
Appendix

A Computational Procedures

This appendix explains the computer algorithm used to solve the model. The algorithm is
based on the partial information approach used by Krusell and Smith (1997).12 The model
solved in this paper requires extending the algorithm in order to include an extra individual
state variable, the habit stock h, and a new dimension in the aggregate distribution of
households. These two issues justify the need to make explicit what is actually done in this
paper.

The general strategy is as follows. I replace the endogenous state µ by its first moments
K and H. Using only first moments, we have to replace the equilibrium condition (vi) in
section 2.3 by

K ′ = fK (z, K, H) (9)

and introduce a new equation to predict aggregate habits

H ′ = fH (z,K,H) (10)

We also need to approximate Rb (z, µ), which is a direct function of the distribution of
agents, so I postulate:

Rb = fRb

(z,K,H) (11)

Under this approximation, the state space of the household problem is reduced. In order
to predict prices, instead of z and µ, consumers only need z, K and H. Of course, the

forecasting rules
{

fK , fH , fRb
}

are unknown and they are part of the solution. Therefore,

solving the household problem implies maximizing equation (1) subject to the constrains
(2), (3), (4) and (6) and to the forecasting rules (9), (10) and (11). The problem is that
the forecasting rules fK , fH and fRb

are not known. I start explaining how to solve the
household problem for given forecasting rules and then I discuss how to find the forecasting
rules consistent with a rational expectations equilibrium.

A.1 Solving the household’s problem

For the household problem the state space is given by the individual vector j = {ω, h, e, ξ}
plus the aggregate variables z, K and H. I collapse the three exogenous and stochastic
state variables e, ξ and z into one variable ε that can take nε = nz (nξ + 1) = 8 different
values. We are therefore left with the two endogenous individual state variables ω and
h, the exogenous stochastic shock ε and the exogenous (at the household level) aggregate
variables K and H. Let’s define labor earnings in terms of the newly defined exogenous
stochastic process ε as ν (ε,K). Households have to solve the following system formed by

12They were already extending previous work by Castañeda, Dı́az-Giménez, and Rı́os-Rull (1998) and
Krusell and Smith (1998). Rı́os-Rull (1998) explains it in good detail.
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the FOC, the constraints and the forecasting rules:

0 = uc (c, h) + λβEε′|ε [vh (ω′, h′, ε′, K ′, H ′)]− βEε′|ε
[
vω (ω′, h′, ε′, K ′, H ′) Rs

(
ε′, K ′, Rb

)]

0 = uc (c, h) + λβEε′|ε [vh (ω′, h′, ε′, K ′, H ′)]− βEε′|ε
[
vω (ω′, h′, ε′, K ′, H ′) Rb

]

c = ω − b− s

h′ = λc + (1− λ) h

ω′ = bRb + sRs (ε′, K ′) + ν (ε′, K ′) (12)

K ′ = fK (ε,K, H)

H ′ = fH (ε,K, H)

Rb = fRb

(ε,K, H)

c ≥ 0; b ≥ b; s ≥ s; b + s ≥ ω

A standard way to solve this problem would be to use the envelope conditions to substitute
out vω and vh from the FOC and then solve for the unknown policy functions

{
gc, gb, gs

}
.

However, doing so with the habits dependence would imply adding variables dated up to
the infinity and therefore losing the recursive properties of the problem. What I will do
instead is to find a solution for the unknown function {vω, vh} together with the policy
functions

{
gc, gb, gs

}
as in a value function iteration algorithm.

For a given pair {v0
ω, v0

h}, the system (12) delivers a set of policy functions
{
g0,c, g0,b, g0,s

}
.

Then, we can substitute them in the right hand side of the envelope conditions to obtain
a new pair of derivatives for the value function {v1

ω, v1
h},

v1
ω (ω, h, ε, K, H) = uc (c, h) + λβEε′|ε

[
v0

h (ω′, h′, ε′, K ′, H ′)
]

(13)

v1
h (ω, h, ε, K, H) = uh (c, h) + (1− λ) βEε′|ε

[
v0

h (ω′, h′, ε′, K ′, H ′)
]

