di)
′ α (τ) (14)

or equivalently,

15



QYi
(τ |Xi, Di) = eX

′
iβ(τ)D

α(τ)
i (15)

so the exact expression of the derivative is the following

dQYi
(τ |Xi, Di)

dDi

= eX
′
iβ(τ)α (τ)D

α(τ)−1
i (16)

and for our sample estimates we just need to evaluate at β (τ) = β̃ (τ) and α (τ) =
α̃ (τ) to get

eX
′
iβ̃(τ)α̃ (τ)D

α̃(τ)−1
i (17)

All we need to do is to compute that expression for i = 1, ..., n and take the
average.

Figure 8:
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Comparison of the estimates α̂ (τ) from equation (7) and the average of equation (17) for the

four cases considered.

The graphs in �gure 8 suggest that the estimated average e�ect of the deriva-
tive of class size on grades is slightly more positive under the log-linear model.
This is so particularly in the �fth year cases, and not so much in the other two,
where the e�ects are much more similar.

It would be useful to be able to discriminate between the two models. One
way to do this would be to compare the objective function of the two of them.
However, there are several issues regarding this comparison. First of all, the
number of parameters matters: it is not the same to compare a model that used
a number of parameters with another one that used twice as much of them. This
issue is not a problem in our case, since we are computing the same number of
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parameters in both regressions, four. Secondly, it has to be the case that both
objective functions measure the same error. This is not our case. Therefore, to
overcome this problem we do the following strategy: For the linear model, we
compute the objective function for each computed quantile. For the log-linear
model, we computed the adjusted quantile of each individual at each quantile.
Then we take the exponential of that quantity and we subtract it from the actual
grade. This �nal �gure will be the input of the check function, again for each
individual and for each quantile. Then we just need to sum across individuals to
get a comparable �gure to that of the linear model.

The exact mathematical expressions are the following:

• Linear model:
n∑
i=1

ρτ

(
Yi −D′iα̂ (τ)−X ′iβ̂ (τ)− Φ̂i (τ)′ γ̂ (τ)

)0.99

τ=0.01
(18)

• Log-linear model:

n∑
i=1

ρτ

(
exp [ln (Yi)]− exp

[
ln (Di)

′ α̃ (τ)−X ′iβ̃ (τ)− Φ̃i (τ)′ γ̃ (τ)
])0.99

τ=0.01
(19)

The goodness of �t of the two models is very similar for all quantiles in all the
four cases. The most noticeable di�erences are that, in general, the linear model
performs slightly better for almost all quantiles except the smallest and the highest
in all cases but one, �fth year verbal, where the goodness of �t is slightly worse
between quantiles 0.1 to 0.2 approximately. These di�erences, however, seem to
be very small. Although no standard error is provided, they take so similar values
that we cannot say that one model �ts better the data than the other one.

For the rest of the paper, only results for the linear model will be presented.
The counterparts of the log-linear model will be left for comparison in the ap-
pendix.

6 Rearrangement

Quantile curves satisfy one property by construction: monotonicity. This implies
that, conditional on all the covariates and under the correctly speci�ed model, an
increase in the quantile translates into an increase of the outcome:

YD ≡ Q (τ |X,D) is increasing in τ
One bad aspect of quantile regression is that the monotonicity property is

usually not satis�ed. This can be due to two reasons: misspeci�cation of the
model or estimation error. On the one hand, we have assumed two di�erent
speci�cations, one was completely linear and the second one was linear but we used
some variables in natural logarithms. This can be a source of non-monotonicity,
and together with the estimation error can result in a lot of crossings. A crossing
can be de�ned as a situation in which the adjusted quantile of the outcome variable
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for one computed quantile is smaller than the adjusted quantile of that variable
for the next computed quantile. It is straightforward to realize that crossings can
be computed by comparing the adjusted quantile of the outcome variable of each
individual at each quantile, with the adjusted quantile of that outcome variable for
the same individual at the next quantile. To see the importance of these crossings,
we can see some statistics that denote the absolute and the relative number of
crossings in each of the samples.

