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1. Introduction

Economists often model strategic interactions using simultaneous one-shot games. It is as if

decisions were taken in the blink of an eye and realized instantaneously. This is, of course, a

simpli�cation. Complex decisions, such as entry, exit, or production are normally the result of a

long preparation process. If plans cannot be hidden from competitors and changing them is costly,

incentives to behave strategically during the preparation stage should be explicitly considered, as

they may be an important determinant of the �nal equilibrium outcomes.

Consider, for example, the automobile industry. Suppose that, ahead of time, an auto man-

ufacturer has planned a certain production target. In order to achieve it, the �rm needs to take

certain actions, such as hiring labor, canceling vacations, purchasing parts from suppliers, etc. If

the �rm then decided to change its desired production level, it would likely need to incur some

costs adjusting the previous actions. To the extent that such preparations are not, or cannot be,

fully hidden from competitors, they may play a strategic role. Given the costly nature of these

adjustments, the preparation stage acts as a gradual commitment device. Firms realize that their

planned production levels a¤ect their rivals�production targets, and use this to their advantage,

adjusting their own intentions strategically.

The main goal of the paper is to develop this argument in the context of a quantity setting

game, and to establish its empirical relevance using data from the U.S. auto industry. The �rst part

of the paper constructs a dynamic quantity setting game with a planning phase and adjustment

costs. In the second part, we use data on monthly production targets by the Big Three auto

manufacturers �General Motors, Ford, and Chrysler �and show that the empirical pattern is

consistent with the theoretical prediction.

The paper makes three separate contributions. First, we present new theoretical predictions

for quantity setting games regarding the non-monotone evolution of production targeting. Since

the framework is fairly simple and general, these predictions may be relevant in a wide range of

strategic interactions. Second, we present empirical evidence that shows a similar non-monotonic

pattern of production targets in the U.S. auto industry. Since this is one of the largest industries

in the U.S., we think that documenting this pattern is of interest, even in the absence of the

underlying theoretical framework. Finally, the match between the theory and the data suggests

two important implications for the auto industry: (i) adjustment costs and strategic considerations

may play an important role in the planning phase of production; and (ii) static models may

misestimate the competitiveness of the industry.

Section 2 contains the theoretical part of the paper. We �rst present a simple two-period

example which provides the key intuition. We then present the baseline model. At some speci�ed

date in the future two symmetric �rms engage in Cournot competition. At date zero, each �rm

inherits a production structure, which serves as its initial production target. From that point

onwards, each �rm can make continuous adjustments to its future production structure, but incurs

convex adjustment costs every time it does so. When inherited production targets are not too
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high, both �rms begin by gradually increasing their production plans. Firms use these plans as a

commitment device; they want to commit to high production levels in order to obtain a Stackelberg

leadership position in the industry. In equilibrium, however, both �rms are provided with similar

commitment opportunities, and thereby engage in a �Stackelberg warfare,� each trying not to

become a Stackelberg follower. As the horizon gets closer, however, both �rms become su¢ ciently

committed to producing high quantities. Thus, at a certain point before the �nal date, the

(dynamic) commitment e¤ect becomes less important, while the (static) incentive to best respond

to the opponent�s high production target increases and becomes dominant. Therefore, from that

point on both �rms start to gradually decrease their production intentions in the direction of their

static best-response levels. The eventual equilibrium outcome still remains more competitive than

its static analog.

The rest of Section 2 extends the baseline model along several dimensions and shows that all

these extensions retain the same qualitative predictions. We allow for more than two players,

various forms of asymmetries between players, time-varying adjustment costs, and uncertainty

(common across players). The �nal and most important extension nests the baseline model as

the stage game of an in�nitely repeated game. We solve for a Markov Perfect Equilibrium of this

game, and show that its equilibrium path exhibits the same non-monotonic pattern. Moreover,

the repeated game provides a natural way to endogenize the initial production targets, which are

taken as given in the baseline model. This extension also takes the model one step closer to the

reality of the empirical application we study later in the paper.

There are three key assumptions that are important for our results. First, control variables are

strategic substitutes, leading to a commitment incentive. Second, adjustment costs are convex,

so the commitment advantage monotonically increases with targeted production levels. Third, all

the payo¤s (net of adjustment costs) are collected in the end, leading to strong competitive e¤ects

once the production date is su¢ ciently close. Other assumptions, we believe, are less important.

For example, all the results are obtained using a linear-quadratic structure. Namely, with linear

demand, constant marginal costs, and quadratic adjustment costs. This is done for tractability,

as solving for the equilibrium outside of the linear-quadratic framework is not feasible. Moreover,

linear-quadratic games can be viewed as second-order approximations to more general games. We

could also accommodate asymmetric costs, upwards and downwards, without a¤ecting the results,

but this again would take us out of the linear-quadratic framework.1

The model we present is a model of endogenous commitment and is therefore related to

Caruana and Einav (2008), in which we mainly focus on discrete decisions, such as entry and

exit. The current work is also close to the dynamic quantity competition literature (Cyert and

DeGroot, 1970; Hanig, 1986; Fershtman and Kamien, 1987; Maskin and Tirole, 1987; Reynolds,

1987 and 1991; Driskill and McCa¤erty, 1989; Lapham and Ware, 1994; and Jun and Vives, 2004).

1Saloner (1987) and Romano and Yildirim (2005) study an extreme two-period version of such a model, in which

adjustement costs upwards are free while adjustment costs downwards are in�nitely costly. Unfortunately, this

extreme version gives rise to a wide range of equilibria, and therefore does not provide sharp predictions.
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These papers focus on the stable equilibrium of an in�nite-horizon model. They typically �nd

that (when actions are strategic substitutes) the equilibrium is more competitive than its static

analog, as players engage in a �Stackelberg warfare.�2 Our model shares this feature, but unlike

this literature our main focus is on the planning phase. One advantage in studying the dynamics

of the planning phase is its strong non-stationarity; it provides a clear prediction with respect

to an observed and exogenous state variable, namely time. Predictions of stationary dynamic

models are more di¢ cult to verify in the data, as the static benchmark is typically not available

(for example, marginal costs are typically not observed).

Section 3 empirically explores the predictions of the model using data on monthly production

targets by the Big Three auto manufacturers in the U.S. during 1965-1995. These production tar-

gets are published in a trade journal approximately every month starting as early as six months

before production. We normalize production targets by subsequent production, pool production

targets from di¤erent production months, and estimate a kernel regression in order to describe

the evolution of these targets as the production date gets closer. The results show that, on aver-

age, production targets exhibit a non-monotonic pattern, which is consistent with the theoretical

prediction. Early targets, about six months prior to production, overstate eventual production

by about 5 percent. Then they start to slowly increase, until they peak at 10 percent about

2-3 months before production. At this point, they start to gradually decline towards the even-

tual production levels. This result is robust to alternative measurements and across di¤erent

subsamples. Establishing the relationship between the empirical pattern and the theoretical pre-

dictions suggests that adjustment costs and strategic considerations may play an important role

in the planning phase of production and that static models may therefore under-estimate the

competitiveness of the industry.3

A signi�cant part of Section 3 is devoted to a careful discussion of the relationship between

the data analyzed and the theory previously developed. First, we argue, on both theoretical and

empirical grounds, why production decisions in the industry act as strategic substitutes. Second,

we explain why it is reasonable to view the reported production targets as a good proxy for actual

production scheduling decisions made by the Big Three. Finally, we describe the multiple sources

of adjustment costs that exist in the empirical setting.

At some general level, this work can be classi�ed within the recent empirical studies of dynamic

oligopolies (e.g., Benkard, 2004; and Ryan, 2006). In contrast to these studies, which primarily fo-

cus on estimating the parameters associated with a given theoretical framework, which is assumed,

our theoretical framework provides qualitative predictions. Therefore, the primary objective here

is to analyze whether the data is consistent with these predictions.

2As Jun and Vives (2004) point out, this can be viewed as a dynamic extension of a �top dog�strategy within

the Fudenberg and Tirole (1984) taxonomy of strategic behavior.
3This is the case if marginal costs are observed. If the equilibrium model is used to back out marginal costs, as in

much of the recent literature in Industrial Organization, it is the the marginal costs that would be under-estimated

when static competition models are assumed.
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The data we use in this work is also used in Doyle and Snyder (1999). They investigate the

role of reported production targets as an information sharing device by focusing on the positive

correlation among manufacturers in the revisions to their production targets. Our results are

consistent with their theoretical framework, which provides no restrictions on the way production

targets evolve over time. Their results are also consistent with ours, as the model of this paper

predicts that manufacturers would follow similar patterns over time, thereby creating positive

correlation in revisions of production targets. Therefore, we view the two studies as complemen-

tary; the observed pattern of production targets may well be driven by both information-sharing

motives as well as strategic commitment considerations. In fact, we pool observations from di¤er-

ent periods in order to average out the period-speci�c �noise.�The period-speci�c patterns vary

quite substantially and may be driven by di¤erent realizations of uncertainties. Therefore, our

framework is more relevant for the average pattern rather than for the period-by-period pattern,

while information-sharing motives are more likely to be important and observed within production

periods.

