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Abstract

This paper examines the experience of fourteen developed countries for which there
are about thirty years of quarterly inflation-adjusted housing price data. Price dy-
namics is modeled as a combination of a country-specific component and a cyclical
component. The cyclical component is a two-state Markov switching process with
parameters common to all countries. We find that the latent state variable captures
previously undocumented changes in the volatility of real housing price increases.
These volatility phases are quite persistent (about six years, on average) and occur
with about the same unconditional frequency over time. In line with previous studies,
the mean of real housing price increases can be predicted to be larger when lagged
values of those increases are large, real GDP growth is high, unemployment falls, and
interest rates are low or have declined. Our findings have important implications for
risk management in regard to residential property markets.
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1 Introduction

Many expert and media accounts of residential property markets describe their dy-

namics as the recurrence of booms and busts.1 In a typical boom or hot phase,

transactions are abundant, average selling times are short, and prices tend to grow

fast. In a bust or cold phase, there are fewer transactions, average selling times are

longer, and price growth moderates or becomes negative. The empirical literature

on housing markets recognizes the importance of swings in housing prices and their

relationship to changes in the liquidity of the market, but it is somewhat less as-

sertive about the cyclical pattern.2 For instance, Case and Shiller (1989) document

the autocorrelation in housing price increases, which is suggestive of imperfections

that make residential property markets informationally inefficient but does not im-

ply the existence of cycles. In contrast, Muellbauer and Murphy (1997) and Herring

and Wachter (1999) explicitly refer to booms and busts in housing prices and admit

the non-linearities that they imply.3 The studies by Englund and Ioannides (1997),

Capozza et al. (2002), Tsatsaronis and Zhu (2003), and Borio and Mcguire (2004),

among others, report significant correlations between real housing price growth and

variables such as real GDP, unemployment, interest rates, and inflation, which sug-

gests that property prices might feature a cyclical pattern, if only because of the

convolution of the cyclicality of the other variables. Finally, swings in housing prices

have been shown to be positively correlated with the volume of transactions (Stein,

1995) and negatively correlated with average selling times (Krainer, 2001).

Theoretical work on housing markets focuses on providing explanations for the

persistence of price changes, as well as the correlations between price growth, volumes,

and selling times. The most recent theories typically attribute the fluctuations to

shocks to the demand for housing services or to buyers’ income, and put the emphasis
1The Special Report on “The global housing boom: In come the waves” published in The Econo-

mist on 16th June 2005 provides a good illustration of these views.
2See Cho (1996), for an early survey of the literature.
3Muellbauer and Murphy (1997) argue that introducing a cubic transformation of lagged price

changes helps capturing the strong inertia of the peaks and troughs in price growth.
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on the role played by either search frictions (Wheaton, 1990; Williams, 1995; Krainer,

2001; Novy-Marx, 2005) or financial imperfections (Stein, 1995; Ortalo-Magne and

Rady, 2005). For instance, Krainer (2001) shows that positive (negative) shocks to

the value of the housing service flow can produce a positive relationship between the

liquidity of the market and its prices by increasing (decreasing) the opportunity cost

of failing to complete a transaction. From a different perspective, Ortalo-Magne and

Rady (2005) develop a dynamic model in which shocks to the income of the financially-

constrained first-time home buyers cause overreactions in prices and volumes. Finally,

there is a less structured line of thought, recently surveyed by Case and Shiller (2003),

that imputes part of the runups in housing prices to expectations of subsequent price

increases, like in the usual theories of bubbles.4

To the extent that search frictions, financial constraints, and expectational feed-

back might have varying importance across the cyclical phases of the housing market,

one might expect price dynamics to differ across the hot and cold phases. The explicit

empirical modeling of cyclical regime switches in price dynamics, which is the focus

of this paper, confirms that this is indeed the case. Quite remarkably, though, our

analysis documents the existence of sizable and significant fluctuations in the volatil-

ity of price growth, a phenomenun not explicitly predicted by any of the theoretical

studies. Hence, our findings can be seen more as a challenge for future theoretical

work than as evidence in support of current theories.

We consider a panel of inflation-adjusted residential property price indices that

covers about thirty years of quarterly data from fourteen OECD countries. Real

housing price growth is modeled as the combination of a country-specific component

and a cyclical component. The country-specific component is intended to capture

unobservable cross-country heterogeneity, while the cyclical component is a two-state

Markov switching process a la Hamilton (1989) with parameters common to all coun-
4It is argued, however, that, in contrast to stock prices, housing prices rarely crash since many

sellers resist to cut down their prices or sell at a loss–see Genesove and Mayer (2001) for evidence
on this.
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tries.5 Besides the genuine interest of international evidence, with the multi-country

approach we aim to improve the reliability of the estimates of the cyclical component,

especially in a context where we fear that the available time series might be short

relative to the average length of the underlying cycles.6 Our formalization, inspired in

standard panel data techniques, allows us to focus on the cyclical component by sim-

ply standardizing each country’s price increases and then fitting a common Markov

switching model to the standardized time series.7

The estimation yields three set of results. First, the dynamics of real housing prices

is characterized by two rather persistent states that mostly differ in the volatility

of price increases. Specifically, the variance of the unpredictable part of quarterly

price increases in the high volatility state is almost four times as big as in the low

volatility state. The low volatility state is associated with phases of higher growth,

occurs with an unconditional probability of 47% and has an expected duration of 23

quarters. The high volatility state is associated with phases of lower price growth,

occurs with a frequency of 53% and lasts, on average, about 26 quarters. Second,

in addition to the latent state variable, a number of lagged macroeconomic variables

have significant predictive power for the expected growth rate of real housing prices.

Specifically, the prediction of quarterly growth rates depends positively on the lagged

quarterly rate of real GDP growth, negatively on the lagged one-year variation in

the unemployment rate and also negatively on the lagged long-term nominal interest

rate. We find no evidence of the effect of these variables to be state dependent. Third,

even after controlling for the effect of the latent state variable and the explanatory

variables, the quarterly growth rate of real housing prices exhibits significant positive

autocorrelation.
5Because of its reference to an explicit probabilistic model, Hamilton’s approach is more suitable

for forecasting purposes than the approaches that focus on the dating of peaks and troughs according
to some a priori definition of a cycle–see, for example, Harding and Pagan (2001).

