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The methods discussed in this note are motivated by an interest in the time series properties of

short panels. Such interest may arise for a variety of reasons. We may be interested in separating out

permanent from transitory components of variation as in earnings mobility studies. In another type of

applications, we may be able to test theories or identify policy parameters from the mapping between

a time series model and a model of individual behaviour. Examples include Hall and Mishkin (1982)

and Blundell, Pistaferri, and Preston (2008) on the transmission of income shocks to consumption,

and Abowd and Card (1989) on earnings and hours of work in an intertemporal labour supply context.

Finally, we may be interested in a predictive distribution for use in some optimization problem under

uncertainty. For example, Deaton (1991) used a predictive distribution of future earnings given past

earnings to derive optimal consumption paths for consumers who maximize life-cycle expected utility.

1 Dynamic Covariance Structures

1.1 Introduction

A natural extension of the basic error components model is to allow for serial correlation in the

time-varying component. This can be achieved by specifying a homogeneous moving average or au-

toregressive process. We have

yit = ηi + vit

and the covariance matrix of the T × 1 vector yi is given by:

Ω = V + σ2ηιι
0 (1)

where V is the T × T autocovariance matrix of vit. In the basic case, V = σ2IT . Specification and

inference are discussed below. The rest of the introduction is devoted to an informal discussion of the

problem of distinguishing between unobserved heterogeneity and dynamics in short panels.

Distinguishing Unobserved Heterogeneity from Genuine Dynamics Let us first consider

the identification problem in a panel with T = 2. In time series analysis, given a single series of

size T {y1, ..., yT} a first-order autocovariance is calculated as an average of the T − 1 products of
1This is an abridged version of Part II in Arellano (2003).
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observations one period apart: (T − 1)−1PT
t=2 ytyt−1. With panel data of size T = 2, we have N time

series with two observations each. In such situation calculating individual time series autocovariances

is not possible because the time series averages would have just one observation. We can nevertheless

calculate a cross-sectional first-order autocovariance for the specific two periods available in the panel.

This will take the form of an average of the N products of the two observations for each individual:

N−1
PN
i=1 yi1yi2. Thus, when we consider population moments in this context they are to be regarded

as population counterparts of cross-sectional moments of the previous type. As for example,

E (yi1yi2) = plim
N→∞

1

N

NX
i=1

yi1yi2. (2)

The standard error component model with white noise vit is identified with T = 2 because

V ar (yi1) = V ar (yi2) = σ2η + σ2v (3)

Cov (yi1, yi2) = σ2η. (4)

In this model all the observed correlation between first and second period data is due to heterogene-

ity, since for a given individual the sequence of y’s is a random white noise process around his specific

level ηi. The point to note here is that this pure heterogeneity model is observationally equivalent to

a homogeneous model with serial correlation. For example, if the model is

yit = η + vit (5)

vit = αvi(t−1) + εit, (6)

where η is a constant, |α| < 1, εit ∼ iid
¡
0,σ2ε

¢
, vi1 ∼ iid

¡
0,σ2v

¢
and σ2v = σ2ε/

¡
1− α2

¢
, we have

V ar (yi1) = V ar (yi2) = σ2v (7)

Cov (yi1, yi2) = ασ2v. (8)

In the heterogeneity model the observed autocorrelation ρ1 is given by

ρ1 =
λ

(1 + λ)
(9)

with λ = σ2η/σ
2
v, whereas in the homogeneous AR(1) model we have

ρ1 = α. (10)

If for example the variance of ηi is 4 times the variance of vit in the heterogeneity model, we get

ρ1 = 4/5 = 0.8. Exactly the same observed correlation as we would get with a homogeneous AR(1)

model with α = 0.8. So there is no way to distinguish empirically between the two models from the

autocovariance matrix when T = 2, as long as α ≥ 0.
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With T = 3 the previous two models are distinguishable since the heterogeneity model implies

Cov (yi1, yi3) = Cov (yi1, yi2) (11)

whereas the AR(1) model implies

Cov (yi1, yi3) = αCov (yi1, yi2) . (12)

Now the combined model with heterogeneous level and homogeneous AR(1) serial correlation

(which allows the intercept η in (5) to be individual specific with variance σ2η) is just-identified with

V ar (yi1) = V ar (yi2) = V ar (yi3) = σ2η + σ2v (13)

Cov (yi1, yi2) = Cov (yi2, yi3) = σ2η + ασ2v (14)

Cov (yi1, yi3) = σ2η + α2σ2v. (15)

Pursuing the previous argument, note that with T = 3 the heterogeneous AR(1) model will be

indistinguishable from a homogeneous AR(2) model. These examples suggest that a non-parametric

test of homogeneity will be only possible for large T and N in the absence of structural breaks.

Note that with T = 2 the “reduced form” autocovariance matrix contains three free coefficients

(two variances and one covariance). Since the heterogeneous AR(1) model also has three parameters α,

σ2η, and σ
2
v, the order condition for identification is satisfied with equality, but not the rank condition.

This is so because the variance equation for the second period will be either redundant or incompatible.

In general, persistence measured from cross-sectional autocorrelation coefficients will combine two

different sources. In the AR(1) model with heterogeneous mean we have

ρ1 =
σ2η + ασ2v
σ2η + σ2v

= α+
(1− α)σ2η
σ2η + σ2v

= α+
(1− α)λ

(1 + λ)
, (16)

which particularizes to (9) or (10) when either α or λ are equal to zero, respectively.

Often with microdata ρ1 ' 1. Nevertheless, a value of ρ1 close to one may be compatible with

many different values of α and λ. For example, fitting the heterogeneous mean AR(1) model to annual

employment from a short panel of firms we obtained ρ1 = 0.995, α = 0.8 and λ = 36.

The estimation of autoregressive models with individual effects will be discussed in Section 2. In

the remainder of this section we consider time effects, moving average models, and inference from

covariance structures.

The previous discussion could have been conducted using moving average instead of autoregres-

sive processes.2 One advantage of MA over AR processes is that they imply linear restrictions in the

autocovariance matrix (e.g. with T = 3 the pure MA(1) process implies Cov (yi1, yi3) = 0). The advan-

tages of autoregressive representations are in the possibilities of incorporating certain non-stationary

features (like unit roots or nonstationary initial conditions), and the relationship to regression and

instrumental-variable settings.
2Except for the fact that a pure MA(1) process restricts the range of possible values of ρ1.
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1.2 Time Effects

Often a time series analysis of individual time series will only be meaningful after conditioning on

common features. For example, in the empirical consumption model of Hall and Mishkin considered

below, the time series properties of consumption and income were investigated after conditioning on

trends and demographic characteristics of the household. In other instances, it may be important to

remove business cycle or seasonal effects in order to avoid confusion between aggregate and individual

specific dynamics. One might consider specifying a regression of yit on some aggregate variables zt

(like GDP growth, the unemployment rate, inflation, or functions of time)

yit = γ0zt + yIit (17)

together with a time series model for yIit. Alternatively, the aggregate component could be specified

as a latent common stochastic process yat :

yit = y
a
t + y

I
it. (18)

One would then specify time series models for both yat and y
I
it. If y

a
t ∼ iid

¡
0,σ2a

¢
and yIit follows the

basic error component model, we obtain the two-way error component model :

yit = y
a
t + ηi + vit, (19)

whose covariance matrix is given by

V ar(y) = σ2vINT + σ2η
¡
IN ⊗ ιT ι

0
T

¢
+ σ2a

¡
ιN ι

0
N ⊗ IT

¢
. (20)

where y = (y01, ..., y0N)
0, and ιT and ιN denote vectors of ones of dimensions T and N . Stochastic

modelling of both yat and ηi requires large T and N . In panels with small N and large T the individual

effects are treated as parameters.

Time Dummies in Short Panels Conversely, in short panels the number of time series obser-

vations is too small to attempt a stochastic modelling of yat . On the other hand, the cross-sectional

sample size is large so that the realizations of yat that occur in the sample can be treated as unknown

period specific parameters to be estimated. To this end we may specify a set of T time dummies:

yit = y
a0dt + yIit (21)

where ya = (ya1 , ..., y
a
T )
0 and dt is a T × 1 vector with one in the t-th position and zero elsewhere.

Note that any aggregate variable zt will be a linear combination of the time dummies. Thus, if a

full set of time dummies is included any aggregate variable will be perfectly colinear with them and

hence redundant. If one has a substantive interest in the effects of macro variables, time dummies

would not be employed. Indeed, the specification for the macro variables can be regarded as a model

for the time dummies. If the substantive interest is in individual dynamics and data are sufficiently

informative, however, time dummies afford a robust control for common aggregate effects.
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Individual-Specific Trends In the basic error component model there is a heterogeneous con-

stant level of the process. This can be generalized to considering a heterogeneous linear trend:

yit = η0i + η1it+ vit (22)

or in vector notation

yi = Sηi + vi (23)

where ηi = (η0i, η1i)
0 and S denotes the T × 2 matrix

S =

⎛⎜⎜⎜⎜⎜⎝
1 1

1 2
...
...

1 T

⎞⎟⎟⎟⎟⎟⎠ .