Table 4: Crossings
Percentage of crossings Total number of crossings

Fourth year mathematics 3.14% 6438
Fourth year verbal 4.98% 10201

Fifth year mathematics 5.08% 10253
Fifth year verbal 9.93% 20056

Table 4 shows that crossings happen relatively frequently, between 3 and 10
percent of the times. This would imply an identi�cation problem in case we
wanted to recover the adjusted quantile of an individual, since there would be
cases in which two or more quantiles would yield the same value of the adjusted
quantile. However, Chernozhukov, Fernández-Val and Galichon (2007) have devel-
oped a way to deal with this problem. They have proposed the following method
to rearrange quantile curves and transform non-monotonic quantile curves into
monotonic ones.

The empirical distribution function is de�ned as:

F̂ (Y |X,D) =

1ˆ

0

1
{
Q̂Y (τ |X,D) ≤ Y

}
dτ =

1ˆ

0

1
{
D′α̂ (τ) +X ′β̂ (τ) ≤ Y

}
dτ

(20)
Given a set of computed quantiles, this distribution can be computed as:

F̂ (Y |X,D) =
J∑
j=1

(τj − τj−1) 1
{
D′α̂ (τ) +X ′β̂ (τ) ≤ Y

}
(21)

If we invert this function in the following way, we get a quantile curve that
satis�es monotonicity:

F̂−1 (τ |X,D) = inf
{
Y : F̂ (Y |X,D) ≥ τ

}
= inf

Y :

1ˆ

0

1
{
Q̂Y (τ |X,D) ≤ Y

}
dτ ≥ τ


(22)

This rearrangement has the nice property of preserving the original curve if
it is monotonic and varying it just if it is non-monotonic. These authors show in
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their paper that this rearrangement produces quantile curves that are closer to
the true ones both if the model is correctly speci�ed or if it is not, for any �nite
sample9. The bad aspect of this procedure is that it does not provide a set of
parameters that satisfy the monotonicity property. Nevertheless, the bene�ts of
using this method o�set by far the bad aspects associated to it.

As it was pointed out before, one of the main advantages of having monotonic
quantiles, is that they allow us to unequivocally identify the adjusted quantile of
each individual, τ̂i. This will be a key property in order to do the counterfactual
analysis, since it allows us to deal with the endogeneity issue in a very simple way.

7 Counterfactual analysis

One important application of quantile regression is the possibility of estimating
counterfactual marginal distributions. This method was pioneered by Machado
and Mata (2005) and has also been used by Melly (2006). Machado and Mata's
method was based on a bootstrap of the controls together with the generation
of the quantiles exogenously for each individual in the estimation. Melly (2006)
showed that there is a more e�cient way to do that by selecting a grid of quantiles
and computing the conditional quantile of Y for each individual and for each of the
quantiles of the grid. This method also has another good aspect, since the required
computation time is reduced (under Machado and Mata's method, by increasing
the size of the bootstrap not only we increase the computation time due to a
bigger sample size, but also because we need to do quantile regression for another
quantile). Unlike our current case, these technique was employed in an exogenous
setup. However, these ideas can be extended to an endogenous framework, which
allows us to do counterfactual analysis and �nd answers to questions like for
instance, �What would be the di�erence in the grades distribution in case that we
applied a counterfactual rule similar to Maimonides' but with a maximum class
size of 30 students?�.

Now we explain the method that we have used, which is similar to the one
employed by Melly but under an endogenous setting.

1. Select a number of quantiles of interest τ1, ..., τm. In our application the
selected quantiles are 0.01 to 0.99, with 0.01 intervals.

