
Modelling Optimal Instrumental Variables for
Dynamic Panel Data Models

Manuel Arellano∗

CEMFI, Madrid

Abstract

Two-step instrumental variable estimators for panel data models with
general predetermined variables are considered that are asymptotically ef-
ficient under some auxiliary assumptions, but remain consistent when the
assumptions are violated. Asymptotic efficiency is defined in relation to
the information bound for the conditional mean specification of the model.
Unlike in standard panel GMM, optimal instruments are parameterized us-
ing a fixed number of coefficients for any value of T . Thus, the properties
of the resulting estimators are not fundamentally affected by the relative
dimensions of T and N . Empirical illustrations are reported using firm-
and country-level panel data.

JEL classification: C23.

Keywords: Panel data; optimal instruments; general predetermined vari-
ables; double asymptotics; VAR with random effects; country growth equa-
tions.

Address for correspondence: CEMFI, Casado del Alisal 5, 28014 Madrid,
Spain. Tel. +34 91 429 0551, Fax +34 91 429 1056, E-mail: arellano@cemfi.es

∗An earlier version of this paper was presented as an Econometrics Invited Lecture at the
European Meeting of the Econometric Society in Venice, August 2002. I wish to thank Stephen
Bond, Francesco Caselli, and Jonathan Temple for kindly making available their datasets; Pedro
Albarran for outstanding research assistance; Javier Alvarez, Olympia Bover, Jan Kiviet, Charles
Manski, Whitney Newey, and Enrique Sentana for helpful comments, and David Hendry for
posing the question that originated this work.



1. Introduction

In this paper we discuss a new method for estimating panel data models with gen-
eral predetermined or endogenous explanatory variables. In doing so we propose
a framework for modelling optimal instruments in panel data analysis.
A popular method in dynamic panel data estimation is GMM, which is consis-

tent in short panels, robust, has general applicability, and provides a well defined
notion of optimality (Holtz-Eakin, Newey and Rosen, 1988; Arellano and Bond,
1991). However, in practice the application of GMM often entails too many in-
struments for acceptable sampling properties in either finite or large samples when
the time series dimension is not fixed (Alvarez and Arellano, 2003).
For autoregressive models there are also available likelihood-based methods

which exhibit better finite sample properties than GMM but can be seriously
biased if certain auxiliary assumptions are violated. Moreover, these methods
cannot be readily extended to cover models with endogenous or general prede-
termined variables. There is therefore an acute robustness-efficiency trade-off in
the choice among existing techniques. In addition, some methods are designed
for short panels of large cross-sections, while others target long panels of small
cross-sections, but there is a vacuum in between. The literature does not seem to
have much to offer to researchers interested in “small N , small T” panels or other
panels that are not easily classifiable.
GMM estimators can be regarded as providing implicit models for the op-

timal instruments. The problem is that in the panel context these models are
often overparameterized, leading to poor properties in finite samples and double
asymptotics. This paper provides a framework for parsimonious modelling of op-
timal instruments in panel data, which is, first, coherent with the fixed T , large
N perspective; second, has good theoretical properties in a double asymptotic
setup, and thirdly provides estimators with the same robustness features as pop-
ular GMM methods. More research is needed on panel data methodology from
a time series perspective, and this paper is intended as a contribution towards a
marriage of the cross-sectional (fixed T ) and time-series (long T ) perspectives.
Recent results by Newey and Smith (2004) on the higher order properties of

empirical likelihood (EL) and GMM indicate that panel EL estimators may exhibit
better finite sample properties than their GMM counterparts. However, while the
double asymptotic properties of panel EL estimation remain to be explored, the

1



fact that a panel EL estimator will be inconsistent for fixed N , large T (as long
as it is based on an increasing number of moment conditions) suggests that EL
estimation will be less robust to double asymptotic plans than the instrumental
variable methods considered in this paper.
The paper is organized as follows. Section 2 presents the model, links GMM

with the parametric optimal-instrument perspective, and introduces projection-
restricted simple IV estimation (SIV). Section 3 discusses the asymptotic biases
of one-step GMM when both T and N tend to infinity. It is shown that the order
of magnitude of the bias depends on whether the explanatory variables are pre-
determined or endogenous, and that in the latter situation GMM is inconsistent.
In Section 4 we present an auxiliary random effects VAR model for the vector
of instruments, and obtain sequential linear projections of the effects. Section 5
describes the form of optimal instruments and provides several examples. Section
6 considers pseudo maximum likelihood estimation (PML) of the auxiliary VAR
model. Section 7 discusses the properties of feasible projection-restricted IV esti-
mators with and without completely endogenous variables, and the calculation of
asymptotic variance matrix estimates. Section 8 contains empirical illustrations
and Monte Carlo simulations. Subsection 8.1 reports estimates of autoregressive
employment and wage equations from firm panel data; Subsection 8.2 presents
the results of a simulation exercise calibrated to the previous firm panel, and Sub-
section 8.3 reports estimates of country growth convergence rates using a panel
of 92 countries observed at five-year intervals. Finally, Section 9 ends with some
concluding remarks and plans for future work. All proofs and technical details
are contained in Appendices.
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2. Model and Optimal Instruments: Overview

2.1. A Sequential Conditional Mean Model

Let us consider a fixed effects panel data model of the form

yit = x
0
itβ + ηi + εit (t = 1, ..., T ; i = 1, ..., N), (2.1)

together with the conditional mean assumption

E(εit|zti) ≡ Et (εit) = 0 (2.2)

where zti = (z
0
i1, ..., z

0
it)
0 and

¡
yTi , x

T
i , z

T
i , ηi

¢
are iid random variables; ηi represents

an unobservable individual effect and zit is a vector of instrumental variables.
The following remarks about the nature of the explanatory variables and the

instruments are relevant. First, if an explanatory variable xkit is predetermined for
εi(t+j), then xki(t−j) is a component of zit. Second, an xkit may also be completely
endogenous in the sense of not being predetermined for any lead of ε. Finally, zit
may contain external instruments that are not part of xit or its lags.
An example of this type of model is an equation from a VAR with individ-

ual effects. Other examples are partial adjustment equations with predetermined
regressors, or a structural relationship between endogenous variables. As illus-
trations of the latter we consider below cross-country growth and household con-
sumption Euler equations.

2.2. Information Bound and Optimal Instruments

Since the distribution of ηi | zTi is unrestricted, all information about β is in the
conditional moments for the errors in differences or forward orthogonal deviations

Et (y
∗
it − x∗0itβ) = Et (ε∗it) = 0 (t = 1, ..., T − 1) (2.3)

where starred variables denote orthogonal deviations:

ε∗it =
µ

T − t
T − t+ 1

¶1/2 ∙
εit − 1

(T − t)(εi(t+1) + ...+ εiT )

¸
. (2.4)

The advantage of orthogonal deviations is that if εit is homoskedastic and serially
uncorrelated so is ε∗it (Arellano and Bover, 1995).
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Two-wave Panel If T = 2 there is just one equation in deviations (which
coincides with first-differences):

E
¡
y∗i1 − x∗0i1β | z1i

¢
= E1 (ε

∗
i1) = 0 (2.5)

and the optimal instrument is hi1 = E1 (x∗i1) /E1 (ε
∗2
i1 ), in the sense that the un-

feasible IV estimator

eβ1 =
Ã

NX
i=1

hi1x
∗0
i1

!−1 NX
i=1

hi1y
∗
i1 (2.6)

attains the variance bound for this problem.
A parametric approach to feasible estimation is to specify functional forms for

E1 (x
∗
i1) and E1 (ε

∗2
i1 ) and substitute suitable estimates in the IV formula (2.6).

2SLS is an example of this approach that uses the sample linear projection of x∗i1
on z1i as an estimate of the optimal instrument. That is, 2SLS attains the variance
bound when E1 (x∗i1) is linear and E1 (ε

∗2
i1 ) is constant.

1

Thus, in a parametric approach to feasible IV estimation there are two levels
of assumptions: the substantive conditional moment restrictions used in estima-
tion, and the auxiliary assumptions used in estimating the optimal instruments.
The former are related to consistency and the latter to asymptotic efficiency.
This distinction between substantive and auxiliary assumptions is central to the
perspective adopted in this paper.

Multi-wave Panel If T > 2 the form of the optimal instrument is compli-
cated by the fact that neither conditional heteroskedasticity or autocorrelation in
ε∗it are ruled out. The unfeasible optimal IV estimator in the general case solves

NX
i=1

T−1X
t=1

hit

³eyit − ex0iteβ´ = 0 (2.7)

where hit = Et (exit) /Et ¡eε2it¢ and
eεi(T−1) = ε∗i(T−1) (2.8)

1Incorporating these assumptions in estimation may reduce the variance bound for β. A
trade-off between robustness and efficiency arises, since estimates of β that exploit the extra
restrictions may be inconsistent if they are false.
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eεit = ε∗it − τ t1eεi(t+1) − ...− τ t(T−t−1)eεi(T−1) (t = T − 2, ..., 1) (2.9)

with τ tj = Et+j
¡
ε∗iteεi(t+j)¢ /Et+j ¡eε2i(t+j)¢.

Theeεit are forward filtered errors such thatEt (eεit) = 0 andEt+j ¡eεiteεi(t+j)¢ = 0
so that the bound for T − 1 periods is the sum of the bounds for each period
(Chamberlain, 1992):

JT−1 =
T−1X
t=1

E

Ã
Et (exit)Et (exit)0

Et
¡eε2it¢

!
. (2.10)

If the ε∗it’s are conditionally homoskedastic and serially uncorrelated eεit = ε∗it.
The optimal instrument is hit ≡ ht (zti) = Et(x∗it), and the unfeasible IVE

eβ = Ã NX
i=1

T−1X
t=1

hitx
∗0
it

!−1Ã NX
i=1

T−1X
t=1

hity
∗
it

!
(2.11)

attains the fixed-T , large-N variance bound.