(14)

where c, b and s are replaced by g0,c (ω, h, ε, K, H), g0,b (ω, h, ε, K, H) and g0,s (ω, h, ε, K,H).
The system of equations (12) together with the envelope conditions (13) and (14) define
a mapping T from the cartesian product of the space where vω and vh belong into itself.
Solving the household problem amounts to finding a fixed point of this mapping, i.e., a pair
such that {v∗ω, v∗h} = T {v∗ω, v∗h}. One problem with this approach is that the space where vω

and vh belong to is unknown. I need thus to specify a class of functions that the computer
can understand in order to approximate for this space. I will do as follows. For every value
of ε, I approximate {vω, vh} piece-wise linearly in a four-dimensional grid.13 Given an initial
guess {v0

ω, v0
h}, I solve the system (12) to get the policy functions

{
g0,c, g0,b, g0,s

}
. Then,

using the envelope conditions (13) and (14), I obtain a new pair {v1
ω, v1

h}. If the new pair
{v1

ω, v1
h} is close to {v0

ω, v0
h} I have found an approximation to the fixed point of the mapping

T and I take
{
g0,c, g0,b, g0,s

}
as the solution of the model. If not, I update {v0

ω, v0
h} = {v1

ω, v1
h}

and start again. Notice that there is no contraction theorem for this mapping, which means
that there is no guarantee to succeed by using this successive approximations approach.
For the iterations to make good progress, it turns out to be very important to select proper
initial conditions {v0

ω, v0
h}.

13In the K and H dimension there is not much curvature, so I use fewer points than in the ω and h
dimensions. I typically use 6 points for the aggregate variables, 60 for wealth ω and 33 for the habit stock
h. This implies solving the system (12) at 570, 240 different points for every pair

{
v0

ω, v0
h

}
.
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A.2 Finding the equilibrium forecasting rules

The nature of the stationary stochastic equilibrium implies keeping track of a distribution
µ in order to forecast future prices. The partial information approach is based on using
just a subset of moments of µ instead. I will use only first moments. We need to find a

vector of forecasting functions f ≡
{

fK , fH , fRb
}
∈ F ≡ FK ×FH ×FRb

consistent with

rational expectations. I.e., given that agents forecast K, H and Rb with certain f , the
simulated economy should display this same behavior. Or in other words, the simulated
series for K, H and Rb should be well predicted by f . The idea is to start with an initial
f 0, solve the household’s problem defined in section A.1, simulate the economy for a long
series of periods and estimate a new f 1 within the same parametric class F . Krusell and
Smith (1997) show that one needs to make one correction to this procedure. Precisely, the
market for bonds does not clear in every period and state. In order to achieve the bond
market clearing in every period and state, I define the following problem:

V
(
ω, h, ε, K, H,Rb

)
= max

c,b,s

{
u(c, h) + βEε′|ε [v (ω′, h′, ε′, K ′, H ′)]

}
(15)

subject to

c = ω − b− s

h′ = λc + (1− λ) h

ω′ = bRb + sRs (ε′, K ′) + ν (ε′, K ′)

K ′ = fK (ε, K, H)

H ′ = fH (ε,K, H)

Rb = fRb

(ε,K, H)

c ≥ 0; b ≥ b; s ≥ s; b + s ≥ ω

This problem differs from the original one in the fact that Rb is a state variable for today,
although tomorrow’s Rb is perceived to follow the forecasting rule fRb

. I.e., tomorrow’s
value function is given by problem (12). In this manner one can find an Rb that ex-
actly clears the bond market. The solution to this problem delivers the policy functions
gc

(
ω, h, ε, K,H, Rb

)
, gb

(
ω, h, ε,K,H, Rb

)
and gs

(
ω, h, ε, K, H,Rb

)
. At this stage I can

state the algorithm as follows

1. Guess an initial f 0.

2. Solve the household’ problem given by the system (12).

3. Simulate the economy,

(a) set an initial distribution of agents over ω, h and ε,

(b) Look for the Rb that clears the market for bonds. To do so, guess an initial Rb,0

and solve the problem (15) to find gc
(
ω, h, ε, K, H,Rb,0

)
, gb

(
ω, h, ε,K,H, Rb,0

)
and gs

(
ω, h, ε, K, H, Rb,0

)
.14 If there is an excess of lending in the bond market

14Solving the problem (15) is quite straightforward since the function v has already been obtained in
step 2.
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try Rb,1 < Rb,0, if there is an excess of borrowing try Rb,1 > Rb,0. Go on until
finding an Rb,∗ that clears the market,15,16

(c) get the next period distribution over ω, h and ε by use of gc
(
ω, h, ε, K,H, Rb,∗),

gb
(
ω, h, ε, K, H,Rb,∗) and gs

(
ω, h, ε, K, H,Rb,∗) and the law of motion for the

shock ε,

(d) come back to step (b). Do it for a large number of periods.