Letting V ar (ηi) = Ωη, and assuming that vit ∼ iid(0,σ2) and independent of ηi, the T × T
covariance matrix of yi is given by

Ω = SΩηS
0 + σ2IT . (24)

A necessary condition for identification of Ωη and σ2 is that T ≥ 3. To illustrate the situation, let us
consider for T = 3 the covariance matrix of the variables yi1, ∆yi2, and ∆2yi3:

yi1 = η0i + η1i + vi1 (25)

∆yi2 = η1i + (vi2 − vi1) (26)

∆2yi3 = vi3 − 2vi2 + vi1, (27)

which provides a non-singular transformation of the original covariance matrix Ω. The two covariance

matrices contain the same information, but the transformation simplifies the relationship between the

model’s parameters and the variances and covariances of the data:

V ar

⎛⎜⎜⎝
yi1

∆yi2

∆2yi3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
σ00 + σ11 + 2σ01 + σ2 σ11 + σ01 − σ2 σ2

σ11 + 2σ
2 −3σ2

6σ2

⎞⎟⎟⎠ . (28)

Thus, σ2 is determined from the variance and covariances in the last column. Given σ2, σ11 can

be determined from V ar (∆yi2). Then σ01 is determined from Cov (yi1,∆yi2), and finally σ00 is

determined from V ar (yi1).3

3With T = 2, the variances of η0i, η1i, and vit are just identified if η0i, and η1i are assumed to be uncorrelated.
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Individual Specific Responses to Aggregate Variables The previous case can be extended

to consider individual-specific responses to aggregate variables (like business cycle movements):

yit = η0izt + vit (29)

where zt denotes a vector of observable aggregate variables, and ηi is a vector of individual specific

effects of zt on yit. Note that for S = (z1, ..., zT )
0 and V ar (ηi) = Ωη, the variance matrix of yi is of

the same form as (24). Identification in this case will require that zt has sufficient variation and the

dimension of ηi is not too large relative to T .

Time Effects Interacted with Individual Effects Let us now consider a model of the form

yit = ηiδt + vit. (30)

This model can be regarded as specifying an aggregate shock δt that has individual-specific effects,

or a permanent characteristic ηi that has changing effects over time. The difference with the previous

model is that zt in (29) was known whereas δt in (30) is not. Therefore, in a short panel δ = (δ1, ..., δT )0

will be treated as a vector of parameters to be estimated.

Assuming that vit ∼ iid(0,σ2) independent of ηi, the data covariance matrix takes the form

Ω = σ2ηδδ
0 + σ2IT . (31)

This is the structure of the one-factor model of factor analysis. Some scale normalization is required

in order to determine δ. Using δ0δ = 1, it follows that σ2η + σ2 is the largest eigenvalue of Ω and δ is

the corresponding eigenvector. Moreover, the remaining T − 1 eigenvalues of Ω are equal to σ2.
Let us illustrate the identification of this type of model by considering a case in which T = 3 and

the vit are allowed to have period-specific variances σ2t . With the normalization δ1 = 1, the covariance

matrix is given by

V ar

⎛⎜⎜⎝
yi1

yi2

yi3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
σ2η + σ21 σ2ηδ2 σ2ηδ3

σ2ηδ
2
2 + σ22 σ2ηδ2δ3

σ2ηδ
2
3 + σ23

⎞⎟⎟⎠ . (32)

Subject to compatibility, the parameters are just identified and given by

δ2 =
Cov(yi2, yi3)

Cov(yi1, yi3)
(33)

δ3 =
Cov(yi2, yi3)

Cov(yi1, yi2)
(34)

σ2η =
Cov(yi1, yi2)Cov(yi1, yi3)

Cov(yi2, yi3)
(35)

σ2t = V ar(yit)− σ2ηδ
2
t (t = 1, 2, 3). (36)

Note that (33) and (34) can be interpreted as instrumental variable parameters from autoregressive

equations. This is a specially useful perspective when vit itself follows an autoregressive process.
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1.3 Moving Average Autocovariances

Stationary Models We begin by considering stationary models. Covariance stationarity re-

quires that for all t and j, Cov
¡
yit, yi(t−j)

¢
does not depend on t:

Cov
¡
yit, yi(t−j)

¢
= γj . (37)

Thus, under stationarity, the T ×T autocovariance matrix of a scalar variable yit depends at most on
only T different coefficients γ0, ..., γT−1, which implies that it satisfies T (T + 1)/2− T restrictions.

A stationary moving-average structure of order q MA(q) with individual effects will further restrict

the coefficients γj for j > q to take the same value (corresponding to the variance of the individual

effect):

γq+1 = ... = γT−1. (38)

The absence of individual effects will be signaled by the additional restriction that the previous

coefficients are equal to zero

γq+1 = ... = γT−1 = 0. (39)

Therefore, given stationarity, an MA(T − 2) process (with individual effects) or an MA(T − 1)
process (without them) will be observationally equivalent saturated models.4

Nonstationary Models Nonstationarity, in the sense of failure of condition (37), may arise

for a variety of reasons. Examples include the individual-specific trends and responses to aggregate

variables considered above,5 or nonstationary initial conditions. Moreover, nonstationarity may also

arise as a result of unit roots, time-varying error variances (possibly due to aggregate effects), or

ARMA models with time-varying coefficients.

Provided q < T − 1, a nonstationary MA(q) process without permanent effects will satisfy the
(T − q)(T − q − 1)/2 restrictions

Cov(yit, yi(t−j)) = 0 for j > q. (40)

In such model, the elements in the main diagonal of the autocovariance matrix and those in the first q

subdiagonals will be free coefficients, except for the symmetry and non-negativity restrictions. Simi-

larly, in a nonstationary MA(q) process with permanent effects the zero elements in the autocovariance

matrix will be replaced by a constant coefficient.

4A moving average process may also imply inequality restrictions, which are not considered here.
5From the point of view of the time series process of a given individual, model (22) introduces a deterministic trend,

whereas model (29) is compatible with a stationary process for yit provided zt is stationary itself. Thus, the immediate

reason why (29) is “nonstationary” in our terminology is because we are conditioning on the realizations of zt.
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Multivariate Models The previous considerations can be generalized to a multivariate context.

Let yit denote anm×1 random vector. Then the autocovariance matrix of the vector yi = (y0i1, ..., y0iT )0
is of order mT . Under stationarity, for any t and j the m×m block Cov

¡
yit, yi(t−j)

¢
does not depend

on t:

Cov
¡
yit, yi(t−j)

¢
= Γj . (41)

A stationary vector-MA(q) process with individual effects introduces the restrictions

Γq+1 = ... = ΓT−1. (42)

Moreover, if no variable contains individual specific intercepts then also

Γq+1 = ... = ΓT−1 = 0. (43)

Similar remarks can be made for nonstationary vector-MA specifications.

Abowd and Card (1989) presented an empirical analysis of changes in the logs of annual earnings

and hours from three different panels (actually of residuals from regressions of those variables on time

dummies and potential experience). For each dataset they found evidence supporting the restrictions

implied by a nonstationary MA(2) bivariate process without individual effects.6 Abowd and Card did

not consider the covariance structure of the levels of their variables. They focused on the implications

of the time series properties of changes in the variables for life-cycle labour supply models.

Covariance Matrices of Levels and First Differences To examine the relationship between

covariance structures in levels and first-differences, let us consider the transformed covariance matrix

V ar

⎛⎜⎜⎜⎜⎜⎝
yi1

∆yi2
...

∆yiT

⎞⎟⎟⎟⎟⎟⎠ = Ω∗ =

⎛⎜⎜⎜⎜⎜⎝
ω∗11 ω∗12 . . . ω∗1T
ω∗12
... Ω∆

ω∗1T

⎞⎟⎟⎟⎟⎟⎠ . (44)

The matrix Ω∗ is a non-singular transformation of the covariance matrix in levels (so that knowledge

of one implies knowledge of the other), and Ω∆ is the covariance matrix in first differences. Therefore,

a model of Ω∆ is equivalent to a model of the covariance matrix in levels that leaves the coefficients

ω∗1t (t = 1, ..., T ) unrestricted.

The terms ω∗1t may be informative about the structural parameters in Ω∆. If yit follows an MA(q)

process with individual effects, ∆yit will be an MA(q + 1) process without individual effects. In such

a case even if initial conditions are assumed to be nonstationary we would expect

ω∗1t = 0 for t > q + 2. (45)

Enforcing these restrictions may lead to more efficient estimates of parameters in the structure for Ω∆.
6 Individual effects in the changes of the variables would correspond to individual specific trends in their levels.
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1.4 Estimating Covariance Structures

The previous models all specify a structure on a data covariance matrix. It is of some interest to

approach identification and inference with reference to a covariance structure, specially when the

interest is in estimating the parameters in the structure as opposed to a substantive interest in the

probability distribution of the data. In some cases, restrictions on higher-order moments may add

identification content, but it is still often useful to know when a parameter of interest in a time series

model may or may not be identified from the data covariance matrix alone.

1.4.1 GMM Estimation

Abstracting from mean components for simplicity, suppose the covariance matrix of a p×1 time series
yi is a function of a k × 1 parameter vector θ given by

E(yiy
0
i) = Ω(θ). (46)

If yi is a scalar time series its dimension will coincide with T , but in the multivariate context p = mT .

