
Very short notes on Markov chains

Josep Pijoan-Mas

CEMFI, January 2009

1 Introduction

Definition 1 A stochastic process {xt} is markovian if

Prob (xt+1|xt, xt−1, ..., xt−k) = Prob (xt+1|xt) ∀k ≥ 1

We say that a given stochastic process displays the markovian property or that it is markovian
when its realization in a given period only depends on the previous period realization and
therefore the rest of the history is useless.

A discrete stochastic process {xt} with n possible states displaying the markovian property
can be characterized by two objects, the n× n transition matrix Π, which describes the proba-
bility of moving from one position in the state space into another, and an n× 1 vector πt that
describes the probability of being in every position of the state space at time t. An element Πi,j

of the transition matrix Π gives us the probability of moving from position i into position j,
that is to say, for any t > 0, Πi,j = Prob (xj,t+1|xi,t). Notice that for the markov process to be
well specified we need to impose some properties on these objects:

πt,i ≥ 0 ∀t, i and
n∑
i=1

πt,i = 1 (1)

Πi,j ≥ 0 ∀j, i and
n∑
j=1

Πi,j = 1 ∀i = 1, . . . , n (2)

Let’s think of {xt} as a vector of individual productivity endowments. Then, the n-dimensional
vector πt describes the state of the system by telling us how many people are of each type at a
given period of time t and the transition matrix Π describes the evolution of the system. The
evolution of the system is given by:

πt+1 = ΠT πt
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which in less compact notation shows us:
π1,t+1

π2,t+1

. . .

πn,t+1

 =


Π11 Π21 . . . Πn1

Π12 Π22 . . . Πn2

. . . . . . . . . . . .

Π1n Π2n . . . Πnn




π1,t

π2,t

. . .

πn,t


Notice therefore, that the fraction of people in state i tomorrow is given by the sum of fraction
of people in every possible state today times the probability of each of moving towards state i:

πi,t+1 =
n∑
j=1

πj,t Πji

2 Finding the stationary distribution

Definition 2 A stationary distribution π∗ is one such that:

π∗ = ΠT π∗ ⇔
(
ΠT − In

)
π∗ = 0

We know this object. Given a transition matrix Π, this equation tells us that its associated
stationary distribution π∗ will be given by the eigenvector of ΠT associated to its unitary eigen-
value. Of course, we may have more than just one unitary eigenvalue and therefore more than
one stationary distribution.

Example 1 A markov chain characterized by the transition matrix

Π =

 1 0 0
.2 .7 .1
0 0 1


has two unitary eigenvalues corresponding to the distributions π∗Ta =

[
1 0 0

]
and π∗Tb =[

0 0 1
]
. The states i = 1 and i = 3 are called absorbing states because it is impossible to

leave them. The vectors π∗a and π∗b describe two stationary distributions, and so does any linear
combination of them.

Existence and uniqueness of the stationary distribution are useful properties. We can state
some sufficient conditions for them.

Definition 3 A Markov chain is called an ergodic chain if it is possible to go from every state
to every other state (not necessarily in one move)

2
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Definition 4 Let Π be a transition matrix satisfying property (2). We call the corresponding
Markov chain regular if

(
ΠT
)n
i,j
> 0 ∀(i, j) for some n ≥ 1

Notice that the notation
(
ΠT
)n
i,j

refers to the (i, j)th element of the matrix
(
ΠT
)n. Therefore,

a Markov chain is called a regular chain if some power of the transition matrix has only positive
elements.

According to these two definitions, any regular chain will be ergodic but it is not necessarily
true that any ergodic chain will be regular.

Example 2 A markov chain characterized by the transition matrix

Π =

[
0 1
1 0

]

is ergodic because it is possible to move from any state into the other one. However, it is not
regular: in odd powers of Π it is not possible to stay in the given state and in even powers of Π
it is not possible to leave the given state.

It is quite self-evident, but we can also state that an ergodic matrix does not have any
absorbing state.

Theorem 1 Let Π be a transition matrix. If property (2) is satisfied there exists at least one
unitary eigenvalue of Π and therefore there exists at least one stationary vector π∗ associated to
Π that will satisfy property (1)

Theorem 2 Let Π be a transition matrix satisfying property (2). If Π satisfies the definition of
a regular chain then,

• Π has a unique stationary distribution π∗

• Given any n× 1 vector π satisfying property (1), we have

lim
n→∞

(
ΠT
)n
π = π∗

For instance, any transition matrix with no zero will have a unique stationary distribution.
But still, we may have transition matrices with zeros such that there is a unique stationary
distribution. This will occur whenever we can move from any point in the state space into any
other point in n steps.

3
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3 Discretizing a continuous process

Let’s assume we have a random variable zt that follows the following AR (1) process:

zt = ρzt−1 + εt with 0 ≤ ρ < 1 (3)

with
εt ∼ N

(
0, σ2

ε

)
(4)

where ρ and σ2
ε are either known or estimated from data.