2. Theory

A two-period example

We start by illustrating the key qualitative predictions of the model using a simple two-period

example. Consider a game where two �rms start with exogenously given (symmetric) initial

production targets y1 = y2 = y. At t = 1 each �rm i = 1; 2 can revise its target from yi to zi,

but pays a quadratic adjustment cost of �2(zi � yi)
2 to do so. Then, at t = 2, each �rm has a

second (and �nal) opportunity to revise its production target to qi, paying adjustment costs of
�
2(qi � zi)

2. Given these �nal production levels, market price is given by p = 1 � q1 � q2. There
is no discounting, so payo¤s are the �nal Cournot pro�ts (with zero marginal costs) minus any

adjustment costs incurred in the process.

We can solve for the Subgame Perfect Equilibrium of this game using backward induction. At

t = 2 each �rm i chooses qi to solve

max
qi
(1� (qi + qj))qi �

�

2
(qi � zi)2: (1)

Best response functions are

qi =
1� qj + �zi
2 + �

; (2)

and the second period equilibrium strategies are

qi(zi; zj) =
1 + � (1 + (2 + �)zi � zj)

(� + 3) (� + 1)
: (3)

One can check that if �rms target the Cournot quantities, z1 = z2 = 1
3 , then setting q1 = q2 =

1
3 is

an equilibrium. In general, as Figure 1 illustrates, the �rst order conditions de�ne a best-response
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function which is a rotation of the static best-response at the previously targeted production level.

Each �rm�s response to a change in its opponent�s quantity is not as strong as it would have been

in the absence of adjustment costs. Thus, if the symmetric targets, z1 = z2, are greater (less)

than 1
3 the �rms end up adjusting in the direction of their static best responses, but not fully,

thereby ending up in a more (less) competitive equilibrium.

At t = 1 �rms choose z1 and z2, accounting for the equilibrium strategies at t = 2. Thus, each

player i chooses zi to solve

max
zi
(1� qi(zi; zj)� qj(zi; zj))qi(zi; zj)�

�

2
(qi(zi; zj)� zi)2 �

�

2
(zi � y)2 (4)

implying the following �rst order condition for each player:

@qi
@zi
(1� qi � qj)� qi

�
@qi
@zi

+
@qj
@zi

�
� �(qi � zi)

�
@qi
@zi

� 1
�
� �(zi � y) = 0: (5)

This yields a (symmetric) solution z(y; �) and q(y; �).4 If y = 1
3 , i.e. �rms�initial targets are at

the Cournot level, their �nal productions would be

q(
1

3
; �) =

1

3
+

�

3�3 + 30�2 + 78� + 54
(6)

which are always above 1
3 for any � > 0. For example, when � = 1 equilibrium targets at t = 1

are z � 0:357 and �nal production levels are q � 0:339. In summary, production targets in this
example increase �rst and decrease later, and the overall result is more competitive than in a static

game (when � = 0). In the �rst period �rms have an incentive to exaggerate their production

intentions as a way to achieve commitment. In the second period, absent the commitment motives,

the incentive is to best respond to the opponent�s high production target, but only partially, given

the adjustment costs. As we will see below, these qualitative conclusions hold under more general

assumptions.

The baseline model

We now introduce the baseline model, which is in continuous time. There are two players. At

time t = 0, they start with exogenously inherited initial production targets of (q1(0); q2(0)). At

all points t 2 [0; T ] each player i chooses xti 2 R, which controls the rate at which she changes
her production target, i.e. q0i(t) = x

t
i. Note that x

t
i can be either positive or negative. If a player

changes her target at a rate of xi, she has to pay adjustment costs of ci(xi; t). At time T , and

given their �nal targets, q1(T ) and q2(T ), players compete in quantities and collect �nal payo¤s

of �i(qi(T ); qj(T )).

In order to make the model more tractable, we use a linear-quadratic structure; we assume

that inverse demand is linear, given by p = a � b(q1 + q2), and marginal costs are constant and
given by c. Thus, we have that

�i(qi(T ); qj(T )) = (a� bqi(T )� bqj(T ))qi(T )� cqi(T ) = (a� c)qi(T )� bq2i (T )� bqi(T )qj(T ): (7)
4The solution is z(y; �) = 4+4�+�2+y(�+1)(�+3)2

(26�+10�2+�3+18)
and q(y; �) = (y�+2)(�+1)(�+3)

(26�+10�2+�3+18)
.
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In addition, we assume that adjustment costs are quadratic and take the form of

ci(xi; t) =
�

2
x2i : (8)

Note that adjustment costs are constant over time,5 symmetric across players, and symmetric for

positive and negative rates. None of these properties is important for the main results.

We solve for the Markov Perfect Equilibrium of the model. Thus, strategies only depend on

the state variables, q1 and q2 and time t. Let V ti (qi; qj) be the value function for player i at time t,

with state variables qi and qj . If V ti (qi; qj) exists and is continuous and continuously di¤erentiable

in its arguments, then it satis�es the following Bellman equation

max
xti

�
��
2

�
xti
�2
+
@V ti
@qi

xti +
@V ti
@qj

xtj +
@V ti
@t

�
= 0: (9)

The �rst order condition for xti implies that

xti =
1

�

@V ti
@qi

: (10)

We can now substitute this back into equation (9), and obtain the following di¤erential equation

1

2�

�
@V ti
@qi

�2
+
1

�

�
@V ti
@qj

� 
@V tj
@qj

!
+
@V ti
@t

= 0: (11)

The linear-quadratic structure is attractive. It is known that in this case, if one restricts the

strategies to be analytic functions of the state variables, there exists a unique equilibrium of the

game, which is also the limit of its discrete-time analog. Moreover, in such a case the value function

is a quadratic function of the state variables.6 Note that due to the inherent non-stationarity of

the model, the parameters of this quadratic equation will depend on t in an unspeci�ed way. We

can express the value function as

V ti (qi; qj) = At +Btqi + Ctqj +Dtq
2
i + Etq

2
j + Ftqiqj (12)

which, using equation (10), implies that

xti(qi; qj) =
1

�
(Bt + 2Dtqi + Ftqj) : (13)

Given that players are symmetric, we use equations (11) and (12) to obtain

0 =
1

2�
(Bt + 2Dtqi + Ftqj)

2 +
1

�
(Ct + 2Etqj + Ftqi) (Bt + 2Dtqj + Ftqi) + (14)

+
�
A0t +B

0
tqi + C

0
tqj +D

0
tq
2
i + E

0
tq
2
j + F

0
tqiqj

�
:

5For simplicity, there is no time discounting. Time discounting is a special case of the extension of the model to

time-varying adjustment costs, which we analyze later.
6See Kydland (1975), who shows uniqueness for a discrete-time version, and Lukes (1971), Papavassilopoulos

and Cruz (1979), and Papavassilopoulos and Olsder (1984) for analysis of existence and uniqueness in �nite-horizon

linear-quadratic di¤erential games.
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This is a polynomial in qi and qj . Since it has to be satis�ed for all values of qi and qj , all its

six coe¢ cients (which are functions of t) have to be equal to zero. This gives the following set of

ordinary di¤erential equations. To ease notation, we can just think of time as going backwards.

This is convenient as our boundary condition is for t = T . Thus, all derivatives with respect to

time (A0, B0, etc.) reverse signs, and the law of motion for the parameters is given by0BBBBBBBBB@

A0

B0

C 0

D0

E0

F 0

1CCCCCCCCCA
=
1

�

0BBBBBBBBB@

1
2B

2 +BC

2BD +BF + CF

BF + 2BE + 2CD

2D2 + F 2

1
2F

2 + 4DE

4DF + 2EF

1CCCCCCCCCA
(15)

with boundary condition (for t = T )0BBBBBBBBB@

AT

BT

CT

DT

ET

FT

1CCCCCCCCCA
=

0BBBBBBBBB@

0

a� c
0

�b
0

�b

1CCCCCCCCCA
(16)

which is provided by the pro�t function in equation (7).

Equilibrium properties

The system of ordinary di¤erential equations given by equation (15), with its boundary condition,

de�nes the solution. It de�nes the value function at any point in time, which in turn allows us to

compute the equilibrium strategies using equation (13). The system cannot be solved analytically,

but the equilibrium can be approximated through the solution of the discrete-time analog of the

game for very small time intervals.

Throughout this section we illustrate the properties of the equilibrium for a speci�c choice of

parameters. This choice is incosequential and the properties we report are generic. Speci�cally,

we set a = b = 1, c = 0, � = 1, and T = 10. This implies that marginal costs are zero and that

inverse demand is given by p = 1 � q1 � q2. Adjustment costs are ci(xi; t) = 1
2x
2
i .
7 For later

comparison, it is useful to observe that, for this choice of parameters, the static Nash equilibrium

of this game involves each player producing her Cournot quantity of q = 1
3 , while the Stackelberg

leader and follower production levels are q = 1
2 and q =

1
4 , respectively.