Vectorizing the expression and eliminating redundant elements (due to symmetry) we obtain a

vector of moments of order r = (p+ 1)p/2:

vechE
£
yiy

0
i −Ω(θ)

¤
= E [si − ω(θ)] , (47)

where the vech operator stacks by rows the lower triangle of a square matrix.7

If r > k and H(θ) = ∂ω(θ)/∂θ0 has full column rank, the model is overidentified. In that case a

standard optimal GMM estimator solves:

bθ = argmin
c
[s− ω(c)]0 bV −1 [s− ω(c)] (48)

where s is the sample mean vector of si:

s =
1

N

NX
i=1

si (49)

and bV is some consistent estimator of V = V ar(si). A natural choice is the sample covariance matrix
of si:

bV = 1

N

NX
i=1

sis
0
i − ss0. (50)

The first-order conditions from the optimization problem are

−H(c)0 bV −1 [s− ω(c)] = 0. (51)
7 If we were interested in considering mean restrictions of the form E(yi) = μ(θ) jointly with covariance restrictions,

we could proceed in the same way after redefining the vectors si and ω(θ) as si = (y0i, [vech(yiy
0
i)]

0)0 and ω(θ) =

(μ(θ)0, [vechΩ(θ)]0)0, respectively.
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The two standard results for large sample inference are, firstly, asymptotic normality of the scaled

estimation error∙
1

N
H(bθ)0 bV −1H(bθ)¸−1/2 ³bθ − θ

´
d→ N (0, I) (52)

and, secondly, the asymptotic chi-square distribution of the minimized estimation criterion (test sta-

tistic of overidentifying restrictions)

S = N
h
s− ω(bθ)i0 bV −1 hs− ω(bθ)i d→ χ2r−k. (53)

Example: Fitting a Homogeneous MA(1) model with T=3 In such case r = 6 and k = 2

with θ = (γ0, γ1) and

Ω =

⎛⎜⎜⎝
γ0 γ1 0

γ1 γ0 γ1

0 γ1 γ0

⎞⎟⎟⎠ . (54)

Thus we have

si =
³
y2i1 yi2yi1 y2i2 yi3yi1 yi3yi2 y2i3

´0
(55)

and

ω(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0

γ1

γ0

0

γ1

γ0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

1 0

0 0

0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ã

γ0

γ1

!
= Hθ. (56)

Since the restrictions are linear, an explicit expression for the GMM estimator is available:

bθ = ³H 0 bV −1H´−1H 0 bV −1s. (57)

Thus, bθ can be obtained as a GLS regression of s on H using bV −1 as weight matrix.
Sometimes using a (possibly parameter-dependent) transformation of the original moments may

lead to a simpler estimation problem. One simplification arises when the transformed moments are

linear in the parameters whereas the original moments are not. Another simplification is when a subset

of the transformed moments are unrestricted, so that one can concentrate on smaller sets of moments

and parameters without loss of efficiency (Arellano, 2003, 70-71).
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Relationship between GMM and PML If yi ∼ iidN [0,Ω(θ)], the MLE of θ solves8

bθPML = argmin
c

"
log detΩ(c) +

1

N

NX
i=1

y0iΩ
−1(c)yi

#
. (58)

If yi is not assumed normal, bθPML can be regarded as a Gaussian pseudo maximum likelihood estimator
(PML). Defining the selection matrix D = ∂vecΩ/∂(vechΩ)0, the first-order conditions are

−H(c)0 £D0 ¡Ω−1(c)⊗Ω−1(c)¢D¤ [s− ω(c)] = 0, (59)

which are of the same form as those for the GMM problem given in (51).

Under normality, fourth-order moments are functions of second-order moments. Specifically,

V −1 =
1

2
D0 ¡Ω−1(θ)⊗Ω−1(θ)¢D. (60)

Thus, under normality an alternative optimal GMM estimator could use a consistent estimate of

D0 ¡Ω−1(θ)⊗Ω−1(θ)¢D as weight matrix. Such estimator does not coincide with bθPML because in
the latter the weight matrix is continuously updated as a function of c in (59), but the two are

asymptotically equivalent with or without normality. Under non-normality, they remain consistent

and asymptotically normal but they are inefficient for large N relative to the GMM estimator that

uses bV −1 as weight. A PML estimator may still be preferable even under non-normality on finite

sample grounds, but if so it is important to base inference on standard errors robust to non-normality.

Testing Nested Restrictions Using Incremental Sargan Tests The test statistic of overi-

dentifying restrictions (53) can be used as an overall specification test against the unrestricted data

covariance matrix. Sometimes, however, we are interested in testing additional constraints within a

particular covariance structure. For example, we may wish to test for the absence of random effects in

a stationary moving average model, or for a stationary moving average against a nonstationary one.

Testing of nested restrictions can be accomplished using incremental statistics.

Let the additional constraints under test be θ = g (ψ), where ψ is another parameter vector of

order s < k and each element of g is a twice differentiable function. The GMM estimator of ψ is

bψ = argmin
a
{s− ω[g(a)]}0 bV −1 {s− ω[g(a)]} (61)

so that the constrained estimator of θ is bθR = g(bψ). Moreover, we have
SR = N

h
s− ω(bθR)i0 bV −1 hs− ω(bθR)i d→ χ2r−s. (62)

Finally, the incremental Sargan test statistic S∆ satisfies

S∆ = SR − S d→ χ2k−s independent of S. (63)

Thus, large values of S∆ will lead to rejection of the θ = g (ψ) restrictions.
8 In the model yi = ηiι + vi, unconditional joint normality of yi can be regarded as the result of both conditional

normality given ηi, namely yi | ηi ∼ N (ηiι, V ), and normality of ηi: ηi ∼ N (0,σ2η), so that Ω = σ2ηιι
0 + V .
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1.5 Illustration: Testing the Permanent Income Hypothesis

Hall and Mishkin (1982) used food consumption and labour income from a PSID sample of N = 2309

US households over T = 7 years to test the predictions of a permanent income model of consumption

behaviour. We use their work as an empirical illustration of dynamic panel covariance structures.

They specified individual means of income and consumption changes as linear regressions on age,

age squared, time, and changes in the number of children and adults living in the household. Thus,

they were implicitly allowing for unobserved intercept heterogeneity in the levels of the variables, but

only for observed heterogeneity in their changes. Deviations from the individual means of income and

consumption, denoted yit and cit respectively, were specified as follows.

Specification of the Income Process Hall and Mishkin assumed that income errors yit were

the result of two different types of shocks, permanent and transitory:

yit = y
L
it + y

S
it. (64)

They also assumed that agents were able to distinguish one type of shock from the other and respond

to them accordingly. The permanent component yLit was specified as a random walk

yLit = y
L
i(t−1) + εit, (65)

and the transitory component ySit as a stationary moving average process

ySit = ηit + ρ1ηi(t−1) + ρ2ηi(t−2). (66)

A limitation is the lack of measurement error in observed income. That is, a component to which

consumption does not respond at all. This is important since measurement error in PSID income is

large, but identification would require additional indicators of permanent income.

Specification of the Consumption Process Mean deviations in consumption changes were

specified to respond one-to-one to permanent income shocks and by a fraction β to transitory shocks.

The magnitude of β will depend on the persistence in transitory shocks (measured by ρ1 and ρ2) and

on real interest rates. It will also depend on age, but the analysis was simplified by treating it as a

constant. This model can be formally derived from an optimization problem with quadratic utility, and

constant interest rates that are equal to the subjective discount factor. Since only food consumption

is observed, an adjustment was made by assuming a constant marginal propensity to consume food,

denoted α. With these assumptions we have

∆cit = αεit + αβηit. (67)

In addition, Hall and Mishkin introduced a stationary measurement error in the level of consump-

tion (or transitory consumption that is independent of income shocks) with an MA(2) specification:

cSit = vit + λ1vi(t−1) + λ2vi(t−2). (68)

12



The Resulting Bivariate Covariance Structure Therefore, the model that is taken to the

data consists of a joint specification for mean deviations in consumption and income changes as follows:

∆cit = αεit + αβηit + vit − (1− λ1) vi(t−1) − (λ1 − λ2) vi(t−2) − λ2vi(t−3) (69)

∆yit = εit + ηit − (1− ρ1) ηi(t−1) − (ρ1 − ρ2) ηi(t−2) − ρ2ηi(t−3). (70)

The three innovations in the model are assumed to be mutually independent with constant variances

σ2ε, σ
2
η and σ2v. Thus, the model contains nine unknown coefficients:

θ =
³
α β λ1 λ2 ρ1 ρ2 σ2ε σ2η σ2v

´0
.

The model specifies a covariance structure for the 12× 1 vector
wi =

³
∆ci2 ∆ci3 · · · ∆ci7 ∆yi2 ∆yi3 · · · ∆yi7

´0
E
¡
wiw

0
i

¢
= Ω(θ).