Generalized Method of Moments A One-step GMM estimator (GMM1)
is an example of the parametric approach to feasible IVE that uses the cross-
sectional sample linear projections of x∗it on z

t
i as an estimate of the optimal

instruments. GMM1 is based on the specification

ht
¡
zti
¢
= z0i1πt1 + ...+ z

0
itπtt ≡ zt0i πt, (2.12)

together with assumptions of homoskedasticity and lack of serial correlation.
In a time series context (large T , fixed N), these projections cannot be con-

sistently estimated without further restrictions. But as N → ∞ for fixed T , the
IVE that uses the sample projection zt0i bπt has the same asymptotic distribution
as the unfeasible IVE based on the population projection zt0i πt.
However, when both T and N tend to infinity at the same rate, the feasible

and unfeasible estimators differ as shown for autoregressive models in Alvarez and
Arellano (2003), who found that GMM1 had an asymptotic bias of order 1/N . In
the next Section we obtain the asymptotic bias of GMM1 for model (2.1)-(2.2)
when both T and N tend to infinity. We show that the order of magnitude of
the bias depends on whether the explanatory variables are endogenous or pre-
determined. In the predetermined case the bias is of order 1/N–as in Alvarez
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and Arellano (2003)–but in the endogenous case the bias is of order T/N , and
hence a potentially more serious problem. These results provide theoretical sup-
port for the approach developed in this paper, because the proposed estimators
are immune to asymptotic bias in a double asymptotics.
Under heteroskedasticity or autocorrelation, it is possible to obtain a GMM

estimator based on the moments E (ztiv
∗
it) = 0 that is more efficient than bβGMM1

by using as weight matrix the inverse of a robust estimate of the variance matrix
of the orthogonality conditions. These are the standard two-step robust GMM2
estimators (Arellano and Bond, 1991). A GMM2 estimator, however, will not
attain the efficiency bound in general, although it may attain it under more general
conditions than GMM1. Specifically, GMM2 will attain the bound under serial
correlation and time series heteroskedasticity of the form E(v2it|zti) = E(v2it) = σ2t
and E(vitvi(t+j)|zt+ji ) = E(vitvi(t+j)) = σt(t+j) for j > 0.2

Semiparametric Asymptotically Efficient Estimation for Fixed T It
is also possible to devise estimators that attain the fixed-T efficiency bound under
more general assumptions than GMM1 or GMM2. This could be achieved by
considering a semiparametric estimator that replaces the unknown functions in
(2.11) or (2.7) by nonparametric estimates. The former would be asymptotically
efficient when the conditional expectations E(x∗it|zti) are nonlinear but the errors
are classical. The latter might be efficient in the general case. Estimators of this
type have been considered by Hahn (1997). Nevertheless, since these estimators
use even more flexible estimates of E(x∗it|zti) than GMM1, they would not be
expected to perform better than GMM1 unless T/N is sufficiently close to zero.

2.3. The Crude Time-Series Parametric Approach

The conventional time-series parametric approach specifies

ht
¡
zti
¢
=
Xq

j=0
z0i(t−j)γj (2.13)

2A more restrictive two-step GMM estimator based on a weight matrix that only depends on
the data second-order moments (Arellano and Bond, 1991, footnote 2), will attain the bound
under the same conditions as the standard GMM2.
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for some q.3 Equation (2.13) has constant coefficients γj that can be consistently
estimated time series-wise. It is based on assumptions about the stability and
degree of dependence in the zit process.
Panel data examples of the time-series approach are the stacked IV estimators

for autoregressive models due to Anderson and Hsiao (1982). From the point of
view of fixed-T optimal IV estimation, however, the crude time-series approach has
two undesirable features. First, (2.13) cannot be calculated for periods without
sufficient observations of the initial lags, hence requiring trimming of the time
series and loss of some cross-sections.
A second less obvious problem is that if the zit process contains heterogeneous

intercepts–as may be expected given model (2.1)– ht (z
t
i) will depend on all lags,

even if at the individual level z is characterized by stable low-order dependence
of the kind that supports assumption (2.13) in a time series context. The reason
is that all lags are predictors of the effects (as described in Section 4). Since the
predictions are updated each period, the coefficients of the predictor change over
time. This is precisely the motivation behind (2.12).

2.4. Projection-Restricted IV Estimation

The problem with zt0i πt is that it often contains too many coefficients for good
finite sample inference. If we have an individual-effects, stable process for z char-
acterized by a parameter vector γ, the πt are functions of γ. Therefore, instead
of an unrestricted linear projection we may consider a restricted one:

ht
¡
zti
¢
= zt0i πt (γ) . (2.14)

These restrictions are similar to the low order, stable dependence assumptions
implicit in the time-series approach. The difference is that we are using them in
a fashion consistent with the fixed-T panel perspective.
For a long-T panel the outcome is essentially the same as in the crude time-

series approach. For a very short-T panel the outcome is essentially the same as
in the standard GMM approach. But for other panels the number of first-stage
coefficients is kept constant, while using all waves and the predictive ability due
to unobserved heterogeneity.

3In this case it is better to think of ht (zti) as Et
¡
xit − xi(t+1)

¢
because x∗it involves a different

number of terms for each t.
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The suggested strategy is to specify a VAR for zit with individual effects and
unrestricted initial conditions. The status of this assumption is similar to that
of (2.13) in the time-series approach. Then use as instruments the estimated re-
stricted projections zt0i πt (γ), whose evaluation involves, as we shall see, a straight-
forward recursive Kalman-filter calculation.
Unrestricted πt in GMM are estimated by cross-sectional OLS. Restricted

πt (γ) will be estimated using a modified WG estimator, which is a multivariate
generalization of the random effects PML in Alvarez and Arellano (2003).
We then obtain

bβ = ÃX
i

X
t

bhitx∗0it
!−1X

i

X
t

bhity∗it. (2.15)

GMM sets bhit = zt0i bπt where bπt is an OLS estimate, and the projection-restricted
IVE sets bhit = zt0i πt (bγ) where bγ is a PML estimate.
For fixed T and large N both estimators have similar robustness properties

in the sense of being consistent under the same assumptions, but when T is not
fixed the latter is immune to asymptotic biases because the number of first-stage
coefficients does not increase with T . If the auxiliary assumptions πt = πt (γ) are
violated, projection-restricted IV remains a consistent estimate of β.
The goal is, therefore, to use the time-series parametric approach in such a

way that the resulting estimator can still achieve the fixed T efficiency bound
under certain assumptions, in the same way as standard GMM only achieves the
fixed T bound under certain auxiliary assumptions.

3. Double-Asymptotic Biases

In this Section we obtain the asymptotic bias of the one-step GMM estimator when
both T and N tend to infinity. We show that the order of magnitude of the bias
depends on whether the explanatory variables are endogenous or predetermined.
It is well known that if the number of first-stage coefficients is large relative to

the sample size, standard asymptotic approximations may be a poor guide to the
finite sample properties of IV estimates, specially when the instruments are weak.
In the panel context, double-asymptotic results provide formal approximations
to the impact of nonnegligible T (and hence of many instruments) relative to N
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on the properties of GMM estimates. They also provide a theoretical motivation
for the strategy for reducing the number of first-stage coefficients pursued in this
paper.
The form of the GMM estimator is

bβ = ÃT−1X
t=1

X∗0
t MtX

∗
t

!−1 T−1X
t=1

X∗0
t Mty

∗
t , (3.1)

whereMt = Zt (Z
0
tZt)

−1 Z 0t isN×N , X∗
t = (x

∗
1t, ..., x

∗
Nt)

0 isN×k, Zt = (zt1, ..., ztN)0
is N ×mt, and y∗t = (y∗1t, ..., y∗Nt)0 is N × 1, or in a more compact notation

bβ = (X∗0MX∗)−1X∗0My∗. (3.2)

3.1. Assumptions

Let us define the vector of variables wit = (εit, x0it, z
0
it)
0. Depending on the model,

x and z may contain elements in common. Also, some of the xs may be lags of y,
and some of the zs may be lags of y and/or x. We make the following assumption:

Assumption 1: wit can be represented as a vector MA(∞) of the form

wit = µi + ζit +Ψ1ζi(t−1) +Ψ2ζi(t−2) + ... (3.3)

where {Ψj}∞j=0 is absolutely summable, and {ζit}∞t=−∞ is an i.i.d. sequence in-
dependent of the individual-specific mean vector µi and with finite fourth-order
moments. Moreover, the first element of µi is zero, and

∞X
s=−∞

|s| γs = B∞ <∞ (3.4)

where γs = E
¡
xitεi(t−s)

¢
.

GMM estimators are typically motivated under less restrictive conditions than
Assumption 1, which is only made for simplicity, since our purpose is to exhibit
some consequences of double-asymptotics in a leading situation, rather than pro-
viding an alternative basis for inference with GMM estimates. The results that
follow are expected to hold under more general conditions.
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Predeterminedness and Endogeneity If xit is predetermined for εit, then
xit `

¡
εit, εi(t+1), εi(t+2), ...

¢
but xit 0

¡
εi(t−1), εi(t−2), ...

¢
, so that γ0 = γ−1 = ... = 0

but γs 6= 0 for s > 0. If on the other hand xit is completely endogenous

xit 0
¡
..., εi(t−2), εi(t−1), εit, εi(t+1), εi(t+2), ...

¢
,

in which case γs 6= 0 for all s. Finally, if xit `
¡
εi(t+j), εi(t+j+1), ...