2. Do standard quantile regression on the �rst stage equation, where the en-
dogenous explanatory variable is the left-hand side variable (in our ap-
plication class size) and the regressors are the instrument (class size pre-
dicted by Maimonides' Rule) and the exogenous controls (percentage dis-
advantaged, enrollment and an intercept). Under the linear speci�cation:
Dj,τi = Z ′jγ (τi) +X ′jϕ (τi)

9For a detailed description of this method and its properties, see Chernozhukov, Fernández-
Val and Galichon (2007)
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3. Given the estimates obtained in the previous step, {γ̂ (τi) , ϕ̂ (τi)}mi=1
10, we

compute the adjusted values of Dj,τi , for each individual in the sample and
for each quantile (in our case, since class size only takes on integer values,
we round those values to the nearest integer).

4. Rearrange the previous quantile curves for every individual to ensure that
they are monotonic.

5. Compute the adjusted quantile for each individual, τ̂ 2
h in the following way:

if the actual value of Di equals one of the adjusted values, then it coincides
with the quantile associated to that quantile. If not, but it lies between
the values of two quantiles, the quantile is set to the linear combination
of these two quantiles such that the combination of the adjusted values at
those quantiles is equal to the actual value. If the actual value is smaller
than the smallest quantile or if it is larger than the largest quantile, we drop
those observations11.

6. Repeat steps 1 to 5 for the second stage equation using IVQR as explained

before such that we have estimates of the parameters
{
α̂ (τi) , β̂ (τi)

}m
i=1

,

adjusted values of Yj,τi and adjusted quantiles of each individual τ̂ 1
h , which

are coupled with the adjusted values for the �rst equation. The key aspect
of these couples {τ̂ 1

h , τ̂
2
h}

n
h=1 is that they have the endogeneity incorporated.

7. Compute the adjusted value D̂j,τ̂2
h

= Z ′j γ̂ (τ̂ 2
h) + X ′jϕ̂ (τ̂ 2

h), j = 1, ..., n and

h = 1, ..., n, where {γ̂ (τ̂ 2
h) , ϕ̂ (τ̂ 2

h)}nh=1 are the estimates computed in 6 if
τ̂ 2
h ∈ {τi}

m
i=1 or a linear combination of two of them if τ̂ 2

h is between those
two computed quantiles.

8. Compute
{
F̂Yj

(q|Xj, Dj) =
∑n

h=1

(
τ̂ 1
h − τ̂ 1

h−1

)
1
(
D̂′
j,τ̂2

h
α̂ (τ̂ 1

h) +X ′jβ̂ (τ̂ 1
h) ≤ q

)}n
j=1

, where
{
α̂ (τ̂ 1

h) , β̂ (τ̂ 1
h)
}
are the estimates computed in 6 if τ̂ 1

h ∈ {τi}
m
i=1 or

a linear combination of two of them if τ̂ 1
h is between those two computed

quantiles. These are the conditional cdfs of each individual.

9. Compute F̂Y (q) = 1
n

∑n
j=1 F̂Yj

(q|Xj, Dj), the marginal cdf of grades.

10. To perform the counterfactual analysis, we go back to step 7. Instead of
picking {Zj, Xj}nj=1 we pick {Xj}nj=1 and we compute {Zj}nj=1 using a coun-
terfactual rule, similar to Maimonides' Rule but with a di�erent maximum
class size. Then repeat steps 8-9.

10The estimates of γ (τ) and ϕ (τ) are shown in appendix B.
11Another option is to compute the estimates for a very small and a very large quantile.

However, the theory tells us that the estimates in these cases have a very large standard error,
since they have very small density around them.
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In order to see whether class size would have an e�ect on the distribution of
grades, we could do as Melly (2006) and compare the distributions of grades, con-
ditional on a particular class size, for di�erent class sizes. However, it can be more
interesting from a economic policy point of view to compare the marginal distribu-
tions of grades under di�erent class size rules, since it better answers the question
�What would happen if we changed Maimonides' Rule?�. Moreover, covariates are
correlated to class size, so this can be misleading when comparing the conditional
distributions. For example, if schools with a high level of enrollment tend to have
bigger classes, the positive e�ect of enrollment would be partly o�set by the neg-
ative e�ect of class size, resulting in an underestimation of the e�ect of class size
on the distribution of wages. Our approach, which compares the marginal distri-
butions, does not have this problem, since all the distributions are constructed
from the same exogenous covariates, and we only change class size through the
rule. In any case, the results that occur when we do the counterfactual analysis
as in Melly (2006) are shown in appendix D.