7One should note that some of these restrictions are not important. The e¤ect of a and c only enters through

their di¤erence a�c, so setting c = 0 is only a normalization. Similarly, optimal strategies are invariant to monotone
transformations of the objective function, so, for example, setting b = 1 is a normalization.
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The top panel of Figure 2 presents the symmetric equilibrium path for the game in which

both players inherit an initial production target at the static Cournot level. The two parties

begin by increasing their targets, each trying to become a Stackelberg leader, or at least not to

fall behind and become a Stackelberg follower. As the deadline gets closer, both �rms realize

that they are su¢ ciently committed to high output, but that they are much above their static

best responses, and optimally decide to gradually adjust towards it. Given that this is costly, the

parties do not adjust all the way to the static Nash equilibrium.8 In this particular example, the

equilibrium outcome is about 0:37, compared to the static outcome of 13 . Finally, we also depict

one o¤-equilibrium-path strategy for each player. Suppose that player i receives an unexpected

shock to her intended target at t = T � 4 and has her target reverted to the Cournot level. Both
players realize that player j has achieved a leader position in the market. Player j capitalizes

on this advantage by increasing her own target even further. Meanwhile, player i�s best response

is to rebuild her commitment by increasing her target. Nevertheless, the advantageous position

acquired by player j never fully diminishes and is kept until the production date.

The bottom panel of Figure 2 presents the symmetric equilibrium path for di¤erent initial

production targets. If these are not too high, one observes the same pattern as in the previous

�gure. If initial targets are su¢ ciently high (greater than about 0:44 in this particular example),

both parties are su¢ ciently committed to high production from date zero and do not need to

engage in further increases of production targets. The rate at which they decrease their targets

over time is not constant, however, due to the commitment e¤ect. They �rst decrease targets

slowly, so they remain committed to high quantities, and only later they speed up adjustments in

the direction of their static best response levels.9

Figure 3 presents comparative statics with respect to the length of the horizon and with respect

to the size of the adjustment cost parameter. An inspection of equation (15) reveals that these two

exercises are similar. A proportional increase in the adjustment cost can be viewed as a slowdown

in the evolution of the value function. Thus, changes in the adjustment cost parameter are similar

to a rescaling of time.10 The top panel of Figure 3 shows how the length of the horizon a¤ects

the equilibrium path. As the horizon gets longer, there is more time to build up commitment.

However, since the build up is more gradual it is not as costly. Indeed, in the limit (as T ! 1)
the equilibrium pro�ts converge to a constant of 0:0925,11 which is approximately 17 percent lower

8With convex adjustment costs, the optimal strategy always leads to partial adjustments. This is because the

static pro�t function is �at at the static best response level. Thus, the marginal cost of adjustment is zero for small

adjustments and higher for greater ones, while the marginal bene�t is strictly positive for small adjustments but

zero for full adjustments.
9Note that if the initial targets were very low and the adjustment parameters high, one could also see a fully

increasing equilibrium path.
10 It is similar but not identical. Think of the game in discrete time. A lower � is similar to increasing the length

of a period, without changing the number of periods. Increasing T is similar to increasing the number of periods,

without changing their length. Thus, loosely, stretching of time allows for more opportunities to adjust behavior.
11This limit is invariant to initial targets: the parameter A of the value function converges to approximately
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than the static Cournot pro�ts of 19 .
12 This illustrates how the dynamic interaction leads to a

reduction in pro�ts. If they could, the two parties would avoid the �preparation race�and commit

to the static Cournot outcome throughout. Similarly, the bottom panel of Figure 3 shows that as

the adjustment costs decrease, building commitment becomes cheaper. In both cases this leads to

higher targets and an ultimate faster decline. This is an important observation that we emphasize

later: smaller (but positive) adjustment costs lead to a more pronounced hump shape.13

Extensions to the baseline model

Here we present some of the most natural extensions to the baseline model. The main message is

that all of them retain the same qualitative predictions of the model. The derivations are provided

in the appendix.

N players: The baseline model is constructed for two players only for convenience. Results

remain unchanged with more than two players. The value function has one additional element,P
j 6=i
P
k 6=i;j qjqk, which results in an additional equation in the system of di¤erential equations.

We computed the equilibrium for di¤erent sets of parameters and the equilibrium patterns are

qualitatively identical to those obtained for the two-player model.

Asymmetric players: Asymmetries among �rms can be introduced either through the �nal

payo¤ function (e.g., �rms may vary in their marginal costs) or through the adjustment costs

(e.g., labor may be more unionized in one �rm than in the other). In the appendix we treat them

jointly, but we report comparative statics on each dimension separately.

The top panel of Figure 4 illustrates the case of asymmetric marginal costs. In particular, it

uses the same parameter values as in Figure 2, but introduces a (constant) marginal cost of 0:2

for player 2. The �gure presents the equilibrium paths for di¤erent initial targets. The general

pattern is similar to the baseline case. Now the more e¢ cient player produces more than her

opponent, and more than her static Nash equilibrium quantity (q1 = 0:4 and q2 = 0:2). In this

case the less e¢ cient player may produce less than her static Nash quantity. This is shown in

the thin solid line. The reason for this is that asymmetric marginal costs introduce asymmetries

in the commitment opportunities. Given that the more e¢ cient player is producing more, her

static payo¤ function is steeper around the equilibrium. This allows her to enjoy higher levels

of commitment and attain a Stackelberg advantage. In all cases, however, overall quantity is

higher (more competitive) than the static equilibrium level of 0:6. This might hint at a welfare

improvement, due to both higher consumer surplus and more e¢ cient allocation of resources

0:0925, while all other parameters approach zero.
1214 percent is due to higher production and lower equilibrium prices, while 3 percent is due to adjustment costs.
13Although not the focus of our analysis, the bottom panel of Figure 3 also shows that �nal production levels

decrease with �, suggesting a likely discontinuity at � = 0 as is the case in similar models of convex adjustments

costs (Fershtman and Kamien, 1987; Driskill and McCa¤erty, 1989).
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among the �rms, but one has to include the adjustment costs in the analysis to obtain a de�nitive

answer.

The bottom panel of Figure 4 presents the case of asymmetric adjustment costs for di¤erent

values of the � coe¢ cients. The shape of the equilibrium is the same as before. It is interesting to

notice that it is the more �exible player who is able to end up producing more. When adjustment

costs are high (�1 = 1 and �2 = 5) this is simply because player 2 cannot a¤ord to increase

her targets so rapidly (recall that initial targets and the length of the horizon are �xed in this

exercise). When the costs are lower the leadership position is achieved through the higher ability

of the �exible player to increase her targets further as a way to commit to high output.14

Time-varying adjustment costs: One may argue that adjustment costs may vary over time.

One reason may be discounting, which would result in declining adjustment costs. It is also

natural to think of adjustments becoming more expensive as the production date gets closer. As

an example, hiring temporary labor three months before production may be cheap, while labor

availability one day before production is scarce, and will require higher wages or higher search

costs on the employer part.

It is straightforward to incorporate such e¤ects into the baseline model. The adjustment cost

function would be

ci(xi; t) =
�(t)

2
x2i (17)

where �(t) is continuous in t. The derivation of the system of ordinary di¤erential equations is

the same as in equation (15), with � replaced by �(t). Notice that � enters into the system in a

proportional way. Therefore, replacing it by �(t) is similar to a rescaling of time. When �(t) is

low the coe¢ cients on the value function change fast, and when �(t) is high the coe¢ cients change

slow. The qualitative predictions of the model remain unchanged.

Uncertainty: In the presence of uncertainty, there is a general trade-o¤ between commitment

and �exibility, as remaining �exible would allow �rms to adjust to unexpected events. The

precise impact of considering uncertainty within the context of this work will depend on the type

of uncertainty explored. In the appendix we consider a model with a natural source of common

uncertainty within the linear-quadratic framework. Suppose that demand can be either high or

low, and that it (symmetrically) �uctuates between the two states following a Poisson process: at

each point, at hazard rate � the state changes.

Initially, with the horizon far enough in the future, the current state of demand is not par-

ticularly informative about demand at time T . Given that �rms only care about the eventual

realization of demand, on equilibrium they start by having a similar behavior independently of

the current state. As the production date draws near, however, �rms become more responsive to

14Note that if the initial inherited targets were higher, say q(0) = 0:4, and the adjustment costs high as well, the

previous result could be reversed. In this case the non-�exible player would be at a credible position not to change

her target far away from 0:4, which would force the �exible player to adjust downwards.
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changes in the state of demand. This typically results in upwards (downwards) adjustments of pro-

duction targets in response to changes into the high (low) state. As �rms foresee this happening,

they are more reluctant to adjust early, compared to the baseline model, and therefore build up

commitment more slowly. While the equilibrium path is random as it depends on the realization

of uncertainty, the expected equilibrium path (computed numerically) exhibits a non-monotonic

pattern as in the baseline model.