¢
we say that xit

is endogenous but predetermined for εi(t+j), and the corresponding γs vanish.

3.2. The Order of the Estimation Error

Let us write the standardized estimation error as

bβ − β =

Ã
1

NT

T−1X
t=1

X∗0
t MtX

∗
t

!−1
1

NT

T−1X
t=1

X∗0
t Mtε

∗
t ≡ A−1NT bNT . (3.5)

A key result is given in the following theorem.

Theorem 1. Letting bNT = (NT )
−1PT−1

t=1 X
∗0
t Mtε

∗
t , under Assumption 1 if xit is

predetermined, in the sense that E
¡
xitεi(t+j)

¢
= 0 for j ≥ 0, then

E (bNT ) = O
³m
N

´
. (3.6)

If xit is endogenous, in the sense that E (xitεit) 6= 0, then

E (bNT ) = O

µ
mT

N

¶
. (3.7)

Intuitively, in the predetermined case the “endogeneity bias” vanishes as T →
∞ because the within-group OLS (WG) estimator is large-T consistent. However,
WG is not T -consistent in the endogenous explanatory variable case. These results
also highlight the impact of m–the dimension of the instrument vector zit–on
the order of magnitude of the bias.

3.3. The asymptotic bias of GMM

The previous setup can be used to extend the results in Alvarez and Arellano
(2003) to analyzing the asymptotic properties of GMM estimators with general
predetermined or endogenous explanatory variables. Here we provide an informal
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discussion of consistency by drawing parallels with the corresponding Alvarez—
Arellano results.
Let us first consider the probability limit of (NT )−1 (X∗0MX∗). It is useful to

introduce at this point the time series individual-specific linear projection of xit
on
©
zit, zi(t−1), zi(t−2), ...

ª
:

pit ≡ E∗
¡
xit | zit, zi(t−1), ...

¢
= φi +

∞X
j=0

Φjzi(t−j). (3.8)

Letting ξit be the corresponding projection error, we have

xit = pit + ξit. (3.9)

If xit is predetermined then xit = pit and the errors ξit are identically zero for
all i and t. In such a case, using similar arguments as in Alvarez and Arellano
(2003), when T/N → c <∞ we can obtain

plim
T→∞,N→∞

1

NT
X∗0MX∗ = E

£
(xit − µxi) (xit − µxi)0

¤
(3.10)

where µxi corresponds to the partition µi = (0, µ
0
xi, µ

0
zi)

0.
However, when xit is endogenous we have

1

NT
X∗0MX∗ =

1

NT
P ∗0MP ∗+

1

NT
Ξ∗0MP ∗+

1

NT
P ∗0MΞ∗+

1

NT
Ξ∗0MΞ∗ (3.11)

where X∗ = P ∗+Ξ∗ denotes the matrix and orthogonal deviation counterpart to
xit = pit+ξit. By analogy with the Alvarez—Arellano results, when T/N → c <∞
we have

1

NT
P ∗0MP ∗

p→ E
£
(pit − φi) (pit − φi)

0¤ (3.12)

1

NT
P ∗0MΞ∗ = O

³m
N

´
(3.13)

1

NT
Ξ∗0MΞ∗ = O

µ
mT

N

¶
. (3.14)

Decomposition (3.9) can also be used to examine the probability limit of
(NT )−1 (X∗0Mε∗). We have

plim
T→∞,N→∞

1

NT
X∗0Mε∗ = plim

T→∞,N→∞

1

NT
P ∗0Mε∗ + plim

T→∞,N→∞

1

NT
Ξ∗0Mε∗. (3.15)

11



Extending the Alvarez—Arellano results (Lemma 2), it turns out that the first
term on the right hand side of (3.15) vanishes, but (NT )−1 (Ξ∗0Mε∗) is of order
O (mT/N).
Thus, when xit is endogenous and T/N → c <∞, the form of the asymptotic

bias is given by

plim
T→∞,N→∞

³bβ − β
´
=

½
E
£
(pit − φi) (pit − φi)

0¤+ plim
T→∞,N→∞

1

NT
Ξ∗0MΞ∗

¾−1
× plim
T→∞,N→∞

1

NT
Ξ∗0Mε∗ (3.16)

or

plim
T→∞,N→∞

³bβ − β
´
=
n
E
£
(pit − φi) (pit − φi)

0¤+E (ξitξ0it) mc2 o−1 γ0mc2 . (3.17)
Note that when x is predetermined γ0 = 0 and ξit ≡ 0, so that the bias vanishes

as long as c <∞. The conclusion is that GMM is inconsistent in the endogenous
explanatory variable situation. In the predetermined case it is consistent, but it
can be expected to exhibit a bias in the asymptotic distribution of order O (m/N),
similar to those reported in Alvarez and Arellano (2003) for autoregressive models.
The intuition for these results is that in the predetermined case the endogeneity

bias tends to disappear as T increases, whereas in the endogenous case it does
not. So having an increasing number of moment conditions results in a larger bias
when the explanatory variables are endogenous.

4. Auxiliary VAR with Individual Effects

Let us consider a stable VAR(1) process for an m× 1 vector zit :

zit = Azi(t−1) + (I −A)µi + vit (t = 1, ..., T ) (4.1)

E
¡
vit | zt−1i , µi

¢
= 0 (4.2)

where zt−1i =
³
z0i0, ..., z

0
i(t−1)

´0
, and V ar (vit) = Ωt. For notational convenience we

assume here that zi0 is also observed.
It is appropriate to conduct our discussion at the multivariate level because

typically the conditioning variable will be a vector rather than a scalar, even if
we are dealing with a single-equation model. However, we restrict attention to
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a first-order process for simplicity. Generalization to higher-order processes is
cumbersome but straightforward.
If the process for individual i started in the infinite past:

zi0 = µi +
X∞

j=0
Ajvi(−j). (4.3)

Since we wish to allow for the possibility that the process started in any given
period, and that different individuals started at different times, we treat (zi0, µi)
as realizations of some arbitrary cross-sectional joint distribution.
Let E (µi) = µ, V ar (µi) = Ωµ, and let the linear projection of zi0 on µi be

zi0 = τ 0 +Υ1µi + v
†
i0 (4.4)

where E
³
v†i0
´
= 0 and V ar

³
v†i0
´
= Γ0. In general, τ 0, Υ1, and Γ0 are free

parameters, but if the process is mean stationary τ 0 = 0, and Υ1 = Im. If the
process is also stationary in variance, Ωt = Ω for all t, and Γ0 =

P∞
j=0A

jΩAj0. In
any event, µi denotes the mean of the steady state distribution of the process for
individual i, and µ is the cross-sectional mean of µi.

VAR Forecasts For s > 0 we have

zi(t+s) = µi +A
s (zit − µi) + vi(t+s) +Avi(t+s−1) + ...+As−1vi(t+1). (4.5)

Therefore,
Et
¡
zi(t+s)

¢
= Et (µi) +A

s [zit − Et (µi)] (4.6)

and

Et (z
∗
it) = ct

"
zit − 1

T − t
T−tX
s=1

Et
¡
zi(t+s)

¢#
(4.7)

so that

Et (z
∗
it) = ct

Ã
I − 1

T − t
T−tX
s=1

As

!
[zit −Et (µi)] . (4.8)

Notice that Et (z∗it) only depends on zit given Et (µi). This is so because we are
dealing with a first-order VAR. However, since Et (µi) depends on all lags, so does
Et (z

∗
it).
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Similarly,

Et
¡
z∗i(t−j)

¢
= ct

½
zi(t−j) − 1

T − t
£
zi(t−j+1) + ...+ zit +Et

¡
zi(t+1) + ...+ zi(T−j)

¢¤¾
(4.9)

where

Et
¡
zi(t+1) + ...+ zi(T−j)

¢
= (T − t− j)Et (µi) +

Ã
T−t−jX
s=1

As

!
[zit − Et (µi)] .

The same is true if conditional expectations Et (.) are replaced by linear pro-
jections E∗t (.). The form of E∗t (µi) is given in the following Theorem.

Theorem 2. (Sequential linear projections of the effects) For the VAR(1) model
presented above, the linear projection of the vector of individual effects µi on z

t
i

is given by the following recursive updating formula for t ≥ 0:

E∗t (µi) = H−1t δit (4.10)

where

H0 = I + ΩµΥ
0
1Γ
−1
0 Υ1 (4.11)

δi0 = µ+ ΩµΥ
0
1Γ
−1
0 (zi0 − τ 0) (4.12)

and for t ≥ 1:

Ht = Ht−1 + Ωµ (I −A)0Ω−1t (I −A) (4.13)

δit = δi(t−1) + Ωµ (I −A)0Ω−1t
¡
zit −Azi(t−1)

¢
. (4.14)

For the stationary case, by inserting τ 0 = 0, Υ1 = Im, and Ωt = Ω for all t in
the result given in the Theorem, we get:

E∗t (µi) = [I + Λ0 + tΛ1(I −A)]−1
h
µ+ Λ0zi0 + Λ1

Xt

s=1

¡
zis −Azi(s−1)

¢i
.

(4.15)
where Λ0 = ΩµΓ

−1
0 and Λ1 = Ωµ(I − A)0Ω−1 (further details on the stationary

case are in the Appendix).
Note that the linear projection of the vector of individual effects in a VAR(1)

model with mean stationarity and constant Ω but no covariance stationarity is of
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the same form as the result in (4.15), but treating Γ0 as an unrestricted covariance
matrix.
Another intermediate possibility is one in which Ωt = Ω for all t, but initial

conditions are left fully unrestricted, so that τ 0, Υ1, and Γ0 are treated as free
parameters. This is a case of special interest because E∗t (µi) depends on a fixed
number of parameters which does not increase with t.