The next �gures compare the distribution of grades under Maimonides' Rule
with the distribution under a countefactual rule with a di�erent maximum class
size. Each �gure contains four graphs, which show the distributions of grades for
the four cases considered12.

Figures 10 and 11 represent the cdf and the pdf of the marginal distribution
of grades under the original Maimonides' Rule and under a counterfactual rule
with a maximum class size of 25. All the distributions have been estimated using
the method presented above, and to compute the pdf a Gaussian kernel has been
used, with a bandwidth of (n/2)

−1/5.
As it was expected, the e�ect of changing class size is bigger for �fth graders,

specially in the verbal grades, whereas the e�ect of changing class size for fourth
graders is smaller, particularly in the mathematics grades. Moreover, reducing
class size is harmful for the lower part of the distribution of fourth graders' math-
ematics grades. This is not surprising since the e�ect of class size for this subgroup
was positive for a range of the lowest quantiles. Apart from these cases, in all the
rest the e�ect of reducing maximum class size is positive. The pdfs show very well
where the changes in the distribution occur. In the fourth year mathematics case,
the density of students is reduced mostly between quantiles 0.62 and 0.72, and it
is increased between quantiles 0.80 and 0.92. In the fourth year verbal case, the
changes in the density are less pronounced, and the decrease in the density covers
a big range of quantiles, approximately between quantiles 0.5 and 0.75, whereas
the increase happens between quantiles 0.8 and 0.88. The di�erences in the den-
sity are much bigger for the �fth year cases, and it is remarkable that the mode
changes in both cases and it has a bigger density. In the density of mathematics
grades, the threshold between the decrease and the increase of density is around
quantile 0.7, and in the density of verbal grades, around quantile 0.77.

12In these estimations, the number of �dropped� quantiles, i.e. those referred to in step 5, was
89 (4.34%) in the fourth year mathematics case, 82 (4.00%) in the fourth year verbal case, 70
(3.46%) in the �fth year mathematics case and 79(3.91%) in the �fth year verbal case.
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These estimations have been done also under another two di�erent maximum
class sizes, 30 and 35. Although the distributions are not shown here, the qual-
itative e�ect is the same as in the graphs above, but the quantitative e�ect is
di�erent, decreasing maximum size to 35 or 30 would lead to a new marginal
distribution of grades closer to that under the original rule.

So far we have not presented any quantity telling us the e�ect that the change
in the rule would have in the grades. It might be useful to see the following table,
where it is computed the horizontal distance of the cdf under the counterfactual
rule and the cdf under Maimonides' Rule for several quantiles and for several
counterfactual rules with a di�erent maximum class size.

Table 5: Horizontal distances between cdfs
4th year mathematics Maximum class size 4th year verbal Maximum class size

35 30 25 35 30 25
P20 -0.11 -0.23 -0.33 P20 0.32 0.70 1.09
P40 0.03 0.04 0.09 P40 0.29 0.62 0.95
P50 0.12 0.26 0.41 P50 0.26 0.55 0.85
P60 0.17 0.38 0.57 P60 0.28 0.60 0.90
P80 0.25 0.52 0.80 P80 0.37 0.78 1.19

5th year mathematics Maximum class size 5th year verbal Maximum class size
35 30 25 35 30 25

P20 0.61 1.22 1.93 P20 0.62 1.26 1.99
P40 0.50 1.00 1.57 P40 0.68 1.35 2.09
P50 0.45 0.90 1.40 P50 0.62 1.25 1.95
P60 0.39 0.77 1.21 P60 0.58 1.14 1.79
P80 0.27 0.54 0.84 P80 0.43 0.88 1.40

