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1 Introduction

The proliferation of patents in highly technological markets makes entry of new firms dif-

ficult, among other reasons, because of the risk of infringing some patents. One example

is the market for smartphones, in which producers are entangled in endless legal bat-

tles.1 Some practitioners doubt about the effectiveness of the patent system in generating

the right incentives to innovate and refer to this problem as the “tragedy of the anti-

commons,” describing strategic patenting and patent stacking as obstacles to innovation

(Heller and Eisenberg (1998)).

Patent proliferation has been spurred by the strong protection of innovators’ intellec-

tual property rights (IP), especially in the United States. It has been argued that the

creation of a unique Court of Appeals of the Federal Circuit in 1982, as well as the 1984’s

Semiconductors Act and the extension of patent duration to 20 years, strengthened the

protection of IP. However, whether these reforms have really promoted innovation is the-

oretically and empirically controversial.2 In fact, some quantitative assessments indicate

that these reforms may have been detrimental to innovation (Levin et al. (1985), Hall and

Ziedonis (2001)).

In this paper we study the effects of the protection of intellectual property rights in a

tractable industry dynamics model. We focus on the effects on the speed of innovation and

on social welfare in markets in which entrants face uncertainty on whether their product

might infringe some of the existing IP rights. We consider an industry made up of a

continuum of business niches where each niche can be thought of as a distinct product.

The successful developers of improved versions of each product contribute to welfare and

appropriate temporary monopoly profits like in a standard quality ladder model with

limit pricing (Grossman and Helpman (1991)). These temporary monopolies are based

on the protection granted by IP and are threatened by the entry of the developers of even

better versions of the product (innovators) as well as imitators. Prospective entrants,

1See “The Great Patent Battle,” The Economist, 10/21/2010.
2See Gallini (2002) for a review of the reforms and their effect on patenting activity.
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due to the uncertainty on which niche they will occupy, anticipate that in markets in

which more incumbents hold patents conflicts with them will be more inevitable and the

resulting profits will tend to be lower; this discourages their entry. We find that, if feasible,

incumbents should be protected against imitation but not against genuine innovation.

The success of the innovators is compromised by the competition coming from other

contemporaneous innovators and by the opposition of incumbent monopolists, who use

their IP to fight the entrants.3 We assume that incumbents exert lower effective resistance

to entry in non-monopolized business niches than in monopolized ones. This assumption

captures three complementary mechanisms. First, with competing incumbents, it should

be easier and cheaper for the entrant to warrant her entry by obtaining a license for one

of the substitute technologies. Second, the fact that imitation has previously succeeded

in the niche may signal that the patent of the previous monopolist was invalid or had

expired, in which case his resistance to the new entrant might also lack legal support.

Finally, to the extent that court damages due to patent infringement tend to be related

to foregone profits, the entrant may expect to reach a more favorable settlement with

incumbents when the pre-entry profits in the niche are low.4 For simplicity, we assume

that IP protection is just ineffective in non-monopolized niches.

An important feature of the model is that entrants are uncertain about the specific

niche that their product may challenge and whether it will be occupied by a patent holder

or not. We believe that these sources of uncertainty, while somewhat overlooked by the

literature, are very important in practice. First, innovation activities often engender

products with uses different from those originally intended by their developers. Second,

developers may pursue products intended to occupy an empty market niche but, because

innovation takes time, they may find that, by the time the product is available, the niche

has been filled by a faster or luckier developer. Finally, innovators may not be aware of

3We assume that the strength of IP protection affects the incumbents’ probability of expelling the
innovators and imitators who challenge their business niches. This modeling allows us to abstract from
the traditional distinction between patent length and patent breadth (Scotchmer (2004)).

4The evidence in Cockburn and MacGarvie (2011) for the software industry is consistent with these
views.
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all of the intellectual property potentially connected to their products and target niches

that they hoped to find vacant.

Strengthening IP protection in our setup involves dynamic trade-offs that give rise

to the main findings in the paper. First, stronger protection against future innovation

implies a larger expected duration of the monopoly obtained by the developers of IP who

enter successfully, but also a stronger protection of the incumbents and, hence, a higher

hurdle for subsequent entrants. Reducing the hurdle for successful entry and lengthening

the duration of the monopoly rights granted are substitute forms of rewarding a potential

innovator. However, we find that, due to discounting, the former is a more effective means

of increasing the steady-state rate of innovation and our measure of social welfare than

the latter. So the socially optimal level of protection against further innovation is zero.

Second, stronger protection against imitation lengthens the expected duration of the

monopoly obtained by successful innovators but has no direct effect on innovators’ entry

hurdle. It has, however, an indirect effect due to the fact that imitation reduces the

steady-state fraction of business niches monopolized by IP holders and, hence, the ef-

fective opposition faced by subsequent innovators. We show that if the protection that

IP grants against further innovation is chosen optimally (i.e. equals zero), then innova-

tion and welfare monotonically grow with the protection against imitation. Otherwise,

the innovation rate and social welfare may well be maximized at intermediate levels of

protection against imitation.

The literature on the optimal protection of innovators reaches different conclusions

depending on the assumptions on how firm-specific is the process of engendering an in-

novation. When only one firm can come up with a given innovation, firms typically

underinvest in R&D because they do not internalize all the social returns of their invest-

ment. In this strand of the literature, started with Nordhaus (1969) and summarized by

Hopenhayn et al. (2012), patent protection arises as a way for firms to internalize a larger

part of the surplus from the innovation. In contrast, when several firms may compete to
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obtain a similar innovation, producing a patent race situation, as in Loury (1979), patent

protection may be excessive. Firms have incentives to invest in R&D in order to be the

first to obtain the innovation and do not internalize that they erode the profitability of

the investments undertaken by their competitors.

Our paper shares with the second branch of this literature the feature that, at a

given point in time, all entrants compete for accessing a scarce number of market niches.

However, our result that patent protection against further innovation is undesirable does

not arise from the patent race component of the model but from its dynamic part. We

find that the advantages of encouraging innovation by protecting an innovator once it

is already in the market are offset by the erosion of his profits as a prospective entrant.

Thus, our analysis is novel in emphasizing dynamic industry equilibrium effects that

establish bidirectional relationships between the blanket of overlapping IP claims and the

innovation process.

Equilibrium analysis is a feature of papers such as Aghion et al. (2001) or O’Donoghue

and Zweimüller (2004), which analyze IP protection from the perspective of endogenous

growth models.5 The first paper studies R&D competition in a quality ladder model

where each good is sold by two firms. These firms have a productivity level that they

may improve by investing in R&D or by imitating the leader. The authors show that

protecting leaders against this imitation has an inverse U-shaped effect on growth, but

the logic behind their finding is different from ours. Imitation helps backward firms to

catch up with the leaders, which may try to elude the ensuing competition by increasing

their innovation effort. This makes imitation potentially good for innovation. With too

much imitation, though, leadership is too short-lived and the net effect becomes negative.

O’Donoghue and Zweimüller (2004) study the effect on growth of various aspects of

patent policy (i.e. leading breadth and patentability requirements) in a general equilib-

rium context. Their paper emphasizes effects associated with demand and the reallocation

5Papers in this tradition also include Grossman and Lai (2004), who study the effect of IP on interna-
tional trade, and Boldrin and Levine (2006), who analyze the optimal degree of IP protection when the
size of the economy grows.
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of resources across sectors which are typically neglected in partial equilibrium models.

Our work focuses on the dynamic industry-level effects rather than general-equilibrium

consequences.

Our baseline model formalizes imitation as an exogenous random arrival process but

can be extended to make imitation the result of a costly and risky entry decision similar

to that of innovators. The model can also be extended to analyze the situation in which

innovators face financial constraints. Our key results are robust to both extensions.

The rest of the paper proceeds as follows. Section 2 introduces our baseline industry

dynamics setup. Section 3 analyzes its equilibrium and steady-state properties. Section

4 explores the welfare implications of IP protection and discusses optimal IP policies.