5. The Form of the Optimal Instruments

An expression for the optimal instruments is given by4

Et (x
∗
it) = B0Et (z

∗
it) +B1Et

¡
z∗i(t−1)

¢
+ ...+BqEt

¡
z∗i(t−q)

¢
(5.1)

= B†Et
¡
z∗it(q)

¢
where B† = (B0, ..., Bq) and zit(q) =

³
z0it, ..., z

0
i(t−q)

´0
.

If all x’s are predetermined for some lead of ε, the form of Et (x∗it) and B
† is

known given knowledge of the parameters of the VAR for zit, so that estimation
of β can be based on the sample momentsX

i

X
t

bEt (x∗it) (y∗it − x∗0itβ) (5.2)

where bEt (x∗it) is an estimate of Et (x∗it). Since the optimal instrument has the
same dimension as β no further weighting of the moments is required.
If on the other hand part of the x’s are completely endogenous, then q and

some of the elements of B† are unknown. Thus, we consider GMM estimates of
β based on the moments X

i

X
t

bEt ¡z∗it(q)¢ (y∗it − x∗0itβ) . (5.3)

In this case the instruments may have a larger dimension than β so that
weighting of the moments may be required. Indeed, the choice of weight matrix

4Expression (5.1) is saying that

E
³
x∗it −B0z∗it −B1z∗i(t−1) − ...−Bqz∗i(t−q) | zti

´
= 0

or that the time-series individual-specific projection of xit on zti only depends on the first q lags
of zit and satisfies E

¡
xit −B0zit −B1zi(t−1) − ...−Bqzi(t−q) − ξi | zti

¢
= 0.
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here is equivalent to choosing an estimation method for B†. A suggested weighting
is discussed below.5 Next, we consider some examples.

Example 1: An Equation from a VAR We have

w1it = a
0
1wi(t−1) + ηi + εit (5.4)

E
¡
εit | wt−1i

¢
= 0. (5.5)

In this case zit = wi(t−1) and xit = zit, so that B0 = I, and Bj = 0 for j > 0.
When the model of interest is a VAR, the auxiliary and substantive models

coincide, except for the fact that the auxiliary model is based on stronger as-
sumptions than the substantive model. In contrast, in conditional models the
auxiliary assumptions give a parametric form to the feedback processes, which in
the substantive model will typically remain unspecified.6

Example 2: Partial Adjustment Regression We have

yit = αyi(t−1) + β0wit + β1wi(t−1) + ηi + εit (5.6)

E
¡
εit | yt−1i , wti

¢
= 0. (5.7)

In this case zit =
¡
yi(t−1), wit

¢0
, xit =

¡
yi(t−1), wit, wi(t−1)

¢0
,

xit =

⎛⎝ yi(t−1)
wit
wi(t−1)

⎞⎠ =

⎛⎝ 1 0
0 1
0 0

⎞⎠ zit +
⎛⎝ 0 0
0 0
0 1

⎞⎠ zi(t−1) ≡ B0zit +B1zi(t−1). (5.8)
Example 3: Cross-Country Growth The next example is an augmented

Solow model of the determinants of growth as in Caselli, Esquivel, and Lefort
(1996). The equation is

yit = αyi(t−1) + si(t−1)γ + f 0i(t−1)δ + ηi + εit (5.9)

E
¡
εit | yt−1i , st−1i , f t−2i

¢
= 0. (5.10)

5Note that estimation of an extended VAR for (x0it, z
0
it) subject to exclusion restrictions (of

lagged x’s) is not warranted. The reason is that the B† are meant to be the coefficients of a
linear projection of xit on zti and individual effects, and there is no reason why the errors in this
projection should be serially uncorrelated.

6Optimal instruments for scalar autoregressive models are discussed in Appendix C.
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The time interval is 5 years, yit is log per-capita GDP, fi(t−1) is a vector of flow
variables containing the rates of investment and population growth, and si(t−1) is
a stock variable measuring the secondary school enrollment rate.

In this case zit =
³
yi(t−1), si(t−1), f 0i(t−2)

´0
, and⎛⎝ yi(t−1)

si(t−1)
fi(t−1)

⎞⎠ =

⎛⎝ 1 0 0
0 1 0
A31 A32 A33

⎞⎠⎛⎝ yi(t−1)
si(t−1)
fi(t−2)

⎞⎠+
⎛⎝ 0

0
ufi(t−1)

⎞⎠ (5.11)

where the last equation coincides with the equation for fi(t−2) in the VAR model
of zit. Thus,

Et (x
∗
it) = B0Et (z

∗
it) . (5.12)

SinceB0 is in general a squared, nonsingular matrix, it is irrelevant in the construc-
tion of optimal instruments, and the optimal instrument in the growth example
can be simply taken to be E (z∗it | zti). So in both the VAR and growth examples
we have B0 = I and Bj = 0 for j > 0.

Example 4: Euler Equation for Household Consumption The last
example is an Euler equation of the type considered by Zeldes (1989) and others:

ln (1 + rit) = α∆ ln cit + β0wit + ηi + εit (5.13)

where wit is a vector of changes in family size variables, rit is the rate of return
on a riskless asset, and cit is consumption; ηi captures heterogeneity in discount
rates, and εit unobservable changes in tastes and expectation errors.
The vector of instruments zit contains wit, lagged income, and marginal taxes,

so that both returns and consumption growth are treated as completely endoge-
nous variables.
In this case, letting zit = (w0it, z

0
2it)

0, we have

∆ ln cit =

qX
j=0

π0jzi(t−j) + ζi + ξit (5.14)

wit = (I, 0) zit (5.15)

or

Et

µ
(∆ ln cit)

∗

w∗it

¶
=

µ
π00
I, 0

¶
Et (z

∗
it) + ..+

µ
π0q
0

¶
Et
¡
z∗i(t−J)

¢
. (5.16)

Thus, there is a nontrivial specification of the (B0...Bq) due to the presence of
completely endogenous variables and external instruments.
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6. PML estimation of the VAR model

To obtain feasible estimators, the coefficients parameterizing the optimal in-
struments must be replaced by sample estimates. The suggested estimates are
Gaussian pseudo-maximum likelihood statistics of the VAR auxiliary model. The
estimates are obtained under the assumptions that the data are normally dis-
tributed and the error variance matrices are homoskedastic, but the multivariate
linear projection of the initial observations on the effects is left unrestricted. Es-
timates of this type were considered by Blundell and Smith (1991), and Alvarez
and Arellano (2003) for a scalar autoregressive model.7 Alvarez and Arellano
obtained a useful concentrated likelihood that only depended on the autoregres-
sive parameter, and found that the maximizer of this criterion behaved very well
in simulations.8 This section reports a multivariate generalization of the PML
results of Alvarez and Arellano, which will be required in practice for obtaining
feasible optimal instruments.9

As shown in the Appendix, the log-likelihood given zi0 (under homoskedas-
ticity and a joint normal distribution for µi and zi0 with unrestricted mean and
covariance matrix) can be written as:

ln f (zi1, ..., ziT | zi0) = −(T − 1)
2

ln detΩ− 1
2

T−1X
t=1

u∗it
0Ω−1u∗it

−1
2
ln detΘ0 − 1

2
(ui − φ0 − Φ1zi0)

0Θ−10 (ui − φ0 − Φ1zi0) . (6.1)

where u∗it = z
∗
it −Az∗i(t−1), ui = zi −Azi(−1) and

ui | zi0 ∼ N (φ0 + Φ1zi0,Θ0) (6.2)

Concentrating φ0, Φ1, Θ0 and Ω, the PMLE of A solves

eA = argmin{ln det ¡Z∗0 −AZ∗0−1¢ ¡Z∗ − Z∗−1A0¢
7Blundell and Smith (1991) considered a generalized least squares estimator of the same

model, which has been further discussed by Blundell and Bond (1998).
8This is the PML estimate that does not restrict the individual effect variance to be non-

negative. Alvarez and Arellano also discussed an alternative PML that enforced non-negativity,
but in such a case a boundary solution may occur.

9One problem with this method as an estimator of substantive VAR parameters is that it is
not robust to lack of time series homoskedasticity.
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+
1

T − 1 ln det
³
Z
0 −AZ 0−1

´
S0
¡
Z − Z−1A0

¢} (6.3)

where S0 = I − F (F 0F )−1 F 0 and F is the N × (m+ 1) matrix of constants and
initial observations fi0 = (1, z0i0)

0.

PML estimates of the remaining parameters Given eA, they are given
by eΩ = 1

N(T − 1)
NX
i=1

T−1X
t=1

(z∗it − eAz∗i(t−1))(z∗it − eAz∗i(t−1))0 (6.4)

eΦ = ³eφ0, eΦ1´ = ³Z 0 − eAZ 0−1´F (F 0F )−1 (6.5)

and letting eui = zi − eAzi(−1):
eΘ0 =

1

N

NX
i=1

³eui − eφ0 − eΦ1zi0´³eui − eφ0 − eΦ1zi0´0 . (6.6)

The estimated mean and variance matrix of ηi = (I − A)µi can be obtained
as: eΩη = eΘ0 + eΦ1eΣ0eΦ01 − eΩ/T (6.7)

eη = eφ0 + eΦ1z0 (6.8)

where w0 and eΣ0 are the sample mean and variance of wi0.
Finally, estimates of Υ1 and τ 0 are given byeΥ1 = eΣ0eΦ01eΩ−1η ³

I − eA´ (6.9)

eτ 0 = z0 − eΣ0eΦ01eΩ−1η eη. (6.10)

7. Inference with Feasible SIV Estimators

An unfeasible estimator for a parameterization of the instruments takes the form

bβUF =
Ã

NX
i=1

T−1X
t=1

ht(z
t
i , γ)x

∗0
it

!−1Ã NX
i=1

T−1X
t=1

ht(z
t
i , γ)y

∗
it

!
, (7.1)

where γ is a pseudo true value that in practice will be defined by the probability
limit of some sample statistic.
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Under standard regularity conditions, for fixed T and large N ,p
N (T − 1)(bβUF − β)

d→ N (0, VUF ) (7.2)

with asymptotic variance matrix given by

VUF = (T − 1) [E (H 0
iX

∗
i )]

−1
E (H 0

iε
∗
i ε
∗0
i Hi) [E (X

∗0
i Hi)]

−1 (7.3)

where Hi =
¡
hi1, ..., hi(T−1)

¢0
, hit = ht(z

t
i , γ), X

∗
i =

³
x∗i1, ..., x

∗
i(T−1)

´0
, and ε∗i =³

ε∗i1, ..., ε
∗
i(T−1)

´0
.

