Tobit and Selection Models Manuel Arellano

CEMFI

January 2014

Censored Regression

Illustration 1: Top-coding in wages

- Suppose Y (log wages) are subject to "top coding" (as with social security records):

$$
Y=\left\{\begin{array}{c}
Y^{*} \text { if } Y^{*} \leq c \\
c \text { if } Y^{*}>c
\end{array}\right.
$$

- Suppose we are interested in $E\left(Y^{*}\right)$. Effectively it is not identified but if we assume $Y^{*} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then μ can be determined from the distribution of Y.
- The density of Y is of the form

$$
f(r)=\left\{\begin{array}{c}
\frac{1}{\sigma} \phi\left(\frac{r-\mu}{\sigma}\right) \text { if } r<c \\
\operatorname{Pr}\left(Y^{*} \geq c\right)=1-\Phi\left(\frac{r-\mu}{\sigma}\right) \text { if } r \geq c
\end{array}\right.
$$

- The log-likelihood function of the sample $\left\{y_{1}, \ldots, y_{N}\right\}$ is

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\prod_{y_{i}<c} \frac{1}{\sigma} \phi\left(\frac{y_{i}-\mu}{\sigma}\right) \prod_{y_{i}=c}\left[1-\Phi\left(\frac{c-\mu}{\sigma}\right)\right] .
$$

- Usually, we shall be interested in a regression version of this model:

$$
Y^{*} \mid X=x \sim \mathcal{N}\left(x^{\prime} \beta, \sigma^{2}\right)
$$

in which case the likelihood takes the form

$$
\mathcal{L}\left(\beta, \sigma^{2}\right)=\prod_{y_{i}<c} \frac{1}{\sigma} \phi\left(\frac{y_{i}-x_{i}^{\prime} \beta}{\sigma}\right) \prod_{y_{i}=c}\left[1-\Phi\left(\frac{c-x^{\prime} \beta}{\sigma}\right)\right] .
$$

Means of censored normal variables

- Consider the following right-censored variable:

$$
Y=\left\{\begin{array}{c}
Y^{*} \text { if } Y^{*} \leq c \\
c \text { if } Y^{*}>c
\end{array}\right.
$$

with $Y^{*} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Therefore,

$$
E(Y)=E\left(Y^{*} \mid Y^{*} \leq c\right) \operatorname{Pr}\left(Y^{*} \leq c\right)+c \operatorname{Pr}\left(Y^{*}>c\right)
$$

- Letting $Y^{*}=\mu+\sigma \varepsilon$ with $\varepsilon \sim \mathcal{N}(0,1)$

$$
\begin{gathered}
\operatorname{Pr}\left(Y^{*} \leq c\right)=\Phi\left(\frac{c-\mu}{\sigma}\right) \\
E\left(Y^{*} \mid Y^{*} \leq c\right)=\mu+\sigma E\left(\varepsilon \left\lvert\, \varepsilon \leq \frac{c-\mu}{\sigma}\right.\right)=\mu-\sigma \lambda\left(\frac{c-\mu}{\sigma}\right)
\end{gathered}
$$

- Note that

$$
E(\varepsilon \mid \varepsilon \leq r)=\int_{-\infty}^{r} e \frac{\phi(e)}{\Phi(r)} d e=-\frac{1}{\Phi(r)} \int_{-\infty}^{r} \phi^{\prime}(e) d e=-\frac{\phi(r)}{\Phi(r)}=-\lambda(r)
$$

and

$$
E(\varepsilon \mid \varepsilon>r)=\int_{r}^{\infty} e \frac{\phi(e)}{\Phi(-r)} d e=-\frac{1}{\Phi(-r)} \int_{r}^{\infty} \phi^{\prime}(e) d e=-\frac{-\phi(r)}{\Phi(-r)}=\lambda(-r) .
$$

Illustration 2: Censoring at zero (Tobit model)