Repeated interaction and endogenous initial targets

Many real-world situations, like the monthly production decisions in the auto industry we study

later, are repeated in nature. Here we consider an in�nitely repeated game in which the baseline

model is the stage game and there are adjustment costs between stages. These costs between

stages capture the fact that �rms are constrained in their future plans by their actual production

infrastructure. This extension also allows us to endogenize the initial targets, which were taken

as given in the baseline model.

Formally, each stage of the game is played as follows. Given last period production of (y1; y2),

players �rst decide simultaneously on their initial production targets q1(0) and q2(0) for next

period, but pay a cost of '2 (qi(0)� yi)
2 when they do so. For the next T units of time they

play the baseline model with inherited initial targets of (qi(0); qj(0)) and quadratic adjustment

costs with parameter �: That is, they can continuously adjust their production targets, paying

an adjustment cost of �2 (q
0
i(t))

2 if they do so (where t is the time elapsed since the beginning of

the period). At the end of each stage, production takes place and the stage payo¤s are collected.

Players discount pro�ts with a common discount factor � per period. For simplicity we assume

that players do not discount payo¤s within a period.

We solve for a symmetric Markov Perfect Equilibrium (MPE). Thus, the state variables are the

most recent production targets and the elapsed time t. Given that the game has a linear-quadratic

structure, we guess that the value function is quadratic in the state variables. We search for an

equilibrium satisfying this assumption and �nd one, justifying the initial guess. The solution to

the value function within each stage follows the same law of motion as in the baseline model and

thus satis�es equation (15). The boundary condition is di¤erent in this case, as it is determined

endogenously as part of the equilibrium. In particular, there is a relationship between the value

function at the beginning of the stage game and the value function at the end of it. We establish

this relationship below.

In equilibrium, player i sets her initial production target qi(0) to satisfy

max
qi

�
A0 +B0qi + C0qj(0) +D0q

2
i + E0qj(0)

2 + F0qiqj(0)
�
� '
2
(qi � qi(T ))2 (18)

which leads to the following �rst order condition:

B0 + 2D0qi(0) + F0qj(0)� ' (qi(0)� qi(T )) = 0: (19)

11



Equation (19), together with its analog for player j, provides a closed-form relationship between

(q1(0); q2(0)) and (q1(T ); q2(T )). Since, by construction

V Ti (qi(T ); qj(T )) = �i(qi(T ); qj(T ))� �
'

2
(qi(0)� qi(T ))2 + �V 0i (qi(0); qj(0)) (20)

we can substitute the relationship between (q1(0); q2(0)) and (q1(T ); q2(T )) into equation (20). As

this has to be satis�ed for any qi(T ) and qj(T ) we can equate coe¢ cients, and obtain a system

of six equations that provides a closed-form relationship between A0; :::; F0 and AT ; :::; FT : This

is the boundary condition that substitutes equation (16) of the baseline model. The solution

to equation (15) and this new boundary condition constitute an MPE of the repeated game.

Finally, we focus on the steady state of the equilibrium, in which the production decisions (but

not production targets) are constant.

The equilibrium is computed by numerically searching for a solution. We start with a guess for

AT ; :::; FT , and then iterate the law of motion in equation (15) to obtain A0; :::; F0. Then, using

the boundary condition, new values for AT ; :::; FT are obtained. We iterate this procedure until

convergence. Although, in general, one cannot establish uniqueness (or even existence) for this

game, the problem seems to be well behaved. We have checked for a wide range of parameters that

the procedure converges (rapidly) and that the �xed point does not depend on the starting values

chosen. Thus, on numerical grounds, we believe that the repeated interaction game has a unique

symmetric MPE, or at least a unique symmetric MPE with linear-quadratic values functions.15

The top panel of Figure 5 presents the equilibrium path for the baseline parameter values

(a = b = 1, c = 0; � = 1; T = 10), a discount factor of � = 0:9, and ' = 0:1. As one can see, the

equilibrium stage pattern exhibits the same hump shape as in the baseline model. The production

levels are now higher than what would be produced in the baseline model if the inherited targets

were the ones from the steady state equilibrium. This is because, in addition to the commitment

e¤ect already described, there is a dynamic e¤ect of commitment through the adjustment costs

between stages. This second e¤ect is the same that is present in all dynamic quantity games with

sticky controls analyzed in the literature (Maskin and Tirole, 1986; Reynolds, 1987 and 1991;

Driskill and McCa¤erty, 1989; Jun and Vives, 2004). Its importance is diminished in this model

by the fact that the planning phase provides an additional opportunity to revise production levels.

Naturally, this additional dynamic e¤ect increases with � and decreases with T . The bottom panel

of Figure 5 provides some comparative statics with respect to the relative importance of the two

types of adjustment costs by varying ' and �. As one can observe, ' primarily a¤ects the size

of the jump between production levels and initial targets for the subsequent production period,

with high values of ' implying small jumps. In contrast, � primarily a¤ects the shape of the

production target adjustments and �nal equilibrium production levels.

15To our knowledge, there does not exist a general existence or uniqueness result for linear quadratic games

with in�nite horizon. Thus, one needs to establish these results on a �case by case� basis (as in Reynolds, 1987;

Driskill and McCa¤erty, 1989; or Jun and Vives, 2004). However, our model is not totally standard, as we nest a

continuous-time adjustment stage within a discrete-time in�nite-horizon model. For this reason, one cannot have

closed-form equations for the law of motion, which are likely needed to derive certain su¢ cient stability conditions.
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One important special case of the repeated game is the one in which ' = 0. In such a case,

there is no link between consecutive production periods and the model collapses to the baseline

model with free initially chosen targets. That is, at t = 0 players decide simultaneously and

costlessly on their initial targets (q1(0); q2(0)) and then continue playing as in the baseline model.

In the simultaneous-move game played at date zero players solve equation (18) (with ' = 0),

implying a unique equilibrium of

qj = qi =
�B0

2D0 + F0
: (21)

These initial targets give rise to an equilibrium path, in which production targets are �at at t = 0

and gradually decline thereafter (this is also one of the cases presented in the bottom panel of

Figure 5).16 For any ' > 0, however, the equilibrium path presents the hump-shaped pattern

emphasized throughout.

3. Evidence

Data

We use data on domestic production targets of the major auto manufacturers in the U.S.17 The

unit of analysis is a production month. Prior to each production month, the Big Three U.S.

auto manufacturers �General Motors (GM), Ford, and Chrysler � decide about their produc-

tion targets for future months.18 These targets are posted in a weekly industry trade journal,

Ward�s Automotive Reports, which specializes in industry data and statistics. Targets are posted

approximately every month, starting as early as six months prior to actual production.

Production targets are summarized by the number of cars to be produced by each manu-

facturer, aggregated over all models. Thus, variation across models or the introduction of new

models cannot be directly used. The data set has a panel structure and covers the years 1965

to 1995, for a total of 372 production months.19 Every time a production target is published, it

includes production targets for all three manufacturer. Thus, manufacturers do not decide when

to post their targets, as this is requested byWard�s. Overall, we observe 1; 621 production targets

for each manufacturer.20 This amounts to an average of 4:42 production targets per production

16This path is initially �at because, in equilibrium, initial production targets (q�i ; q
�
j ) satisfy

@V i0
i (q�i ;q

�
j )

@qi
= 0.

From equation (10), the rate of adjustment at t = 0 is given by x0i (qi; qj) =
1
�

@V i
0 (qi;qj)

@qi
, implying x0i (q

�
i ; q

�
j ) = 0.

17For additional details, see Doyle and Snyder (1999) who use the same data.
18These targets are being described by various synonyms: �assembly targets,��assembly schedules,��production

plans,��production forecasts,�etc.
19Some of the observations in the data include post-production revisions. We discard these observations. We

only focus on targets posted before production. Five production months have no pre-production targets, and are

therefore omitted from the analysis.
20The data also include production targets for American Motors (AMC) until its exit from the market in 1987.

We do not use these data for the reported results. AMC had a small market share (2.3 percent on average) and

exhibits a similar pattern to the Big Three, with the exception of its last three years of operation, during which
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month, ranging from some cases with a single production target to others with up to 12 associated

targets.21

Figure 6 presents the total number of published targets made at each 10 day interval prior to

actual production.22 It shows that production targets are published approximately once a month,

often on the last week of the month. One can also observe that the number of observations is quite

stable over the 3-4 months before production. There are signi�cantly fewer earlier observations.