Provided Et(ε2it) = σ2 and Et+j(εitεi(t+j)) = 0 for j > 0 it will be the case that

VUF = σ2 (T − 1) [E (H 0
iX

∗
i )]

−1
E (H 0

iHi) [E (X
∗0
i Hi)]

−1
. (7.4)

If in addition Et(x∗it) = ht(z
t
i , γ) then VUF coincides with the variance bound.

A feasible estimator bβF is of the same form as bβUF but γ is replaced by an
estimate bγ. Provided, p limN→∞ bγ = γ and

√
N(bγ − γ) is bounded in probability,

the feasible and unfeasible estimators are asymptotically equivalent.
To see this first note that

√
N(bβF − β) =

Ã
1

N

NX
i=1

T−1X
t=1

ht(z
t
i , γ)x

∗0
it

!−1
1√
N

NX
i=1

T−1X
t=1

ht(z
t
i ,bγ)v∗it + op(1).

Moreover, using the mean value theorem

1√
N

NX
i=1

T−1X
t=1

ht(z
t
i ,bγ)v∗it =

1√
N

NX
i=1

T−1X
t=1

ht(z
t
i , γ)v

∗
it

+

Ã
1

N

NX
i=1

T−1X
t=1

∂ht(z
t
i , γ)

∂γ0
v∗it

!√
N(bγ − γ) + op(1).

Since E (v∗it | zti) = 0, we have that p limN→∞N−1PN
i=1

PT−1
t=1 v

∗
it∂ht(z

t
i , γ)/∂γ

0 =
0. Therefore, the second term on the rhs of the previous expression is op(1). From
this it follows that

√
N(bβF − β)

d→ N (0, VUF ). Similar arguments can be used
for the cases where T or both N and T tend to infinity.
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Consistent Estimation of the Asymptotic Variance Matrix A natural
estimate of the “Hessian” component of VUF is

bΨNT =
1

N (T − 1)
NX
i=1

T−1X
t=1

bhitx∗0it , (7.5)

where bhit = ht(zti ,bγ). bΨNT is an N-consistent estimator of (T − 1)−1E (H 0
iX

∗
i ),

but also an N and T consistent estimator of p limT→∞,N→∞ bΨNT .
The conventional robust fixed-T estimate of the “outer-product” component

of VUF is eΥNT =
1

N (T − 1)
NX
i=1

bH 0
ibε∗ibε∗0i bHi (7.6)

where bε∗it = y∗it − x∗0itbβF and bHi contains the estimated instruments bhit.
It can be shown that

eΥNT = bΩ0 + T−2X
`=1

µ
1− `

T − 1
¶³bΩ` + bΩ0`´ (7.7)

where bΩ` = 1

N (T − 1− `)
NX
i=1

T−1X
t=`+1

bε∗itbε∗i(t−`)bhitbh0i(t−`) (7.8)

for ` = 0, 1, ..., T − 2.10
From a non-fixed T perspective, we consider the following estimator of the

outer-product component:

bΥNT = bΩ0 + rX
`=1

µ
1− `

r + 1

¶³bΩ` + bΩ0`´ . (7.9)

where r ≤ T − 2.
For r = T − 2, bΥNT particularizes to the standard robust fixed-T formula. In

a fixed T context, it is natural to use eΥNT , since the number of Ωi` terms is fixed,

10Note that

bH 0
ibε∗ibε∗0i bHi = T−1X

t=1

T−1X
s=1

bε∗itbε∗0isbhitbh0is = (T − 1)Ωi0 + T−2X
`=1

(T − 1− `) (Ωi` +Ω0i`)

where Ωi` = (T − 1− `)−1PT−1
t=`+1 bε∗itbε∗i(t−`)bhitbh0i(t−`) and bΩ` = N−1

PN
i=1Ωi` for ` =

0, 1, ..., T − 2.
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and large N ensures consistent estimation of all of them, including Ωi(T−2), which
is a time series average with a single observation. However, from a non-fixed T
perspective, the bound r on the number of autocovariances used to form bΥNT

should be chosen as a suitable function of T to ensure consistent estimation for a
given asymptotic arrangement in N and T .
Formula (7.9) is a panel data version of the estimator proposed in Newey and

West (1987) for time series data. It has the attractive feature of providing a
positive semidefinite estimator for any value of r.11

In the time series context, the term [1− `/ (r + 1)] appearing in (7.9) is moti-
vated as a damping factor for reducing the sampling error induced by higher-order
sample covariances in the truncated estimate (called modified Bartlett weights in
Anderson,1971, 511-513). It is interesting that these weights appear naturally as a
feature of the sample covariance formula (7.7) from a cross-sectional perspective.
In the fixed-T panel data context, formula (7.6) is often used with instrument

matrices whose number of columns is of order T or T 2, so that the dimension ofeΥNT itself increases with T . Here, however, we are considering optimal instru-
ments hit with a fixed dimension for any value of T .
The proposal is, therefore, to base inference on the following estimate of the

asymptotic covariance matrix of
p
N (T − 1)(bβF − β) for a chosen value of r:

bV †UF = bΨ−1NT
"bΩ0 + rX

`=1

µ
1− `

r + 1

¶³bΩ` + bΩ0`´
# bΨ0−1NT . (7.10)

Optimal Instruments with Completely Endogenous Explanatory Vari-
ables: A Two-Step GMM Method Now we can pursue the discussion on
estimation when part of the x’s are completely endogenous and the instruments
have a larger dimension than β. We suggest using the inverse of bΥNT as the weight
matrix. Thus, we consider estimators of the form

eβ =

"ÃX
i

X
t

x∗itbh0it
! bΥ−1NT

ÃX
i

X
t

bhitx∗0it
!#−1

ÃX
i

X
t

x∗itbh0it
! bΥ−1NT

ÃX
i

X
t

bhity∗it
!

(7.11)

11The estimator in (7.9) relies on cross-sectional independence. A related formula for large
T , fixed N within-group standard errors that allow for arbitrary cross-sectional dependence is
proposed in Arellano (2003).
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where bhit is an estimate of Et ³z∗it(q)´ as introduced in (5.3).
Note that eβ can be regarded as the SIV estimator that uses the following

moments that have the same dimension of β:X
i

X
t

bx†it ³y∗it − x∗0iteβ´ = 0 (7.12)

where bx†it = ³Pi

P
t x
∗
it
bh0it´ bΥ−1NTbhit.

8. Empirical Illustrations

8.1. VAR for Firm Panel Data

We estimate autoregressive employment and wage equations from firm panel data.
We first consider the dataset used by Alonso-Borrego and Arellano (1999). This
is a balanced panel of 738 Spanish manufacturing companies, for which there are
available annual observations for 1983-1990. Secondly we consider a longer panel
of 385 firms from the same source (Bank of Spain, Central de Balances) on which
14 years of data are available, also starting in 1983. The average size of the firms
in the second panel is more than twice as large as that of those in the first one.
We estimate a first-order VAR model for the logs of employment and wages,

denoted nit and wit respectively. Individual and time effects are included in both
equations. Time effects are removed prior to estimation by taking data in devia-
tions from period-specific cross-sectional means.
Within-groups (WG), GMM, PML, and projection-restricted simple IV (SIV)

estimates are reported. In this illustration PML appears in two different roles.
First, it is an input in calculating feasible optimal instruments for SIV estimation.
Second, since the auxiliary and substantive models coincide in this illustration,
PML can be also regarded as an estimator of the parameters of interest that
imposes time-series homoskedasticity.12

Table 1 shows the results. Focusing on the leading coefficient in the employ-
ment equation, first notice the larger size of the within-group estimates from
the longer panel, which is to be expected since WG is known to have a small-T

12The PML estimates that we report use unrestricted initial conditions. According to esti-
mates of Υ1 for the two panels (reported in Table 1) there is some evidence of nonstationary
initial conditions.
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downward bias (Nickell, 1981). Next, the discrepancy between GMM and PML
estimates is as noticeable as that between WG and GMM. Finally, SIV estimates
are in between GMM and PML. The difference between GMM and PML may be
due to finite-sample bias in GMM, heteroskedasticity bias in PML, or a combina-
tion of both. SIV estimates are as robust as GMM under a fixed-T asymptotics,
but less prone to bias in a double asymptotics. In particular, SIV is robust to
time-series heteroskedasticity in short panels whereas PML is not. Reported SIV
estimates are half way between GMM and PML.