Let us look in some detail at the form of various elements of Ω(θ). We have

V ar(∆yit) = σ2ε + 2
¡
1− ρ1 − ρ1ρ2 + ρ21 + ρ22

¢
σ2η (t = 2, ..., 7) (71)

Cov(∆yit,∆yi(t−1)) = − [(1− ρ1)− (1− ρ1 + ρ2) (ρ1 − ρ2)]σ
2
η (72)

and also

Cov(∆cit,∆yit) = ασ2ε + αβσ2η (t = 2, ..., 7) (73)

Cov(∆cit,∆yi(t−1)) = 0 (74)

Cov(∆ci(t−1),∆yit) = −αβ (1− ρ1)σ
2
η. (75)

A fundamental restriction of the model is lack of correlation between current consumption changes

and lagged income changes, as captured by (74). The model, nevertheless, predicts correlation between

current consumption changes and current and future income changes, as seen from (73) and (75).

Empirical Results Hall and Mishkin estimated their model by Gaussian PML. In the calculation

of standard errors no adjustment was made for possible non-normality. They estimated bβ = 0.3, which
given their estimates of ρ1 and ρ2 (bρ1 = 0.3, bρ2 = 0.1) turned out to be consistent with the model

only for unrealistic values of real interest rates (above 30 percent). Moreover, they estimated the

marginal propensity to consume food as bα = 0.1, and the moving average parameters for transitory
consumption as bλ1 = 0.2 and bλ2 = 0.1. The variance of the permanent income shocks was twice as

large as that of the transitory shocks: bσ2ε = 3.4 and bσ2η = 1.5.
Finally, they tested the covariance structure focusing on the fundamental restriction of lack of

correlation between current changes in consumption and lagged changes in income. They found a

negative covariance which was significantly different from zero. They did not consider overall tests

of overidentifying restrictions. As a result of this finding they considered an extended version of the

model in which a fraction of consumers spent their current income (“Keynesian” consumers).
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2 Autoregressive Models with Individual Effects

In this section we discuss the specification and estimation of autoregressive models with individual

specific intercepts. We focus on first-order processes for simplicity. We begin by considering the

properties of the within-group estimator. In contrast with the static fixed effects model, WG has a

small T bias which does not disappear as N becomes large. Next, we consider instrumental variable

estimators that are consistent for panels with small T and large N . These estimators use lagged

observations as instruments for errors in first differences. Then we discuss the role of assumptions

about initial conditions, homoskedasticity, and whether the parameter space includes unit roots or

not. Finally, we consider various aspects of inference with VAR panel data models in the context of

an empirical application using firm level data on employment and wages.

2.1 Assumptions

Let {yi0, yi1, ..., yiT , ηi}Ni=1 be a random sample9 such that

yit = αyi(t−1) + ηi + vit (t = 1, ..., T ) | α |< 1 (76)

E
¡
vit | yt−1i , ηi

¢
= 0 (Assumption B1 )

where yt−1i = (yi0, yi1, ..., yi(t−1))0. We observe yTi but not the individual intercept ηi, which can be

regarded as a missing time-invariant variable with E(ηi) = η and V ar(ηi) = σ2η.

Thus, this is a model that specifies the conditional mean of yit given its past and a value of ηi. An

implication of B1 is that the errors vit are conditionally serially uncorrelated. Namely,

E
¡
vitvi(t−j) | yt−1i , ηi

¢
= 0, for j > 0, (77)

so that E
¡
vitvi(t−j)

¢
= 0 as well. B1 also implies lack of correlation between ηi and vit for all t.

Homoskedasticity Assumption B1 implies that E (vit) = 0 cross-sectionally for any t, but

does not restrict the variance of vit. That is, the conditional variance may be some period-specific

non-negative function of yt−1i and ηi

E
¡
v2it | yt−1i , ηi

¢
= ϕt

¡
yt−1i , ηi

¢
, (78)

and the unconditional variance may change with t10

E
¡
v2it
¢
= E

£
ϕt
¡
yt−1i , ηi

¢¤
= σ2t . (79)

9We assume for convenience that yi0 is observed, so that for each individual we have T + 1 observations.
10Note that E v2it is a cross-sectional population mean, as in plimN→∞N

−1 N
i=1 v

2
it.
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Thus, we may consider two different homoskedasticity assumptions: conditional homoskedasticity

E
¡
v2it | yt−1i , ηi

¢
= σ2t , (Assumption B2 )

and time series homoskedasticity

E
¡
v2it
¢
= σ2. (Assumption B3 )

B2 and B3 may hold in conjunction, but any of them may also occur in the absence of the other.

Assumption B3 is compatible with individual-specific error variances of the form E
¡
v2it | ηi

¢
= σ2i .

Moreover, since we may not wish to think of σ2i as being exclusively a function of ηi, we could imagine

a larger conditioning set of unobserved individual components, leaving the argument unaffected.

Stationarity Assuming | α |< 1, guarantees that the process is stable but not necessarily sta-
tionary. Stationarity also requires that the process started in the distant past or, equivalently, that

the distribution of initial observations coincides with the steady state distribution of the process.

Solving (76) recursively we obtain

yit =
³Xt−1

s=0
αs
´
ηi + αtyi0 +

Xt−1
s=0

αsvi(t−s). (80)

Furthermore, B1 implies

E (yit | ηi) =
³Xt−1

s=0
αs
´
ηi + αtE (yi0 | ηi) , (81)

which for | α |< 1 and large t tends to μi = ηi/(1 − α). We refer to μi as the steady state mean for

individual i. Thus, stationarity in mean requires

E (yi0 | ηi) =
ηi

(1− α)
, (Assumption B4 )

in which case all E (yit | ηi) are time-invariant and coincide with the steady state mean.
Similarly, under B1-B3, for j ≥ 0 we have

Cov
¡
yit, yi(t−j) | ηi

¢
= α2t−jV ar (yi0 | ηi) + αj

³Xt−j−1
s=0

α2s
´
σ2, (82)

which for | α |< 1 and large t tends to the steady state j-th autocovariance for individual i given by
αjσ2/(1− α2). Thus, under homoskedasticity, covariance stationarity requires

V ar (yi0 | ηi) =
σ2

(1− α2)
, (Assumption B5 )

in which case all Cov
¡
yit, yi(t−j) | ηi

¢
are time-invariant and coincide with the steady state autoco-

variances.
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2.2 The Within-Group Estimator

The WG estimator of α is the slope coefficient in an OLS regression of y on lagged y and a full set of

individual dummies, or equivalently the OLS estimate in deviations from time means or orthogonal

deviations. Letting yi = (yi1, ..., yiT )0 and yi(−1) = (yi0, ..., yi(T−1))0, the WG estimator of α is

bαWG =

PN
i=1 y

0
i(−1)QyiPN

i=1 y
0
i(−1)Qyi(−1)

(83)

where Q is the WG operator of order T .

The autoregressive equation (76) is of the same form as the static fixed effects model with xit =

yi(t−1), but it does not satisfy the strict exogeneity assumption because vit is correlated with future

values of the regressor. Indeed, for any value of T

E
³
y0i(−1)Qvi

´
=

TX
t=1

E
£
yi(t−1) (vit − vi)

¤ 6= 0 (84)

since yi(t−1) is correlated with the average error vi through the terms vi1...vi(t−1). As a consequence,bαWG is inconsistent for fixed T as N tends to infinity. The bias will nevertheless tend to zero as T

increases since plimT→∞ vi = 0. Thus, in common with standard time series autoregression, least

squares estimation is biased but consistent as T tends to infinity. The problem is that when T is small

the biases may be too large to be ignored regardless of the value of N .

The Nickell Bias The form of the bias is important for understanding the environments in

which WG can be expected to perform well. For fixed T and large N the bias is

plim
N→∞

(bαWG − α) =
E
³
y0i(−1)Qvi

´
E
³
y0i(−1)Qyi(−1)

´ . (85)

Under assumptions B1 and B3 it can be shown that

E
³
y0i(−1)Qvi

´
= −σ2hT (α) (86)

where

hT (α) =
1

(1− α)

∙
1− 1

T

µ
1− αT

1− α

¶¸
. (87)

Moreover, if B4 and B5 also hold, the denominator of (85) satisfies

E
³
y0i(−1)Qyi(−1)

´
=

σ2 (T − 1)
(1− α2)

µ
1− 2αhT (α)

(T − 1)
¶
. (88)

Thus, through the denominator, the bias depends on the form of initial conditions. The bias formula

as given by Nickell (1981) is therefore:

plim
N→∞

(bαWG − α) = −
¡
1− α2

¢
hT (α)

(T − 1)
µ
1− 2αhT (α)

(T − 1)
¶−1

. (89)
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The WG bias is of order 1/T , so that it vanishes as T → ∞, but it may be important for small
values of T . When T = 2 the bias under stationarity is given by

plim
N→∞

(bαWG − α) = −(1 + α)

2
, (90)

which coincides with the bias of OLS in first differences.

The following table shows the Nickell bias for several values of α and T .

Table 1

WG Bias under Stationarity

T\α 0.05 0.5 0.95

2 −0.52 −0.75 −0.97
3 −0.35 −0.54 −0.73
10 −0.11 −0.16 −0.26
15 −0.07 −0.11 −0.17

If α > 0 the bias is always negative, and massive with the very small values of T . It becomes

smaller in absolute value as T increases, but even when T = 15 the bias is still substantial (e.g. 22

percent with α = 0.5).

