BANK REGULATION AND PROCYCLICALITY

Javier Suarez CEMFI

World Bank "Macro-financial policies" training hub JVI, Vienna, April 5-9, 2010

Overview

- 1. Bank procyclicality as a macroprudential challenge
- 2. Procyclicality induced by bank capital regulation
- 3. A model-based assessment
- 4. Dampening the procyclicality of Basel II in practice

1. Bank procyclicality as a macroprudential challenge

- Important lesson extracted from the current financial crisis: Need to adopt a more macroprudential approach
- Traditional microprudential approach:
 - Macro and system-wide phenomena taken as given
 - Focus on the risk of failure of each individual financial intermediary (=bank)
- Macroprudential approach:
 - Better understanding + regulatory/policy treatment of...
 - Build-up of systemic risk (common exposures, propagation)
 - Channels of interaction between the financial health of banks and the macroeconomy

Sources of bank procyclicality (Panetta et al. 2009)

Fundamental sources

- 1. Impact of cycle on investment opportunities and credit demand
- 2. Impact of cycle on risk profile of candidate borrowers

General amplifiers

- 1. Impact of cycle on bank profits (+ equity issuance difficulties)
- 2. Procyclical rules and standards of practice
 - (a) Fair value accounting + rules based on accounting figures
 - (b) Margins calls / haircuts
 - (c) Ratings-based and VaR-based risk management
 - (d) Compensation practices (?)
- 3. Capital requirements, especially if risk-based

- 4. Misperception of risk (disaster myopia, cognitive dissonance) (?)
- 5. Asset price bubbles (exogenous?)
- 6. Monetary policy (?)

Crisis-specific amplifiers

- 1. Panic and contagion in deposit and interbank markets
- 2. Maturity mismatches
- 3. Fire sales ("liquidity-in-the-market pricing")
- 4. Strategic behavior of large players (?)

[Some effects of the amplifiers:

- Liquidity- & capital-driven credit crunches
- Procyclical risk-taking (by preference or by capacity)

2. Procyclicality induced by bank capital regulation

- Now top in agenda for financial regulation reform, possibly because:
 - genuine importance
 - close connection to central microprudential regulatory tool
- Potential instance of micro/macro inconsistency:

A good design from perspective of individual banks...

- preserving some target solvency level at each bank
- making each bank's required capital a function of its risk profile

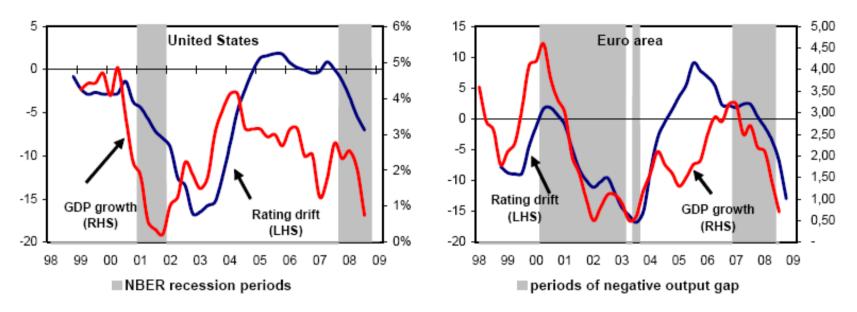
may have undesirable aggregate, time-series properties

- aggregate shocks may increase risk profile of many banks at the same time
- aggregate loan supply may be affected