- Tobin (1958) considered the following model for expenditure on durables

$$
\begin{aligned}
& Y=\max \left(X^{\prime} \beta+U, 0\right) \\
& U \quad X \sim \mathcal{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

- This is similar to the first example, but now we have left-censoring at zero.
- However, the nature of the application is very different because there is no physical censoring (the variable Y^{*} is just a model's construct).
- We are interested in the model as a way of capturing a particular form of nonlinearity in the relationship between X and Y.
- In a utility based model, the variable Y^{*} might be interpreted as a notional demand before non-negativity is imposed.
- With censoring at zero we have

$$
\begin{gathered}
Y=\left\{\begin{array}{c}
Y^{*} \text { if } Y^{*}>0 \\
0 \text { if } Y^{*} \leq 0
\end{array}\right. \\
E(Y)=E\left(Y^{*} \mid Y^{*}>0\right) \operatorname{Pr}\left(Y^{*}>0\right) \\
\operatorname{Pr}\left(Y^{*}>0\right)=\operatorname{Pr}\left(\varepsilon>-\frac{\mu}{\sigma}\right)=\Phi\left(\frac{\mu}{\sigma}\right) \\
E\left(Y^{*} \mid Y^{*}>0\right)=\mu+\sigma E\left(\varepsilon \left\lvert\, \varepsilon>-\frac{\mu}{\sigma}\right.\right)=\mu+\sigma \lambda\left(\frac{\mu}{\sigma}\right) .
\end{gathered}
$$

Heckman's generalized selection model

- Consider the model

$$
\begin{aligned}
y^{*} & =x^{\prime} \beta+\sigma u \\
d & =1\left(z^{\prime} \gamma+v \geq 0\right) \\
\left.\binom{u}{v} \right\rvert\, z & \sim \mathcal{N}\left(0,\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right)
\end{aligned}
$$

so that

$$
v \mid z, u \sim \mathcal{N}\left(\rho u, 1-\rho^{2}\right) \quad \text { or } \quad \operatorname{Pr}(v \leq r \mid z, u)=\Phi\left(\frac{r-\rho u}{\sqrt{1-\rho^{2}}}\right)
$$

- In Heckman's original model, y^{*} denotes female log market wage and d is an indicator of participation in the labor force.
- The index $\left\{z^{\prime} \gamma+v\right\}$ is a reduced form of the difference between market wage and reservation wage.

Joint likelihood function

- The joint likelihood is:

$$
L=\sum_{d=1} \ln \left\{p\left(d=1, y^{*} \mid z\right)\right\}+\sum_{d=0} \ln \operatorname{Pr}(d=0 \mid z)
$$

we have

$$
\begin{gathered}
p\left(d=1, y^{*} \mid z\right)=\operatorname{Pr}\left(d=1 \mid z, y^{*}\right) f\left(y^{*} \mid z\right) \\
f\left(y^{*} \mid z\right)=\frac{1}{\sigma} \phi\left(\frac{y^{*}-x^{\prime} \beta}{\sigma}\right) \\
\operatorname{Pr}\left(d=1 \mid z, y^{*}\right)=1-\operatorname{Pr}\left(v \leq-z^{\prime} \gamma \mid z, u\right)=1-\Phi\left(\frac{-z^{\prime} \gamma-\rho u}{\sqrt{1-\rho^{2}}}\right)=\Phi\left(\frac{z^{\prime} \gamma+\rho u}{\sqrt{1-\rho^{2}}}\right)
\end{gathered}
$$

- Thus

$$
L(\gamma, \beta, \sigma)=\sum_{d=1}\left\{\ln \left[\frac{1}{\sigma} \phi(u)\right]+\ln \Phi\left(\frac{z^{\prime} \gamma+\rho u}{\sqrt{1-\rho^{2}}}\right)\right\}+\sum_{d=0} \ln \left[1-\Phi\left(z^{\prime} \gamma\right)\right]
$$

where

$$
u=\frac{y^{*}-x^{\prime} \beta}{\sigma}
$$

- Note that if $\rho=0$ this log likelihood boils down to the sum a Gaussian linear regression log likelihood and a probit log likelihood.