Likelihood Conditional on ηi In general, the likelihood for one individual conditional on ηi

can be sequentially factorized as

f(yTi | ηi) = f(yi0 | ηi)
TY
t=1

f(yit | yt−1i , ηi). (91)

If we assume that yit | yt−1i , ηi is normally distributed with conditional mean and variance given

by assumptions B1, B2 and B3, so that

yit | yt−1i , ηi ∼ N
¡
αyi(t−1) + ηi,σ

2
¢
, (92)

the log-likelihood conditional on ηi and yi0 is given by

ci = log
TY
t=1

f(yit | yt−1i , ηi)

∝ −T
2
log σ2 − 1

2σ2

TX
t=1

¡
yit − αyi(t−1) − ηi

¢2
. (93)

Clearly, the maximizer of
PN
i=1 ci with respect to α, σ2, and η1, ..., ηN gives rise to the WG

estimator, which is therefore the Gaussian MLE of α (conditional on yi0) estimated jointly with the

individual specific intercepts. Given the large-N -fixed-T inconsistency of WG, this can be regarded

as another example of Neyman and Scott’s incidental parameter problem.
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2.3 Instrumental Variable Estimation

The WG estimator is inconsistent for fixed T because taking differences or deviations to eliminate the

effects creates a negative correlation between lagged y’s and errors in the transformed equation. How-

ever, values of y lagged two periods or more are valid instruments in the equations in first differences.

Specifically, an implication of B1 is that the following (T − 1)T/2 linear IV moment restrictions hold:

E
£
yt−2i

¡
∆yit − α∆yi(t−1)

¢¤
= 0 (t = 2, ..., T ). (94)

This gives rise to a system of T − 1 equations with cross-equation restrictions and different instru-
ments valid for different equations, which can be estimated by linear GMM.

Simple IV estimators of this type were first proposed by Anderson and Hsiao (1981). Their proposal

was to consider a single moment of the form

E

∙XT

t=2
yi(t−2)

¡
∆yit − α∆yi(t−1)

¢¸
= 0, (95)

or alternatively

E

∙XT

t=3
∆yi(t−2)

¡
∆yit − α∆yi(t−1)

¢¸
= 0. (96)

Since (95) and (96) are linear combinations of (94), for large N and fixed T , the “stacked” Anderson-

Hsiao IV estimates are asymptotically inefficient relative to GMM based on (94). Stacked IV estimates,

however, will remain well defined and consistent regardless of whether T or N or both tend to infinity.

GMM estimators that used all available lags at each period as instruments for the equations in first

differences were proposed by Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991).

A GMM estimator based on the IV moment conditions (94) takes the form

bαGMM =
£¡
∆y0−1Z

¢
V −1N

¡
Z 0∆y−1

¢¤−1 ¡
∆y0−1Z

¢
V −1N

¡
Z 0∆y

¢
(97)

where Z 0∆y =
NP
i=1
Z 0i∆yi, Z

0∆y−1 =
NP
i=1
Z 0i∆yi(−1),∆yi = (∆yi2, ...,∆yiT )

0,∆yi(−1) = (∆yi1, ...,∆yi(T−1))0

and

Zi =

⎛⎜⎜⎜⎜⎜⎝
yi0 0 0 . . . 0 . . . 0

0 yi0 yi1 0 0
...

. . .
...

0 0 0 . . . yi0 . . . yi(T−2)

⎞⎟⎟⎟⎟⎟⎠ . (98)

According to standard GMM theory, an optimal choice of the inverse weight matrix VN is a

consistent estimate of the covariance matrix of the orthogonality conditions E(Z 0i∆vi∆v
0
iZi). Under
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conditional and time series homoskedasticity (assumptions B1, B2 and B3 ):11

E(Z 0i∆vi∆v
0
iZi) = σ2E(Z 0iDD

0Zi) (99)

where D is the (T − 1)× T first-difference matrix operator. Thus, a one-step GMM estimator uses

bV = NX
i=1

Z 0iDD
0Zi, (100)

whereas a two-step GMM estimator uses the robust choice

eV = NX
i=1

Z 0i∆bvi∆bv0iZi, (101)

where ∆bvi are one-step GMM residuals.

A heteroskedasticity-robust estimate of the asymptotic variance of one-step GMM can be obtained

from the sandwich formula:

dV ar(bαGMM1) =M−1
h¡
∆y0−1Z

¢ bV −1 eV bV −1 ¡Z 0∆y−1¢iM−1 (102)

whereM =
¡
∆y0−1Z

¢ bV −1 (Z 0∆y−1). Furthermore, an estimate of the asymptotic variance of two-step
GMM is given by

dV ar(bαGMM2) = h¡∆y0−1Z¢ eV −1 ¡Z 0∆y−1¢i−1 . (103)

Sargan test statistics of the overidentifying restrictions can also be obtained from the minimized

two-step GMM criterion as follows:

S =
¡
∆ev0Z¢ eV −1 ¡Z 0∆ev¢ . (104)

In our case, S will have a limiting chi-square distribution with [(T − 1)T/2] − 1 degrees of freedom.
These statistics are widely used as specification diagnostics.

As we shall see below, (94) are not the only restrictions on the data second-order moments implied

by the conditional mean independence and homoskedasticity assumptions B1-B3, but they are the

only ones that are valid in the absence of homoskedasticity or lack of correlation between ηi and vit.

11Note that under B1-B3 a typical block of E(Z0i∆vi∆v
0
iZi) satisfies

E ∆vit∆vi(t−j)y
t−2
i yt−j−20i = E ∆vit∆vi(t−j) E yt−2i yt−j−20i .
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2.4 Initial Conditions and Heteroskedasticity

Here we examine the role of assumptions about initial conditions and heteroskedasticity in the estima-

tion of AR models from short panels. We consider three different types of covariance structures. Type

1 relies on stationarity assumptions (B1 and B3-B5 ). Type 2 is the covariance structure assuming an

unrestricted joint distribution of yi0 and ηi, and time series homoskedasticity (B1 and B3 ). Finally,

Type 3 is the least restrictive covariance structure which allows for both unrestricted initial conditions

and time series heteroskedasticity (assumption B1 only). The choice of auxiliary assumptions matters

because of a trade-off between robustness and efficiency in this context.

Estimation Under Stationarity Under assumptions B1, B3, B4 and B5 the first and second-

order moments of yTi are functions of the four parameters α, σ
2, σ2μ, and μ of the form

E (yit − μ) = 0 (t = 0, 1, ..., T ) (105)

E
¡
yityis − ωts − μ2

¢
= 0 (t = 0, 1, ..., T ; s = 0, 1, ..., t), (106)

where μ = E(μi), σ
2
μ = V ar(μi), and ωts is the (t, s)th element of the variance matrix of yTi given by

ωts = σ2μ + α|t−s|
σ2

(1− α2)
. (107)

The parameters can be estimated by nonlinear GMM using (105) and (106). Alternatively, it

turns out that these nonlinear in parameter moments can be converted into equivalent linear moment

equations by transformation and reparameterization (Arellano, 2003). The resulting moments are:

E
£
yt−2i

¡
∆yit − α∆yi(t−1)

¢¤
= 0 (t = 2, ..., T ) (108a)

E
£
∆yi(t−1)

¡
yit − αyi(t−1)

¢¤
= 0 (t = 2, ..., T ) (108b)

E (yit − μ) = 0 (t = 0, 1, ..., T ) (108c)

E
¡
y2it − ϕ2

¢
= 0 (t = 0, 1, ..., T ) (108d)

E [yi0 (yi1 − αyi0)− ψ] = 0 (108e)

where ϕ2 = μ2 + σ2μ + σ2/(1 − α2) and ψ = (1 − α)(σ2μ + μ2). Thus, α, μ, ϕ2, and ψ can be

estimated by linear GMM using (108a)-(108e). Original parameters can be recovered by undoing the

reparameterization. The two sets of GMM estimates will be asymptotically equivalent for optimal

choices of the weight matrices.

The orthogonality conditions (108a) coincide with those in (94). The moments (108b) also have

a straightforward instrumental variable interpretation: they state that ∆yi(t−1) has zero mean and is

orthogonal to ηi + vit; (108c) and (108d) state the unconditional stationarity of the first and second

moments, respectively, and (108e) is an unrestricted moment that determines the variance of the

individual effect.
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Unrestricted Initial Conditions In the time series context whether a stationary AR model

is estimated conditional on the first observation or not does not matter for robustness or asymptotic

efficiency. We obtain different estimates but they have similar properties when T is large. In short

panels the situation is fundamentally different. An estimator of α obtained under the assumption that

yi0 | μi follows the stationary unconditional distribution of the process will be inconsistent when the
assumption is false. Therefore, there is a trade-off between robustness and efficiency, since in short

panels the assumption of stationary initial conditions may be very informative about α.

The question is whether initial conditions at the start of the sample are representative of the steady

state behaviour of the model or not. In the analysis of country panel data, Barro and Sala-i-Martin

(1995) described some examples -like data sets that start at the end of a war or other major historical

event- in which one would not expect initial conditions to be distributed according to the steady state

distribution of the process. In the case of micro panels, the starting point of the sample may be closer

to the start of the process for some units than others. For example, for young workers or new firms

initial conditions may be less related to steady state conditions than for older ones.