Main argument

1. Regulation imposes a minimum capital to (risk-weighted) assets ratio

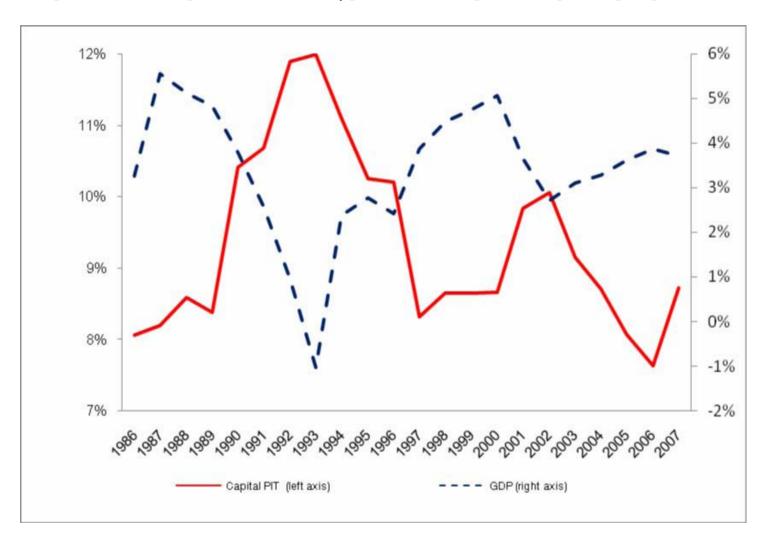
$$\frac{K}{L} \ge \gamma$$


[For fixed K, upper limit on L: $L \leq K/\gamma$]

- Basel I: $\gamma \simeq 8\%$
- \bullet Basel II (IRB approach): γ comes from VaR formula, increasing in estimated
 - probabilities of default (PDs)
 - losses-given-default (LGDs) (of each exposure)
- 2. Capital K feeds from retained profits & equity issuance... But new equity is hard to raise (esp. in bad times)

3. In recessions:

- Loan defaults & other losses may turn profits into losses
- Estimated PDs and LGDs increase
 - Basel I: $\downarrow K$ \Rightarrow Effect on K/γ
 - Basel II: $\downarrow K \& \uparrow \gamma \Rightarrow$ Stronger effect on $K/\gamma!$
- 4. If banks cannot quickly raise sufficient new capital...
 - Fall in lending capacity may produce a (persistent) credit crunch
 - Negative impact on economy may cause a feedback loop (↓bank profits, ↑PDs, and ↑LGDs)
 - ⇒ Potentially important aggregate effects


Ratings drift and GDP growth: US and euro area (1)

Note: ratings drift is equal to upgrades minus downgrades divided by the number of rated issuers (source: Moody's). GDP growth is the annualized quarterly percentage change in GDP (source: Thomson Financial).

[From: Panetta et al. (2009) "Financial Sector Pro-cyclicality:..."]

SPAIN: PIT CAPITAL REQUIREMENTS AND GDP GROWTH

[From: Repullo et al. (2009), "Mitigating the Pro-cyclicality of Basel II"]

5. By symmetry, banks would find it much easier to expand their lending in good times

However, the effects are unlikely to be symmetric:

- Banks can pay dividends or keep surplus capital
- Equilibrium lending is likely to be demand driven
- Feedback effects are likely to be more limited
- 6. Preventing capital-driven credit crunches may require...
 - Cyclical adjustments in capital requirements (CR)
 - Arranging for contingent capital injections in bad times

Main positions in the policy debate

Macro-prudentialists

- Consider the procyclicality induced by CR a major issue
- Would prefer to see...
 - * adjustments based on rules
 - * rules based on aggregate/bank indicators of credit cycle
- Some defend going beyond the pure correction of regulationinduced effects

Micro-prudentialists

- Play down the importance of the procyclical effects
- Consider it a necessary evil
- Would prefer adjustments based on...
 - * supervisory discretion (Pillar 2)
 - * use of (supervisory-validated?) through-the-cycle inputs

Sceptics

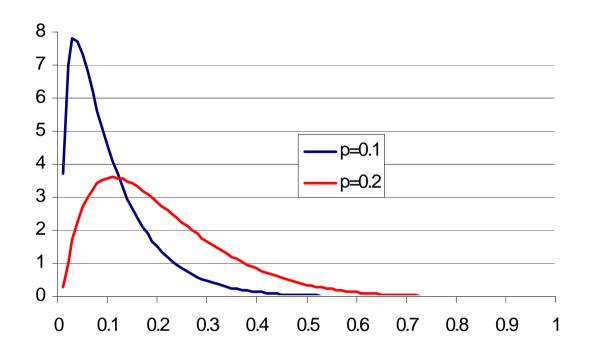
- Banks typically hold capital in excess of required minima (If these "capital buffers" were sufficiently high, fluctuations in K/γ might not affect the level of equilibrium lending)
- Truly binding requirements are "economic capital requirements"
- Cyclical adjustments to regulation cannot do much

In this context, Repullo and Suarez (2009) challenge the view that regulation-induced procyclical effects are not important

- Banks keep capital buffers in response to uncertainty on future profits, CR, and difficulties to raise new capital
- Banks wish to avoid losing profitable lending opportunities when their capital is too scarce
- Effects on credit supply are sizeable; effects on bank solvency not
 (Beware the micro-prudentialists and sceptics!)

