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Abstract

We develop a model where cash is only observable by the manager and she can save
the cash. Our model is similar to Fudenberg and Tirole (1995) but extended to account
for an infinite time horizon. We get consistent results about the interpretation of
dividends as a good signal and that dividends are less volatile than the underlying cash
flow of the firm (smoothnees). Empirical evidence support the idea that there is an
asymmetric reaction in prices of shares after the announcement of initiations and
omissions of dividend payment respectively. The jump- down is about two times bigger
in absolute value than the jump-up. Existing models about dividends are not able to
explain this asymmetry. With infinite time horizon we are able to explain the
asymmetric reaction of the price of a share following the announcement of initiations or
omissions of dividend payment. The model predicts that firm value will increase over
time if there is no news about the firm. We also find that the existence of a manager
with discretionary funds increase firm value.
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1 Introduction

Since Modigliani-Miller’s work (1958), economists have devoted much effort to understand-
ing firms’ financial policies. Dividends are among the most important of such policies. Div-
idends are an inneficient instrument in corporate finance due to tax on dividends. While
in a Modigliani-Miller’s world dividends may not exist, we know that a lot of firms pay
dividends. Lintner (1956) showed that managers are concerned about dividend policy.
Furthermore, managers first decide on dividend policy, and then, they decide on debt and
equity.

Yet there is no general agreement on what is the information structure and the enforce-
ment mechanism between stockholders (or the board) and the manager (or management
team) that allows the former to set the appropriate dividend policy ex-ante, without the
need to monitor the manager’s action ex-post. Existing corporate finance models about
dividends can not explain the reaction to dividend policy announcements we see in the
data. Michaely, Thaler and Womack (1995) show that there is an asymmetric response to
changes in dividend policy. The jump upwards after an initiation of dividend payment is
smaller in absolute value than the drop that follows an omission of dividend payment.

For this asymmetry to exist the situation of the firm when the manager pays dividends
for the first time must be different than the situation of the firm when the manager pays
dividends, given a history of dividend payment. In this model the difference is due to the
existence of hidden savings. Both whe cash flows and stock of savings are only observable
by the manager. The manager can save all or part of the cash generated in the firm. This
implies that the longer the tenure of a manager, the higher the expected hidden savings
of the firm. We will see that the manager’s optimal decision is to pay the dividend target
whenever she can. Hence not paying the dividend target means the firm is in the worst
situation possible. Thus the value of a firm whose manager is paying dividends is increasing
with the tenure, but the value of a firm whose manager is not able to pay the dividend is
constant over time. The jump upwards after an initiation in dividend payment is fixed.
The drop after an omission in dividend payment is increasing in absolute value with tenure.

We present a model similar to Fudenberg and Tirole (1995). Both models explain
dividend smoothing when cash flows are only observable by the manager. She could save
the residual cash generated when high and she could use savings to pay dividends when the

cash is low. We expand their model by assuming an infinite time horizon and specifying



the cash flow generating process. This apparently simple expansion will allow us to explain
some issues related to the price of shares and dividends tenure. We allow too for hidden
savings and hidden “stealing”, so that there is an agency problem between the shareholders
and the manager, who has a trade-off between stealing the money or staying longer in
office. We formulate the problem in continuous time and stipulate a simple Poisson process
to determine changes in the state of the firm, which in turn determines the cash flows
generated. In equilibrium, dividends are used by the market to imperfectly infer the state
(high or low) of the cash flows and the amount of hidden savings inside the firm.

There is an agency problem between the shareholders and the manager. The latter
is the only one that observes the cash flow and the cash stock. If shareholders have no
way to force the manager to payout, the manager simply consumes all the cash generated
instantaneously and the shareholders will get zero “discounted cash”. Shareholders are the
owners of the firms. They can establish a dividend target and fire the manager if she does
achieve it. We will show that under a broad parameter space it is optimal to establish
a dividend smaller than the cash generated. This is optimal even if the shareholders
know that the firm is in the high state. Hence, smoothing is “second-best” optimal in our
framework.

Two mechanisms are needed for this smoothness solution to be optimal. First, the
manager has absolute discretion over the cash. We can justify this as long as the manager
is the only one that observes the cash generated and hence the stock of cash. The manager
chooses optimally what to do with the cash in every moment of time. Since the manager
will be fired instantaneously if she does not pay the dividend target, she would find optimal
to pay the dividend target whenever she can. There is a trade-off for the manager between
consuming or saving in the firm. The utility that the manager gets from cash is linear.
Saving in the firm when the firm is in the high state will allow the manager to remain
longer in office when the firm is in the low state. She will be able to pay dividends for
some time when the firms goes to the low state. Since the manager has a time discount
factor, the returns to remain longer in the firm has decreasing returns. Since consuming
has constant returns and savings has decreasing returns, it will be optimal for the manager
to save until the returns of savings equals the returns of consuming.

The second mechanism needed is to make it costly for the shareholders to fire the
manager. Otherwise the shareholders will ask the manager the maximum amount of cash

generated in the high state and instantaneously. They will fire her and hire a new one



when the current manager is not able to pay the dividend target. This would convince the
manager to pay the maximum whenever she can. We acount for the case where shareholders
demand the entire amount of cash in each period with the threat of firing the manager
if she fails to comply. We find that this solution is optimal when the cost of firing the
manager is very low. In this case the manager cannot save in the firm and the manager
will be fired when the firm goes to the low state.