6Anecdotal evidence (confirmed by our results below) suggests that a typical housing cycle phase
is much longer (about six years) than a typical business cycle phase (two to three years).

7Importantly, the parameters of the Markov switching model are the same for all the standardized
series, but each country’s latent state variable is treated as an independent realization of the latent
state process.
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The most novel results are obviously those related to the Markov switching struc-

ture. The second and third sets of findings are consistent with previous evidence and

imply that allowing for a Markov switching structure in the mean of price increas-

es does not deprive the usual macroeconomic variables and lagged price increases of

their predictive power. The picture that the Markov switching structure draws does

not correspond to a simple story of rise and decline. Rather than large differences in

the expected growth of real housing prices (which seem better captured by the ob-

servable explanatory variables), the latent cyclical variable captures striking changes

in volatility. A housing cycle features long phases (almost six years on average) of

less volatile growth in prices followed by even longer phases (six and a half years on

average) of high volatility. In the high volatility phases, expected real housing price

growth is not necessarily negative but price declines happen to be much more like-

ly. In fact, when we depict the filtered probabilities of staying in the high volatility

state (obtained as a by-product of the estimation) together with the time series of

each country’s growth in real housing prices, we find that the switches to the high

volatility state typically precede or coincide with busts in the usual sense of the word

(that is, declining inflation-adjusted prices).

One possible interpretation of our results is that the larger volatility (or lower

predictability) of price rises reflects the lower liquidity of the housing market (lower

volume of transactions, longer average selling times, less clear expectations of price

increase) during cold phases. The fact that larger volatility, rather than lower average

price increases, is what best detects a cold phase in price data is consistent with

the standard argument that sellers are resistant to cut down prices, especially at

the beginning of a cold phase, and that inertia implies only a gradual build-up of

confidence and high price growth once the cold phase gets to an end.8 Similarly, the

finding that hot phases are characterized by more predictable price rises is consistent

with the arguments emphasizing the importance of price-rise expectations for price
8The difference in liquidity across phases could be due to a variation of the so-called disposition

effect (the tendency of investors to ride losses and realize gains), a pattern of behavior documented
for stockholders by Odean (1998), among others, and for homeowners by Genesove and Mayer (2001).
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runups.

From a practical perspective, a virtue of our approach is that it allows to diagnose

the cyclical position of national housing markets by looking at their inflation-adjusted

price indices, which are more readily available and comparable across countries than

the data on volumes or selling times. Our results on the cyclical evolution of volatility

in housing markets are also important for risk management. In a section below we

describe several possible applications of our model in both dimensions, including the

construction of an indicator of risk in the housing market that uses a metric based on

Value-at-Risk techniques. We illustrate the applications with computations referred

to the immediate post-sample quarters of each of the fourteen countries in our data.

The rest of the paper is organized as follows. Section 2 elaborates on the econo-

metric strategy and presents the models to estimate. Section 3 describes the data. In

Section 4 we report and comment on the estimation results. In Section 5 we explore

the implications of the results for cyclical diagnosis and risk management. Section 6

contains our concluding remarks.

2 Econometric Strategy

Besides the inherent interest of international evidence, a reason for our multi-country

approach is the fear that single country experiences might not contain sufficient regime

switches so as to reliably estimate the parameters of a model for each country. The

idea is to profit from the cross-sectional variation in the data in order to estimate

the common features of the cyclical pattern of the various national real housing price

indices. Of course, the key latent assumption is that those common features exist.

A problem with the multi-country approach is heterogeneity. Geographical, his-

torical and institutional factors may make residential property prices evolve differently

in different countries. Perhaps even simple methodological differences in the construc-

tion of each country’s price indices may make them show systematic differences in

mean or variance. Thus, without properly controlling for the underlying heterogene-

ity, a regime-switching model estimated with pooled multi-country data, instead of
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capturing the common structure of the cyclical pattern, might end up associating the

latent states with some rather cross-sectional partition of the data.9

Our approach to the issue is inspired in standard panel data techniques. Specifi-

cally, it is inspired in the idea of coping with unobserved heterogeneity such as, say,

country fixed effects by transforming the data in a convenient way. Of course, this

approach is only possible if the unobserved heterogeneity and the cyclical compo-

nent enter the data generating process (DGP) in a suitably separable way. Such

separability is part of the identifying assumptions necessary for the estimation of the

parameters of interest.

In the rest of this section we first formally explain our approach to the identifica-

tion problem using a simplified model. Then we describe the two classes of specifica-

tions actually used in the empirical part, which are straightforward extensions of the

simplified model.

2.1 A Markov model with country heterogeneity

To describe our approach to the problem of identifying the common cyclical pattern

of various national real housing price indices in a context with country-level hetero-

geneity, let us first consider a simple DGP in which the distribution of the variable

of interest in country i = 1, 2, ...N and quarter t = 1, 2, ...T is a function of just a

latent dichotomous state variable sit = 1, 2.10 Specifically, let yit be the first quarterly

difference in quarter t of the log of the real housing price index in country i and

consider the following DGP:

yit = ωi(sit) + σi(sit)εit, (1)

9For instance, each state might identify a group of countries whose indices share similar means
and variances rather than a phase of the cycle within each country.
10The length of the time series need not be a common T for all the countries in the sample but,

for notational simplicity, we will describe the model as if this were the case.
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where εit is iid N(0, 1) and sit follows a first-order Markov chain, independent across

countries, with transition probabilities:

pi ≡ Pr(sit = 1 | sit−1 = 1)

and

qi ≡ Pr(sit=2 | sit−1=2).

This formulation allows for a wide range of country-level heterogeneity: in each coun-

try and each state, the variable yit is characterized by potentially different means,

ωi(sit), standard deviations, σi(sit), and state-transition matrices:11·
pi 1− qi

1− pi qi

¸
.

This specification would involve estimating six parameters per country, that is, a total

of 6 ×N parameters, which is a large number for a Markov switching model.12 Yet

the main problem with this specification is that, by allowing all parameters to vary

across countries, their estimation would entirely rely on within-country variability.

But, as we have already mentioned, if the time series dimension of the panel is not

large enough, the number of regime switches within each country may be too small,

limiting the reliability of the estimates of parameters such as pi and qi. This problem

would be mitigated if one could impose the restriction that parameters such as pi and

qi are the same in several or all countries and estimate them accordingly.