The predicted e�ect would be positive in almost all cases. Not surprisingly,
the only exception to the rule would happen in the fourth year mathematics case
at the lower tail of the distribution. But for the rest of the cases, changing the rule
would lead to an increase in the average grade of a class at di�erent quantiles. We
can see, for instance, that reducing the rule to a maximum class size of 25 would
lead to an increase in the average grade of a class of about 2 points for a very big
part of the distribution in the �fth year verbal case. If maximum class size would
be reduced to 30, the increase in the average grade would be of a bit more than 1
point for almost the entire distribution, and if it were reduced to 35, the e�ect still
would be approximately 0.5 points. These e�ects are smaller in the other three
cases. One interesting thing is that the di�erence for the twentieth percentile,
relative to the di�erence at other percentiles, is rather big in three out of the four
cases. This result would be very interesting from an economic policy point of
view, since we might be more interested on the changes that could happen at the
lower tail of the distribution. One could think that this would imply a reduction
of the inequality of grades, but one should remember that the unit of analysis is
the class, so we are dealing with average grades. It could be the case that the
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inequality of grades among students increases and at the same time the inequality
of average grades among classes decreases13. Therefore, it would be interesting to
have data at a student level to talk more deeply about inequality14.

It would be interesting to consider what would be the e�ect of changing other
variables (like enrollment or percentage disadvantaged) to compare the di�erences
in the average grades under those counterfactuals. That way it could be compared
with our current counterfactuals and we could say, for instance, that reducing
maximum class size from 40 to 25 would be equivalent to reduce the percentage
of people coming from a disadvantaged background by some amount.

As a technical aside, no standard error has been computed for these �gures, but
that would be something interesting to compute in order to see the signi�cativity
of these changes. One important remark is that reducing the maximum class
size by a certain amount does not imply reducing actual class size by that same
amount. In fact, the reduction is smaller in most cases. To see this, table 6 shows
the variation of the average class size for the two courses induced by the change
in the rule.

Table 6: Reduction in actual average class size
4th year Maximum class size

35 30 25
Average class size with the original rule 30.38

Average class size with the counterfactual rule 28.04 25.43 22.81
5th year Maximum class size

Average class size with the original rule 29.98
Average class size with the counterfactual rule 27.91 25.81 23.41

Actual class size gets reduced in all cases, but this variation is smaller than the
variation of the maximum class size. The variation is approximately a reduction
of the average class size of 2 if the maximum class size is reduced to 35, a reduction
of 4-5 if the maximum class size is reduced to 30 and a reduction 6.5-7.5 if the
maximum class size is reduced to 25. It is interesting to notice that the decrease
is bigger for the �fth course if the maximum class size is set to 30 or 25, which
is a reason, together with the estimated negative e�ect of class size on grades,
why the horizontal di�erences between the distributions shown before tend to be
bigger for this course.

13For instance, if the best students coming from classes with low average grades increase their
grades and the worse students coming from class with high average grades decrease their grades,
the described scenario could happen.

14That way one could compute some inequality indices, like for instance Gini Index, and
comment the e�ects that a variation of class size could have on the inequality of grades.
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8 Conclusion

In this master thesis we have attempted to measure the e�ect of class size on
students' grades. This topic has been previously is very important from the point
of view of economics of education but it is also relevant from an economic policy
point of view. This has been previously explored in the literature, for instance
by Angrist and Lavy (1999) and Hoxby (2000), and our work is based on the
paper by Angrist and Lavy (1999). We have attempted to extend their analysis in
several dimensions. On the one hand, we have used instrumental variable quantile
regression to compute the e�ect of class size on grades at di�erent quantiles. The
estimated e�ect is almost always negative, though in some cases it can be positive
but not signi�cant for a few quantiles in the distribution. This e�ect is very
heterogeneous, which points out the convenience of a quantile regression analysis.
By focusing not just on the mean e�ect we are able to understand better in which
cases class size has a bigger impact on grades, and we can be able to focus on
di�erent subgroups, such as those schools whose performance is worse relative to
the rest. The estimated e�ect does not always have a positive slope, which would
mean that better classes are always less harmed by an increase of class size.