Under some parameter values the drop after an omission is two or three times greater
in absolute value than the jump after an initiation of dividend payment. The value of the
firm during a crisis remains constant. For this asymmetry to exist the value of the firm
during an expansion should increase as time evolves. Such assumption is consistent with
the widely extended idea in finance that “NO NEWS IS GOOD NEWS”!. The value of
the firm after an announcement of an omission in the dividend payment (after a drop)
will remain constant at the lowest possible value for a firm. The value of a firm after an
announcement of an initiation in the dividend payment, i. e. after a jump, will increase
until it converges to a value (the highest value for a firm in our model). That is why the
drop is bigger than the jump. The reason why this happens is that, conditioning that the
manager remains in the firm, the expected value due to the distribution of savings in the
firm makes the probability of survival of the manager greater as time evolves. When the
tenure of the manager is very long the probability of survival is close to 1. The maximum
value is the value (the expected net discounted flow) of a firm whose probability of firing
the manager (and paying the cost associated to this situation) is 0.

Lintner (1956) showed that managers smooth the payout of cash to the shareholders
and that managers are reluctant to cut dividends. Our model is consistent with both facts.
Under some parameter values, the manager finds it optimal to have a totally constant
dividend policy while the cash generated varies over time. Our model is also consistent
with the reluctance of cut dividend payment because in equilibrium the manager will pay
the dividend whenever she can. As in most of the literature, there must be incentive
compatible for the manager to payout cash (dividends or repurchases), so there must be a
disciplinary mechanism. Following Allen, Bernardo and Welch (2000), the presence of large
outside shareholders on the board is an effective way to do so. In general, any mechanism
that makes the probability of survival of the manager in the firm increasing with the amount

(or existence) of payouts, is an effective way to mitigate the moral hazard problem (as in

!See Campbell and Hentschel (1992).



Stiglitz-Weiss, 1983). In our case, the target dividend is fixed at the beginning of the game,
and the probability of survival goes from 1 to 0 if the manager misses the target dividends
in the current period. The inclusion of a mixed strategy (i.e. prob. of survival greater
than zero if the manager missed the target) would not change qualitatively the results
of our model, but would introduce more technical difficulties. We take into account this
limitation. The effect of an entrenched manager, that is, a manager hard to get fired could
be understood as a manager more unlikely to be successfully fired or just more expensively
fired. We take the second option, using a cost of firing the manager that could be a measure
of entrenchment.

The paper is organized as follows. Section 2 presents the model. In Section 3 we solve
the problem under perfect information, we solve the problem for the manager and for the
shareholders and we present the implications of the solutions in market valuations. In
section 4 we summarize the numerical results. In section 5 we describe and discuss the
relative size of the jumps (jump upward and downwards) in stock price that our model
predicts. Section 6 concludes. Appendix A shows the steps followed to solve the Bellman
equations that represent shareholders’ value in a perfect information set up and can be used
as a bench mark solution to the asymmetric information problem. Appendix B shows the
steps followed to solve the system of linear first-order differential equations that summarize

the manager’s problem.

2 The Model

Consider an economy where there is only one class of firms, characterized by a cash flow
generating process following a Markov chain with two states (high or low). Time is con-
tinuous and state transitions are determined by Poisson processes. These processes are
independent across firms. In this economy there are two classes of risk-neutral agents,
managers and shareholders. Managers are penniless and obtain utility U per unit of time
while they remain employed as managers of a firm and zero otherwise. U accounts for
wages or any other benefit the manager receives from the firm. There are many more
managers than firms, so that managers compete for positions at firms. Once a manager is
fired from a firm the probability of being hired again by the same or another firm is zero.
Managers have no access to financial markets. The time horizon is infinite. Every agent

has a discount rate of . The technology is such that every firm needs one manager to
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generate some cash flow that is observable only to the manager. All the parameters of the
model (subjective discount rates, probabilities of transition, taxes) are common knowledge.

Let the discretionary cash flow X follow a continuous time Markov switching process
so that:

)1 if Yi=H,
o { 0 if Y=L,

where Y; = H, L is the state of the firm at date ¢t. Changes of state are governed by Poisson
processes with intensities A from H to L and p from L to H.

In each date the manager has three possible uses for the cash flows generated; They
can be paid in form of dividends to the shareholders, kept in the form of hidden savings or
consumed by the manager. The cash is saved by the manager at an interest rate of zero.
This is a simplification but is not restrictive.? The manager has full discretion over the
use of the funds generated or accumulated by the firm. The manager may choose to quit
at no cost.

We assume that shareholders establish a contract with the manager such that the
manager is fired if she does not achieve a previously specified dividend target d at any
moment of time. The dividend is subject to a proportional tax, denoted by ¢. The
target d is agreed upon hiring the manager, and cannot be renegotiated afterwards. We
will assume that the target is fixed in a “second-best” optimal manner so as to maximize
shareholders’ wealth. Shareholders have to incur a “crisis” cost ¢ each time a manager is
fired. One could think of ¢ as the administrative costs of firing a manager and hiring her
successor, or whatever restructuring cost a firm must incur while changing its management
team (i.e. lawyers, taxes, delays). One could thing of ¢ as a parameter increasing in the
degree of entrenchment of the incumbent manager. The more entrenched a manager is,
the more costly it is for the shareholders to fire her.

We can think of this model as a 2-stage game:

- In the first stage, shareholders (anticipating the decisions that the manager will take
in the second stage) establish a dividend target d. They will choose the value for d that

maximizes their expected discounted net payoffs.

2Is easy to see that if we allow the manager to have access to save the cash at a rate r < § the solution
would be of the same kind, but the manager would find optimal to save more cash. If » > ¢ the manager
would find optimal to save an infinite amount of cash, which is not realistic.



- In the second stage, the manager decides on dividends, hidden savings and consump-
tion conditional on the state of the cash flow generating process and the amount of savings.
The manager knows that she will be fired if she misses the dividend target.