Section 5 describes the extension in which imitation is endogenous. Section 6 incorporates

financial constraints in the analysis. Section 7 concludes. The Appendix contains all

proofs.

2 The Model

This section describes an infinite horizon, discrete-time model of an industry. Agents are

risk-neutral and have an intertemporal discount factor β < 1. The industry consists of a

measure-one continuum of business niches. Each niche can be interpreted as the market for

a different product.6 At each date t there is a proportion xt ∈ [0, 1] of niches monopolized

by producers protected by an active patent. Monopolists during their incumbency earn a

per period profit flow of a > 0.7

Active patents become worthless whenever their niche is successfully occupied either

by an imitator or by the holder of a patent for a superior substitute of the product. At

each date t, each monopolized niche is challenged by at least an imitator with a probability

6This simplification allows us to abstract from cross-product competition and to focus on competition
related with concomitant and future entry into each niche.

7In Section 4 we interpret the introduction of newer products in terms of a quality ladder model with
limit pricing (Grossman and Helpman (1991)) in which a is the quality improvement of each successful
innovation.
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δ > 0, which is exogenous and independent across niches.8 Patents allow incumbents to

fight imitation and preserve their monopoly in a challenged niche with probability λ1.

When this protection fails, the niche becomes Bertrand competitive and firms make zero

profits.

The entry of innovators occurs once the imitation process is completed. Each niche

(monopolized or not) is challenged by the holder of a new patent with an endogenous

probability qt. In monopolized niches, an incumbent patent holder challenged by an

entrant preserves its position with probability λ2. When this protection fails, the entrant

replaces the incumbent as the monopolist of that niche and the new patent joins the stock

of active patents.

Under these assumptions, the value of an active patent at date t (that is, the present

value of the monopoly profits that it yields), can be recursively written as

vt = a+ β[1− (1− λ1)δ][1− (1− λ2)qt+1]vt+1, (1)

where the two terms in square brackets represent the probability at date t + 1 of sur-

mounting the entry of imitators and innovators, respectively. The law of motion of the

stock of active patents, xt, can be written as

xt = [1− (1− λ1)δ]xt−1 + {1− [1− (1− λ1)δ]xt−1}qt. (2)

The first term in the right hand side of this expression accounts for the niches that,

being monopolized at t − 1, remain monopolized after the entry of imitators at t; the

second term accounts for non-monopolized niches that become monopolized by successful

innovators at t. Notice that when these innovators enter previously monopolized niches

they simply replace previously active patents with new ones, keeping the size of the stock

xt unchanged.

The probability of innovative entry qt is determined as follows. At each date there is

an infinite number of potential innovative entrepreneurs who may attempt to engender

8In Section 5 we extend the model to endogenize the entry of imitators.
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and develop an innovation. Innovating is risky and involves a non-pecuniary entry cost

Φ > 0 and a pecuniary development cost normalized to one. These costs are incurred

one period before the potential new product is generated. The distinction between the

pecuniary and non-pecuniary part of the overall cost 1 + Φ is immaterial in the baseline

model but becomes useful when imitation is endogenized (Section 5) and when innovators

face financial constraints (Section 6).

Innovators have to overcome the competition of simultaneous developers of new prod-

ucts and the opposition of the incumbent monopolists. We capture the first of these risks

in the form of congestion, as in the literature on search frictions.9 If et ∈ [0,∞) denotes

the mass of innovations developed between dates t − 1 and t, we postulate that each of

them becomes the challenging product of a niche with an identical and independent prob-

ability 1/(1 + et).
10 Accordingly, the probability of success goes to one as the measure of

simultaneously developed innovations goes to zero, and to zero as the measure of poten-

tial entrants goes to infinity. Also, like in a reduced-form patent race among symmetric

contestants, the probability of success of any given innovation declines with the number

of competing innovations.11

For consistency, the probability of innovative entry in a given niche qt must equal the

product of the number of innovations subject to development at that date, et, and the

probability with which each of them gives rise to a challenging product, 1/(1 + et). So we

must have qt = et/(1 + et), which is increasing in et. For brevity, we will refer to qt as the

innovation flow.

An innovator that challenges an empty or competitive niche becomes its monopolist

with probability one. In contrast, in an already monopolized niche, becoming the new

9See Mortensen (1982) and Pissarides (1985) for classical examples in labor economics.
10This specific formulation is adopted for analytical tractability and satisfies the standard properties of

matching technologies. Of course, coordination and congestion problems could be modeled in many other
ways. For example, the explicitly probabilistic urn-ball process postulated by the literature on random
matching would imply a success probability of [1 − exp(−e)]/e for each innovation. Our formulation is
simply more tractable.

11Opposite to classical models in the patent-race literature (e.g., Loury (1979) and Lee and Wilde
(1980)), we abstract from the timing of innovation.
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monopolist entails overcoming the opposition from the incumbent (based on a legal dispute

on patent rights), which we assume to occur with probability 1 − λ2. Thus, using the

equality 1/(1 + et) = 1 − qt to rewrite the probability with which a given innovation

becomes the successful challenger of a niche, an innovator’s probability of success in

becoming a monopolist at date t can be written as

pt = {1− λ2[1− (1− λ1)δ]xt−1}(1− qt), (3)

where [1− (1−λ1)δ]xt−1 is the fraction of niches that, taking into account the prior entry

of imitators at date t, remain monopolized when innovators reach them.

Finally, for the mass of innovations subject to development at any date t, et, to be

finite, the net gain from entering and developing an innovation must be zero or strictly

negative:

− (1 + Φ) + βptvt ≤ 0. (4)

Using (3) to substitute for pt, (4) can be rewritten as

− (1 + Φ) + β{1− λ2[1− (1− λ1)δ]xt−1}(1− qt)vt ≤ 0, (5)

to which we will refer as the free-entry inequality. If this inequality is strict, no innovations

are developed in the corresponding date and the innovation flow qt must be zero. To

guarantee this, we impose a last equilibrium condition,

qt[−(1 + Φ) + β{1− λ2[1− (1− λ1)δ]xt−1}(1− qt)vt] = 0, (6)

to which we will refer as the complementary slackness condition.

3 Equilibrium

In this section we define the dynamic equilibrium of the industry and analyze its steady-

state properties. Equilibrium conditions determine three key endogenous variables at each

date t: the innovation flow qt, the stock of active patents xt, and the value of a patent vt.
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Definition 1. Given an initial stock of active patents x0, an equilibrium is a sequence

of non-negative triples (xt, vt, qt), for t = 1, ...∞, that satisfy the valuation equation (1),

the law of motion (2), the free-entry inequality (5), and the complementary slackness

condition (6).

When the innovation flow qt is strictly positive along the equilibrium sequence, the

set of equilibrium conditions described in Definition 1 can be reduced to a bidimensional

non-linear system of first-order difference equations in xt and vt. Specifically, equation

(2) can always be used to produce an expression for qt in terms of xt−1 and xt. Moreover,

having qt > 0 requires (5) to hold with equality, by (6). The substitution of the expression

for qt in such equality and in (1), respectively, yields the two difference equations of the

following reduced system in xt and vt:

β(1− xt)
1− λ2(1− ψ)xt−1

1− (1− ψ)xt−1

vt − (1 + Φ) = 0, (7)

β(1− ψ)
1− (1− λ2)xt − λ2(1− ψ)xt−1

1− (1− ψ)xt−1

vt − vt−1 + a = 0, (8)

where ψ ≡ (1− λ1)δ denotes the effective imitation risk (or probability with which each

patent holder is replaced by an imitator in a given period).