4. Drop a number of observations from the beginning such that the remaining time series
is clean from the initial conditions. Use the simulated series for K, H and Rb,∗ to
estimate new forecasting rules f 1.

5. Compare f 1 and f 0. If they are similar we are done, if not start again by setting
f 0 = f 1 and going back to point 2.

There is just one last issue to be clarified. Once we have agreed to use only first
moments, which is the proper class F where to define our forecasting rules? In a problem
without habit formation Krusell and Smith (1997) show that a log-linear specification on
the first moment of the wealth distribution does a good job. I therefore set up the following
functional forms for the forecasting rules:

log K ′ = νK0 (z) + νK1 (z) log K + νK2 (z) log H

log H ′ = νH0 (z) + νH1 (z) log K + νH2 (z) log H

Rb = νR0 (z) + νR1 (z) log K + νR2 (z) log H + νR3 (z) (log K)2 + νR4 (z) (log H)2 +

νR5 (z) (log K) (log H)

where notice that the coefficients depend on the aggregate shock and therefore estimation
of these forecasting rules implies running two different regressions for each. However, as
shown in the appendix B.2, my findings are that we do not need so much information.
Aggregate habits do not substantially improve the forecasts. This actually means that the
aggregate habit stock turns out not to be a state variable of the system. The forecasting
rules end up being:

log K ′ = νK0 (z) + νK1 (z) log K

Rb = νR0 (z) + νR1 (z) log K + νR2 (z) (log K)2

and one can drop H from all the formulations of the problem.

B Accuracy of solutions

There are two levels of accuracy in the solutions to the model that we may be worried
about. First, for a given vector of forecasting rules f , we may wonder how accurate are

15Or until Rb,1 ' Rb,0

16An alternative approach would be to solve the problem generally for a grid of different values of Rb

and then interpolate the different guesses Rb,0 , Rb,1, ... until market clears. The problem with this is its
inexactitude. We would need an extremely fine grid on Rb to make the results along different periods of
the simulation consistent among them.
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the solutions to the household problem. Second, we may want to know how good are
the forecasting rules f compared to what the economy actually delivers, that is to say,
how well are the households doing in terms of predicting prices. In section B.1 I present
accuracy measure for the solutions to the household problem and in section B.2 I discuss
the forecasting rules used and their actual predictive power.

B.1 The household problem

The solution method explained in the previous section is based on solving the two Euler
equations exactly at the given grid points. However, the supports for our state variables
(with the exception of the shocks) are continuous. We may be interested in knowing how
accurate is the solution outside the grid points; in other words, we may be interested in
knowing how far from a zero of the Euler equations we are at any point of the state space.

To convey a meaningful measure of distance from a zero in the Euler equations, I follow
Judd (1992) in reporting the relative consumption error. To compute this measure, we
need to take the policy functions

{
gc, gb, gs

}
at any given point of the state space and

check which relative change in consumption would yield equality in the Euler equation. If
that number is for example 0.01 it means that for every dollar spent in consumption the
household makes an error of one cent. I report the base 10 log of this measure. Therefore,
if the error measure is −2 we say that the household makes one dollar mistake for every
100 dollars spent or one every 1000 if the error measure is −3.

I report these relative errors for both Euler equations only for those points in the state
space where the Euler equations are solved with interior solution. Figures 3 and 4 plot the
relative errors for the economy HA and figures 5 and 6 for the economy HAH. Since we
cannot go beyond 3D graphics, I have fixed an arbitrary value for the aggregate state (z,
K and H) and plotted the errors for the two equation at all possible points in the wealth,
habits and idiosyncratic shock dimensions.