Outsiders look at the path of dividends paid by each firm and the tenure of their
managers. Then, if they know the parameters and solve the model, as we do, they should
be able to form modeled beliefs about the state of cash flow process and the amount of
hidden savings of an individual firm, and impute a market value to its shares.

We will solve the problem by backwards induction. First we focus on the problem of
the manager for any d taken as given. Then, knowing the best strategy for the manager
for each d, we will solve the problem of the shareholders that choose their optimal dividend
target d. Once the model is solved, we will look at its implications for firms valuation. In
the maximization problem for the shareholders and in the valuation analysis we will resort

to numerical methods.

3 Solution

This section is organized as follows. In subsection 3.1 we present the analytical solution of
the model in the presence of perfect information. In subsection 3.2 we derive the analytical
solution to the problem of the manager in the second stage of the game(given all the
parameters and every value for d chosen by shareholders in the first stage). Thus, we get a
solution to the problem of the manager for every value of d . In subsection 3.3 we compute
the optimal choice of d. Using s*(d) we compute the expected value of the discounted
payoffs of the shareholders. The shareholders choose the value for d that maximizes this
expected value. This results will be used in subsection 3.4 to analyze the impact of this

mechanism on the valuation of the firm’s equity.

3.1 Perfect Information case

In the perfect information case the shareholders get always the cash flow. The manager is
never fired, so the shareholders never pay the cost associated with firing the manager, c.
Shareholders receive an instantaneous net flow of (1 — ¢) when the firm is in the high state
(Y; = H) and get zero otherwise. Shareholders discount time at a rate . The Bellman

equations are then:



SWE = (1= ¢) + X (W, — Wy)

5W5120+/L(WH—WL)

Where WP is the discounted payoffs the shareholders under perfect information if the
firm is in the state . The left hand side is the instantaneous value. The right hand side are
the istantaneous payment and the isntantaneous probability of changing from state time

the difference in the value of being in each state. Solving the system we get:?

pr (1=9)(0+p)
B 5 (S + X+ p)

pr_ (=¢)p
L6 (0+ X +p)

In the perfect information case there are no asymmetric reactions. W41 is the value

when the firm is in the high state and W/ is the expected discount value when the firm is
in the low state. The jump is the difference between both values. Here, and in the imperfect
information case the value of the firm when the firm is in the low state is constant. Here
the value of the firm when the manager pays the divident target remains constant. The
value of a firm whose manager pays the dividend target is independent of the tenure of the

manager here.

3.2 The Manager’s Problem

Using the results displayed below we are going to focus on a strategy whereby the manager
will pay the target dividend whenever she can. There is a threshold s* of hidden savings,
endogenously chosen by the manager. If savings are below the threshold, the manager
saves the residual cash flows. If savings rise to the threshold, the manager consumes the
residual cash flows.
Result 1. The manager will pay the target dividend whenever she can if Y; = H.
Justifying this is trivial since the manager will be fired instantaneously if she does not

pay the dividend target, so the “stock” utility of not paying is equal to zero. In turn, the

3The steps are in the appendix.



utility of paying a dividend and staying in the firm is strictly greater than zero, since the
manager will remain in the firm for an expected length of time greater than zero and she
will get an instantaneous utility of U during this time interval.

Result 2. The manager will never steal all or part of the hidden savings if s < s* and
Y, = L.

In our model exponential law holds. This implies that the probability of changing of
state is independent of the time the firm has been in that state. As a consequence if the
manager would like to consume the stock of savings when Y; = L, she will do this as soon
as possible. It would be worse for the manager to decide to consume the cash later since
there is a discount factor J, and the probability of arrival of a shock that changes the state
remains constant.

Notice also that the only reason a manager has to save in the firm is because she does
not want to be fired when Y; = L. Saving allows her to remain in the firm for a period of
time when Y; = L, until the state changes to Y; = H again.? There is no reason to save
up to an amount of savings sqg when Y; = H if the manager will consume this amount of
savings as soon as the state changes to Y; = L. That is, if it is optimal for the manager
to consume an amount of cash equal to sy when Y; = L, it will be better not to save this
amount of cash. Since there is a time discount factor for the manager the same amount
of cash gives higher utility if consumes earlier. Hence it would be better to consume this
cash when it was generated.

Result 3. The manager will save in the firm until the stock of savings makes the manager
indifferent between saving an infinitely small amount of cash generated or consuming it.
This defines the threshold s* € [0, 4+00) for savings accumulation, so that any residual cash
flow (X; — d) is saved while s < sx.°

The manager decides on savings conditional on the state of the firm and conditional on

the amount of savings already in the firm.5 We are interested in the strategy follows by

4For an amount of hidden savings of s and a dividend target of d if the firm remains in the low state,
the manager will be able to pay the dividend target and remain in the firm for a period of ¢t = 5. That is,
she will pay a flow of d during a period of 5 until savings get exhausted.

5We take into account the case of s* = 0, but later we will see that if the manager is not going to
save any cash, it is optimal for the shareholders to establish a dividend target of d = 1 and the solution is
analytical.

6In general the strategy of the manager should be a complete book of instructions of what to do for
every amount of savings and every state of the firm. Here, we only need the threeshold when the firm is
inY =H.



the manager conditioning on Y = H. Thus (conditional on Y = H) the manager should
decides on savings conditional on the amount of saving in the firm. Note that conditional
on Y = H, the savings in the firm grows linearly at a rate (1 — d). Hence the manager
should decide when to stop saving and begin consuming.

Notice first that the utility the manager gets from consuming the cash is linear. However
the utility a manager gets from savings is increasing in the amount of savings and concave.
Given the time discount factor, the instantaneous utility U received in the future is the
less valuable than it is in the present.