Importantly, if ψ > 0, the above system describes the dynamics of equilibrium in the

neighborhood of any steady-state equilibrium (SS) with a strictly positive stock of active

patents, xss > 0, because compensating its attrition due to imitation requires a positive

innovation flow qss > 0. Specifically, we must have

qss =
ψxss

1− (1− ψ)xss
, (9)

by (2). When equations (7) and (8) are evaluated in a steady-state equilibrium with
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xt = xt−1 = xss and vt = vt−1 = vss for all t, we obtain

β(1− xss)
1− λ2(1− ψ)xss
1− (1− ψ)xss

vss − (1 + Φ) = 0, (10)

[
1− β(1− ψ)

1− (1− λ2ψ)xss
1− (1− ψ)xss

]
vss − a = 0. (11)

After solving (10) and (11), the steady-state innovation flow qss can be obtained using

(9).

The next lemma provides a necessary and sufficient condition for the existence of a

(unique and locally stable) steady-state equilibrium with a strictly positive stock of active

patents.

Lemma 1. There exists a steady-state equilibrium with xss > 0 if and only if

βa

1− β(1− ψ)
≥ 1 + Φ. (12)

This equilibrium is unique, locally stable, and exhibits monotonic convergence in the state

variable xt and saddle-path convergence in the jump variable vt.

The steady-state stock of active patents xss and the steady-state value of a patent vss

can be described as the coordinates of the intersection between two curves (see Figure

1): the free-entry curve defined by equation (10) and the present-value curve defined by

(11). The free-entry curve describes an increasing relationship between xss and vss which

reflects that, when the stock of active patents is larger, the developers of new products are

more likely to find opposition from incumbents and, thus, less likely to enter successfully.

So a larger (after entry) value of patents vss is necessary to encourage innovators to

innovate. The present-value curve describes the negative relationship between xss and vss

implied by equation (11), which expresses the value of a patent as a discounted sum of the

per-period monopoly profits a. Intuitively, as shown in (9), a larger xss implies a larger

innovation flow qss, which in turn increases the risk that a patent becomes worthless and,

hence, erodes vss.
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Figure 1: Characterization of the steady state. It is easy to study the comparative-statics
of most parameters. Here, we illustrate the effect of an increase in Φ.

Graphically, the existence condition in Lemma 1 is equivalent to requiring that the

intercept of the free-entry curve (10) in Figure 1 is lower than the intercept of the present-

value curve (11) so that both curves intersect once. Economically, condition (12) guar-

antees that a single innovator (et = 0) facing no opposition from incumbent monopolists

(xt = 0) would make positive entry profits.

Figure 1 is also useful to perform comparative statics regarding the effects of most

parameters on xss and vss. The next proposition summarizes these effects.

Proposition 1. In a steady-state equilibrium with xss > 0, the effects of marginal changes

in the parameters on the steady-state variables xss, vss, and qss have the signs shown in

the following table:

a β Φ ψ λ2

xss + + − − −
vss + + + − +
qss + + − ? −

In the next two subsections we first comment on the effects of each parameter on xss
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and vss, and then discuss the effects on qss. The third subsection contains a brief note on

transitional dynamics.

3.1 Determinants of the stock and value of active patents

The monopoly rents a and the discount factor β have, for standard reasons, positive effects

on the value vss and the steady-state stock xss of active patents. Higher innovation costs,

measured by Φ, make the equilibrium flow of innovation less intense. This reduces the

stock of active patents xss, continuously eroded by imitation, and increases the expected

duration of the monopoly associated with each active patent and, thus, vss. The rise in

vss allows entering innovators to be compensated for the larger entry cost.

As one could expect, a lower probability that an innovator is replaced (either because

the effective imitation risk ψ is lower or the IP protection against further innovation λ2

is larger) increases the value vss of each active patent. However, imitation risk and inno-

vation risk have opposite implications for xss. Lowering ψ merely expands the expected

valuable life of each patent, resulting in a higher xss. But the protection against innova-

tive entry λ2 has the additional effect of weakening the incentives for new innovators to

enter. As Proposition 1 shows, the latter effect dominates because, from the perspective

of a potential entrant, the future protection granted by a larger λ2 is discounted vis-a-

vis the extra hurdle to current entry that it imposes.12 This insight explains the social

undesirability of increasing λ2 that we establish in Section 4.

3.2 Determinants of the innovation flow

We now turn to the effects of parameters on the steady-state innovation flow qss. Equation

(9) establishes a positive relationship between qss and the steady-state stock of active

patents xss because, intuitively, innovation in the steady state must be sufficiently large

to compensate the attrition in the stock of active patents due to imitation. This connection

makes qss to move in the same direction as xss in response to changes in most parameters.

12This effect can be appreciated by noting that the expression in equation (27) (in the proof of Propo-
sition 1) would become positive if the discount factor β were greater than one.
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The exception arises when we consider the impact of the effective imitation risk ψ on

qss because this parameter has an additional direct effect on (9). So we have

dqss
dψ

=
∂qss
∂ψ

+
∂qss
∂xss

∂xss
∂ψ

.

The direct effect ∂qss/∂ψ is positive because imitation reinforces the need to compensate

for the attrition in xss. In contrast, the indirect effect is negative because the imitation risk

reduces xss, and the fall in xss reduces qss as explained before (i.e. we have ∂xss/∂ψ < 0

and ∂qss/∂xss > 0). This gives rise to a generally ambiguously-signed overall effect.

Economically, the ambiguity is explained by the fact that, while imitation facilitates

entry by increasing the fraction of competitive niches, it also erodes the expected profits

of a successful innovator.

It can be shown that when the protection against genuine innovation, λ2, is close to

zero, the second effect dominates, so entry monotonically decreases with ψ. Numerical

simulations, however, show that, for larger values of λ2, the direct effect may dominate

when ψ is low, as illustrated by the solid curve in Figure 2. In those cases, the innovation

flow is maximized at some interior value of the effective imitation risk ψ. These results

imply non-trivial trade-offs for our discussion below on the socially optimal level of pro-

tection against imitation λ1 (recall that ψ ≡ (1 − λ1)δ, where δ is the flow of entry of

imitators) and its link to the socially optimal level of protection against innovation λ2.

3.3 Transitional dynamics starting from too many patents

This subsection provides a brief note on the case in which equilibrium dynamics is not

characterized by equations (7) and (8) because entry is zero at some dates. The absence

of entry for a few periods may be a feature along part of the path of transition towards

steady state when the initial stock of active patents, say x0, is well above the steady-state

value xss. How will the steady-state be reached in such a situation?

If the predetermined proportion of monopolized niches xt−1 is very large, vt many be

very low for a few periods, making (5) hold with strict inequality, in which case entry is
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Figure 2: Steady-state innovation and imitation risk. This graph depicts qss as a function
λ1. The underlying parameter values are a = 0.1, β = 0.96, δ = 0.05, and Φ = 0.15. The
solid and dashed curves correspond to the cases λ2 = 0.5 and λ2 = 0, respectively.

not profitable and we have qt = 0 by (6). The absence of entry and the attrition of xt

due to imitation will tend to increase over time the profitability of innovating, up to a

point in which qt > 0 is compatible with (6), and the dynamics of the system is again

describable by (7) and (8).13

4 Welfare Effects of IP Protection

In order to perform a meaningful welfare analysis, we need to formalize the demand side

of the industry. We do this along the lines of a standard quality ladder model with limit

pricing. In particular, we specify demand and the welfare measure as in the sequential

innovation setup of Hopenhayn et al. (2006). Social welfare in this model is equal to

consumers’ surplus since innovators break even in expectation and, thus, obtain no surplus

in equilibrium.

We assume that there is a unit mass of infinitely-lived homogeneous consumers willing

to buy at most one unit of the product from each niche j ∈ [0, 1] at each date t. Utility is

13In this transition with zero entry for some periods, the reduction in the stock of active patents due
to imitation will typically lead to a situation with xt > xss > (1 − ψ)xt just one period before reaching
the steady state.
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additive across goods and dates, the intertemporal discount factor is β < 1, and the net

utility flow from buying good j at price Pjt is Ujt = Ajt − Pjt, where Ajt is the quality of

the good. The successful entry of an innovation in a given niche improves the quality of

the best good available in that niche by a units, while the successful entry of an imitator

in the niche makes the production technology of the best quality good freely available to

the imitator. Finally, we assume, for simplicity, that production costs are zero.