While useful, this graphical information is overwhelming. As a summary of the accuracy
of the solutions I have taken the average of these errors over the equilibrium distribution
of households in a given period and then taken the base 10 log. For the economy HA the
average of errors is −3.37 for the bonds equation and −3.38 for the equation for capital
(with the maximum errors equal to −2.52 and −2.84 respectively). In the HAH economy
the equivalent figures are −3.08 and −3.12 (with the maximum errors equal to −2.55 and
−2.37 respectively). This means that the error, on average, is less than one dollar for every
one thousand dollars spent in consumption.17

B.2 The forecasting rules

As discussed in the section A.2, we can try to predict the evolution of the economy by
use of a log-linear function of the first moments of the distribution µ. For the non-habits

17This errors are computed with the forecasted value of next period aggregate capital. In any case, as
shown in section B.2, the actual and predicted values for aggregate capital are almost identical. Indeed, the
largest relative discrepancy between the actual and predicted values is 0.067% in the non habits economy
and 0.088% in the habits economy.
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Figure 3: Errors in the Euler Equation for bonds. Economy HA
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Figure 4: Errors in the Euler Equation for capital. Economy HA
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Figure 5: Errors in the Euler Equation for bonds. Economy HAH
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Figure 6: Errors in the Euler Equation for capital. Economy HAH
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economy HA the estimated forecasting rules are:

if z = zg log K ′ = 0.083 + 0.973 log K with R2 = 0.999987

Rb = 1.105− 0.052 log K + 0.006 (log K)2 with R2 = 0.999999

if z = zb log K ′ = 0.058 + 0.978 log K with R2 = 0.999994

Rb = 1.094− 0.048 log K + 0.005 (log K)2 with R2 = 0.999999

Notice that the R2 are very big, larger than 0.9999 in all cases, which tells us that almost
all the variation in the time series of log K and Rb is well predicted by these forecasting
rules.

What about the economies with habits? As already anticipated in previous sections,
one important finding of this paper is that the first moment of the marginal distribution of
agents over habits does not bring any valuable information in predicting tomorrow’s state
once we are already considering the marginal distribution of assets (or its first moment).
For this reason, I have solved the habits economies of this paper with only aggregate
capital K as endogenous aggregate state variable. The drop of aggregate habits H does
not suppose any change in the results and it dramatically speeds up the computations.
Nevertheless, to convince the reader I also present some results for the HAH economy
solved with forecasting rules that include the aggregate habit stock.

The estimated forecasting rules for the HAH economy when the aggregate habit stock
is included are as follow:

if z = zg log K ′ = +0.035 + 0.988 log K − 0.028 log H with R2 = 0.999986
log H ′ = −0.149 + 0.048 log K + 0.907 log H with R2 = 0.999992

Rb = 1.106− 0.052 log K + 0.006 (log K)2

− 0.001 log H − 0.001 (log H)2 with R2 = 0.999999

if z = zb log K ′ = +0.010 + 0.993 log K − 0.027 log H with R2 = 0.999994
log H ′ = −0.161 + 0.051 log K + 0.903 log H with R2 = 0.999994

Rb = 1.095− 0.048 log K + 0.005 (log K)2

+ 0.001 log H − 0.000 (log H)2 with R2 = 0.999999

If we drop the habit stock from the forecasting rules, we obtain a set of forecasting rules
very similar to the ones for the HA economy:

if z = zg log K ′ = 0.083 + 0.973 log K with R2 = 0.999971

Rb = 1.105− 0.052 log K + 0.006 (log K)2 with R2 = 0.999999

if z = zb log K ′ = 0.056 + 0.978 log K with R2 = 0.999977

Rb = 1.094− 0.048 log K + 0.005 (log K)2 with R2 = 0.999999

Notice that the loss of predictive power as measured by the R2 is virtually unnoticeable.
Regarding the accuracy measures for the euler equations, the average errors in the euler
equations are −3.07 and −3.11 which are almost identical to the ones obtained with the
basic HAH economy.

Finally, it needs to be shown that the economy HAH, if solved with the aggregate habit
stock as state variable, does not change in any perceptible way from the version without H,

33



which is the one reported in the tables within the main part of the paper. Solving the HAH
economy with H for the same parameter values as the HAH in the main part of the paper
delivers a capital to output ratio of 12.56, a standard deviation of aggregate consumption
growth of 0.26 and a Sharpe ratio of 0.017. All these three statistics are identical to the
ones obtained in the HAH economy solved without aggregate habit as a state variable.
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