Under the referred strategy of the manager, the law of motion of the hidden savings is:

0 if s>s* and Y =H
5= 1—d if s<s* and Y=H (1)
—d if s>0 and Y =1L

The manager can observe the cash flow generating process and the hidden savings at
every moment, so we can describe the value function of the manager in every state by the
following system of differential equations:

U —dv; Vi(s) =V, if s>0
5V (s) = { 1(s) + uo[ () = Vi(s)] o0 )
if s=

U+ (1 —d)Vy(s) = X[Vg(s) = Vi(s)] if s<s*

. p e )
+(1—d) = A[Vu(s*) = Vi(s*)] if s=s

5VH(S) = {

These equations are identities: the value V;(-) and the flow returns must be consistent.
If the discount rate is §, 6V (s) must be equal to the flow returns. Thus, the left-hand side
of these equations are the flow returns of the manager in state ¢ with savings s and equals
the sum of utility flow from being a manager, consumption and capital gains. Capital gains
(loses) are associated with Y = H (Y = L). While Y = H (Y = L) savings grow at a rate
(1 —d) (decrease at a rate d).

Equations (2) and (3) define a linear differential first-order equation system for s €
[0, s*], and boundary conditions at 0 and s*. Thus we will be able to derive an analytical
solution for the manager’s value maximizing problem. That is a value for s* and a explicit

function for Vg (s) and VL(s). For s € (0, s*), the system becomes:



Vi (s) ~Ot) Vi (s) v
<%w>:<f% é><m®>+<%> W

We will solve this problem like any dynamic linear system.” We need two conditions in
order to fix the solution for the system. Beginning at s = 0 and using two initial conditions

the general solution of the model is:

( Vi(s) ) _ ( A1(5) 6(s) ) ( Vi (0) ) . ( I () ) 5
Vi (s) ¢3(s)  Pals) Vi (0) ha(s)

where ¢;;and hiare functions of s and the underlying parameters.

1

¢1(s) = 1P| (P Pye™®) — Py Pye™9)) (6)
PP

() = T (620 =) -
PP

() = Tt (9 = ) -

_1 (A2s) (A1s)
¢4(S) = ‘P| (P1P4€ —P2P36 ) (9)

() = {3 [ 55 (1= o) = B (1= )| +

1= ) = B2 (1 = u))] ]

(10)

—
I‘»—‘

%
[ —
W

V]
&
—~

ha(s) = & {é [Pi—f‘* (1= o)) — B (1 — 6(Als)):| L
oy B (1 o) = 258 (1 o))

(11)

where \;, P; and |P| are functions of the underlying parameters only. Where \; are the
eigenvalues of the system and P; are the elements of the eigenvector matrix.®
The way we have defined the system we have a value for V7(0) = 0 and a value for

Vi (s*), but using (5) evaluated at s = s* and (4) we get:

"The complete process is in the appendix.
8We provide detailed steps and complete formulas in the Appendix .
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*

VL(s*) = ¢2Vu(0) + hi(s7)
Vi (s*) = ¢4V (0) + he(s*) (12)
(SVH(S*) = U + (1 — d) + A [VL(S*) — VH(S*)]

So we can express Vg (0) as a function of s* and the original parameters only:

U+ (1 —d) = (6 + A)ha(s*) + Ahi(s")
Vi) = T G N ouls) — ()

This way of expressing the system (using two initial values) is very helpful for solving

(13)

the system. We compute the values and function of this system for a given value of s*.
What remains is to determine the s*that is optimal for the manager. This is the value of

s* that satisfies the so-called “smooth pasting condition”. In our case:

V(s =1 (14)

meaning that the manager will save cash inside the firm until the marginal value of saving
equals the marginal value of stealing, that is constant and equal to 1. Notice that in order
to solve the shareholders maximization problem we only need the values of the parameters

and the value of s* given a value of d.

3.3 Shareholders’ problem

In the previous subsection we have characterized the manager’s optimal decision on savings.
Now we take the value of s* as a function of d (s* = s*(d)). Shareholders choose a dividend
target d that maximizes the expected value of the discounted dividend flow. We must

distinguish two cases: d < 1 and d = 1.

Interior solution, d < 1

The problem has no close-form solution, so we simulate the total tenure 7" of the manager
for a given set of parameters. Note that given a set of parameters (including d) there
exist only one value for s* that solves the problem of the manager. In what follows we are
going to compute the expected discount value for the shareholders conditioning on the firm
being in the high state (Y; = H) and the hidden savings are zero (s = 0) (i.e WP = WEHL
W =Wy and WY = W5).

11



First of all we generate N simulations of Markov chain.’ Using equation (1) and the
optimal value for s* the manager will chose we compute the evolution of savings through
time. When savings drop to zero the manager is fired, so we take this step as the tenure
T of the manager.

Once we have simulated the tenure 7' of the manager given the parameters, d and
s*, we compute the expected discounted value of the cash flow for the shareholders. The
shareholders receive a continuous flow d(1 — ¢) (after taxes). Shareholders discount at a
rate ¢ the cash flow received. For a given value of T, the expected value for the shareholders

1s:

a1 - ¢) / ()t -0 (=) = D 4oy (o) (15)
C=F / ce it = B [5 (1= 7)) = / S e ey ar = = 16)

where C' is the expected cost of crisis the shareholders must incur at time 7" when the
manager is fired. When the manager is fired the shareholders have to incur an instantaneous
cost of c until a new manager is able to pay the dividends again. A new manager will only
be able to pay the target dividend if the firm reaches Y; = H again. Note that C is also
the difference of the expected value of the firm of being in the high state or in the low state
with a amanager who keeps zero savings (i.e. C =Wy — Wy ).