Within this logic, we propose a parameterization of the country-specific and cycli-

cal components of the DGP described in (1) that will allow us to exploit cross-country

variability in the estimation of the cyclical components. In particular, we propose to

decompose each country’s state-dependent mean and variance in two parts: a part
11Extending the model to cases in which ωi(sit) or σi(sit) are additionally functions of some vector

of observable variables xit would be immediate.
12In this first specification, however, the estimation could be done country-by-country, decompos-

ing the problem in N estimations of six parameters each. Such simplification is not possible once
some commonality or cross-country restrictions are introduced.
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that is country-specific but exhibits no state-dependency and another that is state-

dependent but has the same parameters in all countries. In particular, our proposal

is to constrain (1) by imposing:

ωi(sit) = αi + µ(sit) · σi, (2)

σi(sit) = σi · σ(sit), (3)

and

pi = p and qi = q,

for all i. We will identify αi and σ2i as the unconditional mean and variance of yit in

each country i by assuming

E[µ(sit)] = 0 and E[σ(sit)] = 1 (4)

for all i.

Now, if the country-specific moments αi and σi were known, it would be possible

to define the standardized transformation, zit, of the original variable of interest, yit:

zit =
yit − αi

σi
, (5)

and to rewrite the DGP as follows:

zit = µ(sit) + σ(sit)εit, (6)

where εit is iidN(0, 1) and sit follows a first-order Markov chain with a state-transition

matrix: ·
p 1− q

1− p q

¸
,

common to all countries. Under this formulation, the DGP of the standardized quar-

terly growth rate of real housing prices, zit, has just six parameters, while the stan-

dardization of the original variable yit additionally requires knowing αi and σi for

i = 1, 2, ...N (that is, 2×N country-specific parameters).
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In practice, the country-specific moments αi and σi are not known but, for a

sufficiently large T , they could be accurately estimated through the corresponding

sample moments, which converge in probability to the distributional moments by

virtue of standard asymptotics. In the presence of serial correlation, it is harder

to ensure that the available T is large enough for the sample moments to be good

substitutes for the true values of αi and σi, but we will proceed as if they were.

That is, we will construct a sample-based standardized series zit for each country i

and estimate the parameters of (6) using the maximum likelihood methods applied to

standard Markov switching models.13 In our inference about (6), we will not take into

account the sampling variability in our estimates of αi and σi, but, partly correcting

for this, we will not impose the constraints (4) in the estimation.14

In the following two subsections we describe the models that we will actually

estimate, which imply straightforward generalizations of the term µ(sit) in (6). The

other components of the DGP will remain exactly as explained above.

2.2 Autoregressive models

Following Hamilton (1989), we allow for autocorrelation in the evolution of the stan-

dardized quarterly growth rate of real housing prices by considering the process:

zit = µ(sit) + φ [zit−1 − µ(sit−1)] + σ(sit)εit (7)

where εit and sit, are specified as in (6). The autocorrelation parameter φ measures

the contribution of the deviation of zit with respect to its (state-contingent) mean to

the prediction of the corresponding deviation one period ahead. As in all specifications

mentioned so far, we will treat εit and sit as independently distributed across countries.

Allowing for country interdependencies is an interesting extension left for future work.
13With a slight abuse of notation, we will denote by zit both the true and the sample-based

standardizations of yit.
14With this approach, the standard maximum likelihood algorithm a la Hamilton (1989) only re-

quires minimal adaptations to account for the fact that our panel involves N independent realizations
(i.e., N country time series) of the latent state process.
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When estimating (7), we can test whether the means µ(sit) and the variances

σ2(sit) significantly differ across states, as well as whether the autoregressive parame-

ter φ is significantly different from zero.

2.3 Augmented models

We can expand the autoregressive process described in (7) by allowing its mean to

depend not only on the latent state variable sit but also on a vector of predetermined

explanatory variables, xit−1. In particular, we can replace µ(sit) by

µ(sit, xit−1) = c(sit) + β(sit)xit−1,

so that the DGP becomes:

zit = c(sit) + β(sit)xit−1 + φ [zit−1 − c(sit−1)− β(sit−1)xit−2] + σ(sit)εit, (8)

where the specification of εit and sit remains unchanged.

The vector xt−1 may include different lags of predictors of the growth of real hous-

ing prices, such as the rates of GDP growth, unemployment, interest, and inflation,

whose impact on the expectation of zit is, in principle, allowed to be different across

states. The precise definition of the explanatory variables and the way in which they

enter the various estimated models is further explained below.

3 Data

For the estimation of the autoregressive specifications, we rely exclusively on country

series of Inflation-adjusted Residential Property Prices that come from calculations

made by the Bank for International Settlements (BIS) based on national data. The

BIS kindly provided us with quarterly series covering a period of about thirty years

(1970-2003) for the fourteen developed countries listed on Table 1. The table also

contains the periods covered by the available time series in each country and some

descriptive statistics of the variable of interest: the quarterly growth rate of real

housing prices, yit. This variable is computed as the non-annualized first quarterly
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difference of the log of the indices provided by the BIS –the units are percentage

points as we have multiplied the transformation by 100 to facilitate its interpretation.

Table 1. Descriptive statistics of the variable of interest
Quarterly growth rate of real housing prices, yit

(quarterly percentage rates)
# Obs. Sample period Mean S.D. Max Min

Australia 133 1970.2-2003.2 0.71 2.26 8.30 -5.53
Belgium 90 1981.2-2003.3 0.54 2.66 5.62 -8.59
Canada 134 1970.2-2003.3 0.48 3.03 8.66 -10.39
Denmark 133 1970.2-2003.2 0.30 2.91 10.81 -7.35
Finland 102 1978.2-2003.3 0.45 3.27 10.20 -8.77
Ireland 109 1976.2-2003.2 0.92 3.06 9.87 -6.75
Netherlands 133 1970.2-2003.2 0.72 3.23 11.44 -9.50
New Zealand 55 1990.1-2003.3 0.33 0.95 3.05 -1.50
Norway 134 1970.2-2003.3 0.39 2.88 9.07 -5.69
Spain 66 1987.2-2003.3 1.37 2.35 6.07 -6.55
Sweden 134 1970.2-2003.3 0.05 2.62 8.32 -8.97
Switzerland 134 1970.2-2003.3 0.05 2.22 6.31 -6.29
United Kingdom 133 1970.2-2003.2 0.95 3.28 12.51 -5.85
United States 134 1970.2-2003.3 0.43 0.99 3.09 -2.50
Note: The original indices of Inflation-adjusted Residential Property Prices are
BIS calculations based on national data. Growth rates are computed as
log differences. # Obs.: Number of observations. S.D.: Standard deviation.