The counterfactual analysis indicates that changing the maximum class size
rule in favor of one that reduced it, would lead to an increase in students' per-
formance together with a decrease in the average class size. Fourth years verbal
exam grades would experience an increase for approximately the second half of the
distribution, whereas for the �rst half there would be a slight decrease or a varia-
tion very close to zero. For the rest of the cases, the increase is more substantial
and it happens at every point in the distribution.

Some future research could be done in this �eld. In particular, it would be
interesting to do this type of analysis with data at a student level and also see
the e�ect that class size could have on the inequality of grades. With such data
available, one could compute inequality indices such as Gini index. Another in-
teresting extension would be to do some analysis like Machado and Mata (2005)
by having data from di�erent cohorts and see the evolution of the e�ect of class
size on grades over time15. Moreover, it would be also interesting to see the e�ects
of class size at di�erent education levels (i.e. primary school, secondary school,
undergraduate, graduate). Another interesting line of research would include a
social welfare analysis by explicitly taking into account the costs of education and
de�ning a welfare function with the distribution of grades as an input. One attrac-
tive possibility here would be to link academic achievement with future earnings.
Finally, one could do some tests on the parameter estimates as in Chernozhukov
and Hansen (2006)16 or on the counterfactual distribution as in Abadie (2002)17

15In that case one could also do some counterfactual analysis based on the Oaxaca decompo-
sition, in line with what Machado and Mata (2005) considered.

16Four di�erent tests are considered: no e�ect, constant e�ect, dominance and exogeneity.
17Two di�erent tests are considered: �rst order stochastic dominance and second order stochas-

tic dominance.
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Appendices

A Estimation under exogeneity

In this appendix we do some of the previous analysis but treating class size as an

exogenous regressor. First of all, we compute the estimates ˆ̂α (τ) and
ˆ̂
β (τ) for

the four considered cases.

Figure 12:
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Estimates of equation (3) computed using quantile regression for the fourth year mathematics

case.

The biggest di�erence between the exogenous and the endogenous estimates
happen in the �fth year cases. We can see very clearly that class size tends
to be less negative and it is positive for a bigger range of quantiles in all four
cases. Enrollment also changes signi�cantly. In particular, it is closer to zero in
the exogenous estimation than in the endogenous one. Consequently, it tends to
be statistically non signi�cant for most quantiles in the four cases. The intercept
and percentage disadvantaged also change, but qualitatively we still have the same
e�ects that we found before.
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Figure 13:
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Estimates of equation (3) computed using quantile regression for the fourth year verbal case.

Figure 14:
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Estimates of equation (3) computed using quantile regression for the �fth year mathematics

case.
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Figure 15:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.2

-0.1

0

0.1

0.2

Class size

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

Percentage disadvantaged

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Enrollment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

65

70

75

80

85

90

95

Intercept

Estimates of equation (3) computed using quantile regression for the �fth year verbal case.

Figure 16:
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Estimates α̂ (τ) from equation (3) computed using instrumental variables quantile regression

and estimates α̃ (τ) from equation (3) using quantile regression for the four cases considered.

Figure 16 compares the estimates of class size for both the endogenous and the
exogenous estimation. First of all, the pattern of getting more positive estimates
happens in all four cases at all or at most quantiles. The most noticeable exception
is fourth year verbal, where the IVQR estimate for the quantiles 0.98 and 0.99
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are much higher than the QR estimates. Since the accuracy of quantile regression
decreases as we move away from the median, these particular cases are not very
signi�cant.

It is straightforward that if we did the counterfactual exercise that we did
in section 7 but changing the estimates by the ones computed exogenously, the
curves would look very di�erent. In particular, changing the rule would have a
minimal e�ect on the distribution, since now the e�ect of class size is much closer
to zero.