How are goods priced in each niche? How does consumers’ utility evolve over time?

Notice that active monopolists are always able to charge a price Pjt = a that captures the

full quality advantage of their product vis-a-vis the best competing product. Innovation

does not always immediately increase consumers’ net utility flow. Specifically, when an

innovator enters a non-monopolized niche, consumers enjoy the greater quality of the

new good but also pay a higher price, so their net utility gain is zero. The increase in

consumers’ net utility occurs later, when the monopolized niche experiences the entry

of a competitor of either equal quality (an imitator) or greater quality (an innovator).

Consumers enjoy then an extra surplus of a per period for all periods ahead either because

of the smaller price (zero) paid for the same good (after imitation) or because they pay

the same price for a higher quality good (after innovation).

In this setup, consumers’ net utility in the steady-state equilibrium grows linearly over

time. As a stationary social welfare measure, following Hopenhayn et al. (2006), we use

the present value of consumers’ incremental net utility flows due to the imitation and

innovation completed in a typical date,

Wss = {ψ + (1− ψ)(1− λ2)qss}xss
a

1− β
. (13)

To explain (13), notice that utility additions only occur over the measure xss of monopo-

lized business niches and are associated with either imitation, which occurs at rate ψ over

those niches, or innovation, which occurs at rate (1−λ2)qss over the remaining proportion

1−ψ. Both entry processes imply a perpetual addition with discounted value of a/(1−β)

to consumers’ net utility flow.

15



From (13) we can decompose the total effect of any model parameter θ on social

welfare in up to a direct effect and two indirect effects channeled through the steady-state

variables xss and qss:

dWss

dθ
=
∂Wss

∂θ
+
∂Wss

∂xss

dxss
dθ

+
∂Wss

∂qss

dqss
dθ

, (14)

where ∂Wss/∂xss = Wss/xss > 0 and ∂Wss/∂qss = (1−ψ)(1− λ2)xssa/(1− β) > 0 . The

next proposition builds on this decomposition to establish the global welfare effect of the

main parameters.

Proposition 2. Social welfare increases in the incremental value of innovation a and

the discount factor β, and decreases in the innovation cost Φ and the protection of IP

against further innovation λ2. The effect of the effective imitation risk ψ is, in general,

ambiguous.

The positive effects of a, β, and Φ are self-explanatory once we recall the effects of

these parameters on the steady-state flow of innovation and the stock of active patents,

and notice that their direct effect on our welfare measure is either of the same positive

sign as the indirect effects (a and β) or zero (Φ).

The generic ambiguity of the welfare effect of ψ ≡ (1 − λ1)δ can be illustrated using

numerical examples like those in Figure 3, where the dashed line, generated with λ2 = 0,

is monotonically increasing in λ1 while the solid curve, generated with λ2 = 0.5, has an

inverted-U shape with an interior welfare-maximizing λ1. The potential non-monotonicity

is due to the combination of various forces. First, restricting imitation has a negative direct

effect on social welfare because it slows down the process whereby consumers attain the

price reductions associated with the successful imitation of products sold in monopolized

niches. Second, there is a positive effect channeled through xss because the protection

of incumbents against imitators contributes to sustain a larger stock of active patents.

Finally, there is a per se ambiguous effect channeled through qss which was already illus-

trated in Figure 2: Imitation has a potentially non-monotonic effect on the innovation

16



λ1

Wss

0.02

0.04

0.06

0.08

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3: Steady-state welfare and imitation risk. This graph depicts Wss as a function of
λ1. The solid and dashed curves correspond to the cases λ2 = 0.5 and λ2 = 0, respectively.
Other parameters are set as in Figure 2.

flow because, on the one hand, it frees up niches from protected incumbents, facilitating

entry, but, on the other, it erodes the value of incumbency and, hence, the incentives to

enter.

In the case of the protection of IP against further innovation, λ2, there is no ambiguity.

Proposition 2 shows that increasing λ2 reduces welfare: It has a negative direct effect

because, for a given flow of innovative entry qss, a higher λ2 implies a lower rate of

successful entry. And it also has negative welfare effects channeled through the increase

in the proportion of monopolized niches xss and the reduction of the innovation flow qss

(recall Proposition 1). Interestingly, the ambiguity about the effects of imitation risk on

welfare disappears when the protection of IP against further innovation is optimally set.

Proposition 3. If the protection of IP against innovation is set at its socially optimal

value of zero (λ2 = 0), then it is socially optimal to grant innovators maximum protec-

tion against imitation (λ1 = 1). In this social optimum, the innovation flow qss is also

maximized.

For suboptimal levels of protection against innovation (λ2 > 0), the optimal protection
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Figure 4: Steady-state welfare and IP protection for λ1 = λ2 = λ. The solid curve corre-
sponds to the baseline economy with Φ = 0.15. The dashed and dotted curves correspond
to Φ = 0.2 and Φ = 0.25, respectively. Other parameters are set as in Figures 2 and 3.

against imitation is not necessarily maximal (λ1 = 1). As illustrated by the solid line in

Figure 3 (which uses the same parameterization as Figure 2), the socially optimal value

of λ1 can be interior and, in this case, it will generally be lower than the value of λ1 that

maximizes the innovation flow qss.
14 This occurs because a reduction of λ1 in the margin,

in spite of reducing innovation, has a positive effect on the speed at which innovative

products become cheaper to consumers.

The discussion on the socially optimal level of protection against imitation becomes

specially relevant when the social planner cannot control λ1 and λ2 independently, say

because it is legally difficult to clearly distinguish between imitation and innovation, and

the patent statute may hinder both at the same time, making λ1 and λ2 comove in

positively correlated manner. What will happen then? Figure 4 provides an example.

Its solid line corresponds to a parameterization that imposes λ1 = λ2 = λ while the rest

of the parameters take the same values as in previous figures.15 In this case, the overall

14When Wss is concave in λ1, like in the solid curve of Figure 3, it is possible to prove that dqss/dλ1 > 0
at the (welfare maximizing) point in which dWss/dλ1 = 0.

15Qualitatively, the results would be similar if λ2 were made an arbitrary differentiable and increasing
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degree of IP protection reproduces the type of inverted-U shaped effect on social welfare

that appeared in the solid line of Figure 3. Intuitively, social welfare is maximized at

a level of protection intermediate between the protection that innovation should receive

against innovation (λ2 = 0) and against imitation (λ1 = 1), if they could be controlled

separately.

5 Endogenous Imitation

In this section we endogenize the intensity of the imitation threat, so far captured by

the exogenous constant probability δ with which a niche monopolized by the holder of

an active patent is challenged by an imitator. Since in general this probability may not

be constant over time, we will denote it by δt. We assume, using a parallelism with the

entry of innovators, that there is an infinite supply of potential imitators whose entry is

subject to congestion and cannot be targeted to a specific market niche.

We further assume that an imitator that enters a competitive niche obtains zero prof-

its, while entry in a monopolized niche yields a per-period profit ε ∈ (0, a) until the

niche experiences further imitation or innovation.16 This assumption captures the idea

that, only in this last case, the quality improvement relative to the challenged product is

sufficient to provide a (small) positive profit to the imitator.17 Opposite to innovators,

the temporary monopoly position of successful imitators is assumed to feature no legal

protection against any form of future entry.

We assume that imitation entails the non-pecuniary entry cost Φ but does not require

any development investment. As in the case of innovation, entry occurs one period after

incurring the entry cost. Finally, to model congestion in the imitation process, we assume,

as in the case of innovative entry, that if the flow of imitators in period t is eit, the

function of λ1.
16Imitators could also enter an empty niche, if there were any, in which case imitation would not be

possible. But we ignore this possibility because it will never occur in and around the steady state.
17Competitive niches are those where at least an imitator has been successful in the past, so our

assumption is consistent with the idea that the returns to subsequently successful imitation are declining
in the length of the imitating chain. Our results would be robust to allowing subsequent imitation to
yield profits which are positive but smaller than ε .
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proportion of niches challenged by imitators is

δt =
eit

1 + eit
. (15)

Hence, the probability that an imitator succeeds in entering a monopolized niche can be

written as

pit =
1

1 + eit
xt−1(1− λ1)(1− qt) = xt−1(1− λ1)(1− δt)(1− qt), (16)

where the factors entering after the first equality are the probabilities of succeeding

among simultaneous imitations, being assigned to a monopolized niche, succeeding in

court against the established monopolist, and not being replaced by an innovator before

the end of the entry period. The last equality is written using (15).

