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Censored Regression
Illustration 1: Top-coding in wages
� Suppose Y (log wages) are subject to �top coding� (as with social security records):

Y =
�
Y � if Y � � c
c if Y � > c

� Suppose we are interested in E (Y �). E¤ectively it is not identi�ed but if we assume
Y � � N

�
µ, σ2

�
, then µ can be determined from the distribution of Y .

� The density of Y is of the form

f (r ) =

8<:
1
σ φ
�
r�µ

σ

�
if r < c

Pr (Y � � c) = 1�Φ
�
r�µ

σ

�
if r � c

� The log-likelihood function of the sample fy1, ..., yN g is

L
�

µ, σ2
�
= ∏
yi<c

1
σ

φ

�
yi � µ

σ

�
∏
yi=c

�
1�Φ

�
c � µ

σ

��
.

� Usually, we shall be interested in a regression version of this model:

Y � j X = x � N
�
x 0β, σ2

�
,

in which case the likelihood takes the form

L
�

β, σ2
�
= ∏
yi<c

1
σ

φ

�
yi � x 0i β

σ

�
∏
yi=c

�
1�Φ

�
c � x 0β

σ

��
.
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Means of censored normal variables
� Consider the following right-censored variable:

Y =
�
Y � if Y � � c
c if Y � > c

with Y � � N
�
µ, σ2

�
. Therefore,

E (Y ) = E (Y � j Y � � c)Pr (Y � � c) + c Pr (Y � > c)
� Letting Y � = µ+ σε with ε � N (0, 1)

Pr (Y � � c) = Φ
�
c � µ

σ

�
E (Y � j Y � � c) = µ+ σE

�
ε j ε � c � µ

σ

�
= µ� σλ

�
c � µ

σ

�
.

� Note that

E (ε j ε � r ) =
Z r

�∞
e

φ (e)
Φ (r )

de = � 1
Φ (r )

Z r

�∞
φ0 (e) de = � φ (r )

Φ (r )
= �λ (r )

and

E (ε j ε > r ) =
Z ∞

r
e

φ (e)
Φ (�r )de = �

1
Φ (�r )

Z ∞

r
φ0 (e) de = � �φ (r )

Φ (�r ) = λ (�r ) .
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Illustration 2: Censoring at zero (Tobit model)
� Tobin (1958) considered the following model for expenditure on durables

Y = max
�
X 0β+ U , 0

�
U j X � N

�
0, σ2

�
.

� This is similar to the �rst example, but now we have left-censoring at zero.
� However, the nature of the application is very di¤erent because there is no physical
censoring (the variable Y � is just a model�s construct).

� We are interested in the model as a way of capturing a particular form of nonlinearity
in the relationship between X and Y .

� In a utility based model, the variable Y � might be interpreted as a notional demand
before non-negativity is imposed.

� With censoring at zero we have

Y =
�
Y � if Y � > 0
0 if Y � � 0

E (Y ) = E (Y � j Y � > 0)Pr (Y � > 0)
Pr (Y � > 0) = Pr

�
ε > �µ

σ

�
= Φ

�µ

σ

�
E (Y � j Y � > 0) = µ+ σE

�
ε j ε > �µ

σ

�
= µ+ σλ

�µ

σ

�
.
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Heckman�s generalized selection model

� Consider the model

y � = x 0β+ σu

d = 1
�
z 0γ+ v � 0

�
�
u
v

�
j z � N

�
0,
�
1 ρ
ρ 1

��
so that

v j z , u � N
�

ρu, 1� ρ2
�

or Pr (v � r j z , u) = Φ

 
r � ρup
1� ρ2

!
.

� In Heckman�s original model, y � denotes female log market wage and d is an
indicator of participation in the labor force.

� The index fz 0γ+ vg is a reduced form of the di¤erence between market wage and
reservation wage.
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Joint likelihood function
� The joint likelihood is:

L = ∑
d=1

ln fp (d = 1, y � j z)g+ ∑
d=0

ln Pr (d = 0 j z)

we have
p (d = 1, y � j z) = Pr (d = 1 j z , y �) f (y � j z)

f (y � j z) = 1
σ

φ

�
y � � x 0β

σ

�
Pr (d = 1 j z , y �) = 1�Pr

�
v � �z 0γ j z , u

�
= 1�Φ

 
�z 0γ� ρup
1� ρ2

!
= Φ

 
z 0γ+ ρup
1� ρ2

!
.

� Thus

L (γ, β, σ) = ∑
d=1

(
ln
�
1
σ

φ (u)
�
+ lnΦ

 
z 0γ+ ρup
1� ρ2

!)
+ ∑
d=0

ln
�
1�Φ

�
z 0γ
��

where

u =
y � � x 0β

σ
.

� Note that if ρ = 0 this log likelihood boils down to the sum a Gaussian linear
regression log likelihood and a probit log likelihood.
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Density of y � conditioned on d = 1

� From the previous result we know that

p (d = 1, y � j z) = 1
σ

φ

�
y � � x 0β

σ

�
Φ

 
z 0γ+ ρup
1� ρ2

!
.