Taking these considerations into account, a more robust specification is one in which the distrib-

ution of yi0 given μi (or ηi) is left unrestricted.
12 That is, we drop assumptions B4 and B5 and let

E(yi0 | μi) and V ar(yi0 | μi) be arbitrary functions of μi, while retaining the basic stable specification
of equation (76).

To analyze this case let us introduce the linear projection of yi0 on μi:

yi0 = δ0 + δμi + εi0 (109)

where εi0 is the projection error, so that E(εi0) = 0 and Cov(εi0,μi) = 0. Moreover, let σ
2
0 = E(ε

2
i0).

Clearly, under assumptions B4 and B5 we have that δ0 = 0, δ = 1 and σ20 = σ2/(1− α2).

In view of (80) and (109), this model can be written as

yit = αtδ0 +
£
1− (1− δ)αt

¤
μi +

Xt−1
s=0

αsvi(t−s) + αtεi0 (t = 1, ..., T ) . (110)

This gives rise to a mean-covariance structure that has three additional parameters relative to the

stationary model. Means, variances and covariances take now period specific values given by

E (yit) = αtδ0 +
£
1− (1− δ)αt

¤
μ (111)

and for s ≤ t:

ωts =
£
1− (1− δ)αt

¤
[1− (1− δ)αs]σ2μ + αt−s

h
σ2
³Xs−1

j=0
α2j
´
+ α2sσ20

i
. (112)

Consistent estimates of the nonstationary model can be obtained by nonlinear GMM from (111)

and (112). As before an alternative equivalent representation is available (Ahn and Schmidt, 1995).

12The moving average models of Section 1 assumed stationary initial conditions by specifying yi0=μi + vi0.
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It turns out that the restrictions implied by B1 on the data covariance matrix and mean vector can

be represented as

E
£
yt−2i

¡
∆yit − α∆yi(t−1)

¢¤
= 0(t = 2...T ) (113a)

E
£¡
∆yi(t−1) − α∆yi(t−2)

¢ ¡
yit − αyi(t−1) − η

¢¤
= 0(t = 3...T ) (113b)

E
¡
yit − αyi(t−1) − η

¢
= 0(t = 1...T ) (113c)

In addition, time series homoskedasticity (assumption B3 ) implies

E
h¡
yit − αyi(t−1) − η

¢2 − σ2u

i
= 0 (t = 1, ..., T ), (114)

where σ2u = σ2η + σ2. Finally, the following four unrestricted moments determine the first and second

moments of yi0, c0 = Cov (yi0, ηi) and c1 = Cov (yi1, ηi):
13

E (yi0 − μ0) = 0 (115a)

E
£
y2i0 − ϕ20

¤
= 0 (115b)

E [yi0 (yi2 − αyi1 − η)− c0] = 0 (115c)

E [yi1 (yi2 − αyi1 − η)− c1] = 0. (115d)

In this representation, coefficients related to initial conditions and the individual effect variance

can be ignored since they only appear through unrestricted moments. Thus, optimal GMM estimates

of α, σ2u, and η can be obtained from the moment conditions (113a) to (114) alone.

Time Series Heteroskedasticity In time series, estimators of autoregressive models under the

assumption of homoskedasticity remain consistent when the assumption is false. This is not so in short

panels. GMM or PML estimators of α in any of the two previous models will be inconsistent for fixed

T as N tends to infinity if the unconditional variances of the errors vary over time.

PML estimators of the conditional mean parameters obtained under the assumption of conditional

homoskedasticity, however, are robust to conditional heteroskedasticity in short panels, as long as the

restrictions implied by the pseudo likelihood on the unconditional covariance matrix of the data are

satisfied. The same is true of GMM estimates of the corresponding covariance structures.

Therefore, unless one has a substantive interest in modelling conditional variances, robust estimates

of α can be obtained in conjunction with the unconditional variances of the errors. Conversely, if one is

interested in modelling dispersion in the conditional distributions of yit | yt−1i ,μi, the use of estimators

of (possibly time-varying) unconditional error variances σ2t as estimates of the conditional variances

may result in misspecification.

Time series heteroskedasticity may arise as a result of the presence of aggregate effects in the

conditional variance of the process. Thus, time varying σ’s may occur in conjunction with a stationary

13Under stationary initial conditions c0 = σ2η/(1− α) and c0 = c1.
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idiosyncratic process, and even with a stationary aggregate effect. In the latter situation, time series

heteroskedasticity would just reflect the fact that in a short panel we condition on the values of the

aggregate effects that occur in the sample, and these enter the conditional variance.

So we also consider a model in which the unconditional variances of the errors are allowed to vary

over time in an arbitrary way, hence relaxing assumption B3. In combination with unrestricted initial

conditions, this gives rise to a covariance structure characterized by the (T + 4)× 1 parameter vector
(c0, c1,σ

2
0,σ

2
1, ...,σ

2
T ,α). In terms of the moment conditions (113a) to (115d) the only modification is

that (114) now becomes a set of unrestricted moments

E
h¡
yit − αyi(t−1) − η

¢2 − σ2ut

i
= 0 (t = 1, ..., T ), (116)

where σ2ut = σ2η + σ2t , so that the only restrictions implied by the model are (113a)-(113c).

2.5 Mean Stationarity

We have seen that assumptions about initial conditions present a trade-off between robustness and

efficiency in the context of short panels. The trade-off is particularly acute for autoregressive models

with roots close to the unit circle, since in such case the IV moment conditions (94) may be very weak.

Here we discuss a model that enforces mean stationarity but leaves variances unrestricted. That

is, we assume that assumptions B1 and B4 hold but not necessarily B2, B3 or B5. So that we have

E(yit | μi) = μi (t = 0, 1, ..., T )

This implies that δ0 = 0 and δ = 1 in (109). Note that the mean stationarity assumption does not

refer to the start of an individual’s process, but to the first observations in the actual sample.

Under mean stationarity the covariance between yit and μi does not depend on t, so that c0 =

c1 = (1−α)σ2μ, and ∆yit is uncorrelated with μi. In view of the discussion in the previous section, the
implication is that for this model both sets of IV conditions (108a) and (108b) for errors in differences

and levels, respectively, are valid. Adding the mean conditions (108c), the full list of restrictions

implied by mean stationarity on the data first and second moments is:14

E
£
yt−2i

¡
∆yit − α∆yi(t−1)

¢¤
= 0 (t = 2, ..., T ) (117)

E
£
∆yi(t−1)

¡
yit − αyi(t−1) − η

¢¤
= 0 (t = 2, ..., T ) (118)

E
¡
yit − αyi(t−1) − η

¢
= 0 (t = 1, ..., T ) (119)

E (yi0 − μ) = 0. (120)

So full covariance-information linear estimation of α is possible for this model using a GMM esti-

mator that combines instruments in levels for equations in differences with instruments in differences

for equations in levels (Arellano and Bover, 1995; Blundell and Bond, 1998).
14Mean stationarity also implies E ∆yi(t−j) yit − αyi(t−1) = 0 (t = 2, ..., T ; j = 2, ..., t− 1), but these moments are

redundant given (117) and (118) since they are linear combinations of them.
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Levels & Differences GMM Linear Estimators Moments (117)-(119) can be written as

E

Ã
Z 0iDui
Z 0�iui

!
≡ E

³
Z†0i Hui

´
= 0 (121)

where ui = yi − αyi(−1), Zi is the matrix of instruments given in (98) for equations in differences, Z�i

is the matrix of instruments for equations in levels that takes the form

Z�i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . . 0 0

0 1 ∆yi1 0 0 0 0

0 0 0 1 ∆yi2 0 0
...

...
. . .

...

0 0 0 0 0 . . . 1 ∆yi(T−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (122)

H is the (2T −1)×T selection matrix H = (D0, IT )0, where D is the (T −1)×T first difference matrix
operator, and Z†i is a block diagonal matrix with blocks Zi and Z�i. The model specifies different

instruments for a system of T − 1 equations in first differences followed by T equations in levels.
Letting Xi = (yi(−1), ι), a GMM estimator of α and η will be of the form:Ã bαSbηS

!
=

"Ã
NX
i=1

X 0
iH0Z†i

!
AN

Ã
NX
i=1

Z†0i HXi
!#−1Ã NX

i=1

X 0
iH0Z†i

!
AN

Ã
NX
i=1

Z†0i Hyi
!
. (123)

An optimal two-step choice for AN can be obtained from the inverse of a consistent estimate of the

moment covariance matrix E
³
Z†0i Huiu0iH

0
Z†i
´
. However, unlike in IV estimation in differences (97),

this matrix depends on unknown parameters even under conditional homoskedasticity. As a result, in

this case there is no one-step efficient GMM estimator under “classical” errors.15

2.6 Unit Roots

So far we have considered stable models or models in which a unit root is a feature of the specification,

like the integrated moving average process used by Hall and Mishkin (1982) to model household

income. In the Hall and Mishkin’s example the random walk component is the device used to model

permanent income shocks. In such context the empirical interest is in measuring how large the random

walk component is relative to the stationary component, rather than testing for its presence.