3. Model-based assessment

- For capital requirements to have a significant impact on aggregate credit two conditions must be met:
 - Some **banks** must find it difficult to issue equity when needed
 - Some borrowers must find it difficult to switch from a constrained bank to other financing sources


[Blum and Hellwig (1995), Kashyap and Stein (2004)]

- Our relationship banking model captures these conditions in a way that produces a tractable OLG structure:
 - Borrowers need loans for two consecutive periods and become dependent on initial lenders
 - Banks with ongoing relationships cannot issue equity
 (→ they only access the equity market every other date)

- Other features of the model:
 - → Perfect competition in market for first period loans
 - → Business cycle = 2-state Markov chain for loans' PDs
 - * Low default state *l*
 - * High default state *h*
 - → Loan losses are as in the model underlying the IRB approach
 - * State of the economy determines expected default rate (PD)
 - * Single risk factor determines realized default rate

— ...

Density of the default rate x_t

Here: two extreme PD values, 10% & 20% In baseline calibration: 1.1% & 3.3%

Reminder:

IRB approach of Basel II adopts target confidence level $\alpha = 99.9\%$ (capital so as to absorb losses in 99.9% quantile of this distribution)

- Other features of the model:
 - Perfect competition in market for first period loans
 - Business cycle = 2-state Markov chain for loans' PDs
 - * Low default state l
 - * High default state h
 - Loan losses are as in the model underlying the IRB approach
 - * State of the economy determines expected default rate (PD)
 - * Single risk factor determines realized default rate
 - → Focus on **supply side**, ignoring demand-side&feedback effects
 - * Expected credit rationing
 - * Implications for bank solvency

Strategy for the analysis

- Dynamic optimization reduced to sequence of 2-period problems
 - Banks optimize on their first-period capital holdings k_s (Maximizing net present value of shareholders' expected payoffs)
 - First-period loan rates r_s found in perfectly competitive fashion (Zero net present value condition)
- ullet Banks' optimal capital buffers depend on simple trade-off: Cost of excess capital vs. Capacity to satisfy future loan demand
- Effects of capital requirements are analytically ambiguous
 - Precaution effect: \uparrow future γ s \Rightarrow \uparrow buffers
 - Profitability effect: \uparrow future γ s $\Rightarrow \downarrow$ profitability of future lending
 - **⇒ Need for numerical evaluation**

Parameterization*

Baseline parameter values (medium volatility scenario)

a	λ	δ	q_l	q_h	p_h	p_l
0.04	0.45	0.04	0.20	0.64	3.3%	1.1%

- Realistic values, but not intended to provide a calibration
- Transition probabilities reflect observed default cycles (high/low PD states last 2.8y/5y on average)
- PDs imply an average capital charge of 8% under Basel II:

$$\gamma_l = 6.6\% < \gamma_h = 10.5\%$$

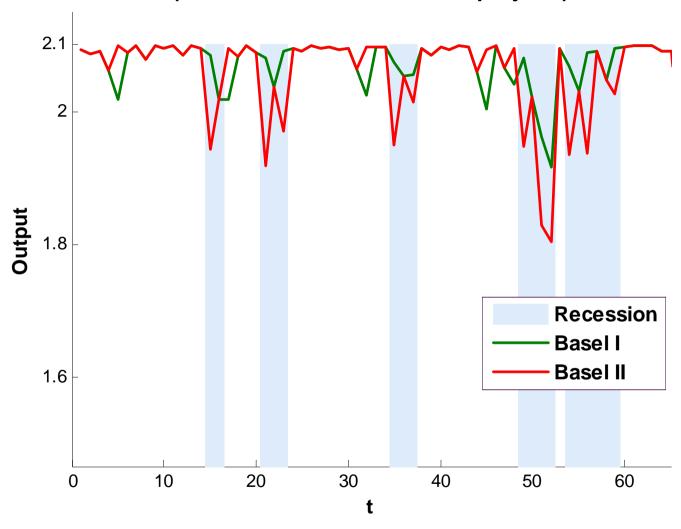
Numerical results (i)