� Alternatively, to obtain it we could factorize as follows

p (d = 1, y � j z) = Pr (d = 1 j z) f (y � j z , d = 1) = Φ
�
z 0γ
�
f (y � j z , d = 1) .

� From the previous expression we know that

f (y � j z , d = 1) = p (d = 1, y � j z)
Φ (z 0γ)

=
1

Φ (z 0γ)
Φ

 
z 0γ+ ρup
1� ρ2

!
1
σ

φ (u) .

� Note that if ρ = 0 we have f (y � j z , d = 1) = f (y � j z) = σ�1φ (u).
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Two-step method

� Then mean of f (y � j z , d = 1) is given by

E (y � j z , d = 1) = x 0β+ σE
�
u j z 0γ+ v � 0

�
= x 0β+ σρE

�
v j v � �z 0γ

�
= x 0β+ σρλ

�
z 0γ
�

� Form wi =
�
x 0i , bλi�0, where bλi = λ (z 0i bγ) and bγ is the probit estimate.

� Then do the OLS regression of y on x and bλ in the subsample with d = 1 to get
consistent estimates of β and σuv (= σρ):� bβbσuv

�
=

 
∑
di=1

wiw
0
i

!�1
∑
di=1

wi yi .
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Nonparametric identi�cation: The fundamental role of exclusion restrictions

� The role of exclusion restrictions for identi�cation in a selection model is paramount.
� In applications there is a marked contrast in credibility between estimates that rely
exclusively on the nonlinearity and those that use exclusion restrictions.

� The model of interest is

Y = g0 (X ) + U

D = 1 (p (X ,Z )� V > 0)

where (U ,V ) are independent of (X ,Z ) and V is uniform in the (0, 1) interval.
� Thus,

E (U j X ,Z ,D = 1) = E [U j V < p (X ,Z )] = λ0 [p (X ,Z )]

E (Y j X ,Z ) = g0 (X )
(i.e. enforcing the exclusion restriction), but we observe

E (Y j X ,Z ,D = 1) = µ (X ,Z ) = g0 (X ) + λ0 [p (X ,Z )]

E (D j X ,Z ) = p (X ,Z ) .

� The question is whether g0 (.) and λ0 (.) can be identi�ed from knowledge of
µ (X ,Z ) and p (X ,Z ).
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� Let us consider �rst the case where X and Z are continuous. Suppose there is an
alternative solution (g �,λ�). Then

g0 (X )� g � (X ) + λ0 (p)� λ� (p) = 0.

Di¤erentiating

∂ (λ0 � λ�)
∂p

∂p
∂Z

= 0

∂ (g0 � g �)
∂X

+
∂ (λ0 � λ�)

∂p
∂p
∂X

= 0.

� Under the assumption that ∂p/∂Z 6= 0 (instrument relevance), we have
∂ (λ0 � λ�)

∂p
= 0,

∂ (g0 � g �)
∂X

= 0

so that λ0 � λ� and g0 � g � are constant (i.e. g0 (X ) is identi�ed up to an unknown
constant).

� This is the identi�cation result in Das, Newey, and Vella (2003).
� E (Y j X ) is identi�ed up to a constant, provided we have a continuous instrument.
� Identi�cation of the constant requires units for which the probability of selection is
arbitrarily close to one (�identi�cation at in�nity�).

� Unfortunately, the constants are important for identifying average treatment e¤ects.
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Z discrete
� With binary Z , functional form assumptions play a more fundamental role in securing
identi�cation than in the case of an exclusion restriction of a continuous variable.

� Suppose X is continuous but Z is a dummy variable. In general g0 (X ) is not
identi�ed. To see this, consider

µ (X , 1) = g0 (X ) + λ0 [p (X , 1)]

µ (X , 0) = g0 (X ) + λ0 [p (X , 0)] ,

so that we identify the di¤erence

ν (X ) = λ0 [p (X , 1)]� λ0 [p (X , 0)] ,

but this does not su¢ ce to determine λ0 up to a constant.
� Take as an example the case where p (X ,Z ) is a simple logit or probit model:

p (X ,Z ) = F (βX + γZ ) ,

then letting h0 (.) = λ0 [F (.)],

ν (X ) = h0 (βX + γ)� h0 (βX ) .
� Suppose the existence of another solution h�. We should have

h0 (βX + γ)� h� (βX + γ) = h0 (βX )� h� (βX ) ,
which is satis�ed by a multiplicity of periodic functions.
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X and Z discrete

� If X is also discrete, there is clearly lack of identi�cation.

� For example, suppose X and Z are dummy variables:

µ (0, 0) = g0 (0) + λ0 [p (0, 0)]

µ (0, 1) = g0 (0) + λ0 [p (0, 1)]

µ (1, 0) = g0 (1) + λ0 [p (1, 0)]

µ (1, 1) = g0 (1) + λ0 [p (1, 1)] .

� Since λ0 (.) is unknown g0 (1)� g0 (0) is not identi�ed.
� Only λ0 [p (1, 1)]� λ0 [p (1, 0)] and λ0 [p (0, 1)]� λ0 [p (0, 0)] are identi�ed.
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