Density of y^{*} conditioned on $d=1$

- From the previous result we know that

$$
p\left(d=1, y^{*} \mid z\right)=\frac{1}{\sigma} \phi\left(\frac{y^{*}-x^{\prime} \beta}{\sigma}\right) \Phi\left(\frac{z^{\prime} \gamma+\rho u}{\sqrt{1-\rho^{2}}}\right)
$$

- Alternatively, to obtain it we could factorize as follows

$$
p\left(d=1, y^{*} \mid z\right)=\operatorname{Pr}(d=1 \mid z) f\left(y^{*} \mid z, d=1\right)=\Phi\left(z^{\prime} \gamma\right) f\left(y^{*} \mid z, d=1\right) .
$$

- From the previous expression we know that

$$
f\left(y^{*} \mid z, d=1\right)=\frac{p\left(d=1, y^{*} \mid z\right)}{\Phi\left(z^{\prime} \gamma\right)}=\frac{1}{\Phi\left(z^{\prime} \gamma\right)} \Phi\left(\frac{z^{\prime} \gamma+\rho u}{\sqrt{1-\rho^{2}}}\right) \frac{1}{\sigma} \phi(u) .
$$

- Note that if $\rho=0$ we have $f\left(y^{*} \mid z, d=1\right)=f\left(y^{*} \mid z\right)=\sigma^{-1} \phi(u)$.

Two-step method

- Then mean of $f\left(y^{*} \mid z, d=1\right)$ is given by

$$
\begin{aligned}
E\left(y^{*} \mid z, d=1\right) & =x^{\prime} \beta+\sigma E\left(u \mid z^{\prime} \gamma+v \geq 0\right) \\
& =x^{\prime} \beta+\sigma \rho E\left(v \mid v \geq-z^{\prime} \gamma\right)=x^{\prime} \beta+\sigma \rho \lambda\left(z^{\prime} \gamma\right)
\end{aligned}
$$

- Form $w_{i}=\left(x_{i}^{\prime}, \widehat{\lambda}_{i}\right)^{\prime}$, where $\hat{\lambda}_{i}=\lambda\left(z_{i}^{\prime} \widehat{\gamma}\right)$ and $\widehat{\gamma}$ is the probit estimate.
- Then do the OLS regression of y on x and $\hat{\lambda}$ in the subsample with $d=1$ to get consistent estimates of β and $\sigma_{u v}(=\sigma \rho)$:

$$
\binom{\widehat{\beta}}{\widehat{\sigma}_{u v}}=\left(\sum_{d_{i}=1} w_{i} w_{i}^{\prime}\right)^{-1} \sum_{d_{i}=1} w_{i} y_{i}
$$

Nonparametric identification: The fundamental role of exclusion restrictions

- The role of exclusion restrictions for identification in a selection model is paramount.
- In applications there is a marked contrast in credibility between estimates that rely exclusively on the nonlinearity and those that use exclusion restrictions.
- The model of interest is

$$
\begin{aligned}
Y & =g_{0}(X)+U \\
D & =1(p(X, Z)-V>0)
\end{aligned}
$$

where (U, V) are independent of (X, Z) and V is uniform in the $(0,1)$ interval.