Loan rates and capital buffers (%)

	Rates		Capital		Buffers	
	r_l	r_h	k_l	k_h	Δ_l	Δ_h
Basel I	1.2	2.7	11.0	11.2	3.0	3.2
Basel II	1.2	2.8	11.7	12.5	5.1	1.9
Laissez-faire	0.6	2.1	5.1	5.3	5.1	5.3

- Small loan rate effects
- Sizeable buffers: noncyclical under Basel I; higher in expansions under Basel II

Numerical results (ii)


Expected credit rationing in state s' (%)

	İ		,
Conditional	on	S	$\rightarrow s'$

	$l \longrightarrow l$	$l \to h$	$h \to h$	$h \rightarrow l$	Uncond.
Basel I	1.4	1.4	2.7	2.7	1.9
Basel II	0.3	10.7	4.5	0.6	2.6
Laissez-faire	2.1	2.1	5.2	5.2	3.2

- Basel II is clearly procyclical:
 - * increases rationing in s' = h, especially after s = l
 - * decreases rationing in s' = l, especially after s = h
- Unconditionally, Basel II increases expected credit rationing

Economic Activity (realized value of investment projects)

Numerical results (iii)

Probabilities of bank failure (%):

	1st period banks		2nd period banks	
	s = l	s = h	s = l	s = h
Basel I	0.022	0.115	0.006	0.074
Basel II	0.014	0.054	0.014	0.019
Laissez-faire	2.080	5.210	1.023	5.721

- Basel II makes banks safer
- Pr(bank failure) is well below the nominal target of 0.1%

Specific policy evaluation

- There is room for introducing *cyclical adjustments* in the requirements w/o compromising long-term solvency targets
- ullet Consider state-contingent confidence levels $\{\alpha_{ss'}\}$
 - Policy 1: Mean-preserving spread with $\alpha_{lh} = \alpha_{hh} = 99.8\%$
 - Policy 2: Mean-preserving spread with α_{lh} =99.8%

Expected credit rationing in state s' (%)

	$l \longrightarrow l$	$l \rightarrow h$	$h \to h$	$h \rightarrow l$	Uncond.
Basel II	0.3	10.7	4.5	0.6	2.6
Policy 1	8.0	3.7	3.6	1.6	1.9
Policy 2	0.5	4.4	4.4	0.6	1.9

[Note: $Pr(bank failure) \le 0.08\%$ in all sequences]

The findings in perspective

- Under Basel II capital requirements,
 - Banks indeed choose to hold capital buffers
 - Buffers are not sufficient to fully neutralize the implications of a downturn
 - ⇒ Sizeable fall in supply of credit to bank-dependent borrowers
- Advantages of cyclically-varying feature of Basel II (preserving banks' solvency over the business cycle) are disproportionately small relative to potential credit crunch effects
- But risk-sensitivity has good cross-sectional properties
 - Alternative is not to return to Basel I
 - Alternative is to correct the procyclical effects of Basel II

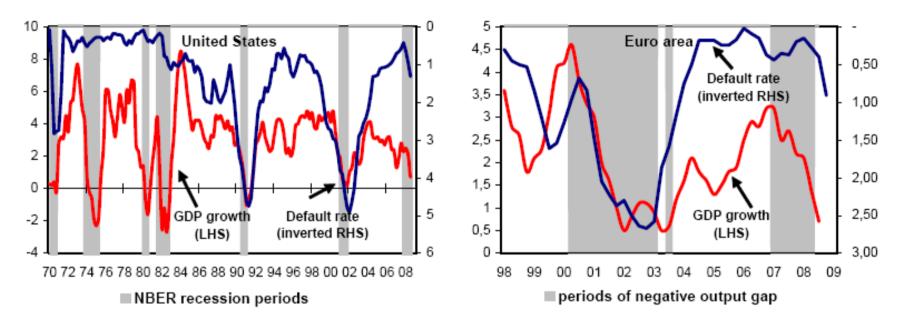
4. Dampening the procyclicality of Basel II in practice

- Issues under discussion
 - Inputs vs outputs
 - Rules-based vs discretionary
 - Contingent on what?
 - How ambitious?
- I will refer to these points by criticizing the route apparently followed by the Basel Committee
 - In particular I will...
 - Elaborate on the pitfalls of the through-the-cycle approach
 - Defend an alternative rules-based adjustment-factor approach