As we can see both in the cdfs and pdfs of �gures 17 and 18, the changes
in the density, even after a reduction from 40 to 25 in the maximum class size
are very small, particularly in the �fth year mathematics densities. In the fourth
year mathematics density we can see that there is a small increase in the density
between quantiles 0.45 and 0.6 and between quantiles 0.8 and 0.95, together with a
reduction of the density in between. This would imply an increase in the inequality
between classes. Finally, in the two verbal cases, there is a small change in the
density with an increase around quantiles 0.8 to 0.9. When changing maximum
class size to other �gures, as we did in section 7, we get very similar results, and
the most noticeable di�erence is that the density is even more similar to the one
obtained with Maimonides' Rule. If we consider the log-linear model, results do
not vary signi�cantly.

These results here clearly point out the endogeneity of class size and grades.
Ignoring this fact would lead to very di�erent results, underestimating the e�ect
that class size has on grades.
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B Estimates from the �rst regression

When estimating the counterfactual distributions in section 7, we de�ned a �rst
stage regression that helped us capturing the endogeneity of the model. In this
regression, class size is the explained variable, and the explanatory variables are
Maimonides' Rule, percentage disadvantaged, enrollment and an intercept. We
use quantile regression to get the estimates, though it would be also possible to
do ordinary least squares and use the di�erence between actual class size and
predicted class size (i.e. the adjusted error term) instead of the adjusted quan-
tile to estimate the marginal distribution of grades. However, if e�ects are very
heterogeneous, doing this would not be as good idea as doing quantile regression,
since this last option is much more �exible.

Figure 19:
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Estimates of γ̂ (τ) and ϕ̂ (τ) from step 3 in the estimation of counterfactual distribution method

explained in section 7 for the fourth year cases.
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Figure 20:
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Estimates of γ̂ (τ) and ϕ̂ (τ) from step 3 in the estimation of counterfactual distribution method

explained in section 7 for the �fth year cases.

Notice that since mathematics and verbal exams were taken by the same
classes, we do not need to di�erentiate between the mathematics and verbal cases.
The e�ects shown in �gures 19 and 20 are very similar in both cases for the four
variables. Maimonides' Rule explains a lot of the variation of class size, and in
fact, between approximately quantiles 0.4 to 0.8, the estimate of class size is very
close to one. Nevertheless, the size of this e�ect fades as we move away from the
median, becoming very small at the tails, particularly at the right tail, where it
can be even not signi�cant. It is precisely at the tails where the other covariates
have bigger estimates and very signi�cant. Enrollment has a signi�cant e�ect,
which tends to increase as we move away from the median but eventually it is
closer to zero at the tails. Moreover, this e�ect is bigger for lower half of the
distribution than for the upper half. The e�ect of the intercept is partly the mir-
ror image of the enrollment e�ect, it is closer to zero around the median and it
becomes bigger and more signi�cant as we get closer to the tails, and its e�ect is
bigger for the upper half of the distribution. Finally, percentage disadvantaged
is the least signi�cant variable and the only one with a negative e�ect, but not
signi�cant at most quantiles.

Since there is a lot of heterogeneity in the distribution of grades, it seems that
it is a good idea to do quantile regression and not ordinary least squares to do
the counterfactual analysis, since this way we are capturing a richer set of e�ects
from a more �exible estimation.
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C Using the �rst stage equation to compute the

estimates from the second stage equation

In the previous appendix we have shown that there exists a lot of heterogeneity
in the estimates of the �rst stage equation. If we go back to Section 4, we would
see there that the term Φ̂i (τ) that we used was the linear projection of class
size on Maimonides' Rule and the other contrOLS. Thus, it could be interesting
to see what happens if instead of using that linear projection, we set Φ̂i (τ) =
Q̂D (τ |Z,X), i.e. we use the adjusted quantile of class size at the quantile that
we are computing.