Linking the data to the theory

Are production decisions strategic substitutes? Our theoretical model assumes a Cournot

structure for the product market competition. Of course, this is a simpli�cation. Competition in

the auto industry is more complex, and involves production, inventory management, distribution,

pricing to consumers, and dealer incentives. In this section we argue that on both theoretical

and empirical grounds, the assumptions of the theory provide a reasonable approximation to the

production planning decisions made by the Big Three. We start by noting that the qualitative

prediction of the theory does not rely on a model of quantity competition per se. Rather, it only

requires that production decisions are strategic substitutes. That is, one should interpret our

theoretical pro�t function as a reduced-form summarizing the subsequent stages of competition.

The key for the theoretical results to hold is that, within this reduced form, production decisions,

the variables whose targeting we observe, are strategic substitutes.

But should one expect production decisions to be strategic substitutes? From the perspective

of economic theory, the simplest way to address this question is to use the well-known static

framework of Kreps and Scheinkman (1983). They show that even if the product market clears

through prices, �rst-stage capacity decisions are, as in Cournot, strategic substitutes. More gener-

ally, Athey and Schmutzler (2001) show that in a variety of market clearing models, irrespective of

whether product market choices are strategic substitutes or complements, �rst-stage investment

decisions act as strategic substitutes. It is natural to view production decisions as such invest-

ments. Of course, dynamic considerations, through inventories, play an important role in the

auto industry.23 Judd (1996) considers a simple dynamic oligopoly with �rms making production

decisions, but then competing on prices. Inventories are the dynamic state variable linking peri-

ods. Judd shows that, as long as there are adjustment costs in production, production decisions

its market share, production, and production targets rapidly declined. The qualitative results of the paper remain

unchanged if we use pre-1984 AMC data.
21The frequency of posted production targets signi�cantly increased in the 1970s. The average number of pro-

duction targets per production month was 2.13 during 1965-1975, compared to 5.94 and 5.32 during 1976-1985 and

1986-1995, respectively. The frequency is also higher for months in the end of quarters, as important strategic

scheduling decisions are often made on a quarterly basis.
22Since production decisions re�ect total production for the month, we follow Doyle and Snyder (1999) and use

the last day of the production month as the relevant �date�of production.
23See Kahn (1992) and Bresnahan and Ramey (1994) for theory and evidence about the relationship between

sales and production.
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act as strategic substitutes.24 All these results support our modeling assumption that production

decisions are strategic substitutes.

In addition to the theoretical arguments, one can directly test for strategic substitutability

empirically. Berndt et al. (1990), for example, cannot reject Cournot as a model for competition

among the Big Three. We reach a similar conclusion performing an additional test with our data.

For this purpose we use auxiliary data on labor strikes also reported in Ward�s.25 We regress the

actual monthly production of one �rm on a dummy variable that is equal to one if there was a

labor strike during that month. We �nd that a strike in one �rm reduces its own production, which

is to be expected, but increases production by its rivals. If production decisions were strategic

complements, rivals would decrease their production instead. Similarly, we test for the sign of the

reaction function by regressing one �rm�s production on the production of its rivals. To solve an

obvious endogeneity problem, we use the strike dummy variables as instruments. Again, we �nd

downward sloping reaction functions, consistent with strategic substitutes, although signi�cance

levels are lower.

Another important aspect of the industry that we have abstracted from is the presence of

product di¤erentiation and multi-product �rms. We think that explicitly modeling these features

is unlikely to change the nature of the theoretical predictions. Firm-level vehicle production is

the sum of the �rm�s production in all market segments. As long as our theory provides a good

approximation for each segment separately, its qualitative predictions should also hold at the

aggregate.

Actual vs. reported production targets In principle, there is a distinction between actual

production targets, the object of the theoretical model, and reported production targets, the

data used in the empirical analysis. The maintained assumption in our empirical analysis is that

reported targets are a good proxy for real decisions. This is an important assumption: if these

reported targets were not anchored to any real decision, they would constitute pure cheap talk.

Therefore, we discuss this issue in more detail below.

First, we do not think that Ward�s plays an essential role in facilitating the strategic interac-

tion. According to our conversations with many industry experts, including Ward�s analyst, it is

di¢ cult to hide real actions from competitors. Hiring temporary labor, scheduling extra shifts,

temporary shutdowns of plants, or orders of big amounts of windshields can be easily monitored.

In this sense, we view the production targets reported byWard�s as providing monthly snapshots

of the underlying, more continuous decisions made by manufacturers regarding their production

targets.

Second, production targets �gures reported by Ward�s are considered to be one of the most

reliable sources of information regarding actual production targets. Industry analysts and consul-

tants use the reported targets inWard�s as a key input in their production forecasting models, the

24See also Jun and Vives (2004), who report similar results in a more general framework.
25See Doyle and Snyder (1999) for more details on these strike data.
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press often quotes these reported targets, and part suppliers use these targets as a way to verify

the corresponding orders they receive from manufacturers directly.26 It is natural to wonder why

�rms truthfully and publicly report such internal decisions. There are several related reasons.

First, as we mentioned above, plans cannot be easily hidden. Neither from competitors, nor from

Ward�s, the press, or other external analysts. The main role of Ward�s is to report these actions

to third parties (suppliers, dealers, etc.), who cannot perform the monitoring so easily.27 As we

describe in the next section, third parties�plans crucially depend on this information. Second,

manufacturers are aware of this monitoring, making it costly for them to consistently report tar-

gets that misrepresent actual decisions. These costs can take the form of bad press, as well as

reduced ability to control (future) information �ows.28 Third, strategic considerations may also

work towards providing incentives for truthful reporting. If commitment is achieved by credible

production targets, then credibility can only be achieved by a reputation for truthful reporting.

Finally, we note that our focus on the qualitative predictions of the theory makes the empirical

exercise meaningful even if reported targets do not perfectly describe actual decisions. As long

as reported and actual decisions are positively correlated and this correlation structure is time

invariant, the qualitative prediction of the theory regarding actual production targets should hold

for the reported ones as well.

Sources of adjustment costs One of our key assumptions is that the adjustment of production

targets is costly, as this allows production targets to serve as a commitment device. That is, the

model assumes that production targets are associated with real actions that cannot be costlessly

reversed. These costs do not have to be large. In fact, as mentioned earlier, lower costs lead

to a more pronounced hump shape in production targets, as long as they are positive. Here we

discuss the possible sources of such adjustment costs in the context of the empirical application.

This discussion draws on interviews with many individuals in the auto industry, as well as on

information from newspaper and trade journal articles.29

Production scheduling is an important task for auto manufacturers. Considerable amounts of

labor and resources are devoted to this function. Manufacturers are continuously taking actions

that a¤ect their future production capabilities: they produce certain parts internally, order others

from suppliers, hire and �re temporary labor, cancel vacations, schedule plant shutdowns, etc.

26An online appendix (available on our web pages) provides both quotes from the press that mention Ward�s

reported targets, as well as quotes from our conversations with industry players, who refer to these targets.
27One could argue that the only reason to publish such information would be its commercial value to third parties.

Potential readers are encouraged to subscribe toWard�s as follows: �News and numbers you can�t do without. Auto

analysts and decision-makers must get the latest, vital statistics on the industry�s health, plus updated news, analysis

and projections that impact their companys�futures.�(http://wardsauto.com/war/index.htm)
28As an example, for a certain period in the late 1990s, Ford was known to provide targets that were �too high.�

Industry players then ignored Ford�s numbers and formed their own forecasts. It took a big e¤ort by Ford to gain

its credibility back. The online appendix provides some related quotes.
29Selected quotes from both interviews and newspaper articles are provided in the online appendix.
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Each adjustment in plans generates responses along all these margins, which are often costly to

manufacturers.

The relationship with suppliers is an important dimension of these costs. When orders change,

suppliers adjust.30 They incur adjustment costs in production. These include costs associated

with changes in their own labor and plant operation schedule, hiring and �ring temporary labor,

excess inventory holding, the requirement to buy materials in the spot market at higher prices,

or the opportunity cost of idle capacity. Some of these costs are only borne by suppliers, but

others are passed on to manufacturers through di¤erent channels. First, order changes with

too short notice result in less timely deliveries, and are occasionally not even ful�lled (due to

capacity constraints along the vertical supply chain). Second, given the magnitude and timing

of the processes involved in the industry, forward contracts are widespread. In principle, every

change in plans would involve renegotiating these contracts. In reality this seldom happens,

as contracts often stipulate clauses that deal with these instances. Typical part contracts in

the industry specify minimum and maximum orders, assigning �nancial penalties to deviations

from this contracted range. Even if these contracts are never renegotiated, implicit adjustment

costs arise when contracting with di¤erent parties does not simultaneously take place. Since

parts are complements in production,31 once contracts are signed sequentially each new contract

represents a stronger commitment to a certain production level. Therefore, signing new contracts,

which are not fully consistent with earlier ones, carries an implicit adjustment cost, as it would

have been cheaper if previous contracts had been set di¤erently. Third, there are also dynamic

consequences. Order changes lead suppliers to increase their projected cost for subsequent models,

making manufacturers face less competitive bidding in the future. Finally, there is the increased

risk of pushing suppliers into bankruptcy if orders are cut substantially.32

Suppliers of parts are not the only channel through which manufacturers incur adjustment

costs. Another important channel is the production of parts produced by the manufacturers

themselves. There are substantial cost associated with scheduling adjustments to labor on the

assembly lines.33 Moreover, even though a large fraction of parts are currently produced by

separate part suppliers, the industry was almost fully vertically integrated until the early 1980s

(Scherrer, 1991). The adjustment costs incurred by part suppliers when production targets change

are also incurred by manufacturers when they produce these parts in house.