Table 1 reveals a large cross-country variation in the pattern of growth of real

housing prices. The mean quarterly growth rate is as low as 0.05% in Sweden and

Switzerland, while it is close to or above 1% in Ireland, Spain and the UK; seven

countries have their mean rate in the intermediate 0.30-0.60% range. The dispersion

of quarterly growth rates around their country means is also quite heterogeneous,

ranging form slightly below 1% (in New Zealand and the US) to over 3% (in Cana-

da, Finland, Ireland, the Netherlands, and the UK); in eight countries the standard

deviation of yit is in the 2-3% range. A maximum quarterly growth rate as high as

12.51% appears in the UK time series, and a minimum as low as -10.39% appears in

the Canada time series. Interestingly, many countries’ maximum and/or minimum

differ from the country’s mean by more than three standard deviations, which, given
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the length of the available series, is more than what one would expect if the uncondi-

tional distribution of yit in each country were normal. However, the regime switching

models that we estimate below imply that the unconditional distributions of yit are

mixtures of normals, which may capture the fat tails in the data.

We use the country means and standard deviations reported in Table 1 in order

to transform the original series yit into the country-standardized series zit. By con-

struction, zit exhibits a sample mean of zero and a variance of one in each country’s

time series and in the overall sample.

As mentioned above, in the augmented models (8), the prediction equation for

zit will include a vector of lags of other variables, xit−1. Specifically, we will use

lags of the quarterly growth rate of real GDP, gdpit, the yearly variation in the

unemployment rate, ∆uit, and the long-term nominal interest rate, rit. The data

for the construction of these variables come from the quarterly country series of

the OECD Economic Outlook.15 Table 2 reports the descriptive statistics of these

variables for each country, computed over each country’s sample period.

4 Results

In this section we first report on the estimation of the autoregressive and augmented

models for the standardized quarterly growth rate of real housing prices, zit, that

we have described in subsections 2.2 and 2.3, respectively. We also comment on the

various possible specifications, the criteria used in order to select among them, and

the parameter estimates of our preferred specifications. Secondly, we further dissect

the results by describing their implications in terms of the cyclicality of the original

quarterly growth rate of real housing prices, yit, in each country i. Finally, we focus on

two particular countries, the UK and the US, in order to illustrate the applicability of
15This source was also used to construct the lags of the inflation rate, the short-term nominal

interest rate, and the real interest rates included in some non-reported intermediate specifications.
An exception is Ireland for which the long-term nominal interest rate of the first quarters in the
sample is the lending rate reported in the International Financial Statistics of the International
Monetary Fund.
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the estimates of the probability of being in one state or another (which is a by-product

of the estimation) for the identification and dating of the cyclical phases registered

in their housing markets.

Table 2. Descriptive statistics of the explanatory variables
Variables in the vector xit−1
(quarterly percentage rates)

gdp ∆u r
Mean S.D. Mean S.D. Mean S.D.

Australia 0.81 1.07 0.10 1.15 9.71 3.06
Belgium 0.50 0.69 0.05 0.95 8.30 2.79
Canada 0.80 0.88 0.07 1.17 8.84 2.49
Denmark 0.46 1.04 0.10 0.96 11.52 4.74
Finland 0.65 1.04 0.13 1.86 8.97 2.62
Ireland 1.28 1.23 -0.09 1.69 10.09 3.76
Netherlands 0.65 1.07 0.04 0.96 7.48 1.70
New Zealand 0.66 1.25 -0.08 1.17 7.90 1.98
Norway 0.84 1.96 0.05 0.67 8.72 2.73
Spain 0.78 0.87 -0.25 1.69 9.26 3.55
Sweden 0.51 1.18 0.05 0.92 9.42 2.68
Switzerland 0.35 0.85 0.08 0.51 4.65 1.12
United Kingdom 0.57 1.00 0.07 1.24 9.80 2.92
United States 0.74 0.87 0.05 1.08 7.94 2.35
Note: The original data come from the OECD Economic Outlook. gdp is the

quarterly growth rate of real GDP, ∆u is the yearly variation in the unemployment
rate, and r is the long-term nominal interest rate. S.D.: Standard deviation.

4.1 Estimating the models for zit

Our estimation results are summarized in Table 3. Model 1 is actually a linear, first-

order autoregressive model included as a benchmark (arbitrarily, we denote its single

state by s=1). Given that zit is a standardized variable and this model allows for just

one constant term and one variance, the only parameter of interest in the estimation

is the autoregressive coefficient φ, which happens to be significantly different from

zero, with a point estimate 0.37.
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Table 3: Estimation results
(standard errors in parenthesis)
Model 1 Model 2 Model 3 Model 4 Model 5

c(1) 0.003 0.382 0.116 0.391 0.430
(0.023) (0.059) (0.068) (0.097) (0.092)

c(2) – -0.711 -0.055 – 0.599
(0.095) (0.063) (0.121)

gdp−1 – – – 0.071 0.062
(0.019) (0.019)

∆µ−1 – – – -0.153 -0.128
(0.029) (0.028)

r−1 – – – -0.110 -0.110
(0.024) (0.022)

r−4 – – – 0.060 0.046
(0.025) (0.023)

φ 0.373 0.193 0.394 0.292 0.314
(0.023) (0.028) (0.026) (0.024) (0.026)

σ2(1) 0.859 0.703 0.319 0.814 0.339
(0.030) (0.028) (0.038) (0.029) (0.031)

σ2(2) – = 1.194 – 1.212
(0.087) (0.082)

p 1 0.962 0.955 1 0.957
(0.010) (0.013) (0.012)

q – 0.923 0.970 – 0.962
(0.017) (0.011) (0.012)

Log-likelihood -682.25 -645.47 -615.62 -639.12 -571.62
Parameters are defined as in equations (7) and (8). Explanatory variables are

defined in Table 2. =: The same as in state 1.