The present value of the profits of a successful imitator, vit, can be found from

vit = ε+ β(1− δt+1)(1− qt+1)vit+1, (17)

where the discounting of future profits differs with respect to the case of an innovator

(equation (1)) in that an imitator lacks IP protection. Finally, the free-entry condition

for an imitator is

βpitv
i
t − Φ ≤ 0, (18)

and the complementary slackness condition for the imitation flow imposes δt(βp
i
tv
i
t−Φ) =

0, so that δt is zero if the net present value of imitative entry is negative.

With these elements in place, we can state the following result:

Proposition 4. Extending the conditions (9)-(11) that describe the steady-state equilib-

rium of the model to the case in which imitation is endogenous only requires replacing ψ

with (1− λ1)δss and adding

δss =
(1− xss)[βε(1− λ1)xss − (1− β)Φ]

Φ(1− λ1)xss + [βε(1− λ1)xss + βΦ](1− xss)
, (19)

to the system of equilibrium conditions.
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Notice that (19) describes a relationship between the steady-state flow of imitative

entry and the proportion of niches monopolized by successful innovators. This relationship

adds an imitation curve to the free-entry curve and the present-value curve that allowed

us to solve for xss and vss in the baseline model (recall Figure 1).18 The extended system

of steady-state conditions is still recursive in that (10), (11), and (19) allow to first solve

for xss, vss and δss, and then use (9) to find qss.

Social welfare Wss can be computed in a way similar to what has been described

for the baseline model (equation (13)). The only difference is that now the turnover

associated with the entry of imitators or innovators in niches monopolized by imitators

also contributes to welfare, which introduces a new term in the expression for Wss, which

becomes

Wss = {(1− λ1)δss + [1− (1− λ1)δss](1− λ2)qss}xss
a

1− β
+

+ [δss + (1− δss)qss] (1− xss)
(1− λ1)δssxss(1− qss)
qss + δss(1− qss)

ε

1− β
. (20)

The first term captures, as before, the gains originated when niches monopolized by

previously successful innovators experience the entry of new innovators or imitators, and

the new second term captures the additional gains originated when niches monopolized

by previously successful imitators are successfully challenged by either an innovator or a

second imitator.19

The effects of changes in the IP protection parameters, λ1 and λ2, are discussed next.

We start with the protection against innovation, λ2, because in this case the effects are

simpler to summarize. Figure 5 describes the variables δss, xss, qss, and Wss as functions

18Numerical examples show that (19) describes an inverse U-shaped relationship between xss and δss.
When xss is low, the returns from imitation are small, since the probability that a firm occupies a
previously monopolized niche is small. When xss is very large, however, the steady-state innovation flow
qss is large, which reduces the expected duration of the span for which an imitator reaps profits of ε, so
again the expected returns from imitation are small.

19 The new term is proportional to the discounted value of the permanent quality improvement ε
brought by each imitator. The square brackets in the second term contain the probability with which one
of those niches experiences imitative or innovative entry. The term 1 − xss accounts for the proportion
of niches not monopolized by innovators and the fractional factor corresponds to the proportion of those
niches which are occupied by unchallenged imitators in steady state.
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Figure 5: Endogenous imitation and IP protection against innovation. The various
panels depict the steady-state values of imitation, innovation, proportion of monopolized
niches, and welfare as functions of λ2. The underlying parameters are a = 0.1, β = 0.96,
ε = 0.05, and Φ = 0.15. The protection against imitation is λ1 = 0.5.
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of λ2. It shows that increasing λ2 is detrimental to the imitation flow δss, while all other

variables behave qualitatively as in the baseline model, including social welfare Wss and

the innovation flow qss which are both maximized with λ2 = 0.

Figure 6 shows the effects of varying the protection against imitation, λ1, and, as in

Figures 2 and 3, we depict simultaneously the cases with λ2 = 0 (the dashed curves) and

λ2 = 0.5 (the solid curves). Importantly, the key result from the baseline model that, if

λ2 is set equal to its socially optimal value of zero, then welfare is maximized under the

maximal protection against imitation (λ1 = 1) is confirmed. It is also the case that the

combination (λ1, λ2) = (1, 0) maximizes the innovation flow. However, for λ2 > 0, the

maximum values of welfare and innovation may be reached, as in the baseline model, for

values of λ1 compatible with positive levels of imitation.

Figure 6 also contains information about the non-trivial interactions between imitation

and innovation implied by the model. For instance, the effect of λ1 on the imitation flow

δss is non-monotonic in the curve generated under λ2 = 0. More generally, for a large range

of (low) values of λ1, increasing λ1 causes very little impact on δss. What is behind is an

effect that static models cannot capture. Increasing the protection of IP against imitation

increases the steady-state proportion of business niches monopolized by holders of active

patents, xss, and this makes the entry of imitators more rather than less attractive. For

sufficiently high values of λ1, the discouragement of imitation due to the low prospects of

successfully entering those niches dominates the appeal of challenging them with greater

probability. Then δss quickly declines to zero. Simultaneously, the steady-state proportion

of monopolized niches becomes one, because there is no longer attrition due to imitation

but only turnover due to innovation.20

20Describing steady-state once the limit xss = 1 is reached requires considering an alternative writing
of the state-state equations of the model, since qss can no longer be recovered using (9). Interestingly,
equations (3)-(5) do no longer depend on λ1 if xt−1 = 1 and δ = 0. This allows to analytically solve
for the equilibrium values of vt and qt. Such qt corresponds to the value of qss in the flat section of the
corresponding curves in Figure 6.
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Figure 6: Endogenous imitation and IP protection against imitation. The various panels
depict the steady-state values of imitation, innovation, proportion of monopolized niches,
and welfare as functions of λ1. The solid and dashed curves correspond to the cases with
λ2 = 0.5 and λ2 = 0, respectively. Other parameters are set as in Figure 5.
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6 Innovation with External Financing Frictions

In this section we extend the model to consider the effects of frictions in the external

financing of innovation. The existing literature on the financing of innovative start-ups

acknowledges the importance of financial frictions and the way in which access to informal

sources of capital (friends and relatives, business angels) and venture capital compensates

for the lack the collateral typically required for the access to bank loans. However, the con-

nection between financial constraints and IP protection has not been explicitly explored.21

So this section is an attempt to connect two essentially divorced literature traditions.

To introduce financial frictions in our baseline model, we assume that the potential

entrepreneurial innovators are penniless and subject to limited liability. Each innovator

can incur the non-pecuniary cost Φ and engender an invention without any external

support. However, the full development of the invention by the innovator (“in-house

development”) would require her to incur a pecuniary cost (normalized to one) which has

to be externally financed.

To rationalize the partial in-house development of the innovation (and the use of

licensing as a remedy to financial constraints), we assume that the invention can be

developed into a potentially marketable new product using a measure-one continuum of

alternative development paths. For simplicity, we assume that only one of these paths

can lead to a new marketable product at t, and ex-ante all paths are equally likely to

lead to such a product. The new product will give to its developer the chance to occupy

a niche in the industry as in the baseline version of the model. So a successful developer

has a probability pt of obtaining a monopoly position with value vt.