- Thus,

$$
\begin{gathered}
E(U \mid X, Z, D=1)=E[U \mid V<p(X, Z)]=\lambda_{0}[p(X, Z)] \\
E(Y \mid X, Z)=g_{0}(X)
\end{gathered}
$$

(i.e. enforcing the exclusion restriction), but we observe

$$
\begin{aligned}
E(Y \mid X, Z, D=1) & =\mu(X, Z)=g_{0}(X)+\lambda_{0}[p(X, Z)] \\
E(D \mid X, Z) & =p(X, Z)
\end{aligned}
$$

- The question is whether $g_{0}($.$) and \lambda_{0}($.$) can be identified from knowledge of$ $\mu(X, Z)$ and $p(X, Z)$.
- Let us consider first the case where X and Z are continuous. Suppose there is an alternative solution $\left(g^{*}, \lambda^{*}\right)$. Then

$$
g_{0}(X)-g^{*}(X)+\lambda_{0}(p)-\lambda^{*}(p)=0
$$

Differentiating

$$
\begin{aligned}
\frac{\partial\left(\lambda_{0}-\lambda^{*}\right)}{\partial p} \frac{\partial p}{\partial Z} & =0 \\
\frac{\partial\left(g_{0}-g^{*}\right)}{\partial X}+\frac{\partial\left(\lambda_{0}-\lambda^{*}\right)}{\partial p} \frac{\partial p}{\partial X} & =0
\end{aligned}
$$

- Under the assumption that $\partial p / \partial Z \neq 0$ (instrument relevance), we have

$$
\frac{\partial\left(\lambda_{0}-\lambda^{*}\right)}{\partial p}=0, \quad \frac{\partial\left(g_{0}-g^{*}\right)}{\partial X}=0
$$

so that $\lambda_{0}-\lambda^{*}$ and $g_{0}-g^{*}$ are constant (i.e. $g_{0}(X)$ is identified up to an unknown constant).

- This is the identification result in Das, Newey, and Vella (2003).
- $E(Y \mid X)$ is identified up to a constant, provided we have a continuous instrument.
- Identification of the constant requires units for which the probability of selection is arbitrarily close to one ("identification at infinity").
- Unfortunately, the constants are important for identifying average treatment effects.

Z discrete

- With binary Z, functional form assumptions play a more fundamental role in securing identification than in the case of an exclusion restriction of a continuous variable.
- Suppose X is continuous but Z is a dummy variable. In general $g_{0}(X)$ is not identified. To see this, consider

$$
\begin{aligned}
& \mu(X, 1)=g_{0}(X)+\lambda_{0}[p(X, 1)] \\
& \mu(X, 0)=g_{0}(X)+\lambda_{0}[p(X, 0)]
\end{aligned}
$$

so that we identify the difference

$$
v(X)=\lambda_{0}[p(X, 1)]-\lambda_{0}[p(X, 0)]
$$

but this does not suffice to determine λ_{0} up to a constant.

- Take as an example the case where $p(X, Z)$ is a simple logit or probit model:

$$
p(X, Z)=F(\beta X+\gamma Z)
$$

then letting $h_{0}()=.\lambda_{0}[F()$.$] ,$

$$
v(X)=h_{0}(\beta X+\gamma)-h_{0}(\beta X)
$$

- Suppose the existence of another solution h^{*}. We should have

$$
h_{0}(\beta X+\gamma)-h^{*}(\beta X+\gamma)=h_{0}(\beta X)-h^{*}(\beta X)
$$

which is satisfied by a multiplicity of periodic functions.
X and Z discrete

- If X is also discrete, there is clearly lack of identification.
- For example, suppose X and Z are dummy variables:

$$
\begin{aligned}
& \mu(0,0)=g_{0}(0)+\lambda_{0}[p(0,0)] \\
& \mu(0,1)=g_{0}(0)+\lambda_{0}[p(0,1)] \\
& \mu(1,0)=g_{0}(1)+\lambda_{0}[p(1,0)] \\
& \mu(1,1)=g_{0}(1)+\lambda_{0}[p(1,1)] .
\end{aligned}
$$

- Since $\lambda_{0}($.$) is unknown g_{0}(1)-g_{0}(0)$ is not identified.
- Only $\lambda_{0}[p(1,1)]-\lambda_{0}[p(1,0)]$ and $\lambda_{0}[p(0,1)]-\lambda_{0}[p(0,0)]$ are identified.