Models 2 and 3 are autoregressive, Markov switching models with two states

s = 1, 2 of the class described in (7). Model 2 imposes the variance σ2(sit) to be

equal in both states. Its estimation unveils two regimes with different means asym-

metrically positioned around zero: a high (low) growth state in which the estimated

mean has a magnitude of about 38% (-71%) of the unit unconditional standard de-

viation of zit.16 The high (low) growth state happens with unconditional probability
16Given that zit is the result of country-by-country standardization (that is, has zero mean and

unit variance), its units of measurement are “standard deviations” of the original country variable
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of 67% (33%) and has an expected duration of about 26 (13) quarters. As expected,

allowing for regime switching in the mean reduces the quantitative importance of the

autoregressive coefficient φ relative to Model 1.

Model 3 extends Model 2 by allowing the variance of the process of zit to also

differ across states. It turns out that the estimated difference in variances between

states is sizable and very significant, while the difference in means between states is

substantially smaller than when a single variance is imposed. Actually, the likelihood

ratio (LR) test (run using the fact that Model 2 is nested in Model 3) allows us to

reject the hypothesis that the variance is equal across states. The picture that Model 3

describes involves a low volatility state and a high volatility state. The high volatility

state has a variance (1.19) that almost quadruples that of the low volatility state

(0.32), is on average more frequent (60% vs. 40%) and endurable (33 vs. 22 quarters)

than the low volatility state, and is associated with a (slightly) lower expected growth

in prices. In contrast to Model 2, the point estimate of the autoregressive coefficient φ

in (7) is as high as it was in Model 1, possibly because the difference in means across

states is now smaller and, thus, state persistence plays a smaller role in explaining

the persistence of zit.

In Models 4 and 5, we incorporate a vector of explanatory variables xt−1 with

lags of the quarterly growth rate of real GDP, gdpit, the yearly variation in the

unemployment rate, ∆uit, and the long-term nominal interest rate, rit. In fact, Model

5 corresponds to the best of the augmented specifications that we tried, whereas Model

4 is just the single-state version of such specification, which we include in order to

assess whether the predictive role of the variables in xt−1 changes much when moving

from a standard linear approach to a Markov switching approach.

The set of regressors in Model 5 was determined after considering both wider and

narrower combinations of regressors formed by lags of gdpit, rit, the unemployment

rate, and other variables (such as the inflation rate or the short-term interest rate)

yit. Thus, the coefficients c(1) and c(2) measure by how many of these standard deviations yit tends
to be above (if positive) or below (if negative) its unconditional mean in each state. The same units
of measurement would apply to the standard deviations, σ(1) and σ(2), attributed to each state.
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that turn out to add no significant predictive power when included together with

the current regressors. Model 5 includes the yearly variation in the unemployment

rate, ∆uit, after checking that, in alternative models, the coefficients of the first and

fifth lags of the unemployment rate got point estimates with very similar absolute

value and opposite signs, and after passing a LR test on the constraint imposed by

including its yearly difference. We also allowed the coefficients of the explanatory

variables to be state-dependent, but the restriction of them being equal across states

was not rejected by the corresponding LR test.17

Qualitatively, the Markov switching ingredients of the augmented Model 5 are very

similar to those of the autoregressive Model 3. Again, the two identified states differ

mainly in their variance, which in the high volatility state almost quadruples that of

the low volatility state. Now, however, the high and the low volatility states are closer

in terms of unconditional probability of occurrence (53% vs. 47%, respectively) and

expected duration (26 vs. 23 quarters). Somewhat surprisingly, the point estimate of

the state-contingent intercept c(s) is higher for the high volatility state (s=2) than

for the low volatility state (s=1). However, this does not contradict the fact that the

high volatility state tends to be associated with a lower expected growth in prices

(as found in Model 3), since the conditional expectation of zit is now a function of

the regressors, such as gdpit−1, ∆uit−1, rit−1, and rit−4, which are probably correlated

with the state variable sit.

As for the explanatory variables, the sign and significance of their coefficients are

in line with previous empirical studies, despite they did not use a Markov switching

approach. This is not surprising since, eventually, the detected Markov structure

does more in explaining the variance of zit than its mean. In fact, the estimation

of Model 4 evidences that neglecting the underlying Markov switching structure has

only marginal effects on the point estimates of the autoregressive parameter φ and the

parameters associated with the other regressors. However, for crisis forecasting and
17We also tried specifications based on country-standardized transformations of the explanatory

variables, reaching similar results as in Model 5, both in terms of the characterization of the Markov
switching structure and in the sign and significance of the coefficients of the explanatory variables.
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risk management in the residential property sector, the Markov switching structure

uncovered by Model 5 (which happens to affect mainly to the variance of zit) is

absolutely crucial, since both activities are more concerned about the fatness of the

tails of the distribution of future values of zit than with their point forecasts (see

Section 5 below).

4.2 Implications of the results for country-level cyclicality

Before starting, notice that the two-state Markov switching approach has led to iden-

tify two phases in the dynamics of the standardized growth of real housing prices that

differ more in volatility than in mean. So, rather than a simple story of booms (high

price growth) and busts (low or even negative price growth), the analysis identifies

a cyclical pattern characterized by the alternation of phases of less volatile (more

predictable) growth and phases of more volatile (less predictable) growth. The latent

state variable s seems to capture the differences between the “hot” phases of the

housing cycles (possibly characterized by more confidence, more speculative demand,

a higher volume of transactions, and shorter average selling times) and the “cold”

phases (possibly characterized by more uncertainty, less speculative demand, a lower

volume of transactions, and longer average selling times). In fact, if price growth

features inertia (as it is the case), the housing market is likely to switch between

these phases before price growth visibly changes its trend, so hot and cold phases of

housing cycles do not need to be equivalent to booms and busts, in the usual sense.