For each path, the innovator has a choice between in-house development and the

licensing to an outside developer with deep pockets. When the development of a path is

21Most papers consider the traditional partial equilibrium setup of corporate finance and focus on
understanding specific features of startup financing such as the staging of finance (Gompers (1995) and
Neher (1999)), the use of convertible securities (Casamatta (2003) and Schmidt (2003)), or venture capital
contracting (Repullo and Suarez (2004)). Some papers, including Holmstrom and Tirole (1997), Inderst
and Muller (2004), and Michelacci and Suarez (2004), examine the equilibrium implications of financial
constraints, but do not discuss IP protection.
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licensed the pecuniary cost is assumed to be 1 + c, where c > 0 reflects some friction in

the transferring of the relevant technology to the licensee.22

The external financing of in-house development is affected by a moral hazard problem

as in Holmstrom and Tirole (1997). Specifically, the innovator has an unobservable choice

between two development effort levels that determine the probability of success in the

development of the paths under her management (conditional on one of the paths being

the one that leads to the marketable product). To simplify the notation, we assume that

such probability of success is one under high effort and zero under low effort, but under

the latter the innovator obtains a non-verifiable private benefit of b > 0 per path under

her development.23

We assume that parameter values are such that βptvt > b at all dates, so that exert-

ing higher effort is first-best optimal. However, an innovator that pledges a sufficiently

large fraction of future profits to external financiers may be tempted to exert low effort,

rendering the financing deal unfeasible.

When licensing a path, the innovator fully relinquishes its development to a licensee

who, if successful, appropriates the profits generated by the new product. We assume

that there is a large pool of potential licensees with deep pockets (e.g. incumbent firms

with internal funds) so that the development of the paths licensed to them involves no

moral hazard. By virtue of competition, these licensees pay royalties to the innovator

equal to the whole expected net present value of the external development of each path.

In order to guarantee that licensing can ameliorate the moral hazard problem of the

innovator, we assume b > c. The following lemma summarizes the (partial equilibrium)

outcomes of external financing problem that we have just set:

Lemma 2. In the setup with external financing frictions, if βptvt − 1 ≥ b, entering

innovators develop their inventions fully in-house, obtaining a net payoff βptvt− (1 + Φ).

22The cost c may capture the cost of acquiring some relevant know-how that the innovator already
possesses as well as the legal costs associated with licensing the corresponding development path.

23The same results hold if the success probability under low effort is 1−∆, with ∆ ∈ (0, 1). All final
equations are the same except for the fact that b must be replaced by b/∆.
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If c ≤ βptvt − 1 < b, they out-license a fraction

αt =
b− (βptvt − 1)

b− c
(21)

of the development paths and develop the remaining fraction in-house, obtaining a net

payoff (1− αt)b− Φ. Finally, if βptvt − 1 < c, developing the innovation is unfeasible.

The parameters related to the moral hazard problem, b, and the technology transfer

cost, c, play a crucial role in the partial equilibrium results shown in this lemma. When

the net present value of diligent in-house development, βptvt − 1, is larger than b, full

in-house development is feasible and, hence, optimal. When it is smaller than b but larger

than c, licensing becomes part of the second-best solution. If this present value is smaller

than c, the development of the innovation becomes nonviable.24 In the case with non-

trivial licensing, the optimal licensed fraction αt is increasing in b and c, and decreasing

in βptvt − 1.

The following proposition shows that there is a mapping between our baseline model

and this setup for the intermediate case (c ≤ βptvt − 1 < b) in which external financing

frictions alter but do not impede the development of entrepreneurial innovations.

Proposition 5. In the setup with external financing frictions, if b > Φ, then entering

innovators out-license a fraction α = 1− Φ
b

of the development paths of their inventions.

Around the steady state, the equilibrium conditions and the existence condition (12) are

the same as in the baseline model except in that the entry cost parameter Φ has to be

replaced by Φ̂ = Φ + (1− Φ
b
)c.

As in the baseline version of the model, innovators reap all the present value of the

inventions, net of pecuniary and non-pecuniary costs. However, the net present value

appropriated by the innovator is smaller because of the technology-transfer costs cαt.

Innovators’ free entry condition makes the licensing decision in equilibrium equal to the

24 So βptvt − 1 < c can only possibly occur in periods with no innovative entry. This situation cannot
occur in a steady state with xss > 0 but it might occur in the transition to such a steady state if the
industry starts with some pre-determined xt−1 sufficiently larger than xss. See footnote 13.
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same constant α = 1− Φ
b

in all periods with positive entry, so the effective transfer costs

become
(
1− Φ

b

)
c. It turns out that these costs enter the innovator’s problem in exactly

the same way as Φ in the baseline model. Thus, all results go through if Φ is replaced by

Φ̂ = Φ + (1− Φ
b
)c, which is increasing in Φ, b, and c.

The following result is a corollary of Propositions 1 and 2:

Proposition 6. In the setup with external financing frictions, if b > Φ, an increase in

the severity of the frictions (i.e. increasing b or c) produces a reduction in the steady-state

levels of innovative entry qss, the mass of active patents xss, and social welfare Wss, while

it increases the technology transfer costs (1− Φ
b
)c and the profits from incumbency vss of

each innovator.

Regarding the socially desirable levels of IP protection, the conclusions of Propositions

2 and 3 remain valid. Yet, financial constraints have the potential to modify the trade-offs

concerning the optimal degree of protection against imitation (or the overall level of IP

protection) when the level of protection against innovation is not zero (or cannot be set

separately).

To keep the discussion brief, we focus on the effects of changing Φ in the scenario with

λ1 = λ2 = λ already explored in Figure 4. The solid line corresponds to the previously

discussed baseline case without financial constraints (in which a = 0.1, β = 0.96, δ = 0.05

and Φ = 0.15). In terms of the extended model, such case can be understood as a situation

with b ≤ Φ, where by Lemma 2 the financial constraints are not binding and the innovator

does not need to license her innovation (α = 0). The dashed and dotted curves correspond

to the cases with Φ̂ = 0.2 and Φ̂ = 0.25, respectively. For a reference technology transfer

cost of c = 0.1, these values of Φ̂ would correspond to situations with b = 0.3 (α = 0.5)

and b→∞ (α = 1), respectively.

In addition to illustrating the detrimental welfare effect of financial constraints, Figure

4 reveals that tightening the constraints, when binding, increases the socially optimal value

of the overall IP protection parameter λ. The reason why this effect occurs is different
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from what transpires of a typical static analysis. Remember that in our model increasing

λ2 alone discourages innovation (and reduces welfare), so it must be that tightening the

financial constraints increases the net relative advantages of protecting patent holders

against imitation.

Tighter financial constraints reduce per se the steady state fraction of monopolized

niches and, hence, the hurdle for innovative entry coming from the opposition of the

incumbents. This makes the traditional patent value enhancing effect of fighting imitation

relatively more important, explaining why the socially optimal value of λ increases.

7 Concluding Remarks

Innovation is considered key to industry dynamics. Entry, exit, and innovation are com-

plex interrelated phenomena in every industry, and especially so in the youngest and more

technology-intensive industries. Many of these industries rely on IP as the source of tem-

porary monopoly power that allows the successful innovators to obtain a return for their

previous R&D investments. IP protection, however, is a double cutting edge knife for the

dynamics of innovative industries, as the protection of incumbent innovators may be an

obstacle to the success of novel innovators.

This paper contributes to the growing literature that analyzes the role of IP protection

by embedding it in an industry dynamics setting in which innovation and imitation are

different, interrelated processes modeled along similar lines. We find that welfare and in-

novation are maximized with zero protection against further innovation and, conditional

on this, with full protection against imitation. However, if some protection against in-

novation is unavoidable, allowing for some imitation may be socially beneficial. These

results are robust to endogenizing imitation and get reinforced when entrepreneurs are

financially constrained.
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Appendix

Proof of Lemma 1: This proof has two parts. First we discuss the uniqueness and existence

of a SS equilibrium. Then we discuss the local stability of the SS equilibrium.
Existence and uniqueness of the SS equilibrium: For brevity we eliminate the subscripts from
xss and vss and rewrite (10) and (11) abstractly as:

f1(x, v; θ) = 0, (22)

f2(x, v; θ) = 0, (23)

where θ is the vector of parameters of the model. We will save on notation by referring to a

single parameter ψ ≡ (1− λ1)δ rather than δ and λ1 separately.
To establish the sign of the monotonic relationship between xss and vss in each of the

equations, notice that
∂f1

∂v
= β(1− x)

1− λ2(1− ψ)x

1− (1− ψ)x
> 0,

and
∂f1

∂x
= βv

λ2(1− ψ)[2x− (1− ψ)x2]− (1− λ2)ψ − λ2

[1− (1− ψ)x]2
.