Sometimes the presence or absence of unit roots is a central feature of the model of interest so that

unit root testing is not warranted. In this section, however, we assume an interest in testing the unit

root hypothesis, and examine the nature of the problem in short panels with unobserved heterogeneity.

First of all, the null and alternative hypotheses need to be specified. We begin by considering, as

the alternative hypothesis, the stable AR model with unrestricted initial conditions and time series

15An arbitrary but convenient choice of one-step weight matrix is given by the inverse of N−1 N
i=1 Z

†0
i HH

0
Z†i .
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heteroskedasticity. As for the null, we consider a random walk without drift. The model is

yi0 = δ0 + δμi + vi0 (124a)

yit = αyi(t−1) + (1− α)μi + vit. (124b)

Thus, when α = 1 we have

yit = yi(t−1) + vit, (125)

so that heterogeneity only plays a role in the determination of the starting point of the process. The

implication is that when α = 1 only the variance of yi0 is identified in the covariance matrix of (yi0,μi).

An alternative specification of the null would be a random walk with an individual specific drift

yit = yi(t−1) + ηi + vit, (126)

but this is a model with heterogeneous linear growth that would be more suited for comparisons with

stationary models including individual trends.

Under the nullH0 : α = 1, pooled OLS in levels is a consistent and asymptotically normal estimator

of α in (125) for fixed T and large N . Therefore, a standard t-ratio statistic can be used to perform a

fixed-T -large-N one-sided test of the unit root hypothesis against the alternative of a stable process.

The IV Estimator with Unit Roots When α = 1 the rank condition of the IV moments (94)

fails. The yt−2i are uncorrelated with ∆yi(t−1) when α = 1 since in such case ∆yi(t−1) is the innovation

in period (t− 1). That is, for j ≥ 2 we have
Cov(yi(t−j),∆yi(t−1)) = −(1− α)

£
Cov(yi(t−j), yi(t−2))−Cov(yi(t−j),μi)

¤
Cov(yi(t−j),∆yit) = αCov(yi(t−j),∆yi(t−1)).

Hence, when α = 1, the IV moments (94) are not only satisfied for the true value of α, but also for

any other value. The implication is that GMM estimators based on (94) are inconsistent when α = 1.

Mean Stationarity and Unit Roots Let us now consider a model that specifies mean station-

arity when |α| < 1 and a random walk without drift when α = 1. This is model (124a)-(124b) with

the restriction δ = 1, which gives rise to

yit = μi + vit + αvi(t−1) + ...+ αt−1vi1 + αtvi0. (127)

Here σ2μ and σ
2
0 are not separately identified when α = 1, but the rank condition from moments (117)-

(118) is satisfied. As noted by Arellano and Bover (1995), the reason is that when α = 1 we have

Cov
¡
∆yi(t−1), yi(t−1)

¢
= σ2t (128)

which will be non-zero as long as σ2t > 0. So the IV moments for the errors in levels (118) ensure

the determination of α when α equals one. The implication is that GMM estimators of the mean

stationary model remain consistent when α = 1.
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2.7 Estimating and Testing VAR’s for Firm Employment and Wages

• In this section we discuss inference with autoregressive models in an empirical illustration.

• We consider autoregressive employment and wage equations estimated from the panel of firms

used by Alonso-Borrego and Arellano (1999).

• This is a balanced panel of 738 Spanish manufacturing companies, for which there are available
annual observations for the period 1983-1990.

• We consider various specializations of a bivariate VAR(2) model for the logs of employment and
wages, denoted nit and wit respectively.

• Individual and time effects are included in both equations.

• The form of the model is

nit = δ1t + α1ni(t−1) + α2ni(t−2) + β1wi(t−1) + β2wi(t−2) + η1i + v1it (129)

wit = δ2t + γ1wi(t−1) + γ2wi(t−2) + λ1ni(t−1) + λ2ni(t−2) + η2i + v2it. (130)

Univariate AR Estimates for Employment

• We begin by obtaining alternative estimates of a univariate AR(1) model for employment (setting
α2 = β1 = β2 = 0).

• Table 2 compares OLS estimates in levels, first-differences, and within-groups with those obtained
by GMM using as instruments for the equation in first differences all lags of employment up to

t−2. The results are broadly consistent with what would be expected for an AR data generation
process with unobserved heterogeneity.

• Taking GMM estimates as a benchmark, OLS in levels is biased upwards, and WG and OLS in

differences are biased downwards, with a much larger bias in the latter.

• The one- and two-step GMM estimates in the 4-th and 5-th columns, respectively, are based

on the sample moments bN(β) = (b03N , ..., b
0
8N )

0, where β is the 7 × 1 parameter vector β =

(α,∆δ3, ...,∆δ8)
0 and

btN =
1

738

738X
i=1

Ã
1

nt−2i

!¡
∆nit −∆δt − α∆ni(t−1)

¢
(t = 3, ..., 8). (131)

bN(β) contains 27 orthogonality conditions, so that there are 20 overidentifying restrictions.

• These are tested with the Sargan statistic. There is a contrast between the value of the one-step
Sargan statistic (35.1), which is too high for a chi-square with 20 degrees of freedom, and the

robust two-step statistic which is much smaller (15.5).
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• This should not be taken as evidence against the overidentifying restrictions, but as an indication
of the presence of conditional heteroskedasticity.

• Column 6 in Table 2 reports two-step GMM estimates of an AR(2) model. Since one cross-

section is spent in constructing the second lag, the two orthogonality conditions in b3N are lost,

so we are left with 25 moments. There is a second autoregressive coefficient but ∆δ3 is lost, so

the total number of parameters is unchanged.

• Finally, the last column in Table 2 presents continuously updated GMM estimates of the AR(2)

model. They use the same moments as GMM2, but the weight matrix is continuously updated.

Table 2

Univariate AR Estimates for Employment

OLS- OLS- WG GMM1 GMM2 GMM2 C.U.

levels dif. GMM2

ni(t−1) 0.992 0.054 0.69 0.86 0.89 0.75 0.83

(0.001) (0.026) (0.025) (0.07) (0.06) (0.09) (0.09)

ni(t−2) 0.04 0.03

(0.02) (0.02)

Sargan − − − 35.1 15.5 14.4 13.0

(d.f.) (20) (20) (18) (18)

m1 2.3 −0.6 −9.0 −8.0 −7.6 −6.0
m2 2.2 2.3 0.6 0.5 0.5 0.3

N = 738, T = 8, 1983− 1990. Heteroskedasticity robust standard errors in
parentheses. Time dummies included in all equations.

• From the orthogonality conditions above only first-differences of time effects are directly esti-

mated. The initial time effect can be estimated as

bδ3 = 1

738

738X
i=1

(yi3 − bα1yi2 − bα2yi1) (132)

and, given estimates of their changes, the rest can be estimated recursively from bδt = c∆δt+bδt−1
(t = 4, ..., 8).

• Given the large cross-sectional sample size, the realizations of the time effects in the data can be
accurately estimated, but with only 6 time series observations we do not have enough information

to consider a stochastic model for δt.
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• On the other hand, individual effects can be estimated as

bηi = 1

T − 2
TX
s=3

buis (133)

where buis = yis − bδs − bα1yi(s−1) − bα2yi(s−2).
• Here the situation is the reverse. Since the bηi are averages of just T − 2 = 6 observations, they
will typically be very noisy estimates of realizations of the effects for particular firms.

• However, the variance of ηi can still be consistently estimated for large N .

• Optimal estimation of σ2η and the σ2t requires consideration of the data covariance structure, but
noting that the errors in levels uit ≡ ηi + vit satisfy V ar(uit) = σ2η + σ2t and Cov(uit, uis) = σ2η,

simple consistent estimates can be obtained as:

bσ2η = 2

T (T − 1)
TX
t=2

t−1X
s=1

dCov (buit, buis) (134)

bσ2t = dV ar(buit)− bσ2η. (135)

• For the AR(2) employment equation Alonso-Borrego and Arellano reported bσ2η = .038 and

T−1
PT
t=1 bσ2t = .01. Thus, variation in firm specific intercepts was approximately 4 times larger

than the average random error variance.

• In this example time dummies are important for the model to be accepted by the data. Without
them, GMM2 estimates of the AR(2) employment equation in first differences yielded a Sargan

statistic of 59.0 (d.f.18) without constant, and of 62.7 (d.f.18) with constant. Thus, implying a

sound rejection of the overidentifying restrictions.

• For the firms in our data set, average growth of employment during the 7 year period 1984-90 is
1 percent, but this is the result of almost no growth in the first two years, 1 percent growth in

1986, 2 percent in 1987-89 and zero or negative growth in 1990.

• Given such pattern, it is not surprising that we reject the restrictions imposed by the cross-
sectional orthogonality conditions with a common intercept or a linear trend.

Bivariate VAR Estimates for Employment and Wages

• For the rest of the tutorial we focus on the bivariate model (129)-(130) since it allows us to
illustrate a richer class of problems.