Table 4 summarizes the country-level implications of the results. In the columns

devoted to Model 3, we express the consequences of this model in terms of the state-

contingent means, ωi(sit), and standard deviations, σi(sit), of the original quarterly

growth rate of real housing prices, yit, in each country i. Recall from (2) and (3)

that estimates of ωi(sit) and σi(sit) can be recovered as a convolution of the country-

specific unconditional means and standard deviations reported in Table 1 and the

country-invariant parameter estimates in Table 3.
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Table 4. Country-level implications of the results
Conditional means and S.D. of yit
(quarterly percentage rates)

Model 3 Model 5
Mean S.D. Mean S.D.

s=1 s=2 s=1 s=2 Shift gdp† ∆u† r† r‡ s=1 s=2
Australia 0.97 0.59 1.28 2.47 -0.38 0.15 -0.33 -0.76 -0.44 1.32 2.49
Belgium 0.84 0.39 1.50 2.90 -0.45 0.11 -0.32 -0.82 -0.47 1.55 2.93
Canada 0.83 0.32 1.71 3.31 -0.51 0.17 -0.45 -0.83 -0.48 1.76 3.34
Denmark 0.63 0.13 1.64 3.18 -0.49 0.19 -0.36 -1.52 -0.88 1.69 3.20
Finland 0.82 0.26 1.84 3.57 -0.55 0.21 -0.78 -0.94 -0.55 1.90 3.60
Ireland 1.28 0.76 1.73 3.43 -0.52 0.23 -0.66 -1.27 -0.74 1.78 3.37
Netherlands 1.09 0.54 1.82 3.53 -0.55 0.21 -0.40 -0.60 -0.35 1.88 3.56
New Zealand 0.44 0.28 0.54 1.04 -0.16 0.07 -0.14 -0.21 -0.12 0.55 1.05
Norway 0.72 0.23 1.62 3.14 -0.49 0.35 -0.25 -0.86 -0.50 1.68 3.17
Spain 1.64 1.24 1.32 2.56 -0.40 0.13 -0.51 -0.92 -0.53 1.37 2.59
Sweden 0.35 -0.10 1.48 2.87 -0.44 0.19 -0.31 -0.77 -0.45 1.53 2.88
Switzerland 0.31 -0.07 1.25 2.42 -0.38 0.12 -0.14 -0.27 -0.16 1.29 2.44
UK 1.33 0.77 1.85 3.58 -0.55 0.20 -0.52 -1.05 -0.61 1.91 3.61
US 0.54 0.37 0.56 1.08 -0.17 0.05 -0.14 -0.26 -0.15 0.58 1.09
Note: Computations based in Tables 1 and 2, and the parameter estimates of Models 3 and 5 in Table 3.

The variables are defined in Tables 1 and 2. S.D.: Standard deviation. Shift : Difference between the

estimates of the constant terms in state 1 and state 2, c(1)-c(2). †: Effect of a one-S.D. increase in the
variable after one quarter. ‡: Effect of one-S.D. permanent increase in r after four quarters.

The results are self-explanatory. Depending on country specificities, state vari-

ability may imply reaching more extreme or more moderate values in the conditional

mean and variance of real housing price increases. According to Model 3, the hot

phase (s = 1) implies expected quarterly growth rates close to or above 1% in Aus-

tralia, Ireland, the Netherlands, New Zealand, Norway, Spain, and the UK, while the

cold phase (s = 2) implies expected quarterly growth rates close to zero or negative

in Denmark, Sweden, and Switzerland. Perhaps more importantly, the combination

of low state-contingent means and high state-contingent standard deviations in the

cold phase implies that negative quarterly growth rates are very likely in such a

phase in essentially all countries. In the hot phase, such a risk is smaller but still

significant–we will readdress this point in Section 5.18

18The models have been estimated under normality assumptions, recall (1). Under these assump-
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The columns devoted to Model 5 are elaborated in a similar manner. The main

difference with respect to the columns on Model 3 is that Model 5 specifies the mean

of yit as a function of the state variable s and lags of observable variables such as the

quarterly growth rate of real GDP, gdp, the yearly variation in the unemployment

rate, ∆u, and the long-term nominal interest rate, r. The columns referred to these

variables report the effects on the mean of yit in each country of a one-standard-

deviation shock to the corresponding country variable. Notice that there are two

columns devoted to the long-term interest rate: the first from the left reports the

impact of a one-standard-deviation shock after one quarter; the second contains the

net accumulated impact after four quarters, which is smaller in absolute value, reflect-

ing that slightly less than half of the initial effect of a permanent change in nominal

interest rates on the growth of real housing prices is transitory, disappearing within

one year. In spite of this and with slight variations across countries, it seems that

the quantitatively most important effects are those associated with the level of nomi-

nal long-term interest rates, followed by those associated with the yearly variation in

unemployment, and finally by those associated with GDP growth.

4.3 Two country cases: the UK and the US

The maximum likelihood estimation of a Markov switching model generates, as a

by-product, an estimate of the probability with which the latent state variable takes

each of its possible values in each observation. These filtered probabilities can be

very useful for cyclical diagnosis, that is, the identification and dating of the cyclical

phases registered in the analyzed time series. In this section we will illustrate this

use by focusing on two of the countries in our sample: the UK and the US. These are

good examples first because their residential property markets have been extensively

studied before and, so, their booms and busts, in the common sense of these words,

tions, it is immediate to compute the state-contingent quantiles of yit using the means and standard
deviations in Table 4 and the cdf of a standard normal random variable.
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are well known.19 A second reason to look at these two countries is that, over the last

few decades, the means and variances of the growth of their real housing prices have

been very different (see Table 1), so that comparing them may help us to assess the

success of our “standardization approach” in dealing with the heterogeneity problem.

Figure 1 refers to the UK experience. As reflected by the dashed lines in the lower

panel, Model 5 detects likely cold phases in years 1970-1977, 1980-1983, 1989-1993,

and from 2002 to the end of the sample. These intervals can be compared with the

periods of falling real housing prices (or busts) that one could mention in view of the

solid line: 1973-1977, 1980-1982, and 1990-1995. The comparison suggests that both

types of phases largely overlap, although the start of cold phases tends to precede the

arrival of a bust, while the start of hot phases sometimes leads and sometimes lags

the end of periods of real price declines.

Aggregate fluctuations in housing prices are far more moderate in the US than

in the UK: the real price changes shown in Figure 2 have much smaller ranges of

variation than their Figure 1 counterparts. This fact is related to the predominantly

regional character of the fluctuations registered in the US housing market during the

period of analysis.20 Yet both the original series of real housing price changes and

the filtered probabilities of the high volatility state obtained with Models 3 and 5

suggest the existence of distinct phases in national-level dynamics. Specifically, the

solid lines show housing busts in the year intervals 1973-1976, 1979-1983, and 1990-

1995, while the inference from Model 5 suggests a virtually uninterrupted long cold

phase covering years 1970-1983 and another much shorter cold phase in 1990-1992.