The numerator in the last expression is increasing in x and, hence, maximum at x = 1, but if
we evaluate the numerator at x = 1 we obtain

−λ2ψ
2 − (1− λ2)ψ < 0,

so ∂f1
∂x < 0 for all x. This implies that (10) defines an upward slopping curve in (xss, vss) space.

Moreover, it is immediate to check that vss goes to infinity as xss approaches one.
As for (11), it can be verified that

∂f2

∂x
=
βψ(1− ψ)(1− λ2)

1− (1− ψ)x
v > 0

and
∂f2

∂v
= 1− β(1− ψ)

1− (1− λ2ψ)x

1− (1− ψ)x
> 0,

so (11) describes a downward slopping curve. Obviously, the upward and downward sloping

curves just described can intersect at most once and such an intersection, if it exists, defines the

unique SS equilibrium. Since (10) has a vertical asymptote at x = 1, the necessary and sufficient

condition for existence of the SS equilibrium is that the intercept of (10), a/[1 − β(1 − ψ)], is

lower than the intercept of (11), (1 + Φ)/β, which explains condition (12).
Stability of the SS equilibrium: To analyze the local stability of the system around steady state,
we proceed to log-linearize (7) and (8) around the SS point (v, x). Log-linearizing (7) yields

− 1

1− x
dxt +

(1− ψ)(1− λ2)

[1− (1− λ2ψ)x][1− (1− ψ)x]
dxt−1 +

1

v
dvt = 0.

Log-linearizing (8) yields

− 1− λ2

1− (1− λ2ψ)x
dxt +

1

v
dvt −

1

v − a
dvt−1 +

(1− ψ)(1− λ2)(1− x)

[1− (1− λ2ψ)x][1− (1− ψ)x]
dxt−1 = 0
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These expressions can be written as the following system of equations

dxt −
1− x
v

dvt =
(1− ψ)(1− λ2)(1− x)

[1− (1− λ2ψ)x][1− (1− ψ)x]
dxt−1,

− (1− λ2)v

(1− (1− λ2ψ)x)
dxt + dvt = − (1− ψ)(1− λ2)(1− x)v

[1− (1− λ2ψ)x][1− (1− ψ)x]
dxt−1 +

v

v − a
dvt−1,

or in matrix form as [
1 w12

w21 1

] [
dxt
dvt

]
=

[
z11 0
z21 z22

] [
dxt−1

dvt−1

]
(24)

where
w11 = 1, z11 = (1−ψ)(1−λ2)(1−x)

[1−(1−λ2ψ)x][1−(1−ψ)x] > 0,

w12 = −1−x
v < 0, z12 = 0,

w21 = − (1−λ2)v
1−(1−λ2ψ)x < 0, z21 = − (1−ψ)(1−λ2)(1−x)v

[1−(1−λ2ψ)x][1−(1−ψ)x] < 0,

w22 = 1, z22 = v
v−a > 1.

Pre-multiplying both sides of (24) by the inverse of matrix W and pre-multiplying both sides of
by it, the system becomes [

dvt
dxt

]
= Y

[
dvt−1

dxt−1

]
,

with

Y =

[
y11 y12

y21 y22

]
≡ 1

1− w12w21

[
z11 − w12z21 −w12z22

−w21z11 + z21 z22

]
.

The two eigenvalues, µ1 and µ2, of matrix Y can be found as the solutions to the equation

det(Y − µI) = 0

where I is the identity matrix of rank 2. Proving saddle-path convergence towards SS in the log-

linearized system amounts to showing that, in absolute value, one of the eigenvalues of matrix

Y is greater than 1 and the other is less than 1. We will further show that both eigenvalues are

positive.
Since the function D(µ) ≡ det(Y − µI) describes a parabola that tends to infinity when µ

tends to both plus and minus infinity, then showing that D(0) > 0 > D(1) would be enough for
our proof. Consider first the sign of

D(0) = det(Y ) =
z11z22

1− w21w12
.

Clearly, z11z22 > 0, so proving that D(0) > 0 boils down to showing that

1− w12w21 = 1− 1− x
v

(1–λ2)v

1− (1–λ2ψ)x
> 1− (1–λ2)(1–x)

1− (1–λ2ψ)x
=
λ2[1− (1–ψ)x]

1− (1–λ2ψ)x
∈ (0, 1). (25)

Now, as for

D(1) = det(Y − I) =
(y11 − 1)(y22 − 1)− y12y21

(1− w21w12)2
,

notice that we can ignore the denominator and prove the negativity of

(y11–1)(y22–1)–y12y21 = [z11–w12z21–(1–w12w21)][z22–(1–w12w21)]–w12w21z11z22 + w12z22z21

= (1− w12w21) [w12(z21 − w21)− (z11 − 1)(1− z22)] .
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We already know, from (25), that (1− w12w21) > 0. Moreover, from the expressions above, we
clearly have w12 < 0, 1− z22 < 0, and

z21 − w21 =
(1− λ2)ψv

[1− (1− λ2ψ)x][1− (1− ψ)x]
> 0.

It only remains to show that z11 − 1 < 0, where

z11 − 1 =
−ψ − (1− ψ)λ2 + 2λ2(1− ψ)x− λ2(1− ψ)2x2

[1− (1− λ2ψ)x][1− (1− ψ)x]
.

The denominator of this expression is clearly positive, while the numerator is maximized at

x = 1. But at x = 1 the denominator becomes −ψ[1–λ2(1–ψ)] < 0, so the denominator must be

negative for all x.

Proof of Proposition 1: For the sake of brevity, we will refer to the equilibrium equations

using the same notation as in the proof of Lemma 1.

Effect of a: The parameter a only operates through equation (11). It is immediate that ∂f2
∂a =

−1 < 0. As a result, increases in a shift upward the curve defined by (11) in Figure 1, resulting

in an increase in the SS values of v and x.
Effect of β: The effect of β on x is immediate, since an increase in β produces an upward
shift in the curve defined by (10) and a downward shift in the curve defined by (11) in Figure 1.
Regarding the effect on v, let us implicitly define x2(v; θ) from the equation f2(x2(v; θ), v; θ) = 0,
recalling that f2 is the left hand side of (11). Also, define

g(v; θ) ≡ f1(x2(v; θ), v; θ), (26)

so that vss solves g(v; θ) = 0. Using the Implicit Function Theorem, it is enough for the result
to show that g is increasing in v and decreasing in β. With respect to the first,

∂g

∂v
=
∂f1

∂v
+
∂f1

∂x
x′2(v; θ) > 0

since ∂x2/∂v = −(∂f2/∂x)/(∂f2/∂v) < 0. Regarding the second, we obtain

∂g

∂λ2
= −λ2v{[v − a− β(1− ψ)v]2 + β2ψ(1− ψ)(1− λ2)v2}

(1− ψ)[v − a− β(1− ψ)v]2
< 0,

where ψ ≡ (1− λ1)δ, as already defined in the proof of Lemma 1.