• Table 3 presents OLS in levels and GMM2 in differences for employment (columns 1 and 2), and
wages (columns 4 and 5).
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Table 3

VAR Estimates

Employment Wages

OLS- GMM2 GMM2 OLS- GMM2 GMM2

levels dif. lev.&dif. levels dif. lev.&dif.

ni(t−1) 1.11 0.84 1.17 0.08 −0.04 0.08

(0.03) (0.09) (0.03) (0.03) (0.10) (0.03)

ni(t−2) −0.12 −0.003 −0.13 −0.07 0.05 −0.06
(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)

wi(t−1) 0.14 0.08 0.13 0.78 0.26 0.78

(0.03) (0.08) (0.02) (0.03) (0.11) (0.02)

wi(t−2) −0.11 −0.05 −0.11 0.18 0.02 0.08

(0.03) (0.02) (0.02) (0.03) (0.02) (0.02)

χ2ce(2) 41.7 7.2 43.7 26.1 3.3 10.4

p-value 0.00 0.03 0.00 0.00 0.19 0.006

Sargan − 36.9 61.2 − 21.4 64.2

(d.f.) (36) (48) (36) (48)

p-value 0.43 0.096 0.97 0.06

m1 −0.6 −6.8 −8.0 0.05 −5.7 −9.5
m2 1.6 0.2 1.3 −2.7 0.5 −0.6

N = 738, T = 8, 1983− 1990. Heteroskedasticity robust standard errors
in parentheses. Time dummies included in all equations.

χ2ce(2) is a Wald test statistic of the joint significance of cross effects.

• The table also contains GMM estimates that combine levels and differences, but these will be

discussed below in conjunction with testing for mean stationarity.

• In line with the univariate results, the OLS estimates in levels for both equations are markedly
different to GMM2 in differences, and imply a substantially higher degree of persistence, which

is consistent with the presence of heterogeneous intercepts.

• The GMM estimates use as instruments for the equations in first differences all the available

lags of employment and wages up to t−2. With T = 8, a second-order VAR and time dummies,
there are 36 overidentifying restrictions for each equation. Neither of the Sargan test statistics

provide evidence against these restrictions.
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• It may be possible to improve the efficiency by jointly estimating the two equations. Optimal
joint GMM estimates would use a weight matrix that takes into account the correlation between

the moment conditions of the employment and wage equations.

Testing for Residual Serial Correlation

• If the errors in levels are serially independent, those in first differences will exhibit first- but not
second-order serial correlation.

• Moreover, the first-order serial correlation coefficient should be equal to −0.5.

• In this regard, an informal but often useful diagnostic is provided by the inspection of the
autocorrelation matrix for the errors in first differences.

• Serial correlation matrices for employment and wages based on GMM residuals in first-differences

are shown in Table 4, broadly conforming to the expected pattern.

Table 4

(a) GMM1 (dif.) Residual Serial Correlation Matrix for Employment⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.

−.53 1.

.10 −.49 1.

−.04 −.015 −.46 1.

−.015 .04 −.08 −.44 1.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(b) GMM1 (dif.) Residual Serial Correlation Matrix for Wages⎛⎜⎜⎜⎜⎜⎜⎜⎝

1.

−.51 1.

.03 −.33 1.

.004 −.035 −.42 1.

.009 .00 −.03 −.39 1.

⎞⎟⎟⎟⎟⎟⎟⎟⎠
• Formal tests of serial correlation are provided by the m1 and m2 statistics reported in Table 3for

the VAR model (and also in Table 2 for the univariate results).

• They are asymptotically distributed as N (0, 1) under the null of no autocorrelation, and have
been calculated from residuals in first differences (except for OLS in levels).

• So if the errors in levels were uncorrelated, we would expect m1 to be significant, but not m2,
as is the case for the GMM2-dif estimates for employment and wages.
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• The mj statistics (Arellano and Bond, 1991) are moment tests of significance of the average j-th

order autocovariance rj :

rj =
1

T − 3− j
TX

t=4+j

rtj (136)

where rtj = E
¡
∆vit∆vi(t−j)

¢
. Their null is H0 : rj = 0 and they are given by

mj =
brj

SE(brj) (137)

where brj is the sample counterpart of rj based on first-difference residuals c∆vit and brtj =
N−1

PN
i=1

c∆vitc∆vi(t−j).
• The estimates in Table 3 are based on the assumption that given individual and time effects
nit and wit only depend on the past two observations. Provided T is sufficiently large, the mj

statistics can be used to test assumptions on lag length.

Testing for Stationarity in Mean of Initial Observations

• We turn to consider GMM estimates that combine levels and differences, as shown in columns 3

(employment) and 6 (wages) of Table 3.

• For the employment equation, estimates are based on the following 40 moments for errors in
differences:

bdtN =
738X
i=1

Ã
nt−2i

wt−2i

!¡
∆nit −∆δ1t − α1∆ni(t−1) − α2∆ni(t−2) − β1∆wi(t−1) − β2∆wi(t−2)

¢
(138)

(t = 4, ..., 8),

together with 6 moments for the period-specific constants:

bctN =
738X
i=1

¡
nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)

¢
(t = 3, ..., 8), (139)

and 12 additional moments for errors in levels:

b�tN =
738X
i=1

Ã
∆ni(t−1)
∆wi(t−1)

!¡
nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)

¢
(140)

(t = 3, ..., 8).

The moments are functions of the 10×1 parameter vector β = ( δ3, ..., δ8,α1,α2,β1,β2), so that
there are 48 overidentifying restrictions.
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• The estimates for the wage equation were obtained in exactly the same manner.

• Employment and wage changes lagged two periods or more are not used as instruments for the
equations in levels because they are redundant given those already included.

• We report two-step robust estimates whose weight matrix is based on the kind of one-step
residuals described above.

• Note that, contrary to what we would expect under mean stationarity, the combined levels &
differences GMM estimates in both equations are closer to the OLS-levels estimates than to

GMM in differences.

• A test of the moment restrictions (140) is a test of whether, given an aggregate time effect, the
mean of the distribution of initial observations and the mean of the steady state distribution

coincide.

• This can be done by computing incremental Sargan test statistics. Specifically, under the null
of mean stationarity, the difference between the lev.&dif. and the dif. Sargan statistics would

be asymptotically distributed as a χ2 with 12 degrees of freedom.

• Since we obtain ∆Sn = 24.3 (p-val. 0.0185) for employment, and ∆Sw = 42.8 (p-val. 0.00) for
wages, the null is rejected for the two equations, although somewhat more marginally so in the

case of employment.

Testing for the Presence of Unobserved Heterogeneity

• In the absence of unobserved heterogeneity OLS in levels are consistent estimates, but more
generally estimation (eg. of the employment equation) could be based on the following 60

sample moments

b∗tN =
738X
i=1

⎛⎜⎜⎝
1

nt−1i

wt−1i

⎞⎟⎟⎠ ¡nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)
¢

(141)

(t = 3, ..., 8).

• Given the 46 moments in (138) and (139), (141) adds the following 14 moments:

bh3N =
738X
i=1

⎛⎜⎜⎜⎜⎜⎝
ni1

ni2

wi1

wi2

⎞⎟⎟⎟⎟⎟⎠ (ni3 − δ13 − α1n2 − α2ni1 − β1wi2 − β2wi1) (142)
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bhtN =
738X
i=1

Ã
ni(t−1)
wi(t−1)

!¡
nit − δ1t − α1ni(t−1) − α2ni(t−2) − β1wi(t−1) − β2wi(t−2)

¢
(143)

(t = 4, ..., 8).

• Thus a test for the validity of the moments (142) and (143) can be regarded as testing for the
presence of unobserved heterogeneity.

• This can be done by calculating combined GMM estimates based on (138), (139), (142) and

(143) -or equivalently levels-GMM estimates based on (141)- and obtaining the corresponding

incremental Sargan tests relative to GMM in differences.

• The resulting estimates for employment and wages are very close to OLS, and both incremental
tests reject the absence of unobserved heterogeneity. The incremental Sargan statistics (d.f. =

14) take the values ∆Shn = 36.0 (p-val. 0.001) for employment, and ∆S
h
w = 47.2 (p-val. 0.00) for

wages.

Testing for Granger Non-Causality with and without Heterogeneity

• The hypothesis that employment does not Granger-cause wages conditional on individual and
time effects imposes the restrictions λ1 = λ2 = 0. Conversely, to test whether wages Granger-

cause employment we examine the validity of β1 = β2 = 0.

• The testing of these restrictions is of some interest in our example because a version of model
(129)-(130) in which the wage equation only includes its own lags can be regarded as the reduced

form of an intertemporal labour demand model under rational expectations (as in Sargent, 1978).

• Wald test statistics of the joint significance of cross-effects are reported in Table 3 for the
two equations. For the GMM2 estimates in first-differences we find that wages Granger-cause

employment, but employment does not Granger-cause wages.

• An interesting point is that conditioning on individual effects is crucial for this result. As

shown in Table 3, if the tests were based upon the OLS estimates in levels, the hypothesis that

employment does not Granger-cause wages would be clearly rejected. This illustrates how lack

of control of individual heterogeneity could result in a spurious rejection of non causality.

• Moreover, Granger non-causality would also be rejected using the estimates that impose mean
stationarity of the initial observations. Thus, in short panels assumptions about initial conditions

also matter for the assessment of non causality.
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