As just described for the UK, the start of cold phases tends to coincide or lead that

of bust periods, while cold phases and busts tend to end around similar dates.
19See Bordo and Jeanne (2002), and Helbling (2005) for a description of housing booms and busts

in these and other countries in our sample using standard business cycle dating techniques.
20See, for example, Abraham and Hendershott (1996).
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United Kingdom

Housing prices and the latent state variable according to Model 3
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Housing prices and the latent state variable according to Model 5
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Figure 1. Identification of cold phases in the UK housing market
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United States

Housing prices and the latent state variable according to Model 3
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Housing prices and the latent state variable according to Model 5
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Figure 2. Identification of cold phases in the US housing market
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5 Risk Assessment Applications of the Results

The applications described in this section are based on Model 5 and the inferences

about its parameters and the values of the latent state variable that emerge from

its estimation. Following the standard risk-management practice, we abstract from

estimation error and model uncertainty –that is, we will take the point estimates of

the parameters and the probabilities of the state variable taking one value or another

as if they were the true ones.21

In these applications, we use the maximum likelihood estimates of the probability

of having reached the high-volatility state in the last sample quarter T in each country

i, together with the estimated state transition probabilities, in order to evaluate the

probability of the staying in a cold phase (s=2) in the first post-sample quarter

T + 1 conditional on the information available in quarter T, Pr(siT+1=2 | ΩT ). We
also use an estimate of the cumulative density function (cdf) of the growth rate of

real property prices in country i and quarter T + 1 conditional on the information

available in quarter T, F (yiT+1 | ΩT ). In the Appendix, we describe in detail the
computation of Pr(siT+1=2 | ΩT ) and F (yiT+1 | ΩT ), which is complicated by the non-
linearity associated with the dynamics of the latent state variable and its interaction

with the autoregressive component of the model–recall equation (8). We show how

F (yiT+1 | ΩT ) can be written as a mixture of four normal cdfs in which the mixing
probabilities depend on the inferred probabilities of staying in each possible phase of

the cycle in T and T − 1 and the state-transition probabilities
The first column of results in Table 5 illustrates the possibility of using the model in

order to forecast the cyclical position of each housing market. It reports our estimate

of the probability of staying in a cold phase at T + 1 conditional on the information

available at T, Pr(siT+1=2 | ΩT ), where T is the last quarter for which we had data
on real housing price increases in each country i (see Table 1). The results imply that

in mid-to-end 2003, ten out of the fourteen national housing markets under analysis
21Extending risk-management techniques to account for estimation error and model uncertainty

is an interesting and active area of research, but lies beyond the scope of this paper.

23



are predicted to be in a hot phase of their cycles. The exceptions are Australia and

the UK, where the cold phase is strongly predicted, as well as Belgium and Norway,

with a somewhat weaker phase assignment.

Table 5. Risk assessment applications
Predictions for quarter T + 1 based on information available in quarter T

(quarterly percentage rates)
Pr(siT+1=2 | ΩT ) Pr(yiT+1<0 | ΩT ) VaR99%(yiT+1)

Australia 90.24 22.38 3.89
Belgium 66.38 31.20 5.08
Canada 26.34 36.52 5.00
Denmark 11.04 34.66 3.87
Finland 10.60 32.06 4.18
Ireland 43.11 26.72 5.06
Netherlands 13.49 36.04 4.53
New Zealand 35.30 12.67 1.14
Norway 63.49 40.18 6.04
Spain 16.15 15.06 2.40
Sweden 26.85 44.11 4.69
Switzerland 9.92 37.55 3.00
United Kingdom 93.51 28.49 6.31
United States 14.44 15.34 0.99
Note: These predictions are based on the estimates of Model 5, in Table 3.
Pr(siT+1=2 | ΩT ) is the probability of the high-volatility state at T + 1;
Pr(yiT+1<0 | ΩT ) is the probability of a real price decline at T + 1;
VaR99%(yiT+1) is the 99%-quantile of −yiT+1. All these estimates are
conditional on the information available at T.

The second column of results reports our country-level estimates of the probability

of suffering a housing market bust in the first post-sample quarter. By a bust we

simply mean a decline in the corresponding real housing price index, so we report

Pr(yiT+1<0 | ΩT ), which can be obtained by evaluating F (yiT+1 | ΩT ) at yiT+1 = 0.
At first sight, the numbers may seem surprisingly large, as half of them exceed 30%

(although none exceeds 50%). However quarterly declines in the real housing price

index are quite frequent in the sample and, if these realizations are just close to zero

and not persistent, they need not imply a severe risk. In other words, the conventional
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notion of a housing bust may not be that useful after all.

The last column in Table 5 assesses the risk of each national housing market in

the first post-sample quarter using a more sophisticate metric, based on Value-at-

Risk (VaR) techniques. Specifically, it reports an estimate of the critical value w that

solves

Pr[−yiT+1 ≤ w | ΩT ] = 0.99.

Following risk-management standards, such critical value can be interpreted as the

upper bound of a 99%-confidence interval of the form [−∞, w] for the quarterly per-
centage loss that one might suffer on an investment indexed to real housing prices

in country i that were hold from quarter T to quarter T + 1. Recall that, according

to our model, the prediction error of the quarterly variation in each index of real

housing prices is generated by a mixture of four normal distributions.22 So the under-

lying loss distribution is much richer than in the traditional JP Morgan RiskMetrics

approach (which simply assumes normality) and may accommodate asymmetry and

kurtosis, making both of them implicitly dependent on the dynamics of the latent

state variable.

Table 5 shows that, for the first post-sample quarter, countries such as Belgium,

Canada, Ireland, Norway, and the UK could foresee maximum real housing price

declines, with a 99% confidence level, in the range of 5-6%. The numbers for Australia,

Denmark, Finland, the Netherlands and Sweden are in an intermediate 3-5% range,

while for New Zealand, Spain, Switzerland and the US, they are in the most moderate

1-3% range. These results draw a picture that is consistent with the pictures offered

in the previous two columns in the table, but not exactly equivalent. For instance, the

slight differences between Australia and the UK in terms of the first two indicators,

becomes much more visible in terms of the VaR-type indicator. Also, the VaR-type

indicator combines complementary ingredients of the other two. For instance, in

Belgium, the Netherlands, Norway or Switzerland the risk of a decline in the real
22w is simply the 1% quantile of the conditional distribution F (yiT+1 | ΩT ), whose derivation is

described in the Appendix.
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housing price index by the end of 2003 was higher than in the UK, but in terms of

the VaR indicator their risks were more modest than in the UK (the riskiest housing

market at that point in time). One reason for these differences is that Belgium,

the Netherlands, Norway, and Switzerland were less likely to be in (or enter) a high

volatility phase than the UK.