Effect of Φ: The parameter Φ only operates through equation (10). It is immediate that
∂f1
∂Φ = −1 < 0. As a result, increases in Φ shift upward the curve defined by (10) in Figure 1,

resulting in an increase in v and a decrease in x.
Effect of δ and λ1: Because of the way δ and λ1 enter all expressions, the effects of these two
parameters are colinear, but with the opposite sign. For brevity, we will refer to the effect
of λ1 only. Similarly to the case of β, the effect of increasing λ1 on x is immediate from the
upward shift of the curve defined by (10) and the downward shift of the curve defined by (11).
Regarding the effect on vss, and using the function g defined in (26) above, it is enough to show
that ∂g/∂λ1 < 0. In particular, this derivative can be written as

∂g

∂λ1
= δ

v[a− (1− β)v]{−(v − a)[a− (1− β)v]+βv[βvλ2
2(1− ψ)2 − (v − a)(1+λ2 − 2ϕλ2)]}

(1− ψ)2v[v − a+ β(1− ϕλ2)v]2
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Notice that x ∈ [0, 1] and v ∈ [a/[1−β(1−ψ)], a/[1−β(1−ψ)λ2]], so a−(1−β)v > 0. Moreover,
the last term in the expression in curly brackets will be negative as long as

v ≥ a

1− βλ2
2(1− ψ)2

1 + λ2 − 2ϕλ2

,

which is true since
a

1− βλ2
2(1− ψ)2

1 + λ2 − 2ϕλ2

<
a

1− βλ2(1− ψ)
< v.

Effect of λ2: The effect on v is immediate, since an increase in λ2 entails an upward shift of the
two curves depicted in Figure 1. Regarding the effect on x, define v2(x; θ) from the equation
f2(x, v2(x; θ); θ) = 0, recalling that f2 is the left hand side of (11). Also, define

h(x; θ) ≡ f1(x, v2(x; θ); θ),

so that xss solves h(x; θ) = 0. Using the Implicit Function Theorem, it is enough for the result
to show that h is decreasing in both x and λ2. With respect to the first,

∂h

∂x
=
∂f1

∂x
+
∂f1

∂v

∂v2

∂x
< 0

since ∂v2/∂x = −(∂f2/∂v)/(∂f2/∂x) < 0. Regarding the second, we obtain

∂h

∂λ2
= −β(1− x)x(1− ψ)

(1− β)[1− (1− ψ)x]a

{1− (1− ψ)x− β(1− ψ)[1− (1− λ2ψ)x]}2
< 0. (27)

Proof of Proposition 2: Direct inspection of (13) and the results in Proposition 1 allow us to

construct the following table:

a β Φ ψ λ2

∂Wss
∂θ + + 0 + −

∂Wss
∂xss

dxss
dθ + + − − −

∂Wss
∂qss

dqss
dθ + + − ? −

dWss
dθ + + − ? −

The last row sums up the various partial effects and constitutes the proof of the results

stated in the proposition.

Proof of Proposition 3: From Proposition 1 and 2 it is immediate that λ2 = 0 leads, for any
given value of λ1 to the highest innovation flow and the maximum welfare. Making λ2 = 0 in
(10) and (11) simplifies the system of equations and yields the following explicit solution for xss
and vss:

vss = a+ (1− ψ)(1 + Φ), (28)

xss =
β [a+ (1− ψ)(1 + Φ)]− (1− ψ)(1 + Φ)

β [a+ (1 + Φ)(1− ψ)]− (1 + Φ)
. (29)
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After some algebra, it is possible to write qss and Wss as

qss = 1− 1 + Φ

β [a+ (1 + Φ)(1− ψ)]
, (30)

Wss =

{
1− 1 + Φ

β [a+ (1 + Φ)(1− ψ)]

}
a

1− β
, (31)

where taking the derivative with respect to ψ directly leads to

∂qss
∂ψ

= − (1 + Φ)2

β [a+ (1 + Φ)(1− ψ)]2
< 0,

∂Wss

∂ψ
= − (1 + Φ)2

β [a+ (1 + Φ)(1− ψ)]2
a

1− β
< 0,

that is, welfare and the innovation flow increase with the effective imitation risk ψ. Thus the

socially optimal (and innovation maximizing) value of λ1 is zero.

Proof of Proposition 4: In the steady state, imitative entry must be positive so the free entry

condition (18) must hold with equality. Using (16) to substitute for pit, imitators’ free entry

condition in steady state can be written as

βxss(1− λ1)(1− δss)(1− qss)v
i
ss= Φ,

while the steady-state version of (17) implies

[1− β(1− δss)(1− qss)]v
i
ss= ε.

Now, solving for viss in the first of the previous equations and substituting the result into the

second yields
1− β(1− δss)(1− qss)

βxss(1− λ1)(1− δss)(1− qss)
Φ = ε. (32)

But in steady state we have, as in (9),

qss=
(1− λ1)δssxss

1− [1− (1− λ1)δss]xss
,

which can be substituted into (32) to get a relationship between δss and xss only. The solution

for δss in that expression yields (19).

Proof of Lemma 2: In the setup just described, it is optimal for the innovator to undertake as

much development as financially feasible in-house. Since the development technology is linear,

the division of licensed paths across (one or more) licensees is irrelevant and the licensing decision

can be simply summarized by the total proportion of out-licensed paths, αt ∈ [0, 1]Licensing

helps the innovator solve her financial problem in two ways: first, by reducing the scale of the

in-house development problem and, thus, the implied financing needs to 1−αt, and, second, by

allowing her to use the royalty proceeds Tt = αt[βptvt− (1+ c)] to cover internally some of those

needs.25

25Due to this revenue, the licensing of the paths that the entrepreneur does not develop in-house, if
feasible, clearly dominates the alternative of leaving some paths undeveloped.
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If the innovator pledges to her financiers a part Rt ≤ vt of the discounted value of the
conditional-on-success profits of any product arising from the paths left for in-house development,
her incentive compatibility condition for exerting high effort can be written as

(1− αt)βpt(vt −Rt) ≥ (1− αt)b, (33)

while the individual rationality condition of the competitive financiers is

(1− αt)βptRt ≥ (1− αt)− Tt. (34)

Obviously, it will always be optimal for the innovator to choose Rt so as to make (34) hold with
equality. But then, using the resulting equality together with the expression for Tt to substitute
for Rt in (33), we can conclude that a licensing decision αt ∈ [0, 1] is feasible if and only if

βptvt − 1− cαt ≥ (1− αt)b, (35)

where the left hand side is the total net present value appropriated by the innovator if she

chooses high effort, and the right hand side is what she could get by choosing low effort.
Clearly, (35) is easier to satisfy with larger values of αt insofar as c < b, as we have assumed.

The optimal value of αt is the lowest number in the range [0, 1] that satisfies (35), if it exists.
Notice that when βptvt−1 ≥ b, the incentive compatibility constrained written in (33) holds for
αt = 0 and, thus, the first-best allocation (full in-house development) is feasible and, therefore
optimal, yielding net gains from innovative entry equal to βptvt−(1+Φ). When c ≤ βptvt−1 < b,
there always exists a unique αt ∈ (0, 1) for which (33) holds with equality. Any other feasible α
would be larger and, from the arguments given in the text, suboptimal. Profits under αt can be
computed as

βptvt − 1− cαt − Φ = (1− αt)b− Φ, (36)

where the last equality arises, again, from (33).

Proof of Proposition 5: From (36), the net gains from entry in the case where licensing
occurs in equilibrium can be rewritten as βptvt − (1 + Φ) − cαt. Therefore, when the external
financing frictions lead to licensing, the counterpart of the free-entry conditions (4) and (6) are

βptvt − (1 + Φ)− cαt ≤ 0,

qt[βptvt − (1 + Φ)− cαt] = 0.

Moreover, when there is positive entry in a given period, the first equation holds with equality
and together with (21), it pins down the value of the equilibrium licensing decision to a constant:

αt = α∗ = 1− Φ

b
> 0.

Replacing this expression for αt in (36), we can rewrite the net gain from entry as

βptvt − (1 + Φ)−
(

1− Φ

b

)
c = βptvt − (1 + Φ̂),

where Φ̂ = Φ + (1− Φ
b )c, which is increasing in Φ, b, and c. Hence, all the results and conditions

obtained for the baseline model are valid for the case with external financing frictions if the

original parameter Φ is replaced by Φ̂.
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