The next step is to take expectations on 7T'. The distribution of the total tenure of the
manager 71" has no close form solution. We take the N simulations and for each one we

compute the value for the shareholders of this particular simulation.

. 1) = [ (1 eomy - (e (1)

The expected value of a complete cycle is then:

9Every chain begin at Y; = H. We now that the first time a manager is able to pay d the firm is in
Y; = H and s = 0.
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w(d) = £ ud,T) (18)

We have to take into account that shareholders are interested in every cycle, not only
in the first one. For every simulation the duration of the cycle is the sum of the duration

of the total tenure of the manager 7T; and the duration of the crisis z;:

D; =T+ z

Hence, the expected total discount value for a simulation is:

J

—1
~5( 'S D
Wi(d, Tji) = wi(d, Ty;)+w;(d, Ty e *Phiqw;(d, Ty ) e Prt P20 o gy (d, Ty )e <k_1 k >+‘ "

J —J(Jle)
Wid, Ty;) ~ w;(d, Th;) + Swi(d, T)e =1 (19)

j=2
Where j is the position of the cycle over time (j = 1 denotes the first cycle, j = 2

denotes the second cycle, etc) for each simulation. The total value for the shareholders is:

Wid) = D W, T)

W (d) is the shareholders’ object of interest. We compute a value of W (d) for each
value of d € (0,1). ' Shareholders will choose a dividend target d that maximizes their

expected value of the discounted dividend flow.

Max W (d)

de(0,1)

In this case the shareholders do not ask the manager for all the cash generated, but just

10We have found that for some extreme values of d the problem of the manager has no interior solution.
These cases are not important as the shareholders will never choose such values of d. When the manager
chooses a value of s* = 0, the optimal choice for the shareholders is d = 1. In particular, for the baseline
case we found that the value for the shareholders is zero or negative if they choose values of d greater then
0.499.

13



a fraction. This allows the manager to save the residual cash while s < s* and consume
the residual while s < s*. The manager will eventually consume part of the cash if savings
rise to s*. Shareholders will not have to pay the cost ¢ while the firm is in the low state if
there is a positive amount of cash in the firm. Hence dividend smoothing is optimal as it

makes the value for the shareholders greater than if they ask for the total cash generated.!!

The “Naive” solution d =1

The manager is not able to save any cash. Thus the manager will be fired as soon as the
firm turns into the low level of cash flow (i.e. when Y = L). This is what we call the
“Naive” solution. This solution will be optimal for the shareholders whenever the optimal
choice for the manager in the second step is s* = 0, unless the value for the shareholders
is negative. This is due to the fact that the only reason the shareholders have to establish
a dividend target smaller than 1 is in order to make less frequent the cost associated with
a crisis. If the manager is not going to save any cash the frequency of the crisis would be
the same as the frequency of the low state (this is the maximal frequency of crisis).

We proceed here as in the perfect information case. The only difference is that now the
shareholders will have to pay the cost of firing the manager ¢ each time the firm is in the
low state, Y; = L. Shareholders receive an instantaneous net flow of (1 — ¢) when the firm
is in the high state Y; = H and pay c if the firm is in the low state, Y; = L. Shareholders

discount at a rate d. The Bellman equations are then:

SWE = (1= ¢)+ AW, — Wy)

5W£V = —C+M(WH - WL)

Where W2 is the discounted payoffs the shareholders under perfect information if the

firm is in the state i. Solving the system we get:!?

(1—-¢)(0+p) = Ac
S0+ A+ p)

Wy =

1We will see that this is the case for values of ¢ big enough.
12The complete process is in the appendix.
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v_ (A=¢)p—c(d+A)
Ve =Gt 0

Note that the shareholders always have the option to establish a dividend target of 1,

so the firm’s value is at least W} . In this case the solution is analytical and it is not
necessary to simulate any chain in order to get the expectations. This is a corner solution,
and will be optimal when the value of ¢ is low enough or when the volatility of the Markov
chain is low (i.e. low values for A and p). It is interesting to note that for values of ¢ big
enough this expression would take negative values while the solution for d < 1 (and the
solution in the perfect information case) would not, in this case if the shareholders would
not have the possibility of establish a dividend target, they would not find optimal to ever

fire the manager.

3.4 Market valuations

The more interesting feature of our model is that it can explain the asymmetric reaction in
the stock price of the shares of a firm after the manager announces an initiation of dividend
payment and when they announce an omission of dividend payment.

The positive jump in the price of the stock after an announcement of the payment
of the dividend is due to the different discounted expected cash flow for the shareholders
when the firm is in Y; = H and Y; = L, and the manager has no hidden savings in the
firm. When the firm is not paying dividends, that means that Y; = L and s = 0. The
shareholders will have to incur an instantaneous cost of ¢ while the firm remains in that
situation. Which has an expected cost of this is €' = . 13 Note that Y; = L and
s = 0 is the worst situation a firm can be in our model. But as long as there is a positive
probability that the firm goes to the high state (Y; = H) and thus, that the manager is
able to pay the target dividend again, the value of the firm could be positive. When the

firm goes back to Y; = H the shareholders are in the same situation as before (i.e. s = 0)
but they do not have to pay C. So the size of this increase in the stock price is C.

When the firm begins to pay a dividend this means that ¥; = H and s = 0. When
the firm has been paying dividends for some time, there is some probability that the firm

isin Y; = L or Y; = H and the firm could have different amounts of hidden saving. We

I3Notice that the exponential distribution has no memory, so the expected cost is the same independently
of the time that has past and the amount of costs paid.
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compute the evolution over time of Prob(Y; = H) and s, conditioning on the firm paying
dividends. We find that Prob(Y; = H) begins at 1 and is decreasing until it stabilizes at
its ergodic value and s begins at 0 and is increasing until it stabilizes at its ergodic value
(this value being smaller than s*). What is not surprising.