We need a discrete version for this process. A natural mathematical object that will fit our
need is a Markov chain. A Markov chain is characterized by two objects, a vector Z ∈ Rn that
describes the n possible states and an n× n transition matrix Π that describes the probability
of moving from one state to another in the following way: the element Πi,j is the probability of
moving from state i to state j. We ask this matrix to satisfy property (2), that is to say, rows
must add up to one. Therefore, we need to choose the values of Z and Π that best approximate
the continuous AR (1) process above. We proceed as follows:

1. The variance of the process zt is given by:

σ2
z =

σ2
ε

1− ρ2

Then, we choose the upper and lower bounds of our discrete process to be mσz and −mσz,
where m is an arbitrary number that will determine the amplitude of the state space.
Therefore, Z1 = −mσz and Zn = mσz. If we want an equally spaced grid we proceed by
defining:

dz =
Zn − Z1

n− 1

and any element i of our vector Z will be:

Zi = Z1 + dz (i− 1)

2. We approximate the element Πij of the transition matrix by the probability of moving from
Zi into the interval

(
Zj − dz

2 , Zj + dz
2

]
for j 6= 1, n.1 This is a relatively straightforward

computation:

Πij ' Pr

(
Zj −

dz

2
< zt+1 ≤ Zj +

dz

2
|zt = Zi

)
= Pr

(
zt+1 ≤ Zj +

dz

2
|zt = Zi

)
− Pr

(
zt+1 ≤ Zj −

dz

2
|zt = Zi

)
1Obviously, for j = 1 we consider the interval

`
−∞, Z1 + dz

2

˜
and for j = n the interval

`
Zn − dz

2
,∞
´
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Then, using equation (3) we can rewrite

Πij ' Pr

(
εt+1 ≤ Zj +

dz

2
− ρZi

)
− Pr

(
εt+1 ≤ Zj −

dz

2
− ρZi

)
Using our distributional assumption (4) we can rewrite:

Πij ' φ

[
Zj + dz

2 − ρZi
σε

]
− φ

[
Zj − dz

2 − ρZi
σε

]

where φ (·) is the cdf for the standard normal distribution.

4 Random walks

Now, let’s take the process in the previous section for the case in which ρ = 1. We have a
random variable zt that follows the following process:

zt = zt−1 + εt (5)

with
z0 ∼ N

(
0, σ2

z0

)
and εt ∼ N

(
0, σ2

ε

)
(6)

where σ2
z0 and σ2

ε are either known or estimated from data. Therefore, the process for zt is
normally distributed with zero mean and variance given by

V ar (zt) = σ2
z0 + t σ2

ε (7)

Note that this process is not stationary. The variance of zt increases with t and tends to infinity
as t tends to infinity. Therefore, as a process for labor earnings it will only be well defined when
applied to an OG model where people live for a finite number of periods T .

We need a discrete version for this process. We will use a series of T Markov chains charac-
terized by T vectors Zt ∈ Rn and T transitions matrices Πt ∈ Rn×Rn. Note that we hold fixed
the dimension n of the series of chains. We proceed as follows:

1. Let’s call σ2
zt

the variance of the stochastic process described in equation (7). Then, we
choose the upper and lower bounds of our vector Zt to be mσzt and −mσzt , where m
is an arbitrary number that will determine the amplitude of the state space. Therefore,
Zt,1 = −mσzt and Zt,n = mσzt . If we want an equally spaced grid we proceed by defining:

dzt =
Zt,n − Zt,1
n− 1

5
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and any element i of our vector Zt will be:

Zt,i = Zt,1 + dzt (i− 1)

2. We approximate the element Πt,ij of the transition matrix by the probability of moving
from Zt,i into the interval

(
Zt+1,j − dzt+1

2 , Zt+1,j + dzt+1

2

]
for j 6= 1, n.2 This is a relatively

straightforward computation:

Πt,ij ' Pr

(
Zt+1,j −

dzt+1

2
< zt+1 ≤ Zt+1,j +

dzt+1

2
|zt = Zt,i

)
= Pr

(
zt+1 ≤ Zt+1,j +

dzt+1

2
|zt = Zt,i

)
− Pr

(
zt+1 ≤ Zt+1,j −

dzt+1

2
|zt = Zt,i

)
Then, using equation (5) we can rewrite

Πt,ij ' Pr

(
εt+1 ≤ Zt+1,j +

dzt+1

2
− Zt,i

)
− Pr

(
εt+1 ≤ Zt+1,j −

dzt+1

2
− Zt,i

)
Using our distributional assumption in expression (6) we can rewrite:

Πt,ij ' φ

[
Zt+1,j + dzt+1

2 − Zt,i
σε

]
− φ

[
Zt+1,j − dzt+1

2 − Zt,i
σε

]

where φ (·) is the cdf for the standard normal distribution.

Note that although the discretization of the process is very similar to the stationary case
(ρ < 1), its implementation is somehow more cumbersome: we need as many vectors Zt and
transition matrices Πt as periods in our model.

2Obviously, for j = 1 we consider the interval
“
−∞, Zt+1,1 +

dzt+1
2

i
and for j = n the interval“

Zt+1,n − dzt+1
2

,∞
”
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