8.2. Monte Carlo Simulations

Next we performed a simulation exercise loosely calibrated to the previous firm
panel dataset. The design was chosen from the partial adjustment representation
as follows:

yit = 1 + 0.8yi(t−1) − 0.5xit + 0.3xi(t−1) + ηi + vit (8.1)

xit = 0.5 + 0.3xi(t−1) + ξi + εit, (8.2)

where all unobservables are iid normally distributed (over both i and t) with zero
mean and σ2v = σ2ε = 0.01, Corr (vit, εit) = 0, σ

2
η = σ2ξ = 0.09, and Corr (ηi, ξi) =

0.6. Therefore, the variance of the fixed effects is 9 times that of the random
errors. There is no feedback from lagged y into x, and the long run effect of x on
y is unity. Initial observations are generated from the stationary distribution of
the process. The corresponding VAR isµ

yit
xit

¶
=

µ
0.75
0.5

¶
+

µ
0.8 0.15
0 0.3

¶µ
yi(t−1)
xi(t−1)

¶
+

µ
ci + eit
ξi + εit

¶
(8.3)

where eit = vit − 0.5εit, ci = ηi − 0.5ξi,

V ar

µ
eit
εit

¶
= Ω =

µ
0.0125 −0.005
−0.005 0.01

¶
(8.4)

and

V ar

µ
ci
ξi

¶
= Ωη =

µ
0.0585 0.009
0.009 0.09

¶
. (8.5)

The implied correlations are Corr (eit, εit) = −0.447 and Corr (ci, ξi) = 0.124.
In Table 2 we report medians and median absolute errors of the WG, GMM,

PML, and SIV estimators for {N = 738, T = 8} and {N = 385, T = 14}.
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In another experiment with N = 738, T = 8 we generated data with trending
variances. The specification in this case was

σ2vt = σ2εt = 0.01 + 0.001t, (8.6)

with t = 0 selected in such a way that the resulting sequence of variances ranged
from .005 to .012. This is also in Table 2. Finally, in Table 3 we report further
simulations for {N = 200, T = 8},{N = 100, T = 6}, and {N = 50, T = 15}.
For all cases we conducted 1000 replications.
Focusing again on the leading coefficient in the first equation (a11 with true

value of 0.8), Table 2 shows that GMM is downward biased but PML and SIV are
virtually median unbiased. The robustness of SIV comes at the cost of a larger
median absolute error than PML. The third panel of Table 2 for the experiment
with trending variance shows that PML is upward biased, which goes in the
direction of the empirical findings. Table 3 reports results for other sample sizes.
Those in the first two experiments are similar to the Arellano—Bond firm-level
data, and the cross-country panels used in growth studies, respectively. The last
one illustrates the situation in a smaller panel that would be difficult to classify as
either long T or large N , small T . In all cases SIV is unbiased and has reasonable
median absolute errors, which is in contrast to some spectacular GMM biases.

8.3. Estimating Country Growth Convergence Rates

Using panel GMM, Caselli, Esquivel, and Lefort (1996) found a surprisingly large
estimate of the convergence rate of about 10 percent. This was in sharp contrast
with earlier cross-sectional estimates of Barro and Sala-i-Martin, who found con-
vergence rates of 2-3 percent.13 Caselli et al. claimed that earlier estimates were
biased due to lack of proper control of country effects and predeterminedness.
The worry is that their estimates have finite sample downward biases in the

GDP autoregressive coefficient that translate into upward biases in estimated
convergence rates, as noted by Bond, Hoeffler, and Temple (2001).
We obtained the Caselli et al. data and re-estimated an augmented Solow

model of the form given in (5.9) with the new projection-restricted IV estimator.
We have found a smaller convergence rate of about 4 percent, but imprecisely

13See Barro and Sala-i-Martin (1995) for details and further references.
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estimated (Table 4).14 From a substantive point of view, however, explaining the
uncovered heterogeneity in steady state income levels seems at least as crucial as
finding good estimates of the convergence coefficient.
The standard errors reported in Table 4 were calculated from formula (7.10)

with r = T − 2. Using smaller values of r made very little difference. Further
exploration of the effects on the estimates and standard errors of using optimal
instruments based on higher-order VAR models would be of some interest.

9. Concluding Remarks

We developed a new methodology for instrumental variable estimation of panel
data models with general predetermined or endogenous explanatory variables.
The suggested instruments are linear forecasts of the explanatory variables con-
structed under the assumption that the vector of conditioning variables follows
a panel VAR process. These are linear combinations of all available lags as in
ordinary GMM, but with the crucial difference that the number of first-stage co-
efficients is kept constant regardless of the value of T . We show analytically and
through Monte Carlo simulations that this fundamentally alters the properties of
the estimators in double asymptotics and finite samples. The new estimators elim-
inate double-asymptotic biases while retaining similar robustness and optimality
properties as GMM in fixed T environments.
Specific discussions on unbalanced panels and higher-order auxiliary models

are clearly of practical importance, but they are left for future work. GMM
is not well suited to cope with the complications derived from typical patterns
of unbalancedness or rotation in firm and household panels, which magnify the
number of first stage coefficients. In the GMM context this has been avoided at
the expense of introducing ad-hoc restrictions in the form of the cross-sectional
projections across sub-panels–see Arellano and Bond (1991) for discussion. In
contrast, projection-restricted IV estimators offer the possibility of a coherent
specification of optimal instruments across sub-panels based on a small number
of common coefficients.

14We use similar data as Caselli et al. and Bond et al. Our sample is the same as the one in
Table 2 of Bond et al., except for the exclusion of 9 countries and 17 observations in order to
have a balanced panel.
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Appendix

A. Double-Asymptotic Results

Proof of Theorem 1
We shall use the following implication of Assumption 1. For all r, s ≥ 0 we

have
Et
¡
xi(t+r)εi(t+s)

¢
= E

¡
xi(t+r)εi(t+s)

¢
. (A.1)

To see this note that

E
¡
wi(t+r)w

0
i(t+s) | wti , µi

¢
= µiµ

0
i +

∞X
j=0

∞X
k=0

ΨjE
¡
ζ i(t+r−j)ζ

0
i(t+s−k) | ζti, µi

¢
Ψ0
k

= µiµ
0
i +

∞X
j=0

∞X
k=0

ΨjE
¡
ζ i(t+r−j)ζ

0
i(t+s−k)

¢
Ψ0
k. (A.2)

By the law of iterated expectations

E
¡
wi(t+r)w

0
i(t+s) | zti

¢
= E

£
E
¡
wi(t+r)w

0
i(t+s) | wti , µi

¢ | zti¤
= E

¡
wi(t+r)w

0
i(t+s)

¢
+Et (µiµ

0
i)− E (µiµ0i) . (A.3)

Equation (A.1) holds because εit does not have an individual effect (i.e the first
component of µi is zero).
Let us examine the form of E (X∗0Mε∗). We have

E (X∗0Mε∗) =
T−1X
t=1

E (X∗0
t Mtε

∗
t ) = m

T−1X
t=1

tE (x∗itε
∗
it) . (A.4)

To see this note that

E (X∗0
t Mtε

∗
t ) = {E (x∗0`tMtε

∗
t )} = {E tr [MtEt (ε

∗
tx
∗0
`t)]}

= mtE (ε∗itx
∗
it) . (A.5)

The last equality comes from (A.1), tr(Mt) = mt, and the fact that due to cross-
sectional independence:

Et (ε
∗
tx
∗0
`t) =

⎛⎜⎝ Et (ε
∗
1tx

∗
`1t) . . . Et (ε

∗
1tx

∗
`Nt)

...
. . .
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∗
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∗
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⎞⎟⎠ (A.6)

=

⎛⎜⎝ Et (ε
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1tx

∗
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∗
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∗
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...
. . .
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∗
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∗
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∗
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∗
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Next, consider

E (x∗itε
∗
it) =

µ
T − t

T − t+ 1
¶½

E (εitxit)− 1

(T − t)E
£
εit
¡
xi(t+1) + ...+ xiT

¢¤
− 1

(T − t)E
£¡
εi(t+1) + ...+ εiT

¢
xit
¤

+
1

(T − t)2E
£¡
εi(t+1) + ...+ εiT

¢ ¡
xi(t+1) + ...+ xiT

¢¤¾
. (A.7)

Collecting terms we obtain

E (x∗itε
∗
it) = γ0 −

1

(T − t) (T − t+ 1)
×©(T − t) γ−(T−t) + ...+ γ−1 + γ1 + ...+ (T − t) γ(T−t)

ª
. (A.8)

Thus

E (X∗0Mε∗) = m
T−1X
t=1

tE (x∗itε
∗
it)

= m

Ã
γ0

T−1X
t=1

t−
T−1X
t=1

t

(T − t) (T − t+ 1)B(T−t)
!

(A.9)

where

B(T−t) = (T − t) γ−(T−t) + ...+ γ−1 + γ1 + ...+ (T − t) γ(T−t). (A.10)

We now use the following facts:

T−1X
t=1

t =
1

2
(T − 1)T (A.11)

T−1X
t=1

t

(T − t) (T − t+ 1) = T −
TX
t=1

1

t
(A.12)¯̄

B(T−t)
¯̄
< |B∞| (A.13)

Hence, when xit is endogenous (γ0 6= 0) we have E (X∗0Mε∗) = O (mT 2) or

E

µ
X∗0Mε∗

NT

¶
= O

µ
mT

N

¶
. (A.14)

In contrast, when xit is predetermined we have E (X∗0Mε∗) = O (mT ) or

E

µ
X∗0Mε∗

NT

¶
= O

³m
N

´
. (A.15)
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B. Auxiliary VAR with Individual Effects

B.1. Sequential linear projections of the effects

Proof of Theorem 2
I show that for the VAR(1) model presented in the main text, the linear

projection of the vector of individual effects µi on z
t
i = (z

0
i0, ..., z

0
it)
0 is given by

E∗
¡
µi | zti

¢
=
h
Ω−1µ +Υ0
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³Xt
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1Γ
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¡
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(B.1)

for t ≥ 1, and for t = 0:

E∗
¡
µi | zti

¢
=

£
Ω−1µ +Υ0

1Γ
−1
0 Υ1

¤−1 £
Ω−1µ µ+Υ0

1Γ
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¤
= [I + Λ0Υ1]

−1 [µ+ Λ0 (zi0 − τ 0)] (B.2)

where Λ0 = ΩµΥ
0
1Γ
−1
0 and Λ1s = Ωµ(I −A)0Ω−1s .