The drop in the price of the stock after the announcement of the omission of the
payment of the dividend depends on how much time has passed since the firm began to
pay dividends. Since the value after the announcement is fixed but the value before the
announcement is a function of Prob(Y; = H) and s. The latter is increasing over time until

Prob(Y; = H) and s stabilize at their ergodic values.

4 Numerical results

In this section we present some results using reasonable values for the parameters. Our
intention is not to calibrate or to make qualitative predictions. Our aim is to show the
sign of the comparative statics and the qualitative effect of each of the parameters on the
results. We focus our analysis in some topics very common in the literature. Some of them
have been largely accepted by most of economists but there is some degree of disagreement
about others. In the next section we present the results about the asymmetric reactions in
the market after the manager announces a change in dividend policy. The jump-up after
an initiation is smaller than the drop after an omission. The drop is about two or three

times bigger than than the jump-up in absolute value.

Baseline case

Our unit of time is a quarter. A value of 6 = 0.015 means a 1.5% quarterly interest rate
or 6% annual interest rate. We have chosen reasonable values for A and p. They are
reasonable in the sense that are smaller than one half and they are close to zero. We have
taken A = p for transparency. We will see that even in that case with symmetric underlying
cash flows the duration of the cycles of the firm are of different length and not symmetric.
The value of ¢ is chosen to be one half also for transparency. The value of U has been
chosen arbitrarily small and does not change the results. We have chosen the parameters
of the baseline as an illustration, we do no intend our parameters to replicate exactly what

we see in reality.
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Dividends as good signals

In Table 3 we present the results when we change the values of A and p and we remain
close to the baseline case. The unconditional probability of the firm to be in the high
state (Y; = H) when time goes to infinity is Prob(Y; = H) = Fuu This probability is
increasing in A and decreasing in p. The greater the value of i, the greater the expected
underlying cash flow. The lower the value of A\, the greater the expected underlying cash
flow. If we look at Table 3 we can see that greater expected underlying cash flow means
greater expected value for the shareholders (W). This relation is also true for the naive
solution (W¥). The fact that the dividend target is increasing in A and decreasing in p is
consistent with the idea that dividends convey information of good cash flows. The greater
the dividend the greater the underlying cash flow.

It is interesting to see that the naive solution is more sensitive to changes in A and p
than the interior solution is. Very small changes ( smaller than 5%) in A and p make the

gains of choosing the interior solution two times bigger.

Entrenchment

There is empirical evidence that firms that are hold mainly by institutional investors are
very likely to pay dividends and that firms hold by institutional investors have managers
that are not entrenched. Hence we will expect non-entrenched firms to be very likely to
pay dividends and to pay higher dividends.

In our model the parameter that measures the degree of entrenchment of a manager is
c. In most of the literature entrenchment is included with a parameter that measures the
probability of success when shareholders try to fire the manager. We do not assume that
the manager is fired with some probability at zero cost. We assume that the manager is
fired with probability one at a cost c. The greater the value of ¢ the more entrenched is a
manager.

If we look at Table 4 we can see that the gains associated with the existence of hidden
savings are decreasing in c¢. Even more, for values of ¢ of 0.2 or smaller there is no gains
in allowing the manager to save and eventually consume the cash. In this case the value

of the naive solution is greater than the value of the interior solution.
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Maturity Hypothesis

Most of the early literature has associated the existence of dividends with greater cash flows.
Late research in this field has claim that, on the contrary, dividends reflect less volatile
cash flows. Thus, not greater cash flows but more stable cash flows. Both hypothesis agree
that dividends are good signals, but the implication of each of them in terms of future cash
flows of a dividend payment firm, are very different.

Note that taking g = A the underlying state of the firm Y; will be (on average) in each
of the states H and L. But the greater the value of A (1), the greater the volatility. With
1= A =1, there will not be any change in state, so there is no volatility. With p =\ — 1,
state will change at every moment of time, so volatility is maximum.

According with the maturity hypothesis, the greater the values of u = A the less likely
is that a firm pays dividends. In Table 5 we can see that in our model this is not the case.
The relation between volatility and dividends is ambiguous. However, it is true that for
small values of 1 and A the naive solution is likely to be better (greater expected discount
value) than the interior solution. Those firms whose managers are less entrenched (low
¢) and whose cash flows are less volatile are most likely to choose the naive solution and,
hence, pay the maximum amount of dividends (d = 1) (this argument support the maturity
hypothesis).

There is an arm-wrestling between the manager and the shareholders. Both are risk-
neutral, but the manager is more affected by changes in the state than the shareholders
are. Notice that manager is only concerned about what happen in the firm during the first
cycle because after that the manager is out of the firm and has no utility. Nevertheless,
shareholders are interested in what happens in all the cycles of the firm. Remaining for a
long time interval in the low state is bad for the shareholders since they have to fire the
manager, pay the costs associated to it and wait until the firm reaches the high state again.
But firing the manager is worse for the manager since she is fired and she get zero after
that. These differences in how changes in volatility affect the utility of the manager and
the utility of the shareholders means that s* is increasing with volatility. The manager
chooses greater buffers in response to greater volatility. This fact is interesting because
what we found is that higher volatility (greater values of 1 and A\) means higher firm’s value
(greater values for W), if the solution is interior. On the contrary, if the naive solution is

optimal, the firm’s value is lower for greater values of p and .
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Managers responds to increases in volatility with increases in precautionary buffers,
which in turn increases the value for the shareholders. In other words, managers perform
better if the probability of being fired increases. But in any case the solution for s* is finite,

meaning that the manager may eventually consume part of the cash generated.