- Definitely, correct the procyclicality of capital requirements
- Route apparently followed by the Basel Committee
 - Full implementation of *through-the-cycle* input estimates
 - Some version of the Spanish pre-provisioning system [or other mechanisms that encourage the formation of "usable" buffers]
- Without objecting to the second part, I think that:

Relying on through-the-cycle estimates is a mistake:

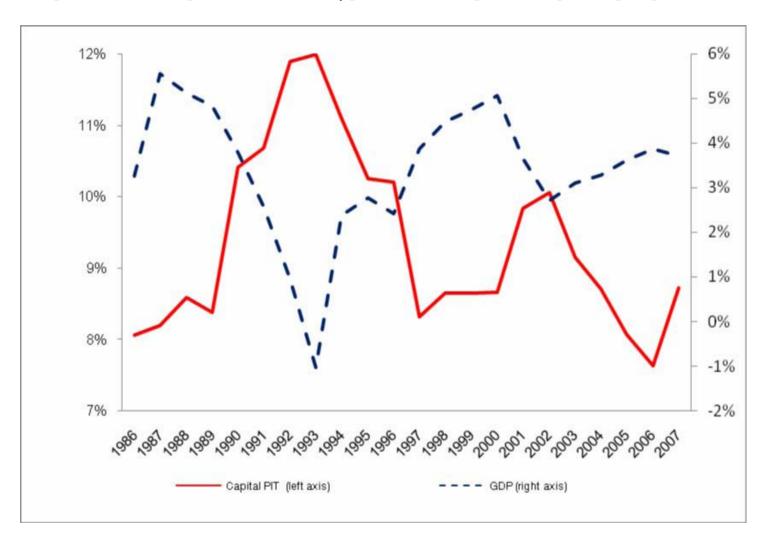
- 1. Makes internal models harder to verify
- 2. Expands the scope of supervisory discretion
- 3. Kills the statistical interpretation of required capital
- 4. Not clear that available data can deliver reliable through-the-cycle estimates


My advice:

Adjustment factor based on simple macro aggregates (GDP, credit?)

- Richer alternatives may have virtues
- But also many pitfalls in terms of simplicity, predictability, flexibility and manipulability
 - * more complicate
 - * more uncontrollably heterogeneous across jurisdictions
 - * harder to re-assess or predict in real time
 - * harder to recalibrate
 - * more open to discussions with the industry
 - * more vulnerable to "specification errors"
 - * more vulnerable to "regulatory capture"

- Go for a smooth factor based on lags of e.g. GDP growth[Moving average of quarterly growth rates]
 - * Tailored to specificities of credit categories & jurisdictions.
 - * For cross-border exposures, use composite index based on borrowers' location
 - * With elasticities to GDP growth calibrated according to:
 - 1. Link between $\triangle GDP$ & relevant inputs [LGDs, EADs, portfolio rebalancing... also matter]
 - 2. Link between $\triangle GDP$ & credit growth
 - 3. Targeted "countercyclicality"


Default rates and GDP growth: US and euro area

Note: The default rate is the 12-month moving average of corporate bonds in default weighted by their nominal amount; data for the euro area refer to all non-US corporate bonds (source: Moody's). GDP growth is the annualized quarterly percentage change in GDP (source: Thomson Financial). The shaded areas for the United States are the NBER recession quarters (source www.nber.org) and for the euro area are the quarters when the euro area GDP is below its exponential trend

[From: Panetta et al. (2009) "Financial Sector Pro-cyclicality:..."]

SPAIN: PIT CAPITAL REQUIREMENTS AND GDP GROWTH

[From: Repullo et al. (2009), "Mitigating the Pro-cyclicality of Basel II"]

• At this stage,

- Start with the modest target of neutralizing regulation-induced procyclicality
- More ambitiously, one could try to also compensate for cyclicality of bank profits, and availability/cost of equity financing
- Leave further adjustments for second stage or to the discretion of macroprudential authorities
 - → Automatic stabilizer + Explicit, transparent potential tool for discretionary fine-tuning

Added advantage:

This approach will signal that there is an explicit tool that can

- operate as an automatic stabilizer and
- be fine-tuned by the macroprudential authorities, if needed