6 Conclusions

We have examined the experience of fourteen developed countries for which there are

about thirty years of quarterly inflation-adjusted housing price data. Price dynamics

has been modeled as a combination of a country-specific component and a cycli-

cal component. For the cyclical component we have postulated a two-state Markov

switching process with parameters common to all countries. Our main finding is that

the latent cyclical state variable captures previously undocumented changes in the

volatility of real housing price increases. Housing cycles feature high and low volatili-

ty phases that are quite persistent (about six years, on average) and occur with about

the same unconditional frequency over time. These findings have important impli-

cations both as formal evidence on the cyclical pattern of housing markets and for

cyclical diagnosis and risk management in regard to these markets.

From a technical perspective, a novelty in our regime-switching modeling proposal

is to have adopted a multi-country approach. Looking at several countries is a way

to learn about the common cyclical patterns of their housing markets in a context

where the infrequency of regime switches in each market would impare the reliability

of country-by-country estimations. One can think of many robustness checks and

extensions with which to enrich our basic analysis. Part of this work, however, will

have to wait until longer time series are available for each country and/or for the

development of better panel data techniques for regime-switching models.

The cyclical phases identified in this paper correspond widely with the cold and

hot phases referred in popular and academic descriptions of the dynamics of the

housing market. However, the existing literature is not explicit about the important
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cyclical changes in price volatility that we document: explaining them is a challenge

for future theoretical research. We conjecture that, if price growth volatility reflects

market liquidity, then it might be possible to extend some of the current explanations

for the correlation between price growth and measures of liquidity such as the volume

of transactions or average selling times in order to yield predictions on price growth

volatility.
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Appendix

The distribution of siT+1 and yiT+1 conditional on ΩT

This Appendix describes how the standard output of the estimation of a Markov
switching model using the algorithm developed by Hamilton (1989) can be utilized
in the applications contained in Section 5. Readers familiar with Markov switching
models will find this material redundant and may skip it.
We are interested in the implications of a DGP such as that implied by Model 5 for

the distribution of the state variable in country i and quarter T +1, siT+1, conditional
on the information available in quarter T, ΩT , as well as in the distribution of the
growth rate of real property prices in country i and quarter T +1, yiT+1, conditional
on ΩT . Given our interest in country-level objects, we can w.l.o.g. simplify the
presentation by dropping the country subscript in all expressions below. In addition,
we can use (5) and (8) in order to write the DGP in terms of the original growth rate
of real property prices:

yt = ω(st, xt−1) + φ [yt−1 − ω(st−1, xt−2)] + σ · σ(st)εt, (9)

where

ω(s, x) = α+ σ[c(s) + β(s)x],

α and σ are the unconditional country-specific mean and standard deviation of yt, c(s)
and σ(s) are the state-contingent intercepts and standard deviations of the country-
standardized variable zt, xt−1 is the vector of explanatory variables, and β(s) is the
vector of their possibly state-dependent coefficients.23

First we will obtain the distribution of sT+1 conditional on ΩT . As one can clearly
see from (9), the autoregressive component in brackets implies that yt is affected by
the pair (st−1, st), as well as the vectors xt−2 and xt−1. Thus, conditional on xt−2
and xt−1, the DGP in (9) can be seen as a first-order Markov process referenced to
a new, four-valued state variable St = 1, 2, 3, 4 that identifies the position of the pair
(st−1, st) in the list of its possible realizations {(1, 1), (1, 2), (2, 1), (2, 2)}.
In fact, if we consider a vector of state probabilities Γt = (Γst)s=1,2,3,4, with

Γst = Pr(St = s | Ωt),
23We will proceed as if all parameters were known although, for the computations included in

Section 5, their values will be replaced by the corresponding maximum likelihood estimates, which
appear in Tables 1 and 3. Actually, Model 5 in Table 3 imposes the constraint β(1) = β(2), which
was not rejected by the data, but in this presentation, and for the sake of generality, we will allow
for state contingency in β(s).
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as the vector of filtered probabilities obtained for t = 1, 2, ...T with Hamilton’s algo-
rithm for the estimation of Model 5, then the law of movement of Γt is a first-order
Markov chain with transition matrix

A =


p 0 p 0

1− p 0 1− p 0
0 1− q 0 1− q
0 q 0 q

 ,
where p and q are the transition probabilities that describe the dynamics of the orig-
inal state variable st. Since estimating the model yields estimates of A and ΓT , the
vector of state probabilities for the first after-sample quarter, ΓT+1, can be recur-
sively estimated as AΓT and the estimates of Pr(sT+1 = 1 | ΩT ) (or its complement
Pr(sT+1 = 2 | ΩT )) can be obtained by adding up Γ1T+1 and Γ3T+1 (or Γ2T+1 and
Γ4T+1). This is how we got the values that appear in the corresponding column of
Table 5.
Next we will obtain the distribution of yiT+1 conditional on ΩT . As a first step, let

FT+1(y) = (FsT+1(y))s=1,2,3,4 denote the vector of cdfs of the variable yiT+1 conditional
on both ΩT and ST+1 = s and let (i, j) denote the pair (sT , sT+1) identified by ST+1 =
s. Since conditional on both ΩT and (sT , sT+1) = (i, j), the only random term in (9)
is εT+1, which is N(0, 1), the components of the vector FT+1(y) can be expressed as

FsT+1(y) = Φ

µ
y − ω(j, xT )− φ [yT − ω(i, xT−1)]

σ · σ(j)
¶
, (10)

where Φ(·) is the cdf of a N(0, 1).
Obviously, the state variable ST+1 is not incorporated into ΩT (and actually no St

is, since the state variable is unobservable). However, the Total Probability Theorem
allows us to write the cdf of yiT+1 conditional on just ΩT as:

F (y | ΩT ) = ΓT+1 · FT+1(y), (11)

where · denotes the inner product. In words, (10) and (11) together imply that
F (y | ΩT ) is mixture of four standard normal random variables. Evaluating (11)
simply requires evaluating the vector FT+1(y) using xT−1 and xT , and evaluating
ΓT+1 with the recursion AΓT .
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