The VAR model implies that

zit = (I −At)µi +
¡
vit +Avi(t−1) + ...+At−1vi1

¢
+Atzi0. (B.3)

Substituting (4.4) in (B.3) we obtain

zit =
£
I +At (Υ1 − I)

¤
µi +A

tτ 0 + z
∗
it (B.4)

where
z∗it = vit +Avi(t−1) + ...+A

t−1vi1 +Atv
†
i0. (B.5)

Let G denote the (t+ 1)m×m matrix G = (Im, A0, A20, ..., At0)
0. Then

zti = Fµi +Gτ 0 + z
∗t
i (B.6)

where
F = (ι⊗ I) +G (Υ1 − I) , (B.7)

ι is a (t+ 1)× 1 vector of ones, and z∗ti = (z∗0i0, ..., z∗0it )0. Therefore,

E
¡
zti
¢
= Fµ+Gτ 0 (B.8)
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V ar
¡
zti
¢
= FΩµF

0 + V (B.9)

where V = V ar (z∗ti ). Moreover, note that

Cov
¡
zti , µi

¢
= FΩµ. (B.10)

The linear projection is given by

E∗
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µi | zti

¢
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i (B.11)

where
ψt = µ−Π0tE
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¢

(B.12)

and
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£
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¡
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¢
. (B.13)

Letting Ωµ = PP 0 and M = FP , and using the matrix inversion lemma£
V ar

¡
zti
¢¤−1

= (MM 0 + V )−1 = V −1 − V −1M ¡
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Moreover, letting V −1 = B0B where B is a block-lower triangular matrix
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Since V = V ar (z∗ti ), the matrix B has to be such that V ar (Bz∗ti ) = I.
Therefore, since B must satisfy
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Γ
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it is given by
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Direct multiplication gives
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Inserting these terms in the expression given above

Π0tz
t
i =

h
P−1

0
P−1 +Υ0

1Γ
−1
0 Υ1 + (I −A)0

³Xt

s=1
Ω−1s

´
(I −A)

i−1
h
Υ0
1Γ
−1
0 zi0 + (I −A)0

Xt

s=1
Ω−1s

¡
zis −Azi(s−1)

¢i
. (B.21)

Finally, to obtain the vector of intercepts, note that since E (zi0) = τ0 +Υ1µ
and
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we have
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Collecting terms we obtain
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from which the result follows.

A Stationary VAR(1) Process

The stationary case is obtained as a specialization of the initial VAR model
to τ 0 = 0, Υ1 = Im, Ωt = Ω for all t, and Γ0 =

P∞
j=0A

jΩAj0, so that Γ0 satisfies
Γ0 = AΓ0A

0 + Ω. In such case we have
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Moreover, V is given by
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where Γj = AjΓ0. Nevertheless, the matrix B in the decomposition of the inverse
of V is of the same form as in the general case but with constant Ω.

There are two special cases of equation (4.15) that are of some interest:

1. Uncorrelated Multivariate Error Components (A = 0). In this case Γ0 = Ω
and Λ1 = Λ0, so that

Et (z
∗
it) = ct [zit −Et (µi)] (B.29)

and
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h
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i
. (B.30)

2. Homogeneous VAR(1) process (Ωµ = 0): In this case δit = δi0 = µ and
Ht = H0 = I, so that Et (µi) = µ and

Et (z
∗
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¶
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32



B.2. VAR Log Likelihood Given Initial Observations

The VAR model can be written as⎛⎜⎜⎜⎜⎜⎝
I 0 . . . 0 0
−A I 0 0
...

. . .
...
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or using a compact notation

Bzi = DAzi0 + ui (B.33)

ui = (ι⊗ ηi) + vi (B.34)

where uit = ηi + vit, ηi = (I − A)µi, ι is a vector of ones of order T and vi =
(v0i1, ..., v

0
iT )

0. Thus, under time series homoskedasticity

E (ui) = ι⊗ η (B.35)

and
V ar (ui) = (ιι

0 ⊗ Ωη) + (IT ⊗ Ω) (B.36)

where η = (I −A)µ and Ωη = (I −A)Ωµ(I −A)0.
The conditional density of zi given zi0 is related to that of ui by

f (zi | zi0) = f (ui | zi0) det (B) (B.37)

but det (B) = 1 because B is a triangular matrix. Moreover

f (ui | zi0) = f (ui, u∗i | zi0) |det (H ⊗ Im)| (B.38)

where H = (ι/T,A0)0 is a T × T transformation matrix, and A is the (T − 1)× T
forward orthogonal deviations operator, that produces (H ⊗ Im)ui = (u0i, u

∗0
i )
0.

The determinant of the transformation satisfies |det (H ⊗ Im)| = T−m/2, which is
an irrelevant constant.
Note that
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In order to obtain the mean and variance matrix of {(H ⊗ Im)ui | zi0} it is con-
venient to introduce some additional notation. Let Σ0 = V ar (zi0) = Υ1ΩµΥ

0
1+Γ0

and let the linear projection of ηi on zi0 be

E∗ (ηi | zi0) = φ0 + Φ1zi0 = (φ0,Φ1)

µ
1
zi0

¶
≡ Φfi0 (B.41)

so that Φ1 = (I −A)ΩµΥ0
1Σ
−1
0 .

15 Thus under joint normality of ηi, zi0, zi1, ..., ziT :

E [(H ⊗ Im) ui | zi0] =
µ
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¶
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and

V ar [(H ⊗ Im) ui | zi0] = V ar [(H ⊗ Im) ui]− V ar
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where Θ0 = (Ωη − Φ1Σ0Φ
0
1) + T

−1Ω.16

Then, under normality

ln f (zi1, ..., ziT | zi0) = −(T − 1)
2

ln detΩ− 1
2
u∗0i
¡
IT−1 ⊗ Ω−1

¢
u∗i (B.44)

−1
2
ln detΘ0 − 1

2
(ui − φ0 − Φ1zi0)

0Θ−10 (ui − φ0 − Φ1zi0) .

C. Estimating Scalar Autoregressive Models

Let us consider first a scalar AR(1) model with individual effects of the form

yit = αyi(t−1) + (1− α)µi + vit | α |< 1 (C.1)

E(vit | yi0, yi1, ..., yi(t−1)) = 0 (C.2)

15Note that

Φ1 = Cov(ηi, wi0)Σ
−1
0 = (I −A)Cov(µi, wi0)Σ−10

= (I −A)ΩµΩ−1µ Cov(µi, wi0)Σ−10 = (I −A)ΩµΥ01Σ−10 .

16Note that V ar (ηi | wi0) = (Ωη − Φ1Σ0Φ01).
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so that in the notation of (2.1) and (2.2) xit and zit are both scalar variables and
xit = zit = yi(t−1). For convenience we assume that yi0 is observed. In this case

1

ct
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¢
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£
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¢
+ ...+E
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¢¤
. (C.3)

Note that since
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the instrument E
¡
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¢
is just a function of yi(t−1) and E
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¢
given by
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In general E
¡
µi | yT−1i

¢
can be a nonlinear function of yT−1i , but in the auxil-

iary models we shall assume it coincides with the linear projection

E∗
¡
µi | yT−1i

¢
= ψT−1 + π0T−1y

t−1
i . (C.5)

In view of the results of the previous section, it turns out that the coefficients
of this projection are unrestricted when the unconditional variances E (vit) = σ2t
are allowed to change with t in an unspecified way. But even in this case note
that due to the law of iterated projections

E∗
¡
µi | yt−1i

¢
= E∗

£
E∗
¡
µi | yti

¢ | yt−1i

¤
,

all the instruments E
¡
x∗it | yt−1i

¢
can be written as functions of α, ψT−1, and γT−1.

This substantially reduces the number of parameters relative to the unrestricted
linear projections for E

¡
x∗it | yt−1i

¢
used implicitly by standard GMM, despite

being based on the same auxiliary model. Nevertheless, the number of coefficients
still increases with T .