5 Asymmetric reactions

In our model asymmetric reactions only occurs under the interior solution. Under the
naive solution there is not asymmetry since there are no hidden savings and there is no
uncertainty about the state of the firm, i. e. if the firm is paying dividends, the firm is the
high state.

Traditional models about dividends as a signal make not distinction between initiations
and omissions of dividend payment. Dividends are good news and no-dividend are bad
news. In a static framework not much can be said about that. We present a model of
infinite time horizon and we found that not only the existence of a current dividend, but
also the immediate past history of dividend payments give us valuable information - even
with a cash flow generating process with no memory (1st order Markov chain).

Empirical papers about this topic found that the average abnormal returns to dividend
increases are between two and three times bigger than the average abnormal reaction
to dividend decreases (in absolute value). For dividend initiations and omissions, the
magnitude is even bigger.

We can see in (4) that the jump after an initiation of a dividend payment is 2.3. The
drop in the value of the firm after an omission of dividend payment is 4.3, 6.4, 7.6 or 8.0
respectively. This means that under the baseline case the drop after an omission is between
1.5 and 3.5 times greater than the jump after an initiation. Which is consistent with the
relative size observed in empirical works.

It is interesting to see that after a manager announces a change in dividend policy
(an initiation in dividend payment) and does not change this decision, the value of the
firm increases over time. That is, no news are good news. One might think that this is a
problem of under reaction, and the market should anticipate this upward trend and adjust

the value of the firm. But this is not the case, since the values showed in Figure 4 are the

14See Allen and Michaeli (2002) for details.
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true values of the firm (i.e the expected discount cash flow). One may argue that it is not
possible that the expected discount flow (the stock price) of a firm changes if there are no
changes in the information available to the market. This point is right, but this is not in
contradiction with the results in Figure 4. What this results suggest is that the time has
passed without any change in the information given by the manager or the firm give us also
valuable information. If a researcher is interested in pricing such an asset we would find
useful the information relative to the tenure of the manager and the past history about

payout policy, and not only the amount of the last dividend already paid.

6 Conclusions

We have taken an approach similar to Fudenberg and Tirole (1995) and expanded it with
infinite time horizon and a more structural approach. We show that allowing the manager
to save in the firm can increase the expected discount value for the shareholders. This is
true even if this is inefficient in two ways: it is inneficient because saving in the firm at a
zero rate is less attractive than paying out all the cash generated and because the manager
would eventually consume some cash. The reasons for this are the high cost associated
when firing the manager and the frequency associated with more volatile cash flows.

Our results show that the model is (at least qualitatively) consistent with the empiric

facts observed in the data:

1. Smoothing is a result of the equilibrium and solves partially the agency problem

between the manager and the shareholders.

2. Higher dividend payment is associated with higher underlying cash flows and hence,

greater value (stock price).
3. Dividends are more likely to be paid in firms whose managers are non entrenched.

4. Firms with institutional investors are less likely to have an entrenched manager and

hence, are more likely to pay dividends.

While our model generates implications that are consistent with the available empirical

data, it also provides a micro-founded explanation about the asymmetric reaction after
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announcements of initiations and omissions. It predicts an smaller reaction after an initia-
tion (relative to the reaction after an omission) and an increasing path in stock price. The
observed pattern in the real data is not under-reaction, but exact reaction when facing a
problem of asymmetric information. The increasing path in stock price is due to the fact
that the problem of asymmetric information is smaller as time evolves, and negligible after
some time (about 20 quarters in our baseline case).

Our model also suggests other ways of looking at the data. We show that the tenure of
the manager of a firm and the immediate past of payout policy are informative when one

is interested in pricing assets.
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A Solving the Bellman equations:

A.1 Perfect Information case

These Bellman equations show the payoffs of the shareholders when the firm is in each state
(H, L) under perfect information. While the firm is in the high state (H) the shareholders
get an instantaneous flow of 1 unit ((1 — ¢) after taxes) and receive a shock with intensity
A that bring the firm to the low state (L). While the firm is in the low state (L) the
shareholders get an instantaneous flow of 0 and will receive a shock with intensity p that
bring the firm to the high state (H). Shareholders has a time discount factor of 6.

SWED = (1= ¢) + A (WPT —wh

SWE =04 pu (WL = WET

From the second equation we rearrange and get W/ as a function of W}/’

Wkl — M yypr
L 5"'# H

We substitute the value of W/ in the first equation and get the value of W/:

A
SWh = (1= )+ 5 fuwgf — AW

<(5+)\—)\—M) WE = (1 - ¢)

5+ p
= e
KR e e
Hence:
KR e e

23



(1—9)u

PI __
Ve =56 T

A.2 Naive solution

These Bellman equations show the payoffs of the shareholders when the firm is in each
state (H, L) and the shareholders choose the naive solution. While the firm is in the high
state (H) the shareholders get an instantaneous flow of 1 unit ((1 — ¢) after taxes) and
receive a shock with intensity A that bring the firm to the low state (L). While the firm
is in the low state (L) the shareholders pay an instantaneous cost of ¢ and will receive a
shock with intensity u that bring the firm to the high state (H). Shareholders has a time

discount factor of §.

oWy = (1=6)+ A (W[ = Wy)

WL = —c+p (Wi — Wi

From the second equation we rearrange and get W} as a function of W}’

H N ¢
Wy — _H gy
Eos+p ™ o4

We substitute the value of W} in the first equation and get the value of W}:

A
SWY = (1—¢)+ﬁwfi¥—xwg

(1—9¢)(0+p) = Ac
S0+ A+ p)