Financial markets provide a �nal channel through which changes in production targets may be

30See the online appendix for evidence on this issue. If one were to take our model literally, suppliers should

foresee the �nal equilibrium production levels and not follow manufacturers all along the adjustment process. In

practice, however, targets are also a¤ected by various sources of uncertainty, such as demand conditions. If some

new information about such sources is only revealed to manufacturers, suppliers�optimal response to a change in

production targets is to at least partially adjust to it.
31Consider, for example, an O-ring production function (Kremer, 1993).
32See a related discussion on this issue in Ben-Shahar and White (2006).
33With a large fraction of workers in the industry unionized, workers on temporary layo¤s normally collect

company-funded layo¤ protection plans.
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costly to manufacturers. As we document in the online appendix, changes in production targets

are closely followed by the media and �nancial analysts. They are often interpreted as bad news,

regardless of whether targets are adjusted upwards or downwards. This gives manufacturers

another reason to be reluctant to make such changes.

Empirical analysis

Let us �rst introduce some notation. Denote by Qit the actual quantity produced by manufacturer

i during month t. Denote by Adit the production target made by manufacturer i for production

month t, with �d representing the number of days between the date of the production target and
the target date. Namely, if a production target Adit is made at date t

0 then d = t0 � t. The focus
of the analysis is on the way in which Adit evolves with d.

In order to make targets comparable over time and across manufacturers, we normalize all

targets by eventual production. Namely, a (normalized) production target is de�ned as

adit �
Adit �Qit
Qit

: (22)

Thus, adit is the percentage deviation of the target from the eventual production; it is positive

(negative) when a production target is higher (lower) than eventual production.34 ;35 Our key

theoretical prediction concerns the change of adit with respect to d. We expect a
d
it to gradually

increase early on, when d is high (in absolute value), and decrease later, as the production date

gets closer.

Our analysis is based on pooling observations from multiple production months. The under-

lying assumption is that, up to the normalization, the same game is played repeatedly over time.

This enables us to treat di¤erent production targets in di¤erent games as if they are made in the

same context. We then use quartic (biweight) kernel regressions of adit on d to non-parametrically

describe the evolution of production targets over time. In all �gures, we use a bandwidth of

30 days. We repeat this exercise for each manufacturer separately, for the Big Three average

adBig3;t =
1
3

�
adGM;t + a

d
Ford;t + a

d
Chrysler;t

�
, and for di¤erent subsamples of the data. In this sec-

tion we describe our �ndings; we defer to the next section the discussion of the link between the

empirical exercise and the theoretical assumptions.

34This transformation of the data is similar to the PPE measure used in Doyle and Snyder (1999). Our measure

uses a slightly di¤erent normalization to relate it more closely to the theoretical predictions. All the qualitative

results are robust to alternative normalization choices, including the PPE measure of Doyle and Snyder.
35There are six instances of extreme outliers. Five of them are due to unexpected low Qit�s, which generate high

adit�s, more than three times eventual production (a
d
it > 2). The sixth instant is of zero announcements by Chrysler.

While these cases do not a¤ect the general pattern in any important way, we drop them to reduce noise. We take

a conservative approach and also drop all other production targets (at di¤erent times and by other manufacturers)

associated with the same production month. This leaves us with 361 production months and 1; 598 targets by each

manufacturer for the empirical analysis.
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The key evidence is presented in Figure 7, which pools all production months in the data. The

qualitative picture is of a non-monotonic pattern. On average, production targets start about 5

percent above eventual production levels and gradually increase. They peak 2-3 months before

production at about 10 percent, and then gradually decline towards actual production levels. This

pattern is not uniform across manufacturers. While Ford and Chrysler, the two smaller �rms,

follow a similar non-monotonic pattern of production targets, GM exhibits a di¤erent behavior.

GM�s average initial production target is about 15 percent above its eventual production level,

and it gradually declines as the deadline gets closer. This is not inconsistent with the model: if

initial production targets are high, the model predicts a gradual decline over time. It would be

interesting to explain why GM�s (relative) initial production targets are consistently higher than

those of Ford and Chrysler. In the repeated game model, for example, such variation could arise

if the ' parameter for GM is su¢ ciently close to zero.36

The dashed lines in Figure 7 report 95 percent con�dence intervals. These are computed by

bootstrapping the data, and running the same kernel regression on each bootstrapped sample;

the dashed lines in each �gure report the point-by-point 2.5 and 97.5 percentiles. These show

that the observed decline in planned production towards the production deadline is quite precisely

estimated. This pattern is extremely consistent across manufacturers and for di¤erent subsamples.

Figure 7 also shows that the con�dence intervals signi�cantly shrink as the production deadline

gets closer. This happens for two reasons. First, as may be expected, the variance in the estimates

is lower close to the day of production. This may be due to information shocks, which are likely

to be more pronounced when the production deadline is further away in the future. The second

reason is apparent from Figure 6: the number of observed production targets 3-6 months before

production is signi�cantly smaller than the number of observations 0-3 months before production.

Our theoretical prediction concerns a non-monotonic pattern of production targets with respect

to the same production month. A potential concern may be that while the average pattern shown

is qualitatively consistent with the theoretical prediction, it may be generated by aggregation

over periods, but is not present in individual patterns.37 To address this concern, we repeat

the same exercise for di¤erent subsamples of the data. Figure 8 divides the sample into three

decades.38 Figure 9 performs the analysis for each calendar month separately to account for

36We note that the non-monotonic pattern is primarily driven by months with positive production growth relative

to the previous month (which hapens in slightly less than half of the data). This is consistent with the idea �

formalized by the positive ' parameter in the repeated interaction game � of linkages between a month�s actual

production level and the production targets for subsequent months. When production declines, it is less costly to

report su¢ ciently high initial targets.
37For example, one could imagine an extreme case in which half of the patterns are monotonically increasing

and concave and half are monotonically decreasing and concave. In such a case, the average pattern may show

non-monotonicity even though none of the individual patterns is such.
38Over the period we analyze, there have been many changes to the industry, which greatly a¤ected production

planning. These include a dramatic loss in market share by the Big Three to foreign manufacturers, an important

increase on the use of external part suppliers, and an increase in model di¤erentiation that led to less �exibility in

19



potential seasonal variation.39 All these exercises show similar qualitative patterns. First, the

pattern of declining production targets during the last 2-3 months before production is present

in every single regression. Second, in the majority of the cases one can observe the increase in

production targets early on. This second observation does not hold in every regression. This may

be expected because, as already mentioned, the data are more noisy for early targets.

As already discussed, the non-monotonic pattern predicts a positive slope of adit with respect

to d early on, and a negative slope towards production. In order to focus on this precise prediction

of the theory, we analyze directly the directional change in production targets, rather than their

levels. To do so, we perform two �nal exercises. First, we divide production targets into three

categories �Early, Middle, and Late �according to how far in advance these targets are made.

Table 1 reports the frequencies in which (i) early targets are lower than intermediate targets, (ii)

intermediate targets are higher than late targets, and (iii) late targets are higher than eventual

production. We report this for each manufacturer, as well as for the Big Three average. All these

12 frequencies except one are greater than 0.5. None of them is signi�cantly lower than 0.5 and

the majority of them are signi�cantly higher. This is all consistent with the theory, and supports

the existence of a non-monotonic pattern. Second, we de�ne the percentage change, per day, in

production targets by

sdit �
Adit �Ad

0
it

(d� d0)Ad0it
(23)

where Ad
0
it and A

d
it are two consecutive production targets associated with the same production

month. We then run similar kernel regressions of sdit with respect to d. Figure 10 reports these

regressions. One can observe that in all cases the slope of production targets is positive between

130 days and 80 days before production, and that the con�dence interval for the slope estimates

lies entirely (or almost entirely, depending on the manufacturer) in the positive region. Later on,

the slope is signi�cantly negative in all regressions, establishing the non-monotonic pattern.

Discussion of alternative explanations

Production targets follow a hump shape over time: they start low, then increase, and eventually

decrease to actual production levels. This is consistent with the main prediction of the theoretical

section of the paper.