In �gure 21 we can see the comparison between the distribution with Mai-
monides' Rule and the distribution with a maximum class size rule of 25, both
of them computed usingΦ̂i (τ) = Q̂D (τ |Z,X). In �gure 22 we can see the com-
parison between the distributions with a maximum class size rule of 25, one of
them using the linear projection of D on [X Z] (original phi in the graph) and the
other one using Φ̂i (τ) = Q̂D (τ |Z,X) (new phi in the graph). Both �gures show
that the results are almost the same in the two cases. When looking at �gure 21,
what we see is that reducing maximum class size has the same e�ects as those
that were found in the counterfactual analysis of section 7. This is even more
clear if we have a look at �gure 22, where no noticeable di�erence between the
two distributions can be seen.
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D Counterfactual conditional distributions

For comparability with Melly (2006) we have also computed the distributions of
grades conditional on di�erent class size levels18. To compute these conditional
distributions we have to follow the following steps:

1. Select a number of quantiles of interest τ1, ..., τm.

2. Do instrumental variable quantile regression on the equation Yj,τi = D′jα (τi)+
X ′jβ (τi)

3. Given the estimates that we obtained in the previous step,
{
α̂ (τi) , β̂ (τi)

}m
i=1

,

we compute the adjusted values of Yj,τi , for each individual in the sample
and for each quantile.

4. Compute
{
F̂Yj

(q|Xj, Dj) =
∑n

i=1 (τi − τi−1) 1
(
D′jα̂ (τi) +X ′jβ̂ (τi) ≤ q

)}n
j=1

, where
{
α̂ (τi) , β̂ (τi)

}
are the estimates computed in 3. These are the con-

ditional cdf of each individual.

5. Compute F̂Y (q|D = d) = 1
nd

∑n
j=1 1 (D = d) F̂Yj

(q|Xj, Dj), the cdf of grades
conditional on a particular class size, d.

We show in the following �gure those distributions for �ve di�erent class sizes:
20, 25, 30, 35 and 40.

At �rst glance, the conditional distributions seem to contradict the previous
results that we have found. In fact, as we decrease the class size, the density is
shifted to the left for most quantiles. This is specially true when we look at the
distribution with a class size of 20, which is to the left of the other densities for
almost all quantiles. Nevertheless, this is di�erent if we look at the highest quan-
tiles, where a smaller class size is associated with higher grades. The explanation
of this is that class size is not independent of the other variables. In particular,
class size has a lot to do with enrollment. Since enrollment has a positive coe�-
cient on grades and it determines Maimonides' Rule, it is reasonable that we get
conditional distributions with these shapes.

Given that these counterfactual distributions have the problem of being very
correlated to enrollment, they are not as informative as the ones presented in
section 7 about the distributional e�ects of reducing class size.

18We could show all of them, but since there are so many di�erent class sizes, showing just a
few of them can give us a broad idea of how they look like.
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E More results for the log-linear model

In section 5 we presented some of the results computed using the log-linear model.
Those were the estimates of the parameters of this log-linear model, the average of
the derivative of grades with respect to class size and a comparison of the goodness
of �t of this model and the linear. However, we have not shown any other results,
such as counterfactual distributions. In this appendix we show the counterfactual
marginal distributions, both those computed using instrumental variable quantile
regression and those computed using quantile regression and the counterfactual
conditional distributions.

These distributions are very similar to those computed using the linear model.
Again the density of fourth year mathematics distribution with the maximum class
size of 25 is shifted to the left in the lower half of the distribution and shifted to
the right in the upper half of the distribution, whereas in the other four cases the
new distribution is located to the right of the original one. The distance between
them is bigger for �fth year verbal than for any other case.

When we do not use Maimonides' Rule as an instrument and we do quantile
regression for this log-linear model, the results that we �nd are those shown in
�gures 26 and 27. Again, ignoring the endogeneity of class size leads us to a very
di�erent picture. The distributions found here are very similar to those found in
the linear model, so there is not much new that we can say about this.

Finally, we show the distributions of grades conditional on class size as in Ap-
pendix D. Again, the results under the log-linear model do not vary substantially
from those of the linear model, the conditional distributions tend to have more
density at smaller values as we reduce class size.
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