Now we substitute the value of W} into the equation for W}

Wi =
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N A=9)0+p)—Ac ¢
LS4+ pn 600+ M+p) 6+ p
wh o _(d=d)p Ac poo ¢ 6(6+A+p)
SO0+ +pn) 60+ A+p)(0+p) (G+p)d (@ +A+p)
wh_ (d=dp (M+(5+A)(5+u)—ku)
B4+ N 4+p) d+p S0+ A+ p)
o _(A=9p  c(6+))
PGS+ +pm) 6(0+A+p)
Hence:
v_ (1=¢)(6+p) —Ac
Wir = §(0+ A+ p)
v_ (A=¢)u—c(d+A)
Wi = S0+ N+ p)

B Solving the linear first-order differential equation sys-

tem

1. Find the eigenvalues'® of the system:

|A—\I| =0

SA ey = =g (O~ = A G+ A= A1 = ) + d] =0

SCTES 1
d

\ d(6+ ) — (1 _d)(5+“)i\/[(1 —d)(§+p) —d(+ N)]2+46(0 + X+ p)d(1 —d)

2d(1 — d) 2d(1 —d)

15Notice that given reasonable values for the original parameters, there will always be one eigenvalue
positive and one will be negative, so any critical point of the system will be a saddle point solution.
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2. Find the eigenvectors associated to these eigenvalues:

m—&n<§>:0

ORI Ay By g
d +d

For (A1) we get:

And take as a vector :
(1,6 + p + Aid)

For (A1) we get:
d+A—X(1—4d) A B
1—d e

And take as a vector :
04+ A= X(1—=d), N

We call the eigenvectors matrix P so that:
_ p A
T\ p4s+Md A+6—X(1—d)
F4:<A+5—Mﬂ—d)—A)l

—(p+d+Md) p ) IP|
|P| = p[A+ 6 —Xa(1 —d)] — AMp+  + \id)

3. Let’s call the transitions probability matrix ®(s, sg) define as follows:

A1(s—s0) 0
B(s,50) = A0 = p [ © pio 9?2
0 el b5
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4. The solution to the system as a function of the initial values is then:

Vi(s) \ eti(s=s0) 0 [ Vi(so)
< VH(S) ) o P( 0 er2(s—s0) ) P ( VH<30> ) *

[eME=do 0 U
+P S0 s P—l ( —dU )
0 Ik (=9 g 1-d
S0
Tables
Table 1: Underlying parameters
‘ Definition H Symbol ‘

Intensity of shocks per unit of time in low state (L) i

Intensity of shocks per unit of time in high state (H) A

Time discount factor 0

Instantaneous utility of the manager while managing a firm U

Dividend tax rate o

Instantaneous cost of firing a manager c

Target dividend d

Table 2: Baseline parameters
‘ Definition H Symbol ‘ Baseline Value ‘

Intensity of shocks per unit of time in low state (L) i 0.2
Intensity of shocks per unit of time in high state (H) A 0.2
Time discount factor o 0.015
Instantaneous utility of the manager while managing a firm U 0.1
Dividend tax rate ) 0.3
Instantaneous cost of firing a manager c 0.5
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Table 3: Variations in A and p

| Parameters | d | s¢ | W |[WN W] %A | %B |
Baseline | 0.449 | 16.16 | 14.9 | 8.1 | 24.1 || 38.2% | 84.1%
A=0.18 0.478 | 15.75 | 16.4 | 10.2 | 254 || 35.0% || 61.5%
A=0.22 0.426 | 16.02 | 14.0 | 6.2 | 23.0 || 39.0% || 126.5%
n=0.18 0.427 | 1554 | 13.7 | 6.1 | 23.0 || 40.4% || 122.7%
w=0.22 0.466 | 17.11 | 16.0 | 9.8 | 25.2 | 36.4% | 62.2%
- % A are the loss in shareholders value due to the fact of asymmetric information (%A =
wPI_w
“prer— % 100).
- % B are the gains in shareholders value due to the existence of hidden savings (% B =
WX % 100)

WK :

Table 4: Entrenchmen
| Parameters | d | s¢ | W | WV ] WPI | %A | %B |
Baseline | 0.449 | 16.16 | 14.9 | 8.1 | 24.2 || 38.2% || 84.1%
c=0.1 0.462 | 14.29 | 17.2 | 20.9 | 24.2 || 28.5% || 0%
c=0.2 0.462 | 14.29 | 16.9 | 17.7 | 24.2 | 30.0% || 0%
c=0.3 0.450 | 16.02 | 16.1 | 14.5 | 24.2 | 33.3% || 10.8%
c=04 0.460 | 14.58 | 15.5 | 11.3 | 24.2 | 35.8% || 37.0%
- % A are the loss in shareholders value due to the fact of asymmetric information (%A =
wPl_w
=er- x 100).
- % B are the gains in shareholders value due to the existence of hidden savings (%B =

W % 100).

Table 5: Maturity Hypothesis

| Parameters | d | s* | W [WN W] %A | %B |
p=A=0.10445|16.10 | 14.0 | 9.5 | 25.0 || 43.9% || 48.1%

Baseline | 0.449 | 16.16 | 14.9 | 8.1 | 24.1 || 38.2% || 84.1%
p=A=0.3]0426 | 19.46 | 154 | 7.6 | 23.9 | 35.6% | 101.4%
- % A are the loss in shareholders value due to the fact of asymmetric information (%A =
wPl_w
“prr— % 100).
- % B are the gains in shareholders value due to the existence of hidden savings (%B =

W % 100).
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Graphics

Figure 1: Evolution of the hidden savings for different simulations.
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Figure 3: Evolution of the state of the firm (H, L) and hidden savings over time.
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Figure 4: Asymmetric reactions
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