One possible concern is that the theory can, in principle, give rise to either a decreasing or a

hump-shaped pattern. Thus, only an empirical pattern that is increasing close to the production

deadline would be inconsistent with the theory. Although we empirically do not �nd such a pat-

tern, we do not consider this su¢ ciently interesting in the context of the theory. One can think

production.
39Seasonal variation may occur due to model-year product-life-cycle e¤ects (Copeland, Dunn, and Hall, 2005).

As new model-years are introduced (typically during July and August), excess inventory of old models becomes

signi�cantly more costly to manufacturers.
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of a variety of theoretical models delivering production targets that are higher than eventual pro-

duction levels. One example involves asymmetric adjustment costs in the presence of uncertainty.

If adjusting targets downwards is cheaper than adjusting them upwards, over-targetting would

have an option value. If uncertainty is resolved gradually, then production targets would slowly

decrease towards actual production levels. A second explanation builds on a notion of optimism

or over con�dence. If, as often argued in the press, Big Three executives are over-optimistic and

reality only sinks in gradually, a similar monotone decreasing pattern would arise. Neither story,

however, would give rise to a hump.

We therefore feel that it is important to emphasize the hump-shaped pattern of production

targets observed in the data. It is signi�cantly more di¢ cult to come up with alternative ex-

planations for this non-monotonic pattern. One could roughly think of two classes of theories

delivering it. One includes theories that have a non-monotone variable as one of their founda-

tions. For example, suppose that Big Three executives are realistic far in advance, then gradually

become over-optimistic, and then close to the production date become realistic again. Of course,

this would yield a hump shape. A second class of theories are those that involve two o¤setting

forces, with each dominating at a di¤erent time. For example, suppose there is uncertainty and

asymmetric adjustment costs as described above, coupled with inherent pessimism by executives.

If pessimism dominates early but adjustment costs dominate late, this would lead to a hump

shape. While our empirical �ndings cannot rule out these alternative stories, one could argue

that the Occam�s razor principle should favor our theory. This encourages us to view our �ndings

as empirical support for the existence of adjustment costs, and for the relevance of the strategic

role of pre-production preparations in determining �nal production decisions.

4. Concluding remarks

This paper studies the dynamics of pre-production preparation as a commitment device in a

quantity setting framework with adjustment costs. We show that �rms have a strategic incentive

to exaggerate their production targets in an attempt to achieve a Stackelberg leadership position.

More precisely, �rms start by �rst steadily increasing their intended production levels and only

as production gets closer, do production targets gradually decline. As a result, �nal production

levels are higher than in a static framework. We look for the main predictions of the theory in

data on production targets in the U.S. auto industry. The observed production targets exhibit a

non-monotonic pattern similar to the one predicted by the theory.

This study has intentionally abstracted from informational issues as a way to focus on the

strategic aspects. Our view is that in reality both components are important and should be ac-

counted for. Given that the model can be easily extended to accommodate (common) uncertainty,

as well as multiple players, asymmetries, and a repeated interaction, one could seriously pursue

a more structural estimation approach. The hump-shaped pattern we �nd in this paper would

help in identifying strategic e¤ects from uncertainty. Estimating structural parameters would be
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interesting for policy purposes, as one could quantify the intensity of competition (estimating

how far the equilibrium is from the Cournot levels) or perform welfare analysis.40 We leave this

exercise for future work.

On a methodological level, we think that our exercise illustrates the empirical potential of non-

stationary predictions. As they exhibit rich interesting dynamics, they provide sharp qualitative

predictions which have the potential to be empirically veri�ed or falsi�ed. All they require is

exogenous variation in time, which is typically satis�ed, but do not require further exogeneity

assumptions.

40The welfare implications of the model are ambiguous. Compared with static models, welfare increases as a

result of higher production, but decreases as a result of �wasted�adjustment costs during the planning phase.
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Appendix

The appendix derives the equations that describe the solutions to three extension of the baseline

model, as discussed in Section 2.

N players Consider N > 2 symmetric players. We can write the Bellman equation for the value

function as

max
xti

0@��
2

�
xti
�2
+
@V ti
@qi

xti +
X
j 6=i

@V ti
@qj

xtj +
@V ti
@t

1A = 0 (24)

The �rst order condition for xti implies

xti =
1

�

@V ti
@qi

(25)

We can now substitute this back into equation (24), as well as the symmetric solution for all other

xtj�s, rearrange, and obtain the following di¤erential equation

0 =
1

2�

�
@V ti
@qi

�2
+
1

�

X
j 6=i

 
@V tj
@qj

!�
@V ti
@qj

�
+
@V ti
@t

(26)

We guess that the value function will be symmetric in the opponents�state variables, so that

the quadratic value function can be written as

V ti (qi; qj) = At +Btqi +
X
j 6=i

Ctqj +Dtq
2
i +

X
j 6=i

Etq
2
j +

X
j 6=i

Ftqiqj +
X
j 6=i

X
k 6=i;j

Gtqjqk = (27)

= At +Btqi + CtQ�i +Dtq
2
i + EtR�i + FtqiQ�i +GtS�i

where Q�i =
P
j 6=i qj , R�i =

P
j 6=i q

2
j , and S�i =

P
j 6=i
P
k 6=i;j qjqk. Note that Q

2
�i = R�i + S�i.

This also implies that

xti(qi; qj) =
1

�
(Bt + 2Dtqi + FtQ�i) (28)

Thus, we can rewrite equation (26) as

0 =
1

2�
(Bt + 2Dtqi + FtQ�i)

2 +
1

�

X
j 6=i

(Ct + 2Etqj + Ftqi + 2Gt(Q�j � qi)) (Bt + 2Dtqj + FtQ�j) +

+
�
A0t +B

0
tqi + C

0
tQ�i +D

0
tq
2
i + E

0
tR�i + F

0
tqiQ�i +G

0
tS�i

�
(29)

After collecting terms (and reversing signs for A0, B0, etc. as in the baseline model) and equating

coe¢ cients, we obtain the following law of motion:0BBBBBBBBBBBB@

A0

B0

C 0

D0

E0

F 0

G0

1CCCCCCCCCCCCA
=
1

�

0BBBBBBBBBBBB@

1
2B

2 + (N � 1)BC
2BD +BF (N � 1) + CF (N � 1)

BF + 2BE + 2CD + CF (N � 2) + 2BG(N � 2)
2D2 + F 2(N � 1)

1
2F

2 + 4DE + 2FG(N � 2)
4DF + 2EF + F 2(N � 2) + 2FG(N � 2)

1
2F

2 + 2EF + 4GD + 4FG(N � 3)

1CCCCCCCCCCCCA
(30)
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with the boundary condition (for t = T ) given by0BBBBBBBBBBBB@

AT

BT

CT

DT

ET

FT

GT

1CCCCCCCCCCCCA
=

0BBBBBBBBBBBB@

0

a� c
0

�b
0

�b
0

1CCCCCCCCCCCCA
(31)

Asymmetric Players We keep notation as before, with the addition of superscripts to denote

the identity of the player. Thus, player i�s adjustment costs function is now ci(xi; t) = �i

2 x
2
i , her

(constant) marginal cost is ci, and Ait to F
i
t denote i�s value function coe¢ cients.

One can start by following the same steps as in Section 2. The �rst di¤erence appears in

equation (11), which now reads

1

2�i

�
@V ti
@qi

�2
+
1

�j

�
@V ti
@qj

� 
@V tj
@qj

!
+
@V ti
@t

= 0 (32)

The value function for each player is

V ti (qi; qj) = A
i
t +B

i
tqi + C

i
tqj +D

i
tq
2
i + E

i
tq
2
j + F

i
t qiqj (33)

Substituting it into equation (32) gives

0 =
1

2�i
�
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i
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i
t qj
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+
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�j
�
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+
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2
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2
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i0
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�
By collecting terms one obtains the law of motion for the coe¢ cients in player i�s value function

(symmetrically for player j):0BBBBBBBBB@

Ai0

Bi0

Ci0

Di0

Ei0

F i0

1CCCCCCCCCA
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with the boundary condition given by0BBBBBBBBB@

AiT
BiT
CiT
DiT
EiT
F iT
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=
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0

a� ci

0

�b
0
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(36)
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Uncertainty We follow the same steps as in Section 2 with few modi�cations. Now there are

two value functions, depending on the state of demand. Let these two value functions be VL and

VH : Thus, the Bellman equation if one is in state L is

max
xti

 
��
2

�
xti
�2
+
@V tL;i
@qi

xti +
@V tL;i
@qj

xtj +
@V tL;i
@t

+ �
�
V tH;i(qi; qj)� V tL;i(qi; qj)