A Strictly Stationary Auxiliary Model As an auxiliary model we may
consider a strictly stationary AR(1) process, in which case, using the results from
Appendix B, we obtain

E∗
¡
µi | yt−1i

¢
= mt−1

¡
yt−1i , θ

¢ ≡ µ+ φ
£
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Pt−1
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£
(t− 1) (1− α)2 + 1− α2

¤ (C.6)

where φ = σ2µ/σ
2, θ = (α,φ, µ)0, and uis = yis − αyi(s−1).
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Letting λ = σ2η/σ
2 = (1− α)2φ, an equivalent expression is given by
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=
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³
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´
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.(C.7)

Note that as t → ∞ E∗
¡
µi | yt−1i

¢
converges to the limit of t−1

Pt−1
s=0 yis (which

is given by µi), but for small values of t the approximation of E
∗ ¡µi | yt−1i

¢
by

E∗
¡
µi |

Pt−1
s=0 yis

¢
may be poor, even if yit is a strictly stationary process (it would

only be appropriate if α = 0).17

Using as the auxiliary model the assumptions of strict stationarity together
with the linearity of E

¡
µi | yt−1i

¢
, the instrument E

¡
x∗it | yt−1i

¢
becomes a linear

function of
Pt−1

s=0 uis and yi0 with coefficients that depend exclusively on α, φ and
µ. Since these assumptions need not be true, the previous coefficients should be
understood as pseudo true values for which we use the notation c = (a, f ,m)0.
Thus our parameterization of the instrument is given by

ht
¡
yt−1i , c

¢
= ct

∙
1− a

1− a
µ
1− aT−t
T − t

¶¸ £
yi(t−1) −mt−1

¡
yt−1i , c

¢¤
. (C.8)

An Auxiliary Model with Unrestricted Initial Conditions An alter-
native, more general auxiliary model that retains a fixed number of parameters
is one in which the assumption of stationarity of initial observations is removed.
This adds three extra parameters to the instrument function.
The previous auxiliary model assumed that the linear projection of yi0 on µi

yi0 = τ 0 + τ 1µi + vi0 (C.9)

was such that τ 0 = 0, τ 1 = 1 and V ar(vi0) = γ20 = σ2/(1−α2). In the alternative
model τ 0, τ 1 and γ20 are free parameters. Using again the results from Appendix
B we obtain

E∗
¡
µi | yt−1i

¢
= m†

t−1
¡
yt−1i , θ

¢ ≡ (µ− r0τ 1τ 0) + φ (1− α)
Pt−1

s=1 uis + r0τ 1yi0

1 + φ(t− 1) (1− α)2 + r0τ 21
(C.10)

17With T = 2, we only need to consider t = 1, and there is just one instrument given by

E(x∗i1 | yi0) = 2−1/2
(1− α)

2

(1− α) + λ(1 + α)
(yi0 − µ).
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where r0 = σ2µ/γ
2
0 and θ = (α,φ, µ, τ 0, τ 1, r0)

0. Note that under stationarity
r0 = φ(1− α2).
For large t the difference between (C.6) and (C.10) will be small regardless of

the values of τ 0, τ 1 and γ20, but in short panels the difference may be important
if the steady state distribution of the process is not a good approximation to the
distribution of initial observations. In such a case a better choice of instrument
will be

h†t
¡
yt−1i , c

¢
= ct

∙
1− a

1− a
µ
1− aT−t
T − t

¶¸h
yi(t−1) −m†

t−1
¡
yt−1i , c

¢i
. (C.11)

AR(p) Processes The previous discussion can be extended to a stable au-
toregressive process of order p:

yit = α1yi(t−1) + ...+ αpyi(t−p) + ηi + vit (C.12)

E(vit | yi0, yi1, ..., yi(t−1)) = 0, (C.13)

so that in terms of the notation of model (2.1) and (2.2), we have xit = (yi(t−1), ..., yi(t−p))0

and zit = yi(t−1). For convenience we assume that yi0, yi(−1), ..., yi(−p+1) are ob-
served (i.e. the time series dimension of the panel is T + p), and write the model
in companion form

xi(t+1) = Πxit + d1 (ηi + vit) (C.14)

where d1 = (1, 0, ..., 0)0 of order p, and Π is the p× p matrix

Π =

Ã
α1 . . . αp

Ip−1
... 0

!
. (C.15)

Therefore,

1

ct
E
¡
x∗it | yt−1i

¢
= xit − 1

T − t
£
E
¡
xi(t+1) | yt−1i

¢
+ ...+E

¡
xiT | yt−1i

¢¤
. (C.16)

Moreover, since

E
¡
xi(t+s) | yt−1i

¢
= Πsxit +

¡
Ip +Π+ ...+Πs−1

¢
d1E

¡
ηi | yt−1i

¢
(s = 1, ..., T − t),

(C.17)
the vector of instruments E

¡
x∗it | yt−1i

¢
is a function of xit and E

¡
ηi | yt−1i

¢
given

by

E
¡
x∗it | yt−1i

¢
= ct

∙
I − 1

T − tΠ
¡
I −ΠT−t

¢
(I −Π)−1

¸ £
xit − ιpE

¡
µi | yt−1i

¢¤
(C.18)
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where ηi = (1− α1 − ...− αp)µi.
18

Under the strictly stationary auxiliary model, the linear projectionE∗
¡
µi | yt−1i

¢
is still of the form

E∗
¡
µi | yt−1i

¢
= µ+ φι0 (φιι0 + V )−1

¡
yt−1i − µι¢

=
µ

1 + φ (ι0V −1ι)
+

φ

1 + φ (ι0V −1ι)
ι0V −1yt−1i , (C.19)

but now V = V (α1, ...,αp) corresponds to the autoregressive covariance matrix of
order p.

18Note that
(I −Π)−1 d1E

¡
ηi | yt−1i

¢
= ιpE

¡
µi | yt−1i

¢
since (1− α1 − ...− αp)d1 = (I −Π) ιp.
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Table 1
Employment and Wage VAR Model
Panel Data of Spanish Firms

WG GMM PML SIV
N = 738, T = 8

Employment equation
ni(t−1) 0.71 0.86 1.00 0.93

(0.03) (0.06) (0.07)
wi(t−1) 0.08 0.12 0.08 0.14

(0.03) (0.07) (0.08)
Wage equation

ni(t−1) 0.06 −0.03 0.01 −0.02
(0.02) (0.08) (0.08)

wi(t−1) 0.44 0.29 0.68 0.32
(0.03) (0.10) (0.10)
N = 385, T = 14

Employment equation
ni(t−1) 0.86 0.83 0.995 0.90

(0.05) (0.05) (0.05)
wi(t−1) 0.26 0.29 0.28 0.30

(0.09) (0.13) (0.15)
Wage equation

ni(t−1) 0.01 −0.09 0.03 −0.15
(0.02) (0.04) (0.05)

wi(t−1) 0.45 0.34 0.62 0.32
(0.07) (0.10) (0.12)

All data in deviations from period-specific
cross-sectional means.

Estimates of Υ1 using SIV estimates of A:

(N = 738, T = 8) sample:

bΥ1(738) = µ 0.863 0.155
0.008 0.849

¶
(N = 385, T = 14) sample:

bΥ1(385) =

µ
0.983 0.441
−0.004 0.905

¶
.
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Table 2
Monte Carlo Simulations for the VAR Model

WG GMM PML SIV
median mae median mae median mae median mae

N = 738, T = 8
a11 0.48 0.32 0.72 0.08 0.80 0.02 0.80 0.05
a12 0.09 0.06 0.13 0.03 0.15 0.02 0.15 0.03
a21 0.03 0.03 0.01 0.04 0.00 0.01 −0.01 0.05
a22 0.12 0.18 0.29 0.03 0.30 0.01 0.30 0.03

N = 385, T = 14
a11 0.63 0.17 0.74 0.06 0.80 0.01 0.80 0.03
a12 0.12 0.03 0.13 0.02 0.15 0.01 0.15 0.02
a21 0.02 0.02 0.01 0.02 −0.00 0.01 −0.00 0.02
a22 0.21 0.09 0.29 0.02 0.30 0.01 0.30 0.02

N = 738, T = 8
Data with trend in variance

a11 0.50 0.30 0.70 0.11 0.86 0.06 0.81 0.07
a12 0.11 0.04 0.12 0.04 0.17 0.02 0.16 0.04
a21 0.03 0.03 0.01 0.05 −0.01 0.01 −0.01 0.06
a22 0.11 0.19 0.29 0.03 0.31 0.02 0.30 0.03
a11 = 0.8, a12 = 0.15, a21 = 0, a22 = 0.3
1000 replications. mae is median absolute error.
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Table 3
Monte Carlo Simulations for the VAR Model

WG GMM PML SIV
median mae median mae median mae median mae

N = 200, T = 8
a11 0.48 0.32 0.59 0.21 0.80 0.05 0.80 0.09
a12 0.09 0.06 0.08 0.07 0.15 0.03 0.16 0.06
a21 0.03 0.03 0.03 0.07 −0.00 0.02 0.00 0.09
a22 0.12 0.18 0.27 0.05 0.30 0.02 0.30 0.05

N = 100, T = 6
a11 0.35 0.45 0.40 0.40 0.80 0.10 0.80 0.22
a12 0.08 0.07 0.04 0.13 0.15 0.06 0.15 0.12
a21 0.04 0.05 0.04 0.14 −0.00 0.05 −0.01 0.19
a22 0.04 0.26 0.22 0.10 0.30 0.05 0.29 0.11

N = 50, T = 15
a11 0.64 0.16 0.62 0.18 0.80 0.04 0.80 0.06
a12 0.12 0.04 0.10 0.06 0.15 0.04 0.15 0.05
a21 0.02 0.03 0.02 0.04 0.00 0.02 0.00 0.06
a22 0.22 0.09 0.24 0.06 0.30 0.03 0.30 0.04
a11 = 0.8, a12 = 0.15, a21 = 0, a22 = 0.3
1000 replications. mae is median absolute error.
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Table 4
Augmented Solow Model

N = 92, T = 5

OLS WG GMM SIV

(1 + β) 0.947 0.680 0.698 0.808
(s.e.) (0.017) (0.057) (0.107) (0.248)

ln (enrt) 0.035 −0.049 −0.140 −0.114
(s.e.) (0.014) (0.029) (0.066) (0.229)

ln (st) 0.081 0.138 0.144 0.090
(s.e.) (0.017) (0.039) (0.055) (0.075)

ln (nt + g + d) −0.094 −0.033 0.230 0.227
(s.e.) (0.053) (0.152) (0.339) (1.384)

Implied λ 0.011 0.077 0.072 0.043
(s.e.) (0.004) (0.017) (0.031) (0.062)

All data in deviations from period-specific cross-sectional means.
Data for 5-year intervals 1960-1985.
s.e. robust to heterosk. & autocorrelation, m = T − 2.
n = population growth rate; g = rate of technical change;
d = rate of depreciation of physical capital (g + d = 0.05);
s = saving rate; enr = secondary-school enrollment rate.
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