�!
= 0 (37)

and symmetrically for VH . The optimal adjustment rate is given by

xi =
1

�

@V tL;i
@qi

(38)

and symmetrically for H. Now one can obtain the corresponding di¤erential equations as in

equations (11) and (14), resulting in a system of twelve ODE�s. The law of motion for the

coe¢ cients associated with the L state is0BBBBBBBBB@

A0L
B0L
C 0L
D0L
E0L
F 0L

1CCCCCCCCCA
= �

0BBBBBBBBB@

AH �AL
BH �BL
CH � CL
DH �DL
EH � EL
FH � FL

1CCCCCCCCCA
+
1

�

0BBBBBBBBB@

1
2B

2
L +BLCL

2BLDL +BLFL + CLFL

BLFL + 2BLEL + 2CLDL

2D2L + F
2
L

1
2F

2
L + 4DLEL

4DLFL + 2ELFL

1CCCCCCCCCA
(39)

Additional six analogous equations are associated with the H state. This structure is identical to

the baseline model except for the fact that, in each equation, with probability � we switch to the

other value function. Finally, the boundary conditions are given by the di¤erent pro�t functions

at each state.
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Figure 1: Best response functions in the two-period model
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This �gure sketches the dynamic e¤ect of adjustment costs in the context of the two-period example. The solid lines

are the static best response functions. The dashed lines are the best response functions when production targets

are higher than the Cournot level. Due to adjustment costs, the best response function �rotates�at the level of the

production target, and becomes less responsive to the opponent�s action. The new equilibrium is therefore given

by the intersection of the two dashed lines, giving rise to production levels which are more competitive than the

Cournot level.
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Figure 2: Equilibrium in the baseline model
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This �gure plots the equilibrium path in the baseline model, when a = b = 1, c = 0, and � = 1, and initial

production targets are symmetric. In the top panel initial targets are at the Cournot level of 1/3, illustrating the

non-monotone equilibrium path: targets peak at about 0.4 and then decline towards 0.37, which is the equilibrium

production level. The dashed lines illustrate o¤-equilibrium-path strategies. They simulate a change, occurring

at date t = �4, which exogenously and unexpectedly drops one of the player�s production target to 1/3. The
subsequent dashed lines present the equilibrium path after the change (di¤erent for each player). It shows that the

leadership position persists, illustrating why players cannot credibly coordinate on sticking to the Cournot levels.

The bottom panel presents how the equilibrium path changes with di¤erent (symmetric) initial targets, ranging

from 1/3 (the Cournot level) to 0.5 (the Stackelberg level). We note that although �nal equilibrium production

levels are much closer (around 0.37 in all cases) than the initial targets, they are not the same. In particular, �nal

production levels are monotone in the initial targets. The non-monotone pattern persists as long as initial targets

are su¢ ciently low (less than about 0.44 in this case). When initial actions are higher, equilibrium path is monotone

but concave (due to the commitment e¤ect).
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Figure 3: Comparative statics in the baseline model
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This �gure plots the equilibrium path in the baseline model, when parameters are set to a = b = 1, c = 0, and

� = 1, and initial production targets are 1/3 (the Cournot level). The top panel does so for di¤erent horizons

(100, 50, 10, and 1); and shows that as the horizon gets longer, players have more time to smooth out their initial

increase in targets, therefore peaking at higher levels. Once the deadline gets closer, however, this higher build-up

declines faster. Final production levels do not change by much, unless the horizon is very short (as is the case when

T = 1). The bottom panel plots the equilibrium path for di¤erent values of the adjustment cost parameters, �

(0.1, 1, and 10). As adjustment costs are lower, production targets peak higher, as it is both cheaper to achieve

these levels, and lower targets do not provide su¢ cient commitment.

30



Figure 4: Asymmetric players
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This �gure plots the equilibrium path in a two-player model with asymmetric players. Parameters are set to

a = b = 1. In the top panel the asymmetry is in the marginal cost of production, c. That is, � = 1 for both

players, one player has zero marginal costs (c1= 0) and the other has positive marginal costs (c2= 0:2). The �gure

plots three di¤erent cases, for di¤erent initial production targets: with thin solid lines they start at the Cournot

level (q1= 0:4, q2= 0:2), with dashed lines we reverse these initial targets (q1= 0:2, q2= 0:4), and with thick

solid lines they start with identical initial targets (q1= q2= 0:3). As the horizon is reasonably long, in all cases

the lower marginal cost player eventually gains higher market share. Her market share is monotone in her initial

production target. In the bottom panel the asymmetry is in adjustment costs. That is, c = 0 for both players,

but one player has higher adjustment cost parameter than her opponent. As discussed in the text, when initial

conditions are su¢ ciently low (as in the �gure), the more �exible player is able to obtain higher market shares. It

is not clear if this commitment advantage persists for any value of � > 0. For � = 0 the �exible player always best

responds at time T and therefore cannot achieve any commitment advantage.
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Figure 5: Repeated Interaction Model
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This �gure plots the equilibrium path of the (symmetric) in�nite horizon repeated interaction game. In the top

panel parameters are set to a = b = 1, c = 0, � = 1, T = 10, ' = 0:1, and � = 0:9. Here, initial targets are

determined endogenously as part of the (stationary) equilibrium path. In the bottom panel, we concentrate on a

single period (which repeats itself forever), and present comparative statics with respect to the two adjustment cost

parameters, ' and � (the rest of the parameter values remain as before). As one can observe, ' mainly a¤ects

the initial targets while � mainly a¤ects the dynamic pattern of targets. As noted in the text, the case of ' = 0

is a special case in which the equilibrium of the repeated game is identical to the baseline model with free initial

targets. Note, however, that even small values for ' are su¢ cient to generate a non-monotonic pattern. This is

because continuation values do not change much with initial targets.
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Figure 6: Timing of production target reports
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This is a histogram of the number of days before production of each report in our sample. There are 1,621 reports

in our sample, which correspond to 372 distinct production months. The histogram shows that starting at around

four months before production observations are available at least on a monthly basis, typically at the last week of

the month. Earlier observations (more than four months in advance) are not as regular.
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Figure 7: Production targets over time, pooling all data
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The �gure presents quartic (biweight) kernel regressions of production targets, measured by adit (see equation (22)),

as a function of the number of days before production, d. It does so for each of the Big Three separately, as well

as for the (unweighted) average. Each series is based on 1,598 observations. All estimates use a bandwidth of 30

days. The dashed lines present 95 percent con�dence intervals computed by bootstrapping the data, running the

same kernel regression on each bootstrapped sample, and taking a 95 percent con�dence interval point-by-point.
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Figure 8: Production targets over time, by decade
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This �gure repeats the exercise performed in Figure 7 (see its notes for details), but here the kernel regressions

are run for each 10-year period separately. The estimates for the �rst decade (1965-1975) only start about 120

days before production, as during this period there were no earlier production target reports. We do not present

con�dence intervals for presentation reasons, but they are noticeably greater than those in Figure 7, as each line

uses only one third of the data.
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Figure 9: Production targets over time, by calendar month
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This �gure repeats the exercise performed in Figure 7 (see its notes for details), but here the kernel regressions are

run for each calendar month separately to account for potential seasonality arising from model-year product-life-

cycle e¤ects. All �gures use the same scale, with the horizontal axis running from 200 days before production to

0, and the vertical axis running from -5% to 35%. We do not present con�dence intervals for presentation reasons,

but they are much greater than those in Figure 7 or 8 as each line uses only about 1/12 of the data.
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Figure 10: Revisions in production targets
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This �gure presents quartic (biweight) kernel regressions of the revisions in production targets, measured by sdit (see

equation (23)), as a function of the number of days before production, d. The units of sdit are in basis point change,

per day. The pattern is presented for each of the Big Three separately, as well as for the (unweighted) average. Each

series is based on 1,239 observations (taking �rst di¤erences, we lose the earliest report for each production month).

All estimates use bandwidth of 30 days. The dashed lines present 95 percent con�dence intervals computed by

bootstrapping the data, running the same kernel regression on each bootstrapped sample, and taking a 95 percent

con�dence interval point-by-point.
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Table 1: Frequency estimates of revision signs

Pr(AMiddle
it > AEarlyit )a Pr(ALateit < AMiddle

it )a Pr(Qit < A
Late
it )a

Big 3 Average 0.614� 0.628� 0.740�

GM 0.474 0.584� 0.763�

Ford 0.667� 0.509 0.676�

Chrysler 0.511 0.528 0.543

Observations 135 286 359

� Signi�cantly di¤erent from 0.5 at 95% con�dence level.
a For each i and t we construct AEarlyit as the average of Adit such that d < �110. Respectively, for AMiddle

it

we use d 2 [�110;�50] and for ALateit we use d > �50. Changing the cuto¤ levels for these variables does not
a¤ect the results.

The table reports frequency tests for whether the average Early, Middle, and Late targets conform with a hump-

shape pattern. The inequalities (top row) are constructed in such a way that estimates of 0.5 imply random

revisions and estimates greater than 0.5 are consistent with the theoretical predictions. Indeed, all numbers but

one are greater than 0.5, the majority of them are signi�cantly greater than 0.5, and none is signi�cantly less than

0.5.
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