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QUANTILE SELECTION MODELS WITH AN APPLICATION TO
UNDERSTANDING CHANGES IN WAGE INEQUALITY

BY MANUEL ARELLANO AND STÉPHANE BONHOMME1

We propose a method to correct for sample selection in quantile regression mod-
els. Selection is modeled via the cumulative distribution function, or copula, of the
percentile error in the outcome equation and the error in the participation deci-
sion. Copula parameters are estimated by minimizing a method-of-moments criterion.
Given these parameter estimates, the percentile levels of the outcome are readjusted
to correct for selection, and quantile parameters are estimated by minimizing a ro-
tated “check” function. We apply the method to correct wage percentiles for selection
into employment, using data for the UK for the period 1978–2000. We also extend the
method to account for the presence of equilibrium effects when performing counter-
factual exercises.

KEYWORDS: Quantiles, sample selection, copula, wage inequality, gender wage gap.

1. INTRODUCTION

NON-RANDOM SAMPLE SELECTION is a major issue in empirical work. Most selection-
correction approaches focus on estimating conditional mean models. In many applica-
tions, however, a flexible specification of the entire distribution of outcomes is of interest.
In this paper, we propose a selection-correction method for quantile models.

Quantile regression is widely used to estimate conditional distributions. In a linear
quantile model, each percentile is associated with a percentile-specific parameter. Conve-
niently, quantile parameters can be estimated by minimizing a convex (“check”) function
(Koenker and Bassett (1978)). Quantile regression has proved to be a valuable tool to an-
alyze changes in distributions, beginning with Chamberlain (1993) and Buchinsky (1994).
However, to our knowledge, there is yet no widely accepted quantile regression approach
in the presence of sample selection.

A classic example where sample selection features prominently is the study of wages
and employment (Gronau (1974), Heckman (1974)). Only the wages of employed indi-
viduals are observed, so conventional measures of wage gaps or wage inequality may be
biased. For example, in our empirical application, we study the evolution of wage in-
equality and employment in the UK. Over the past three decades, wage inequality has
sharply increased. This change in the wage distribution, similar to the one experienced in
the United States, has motivated a large literature.2 At the same time, employment rates
have also varied during the period, especially for males. In this context, our method to
correct for selection allows us to document the evolution of distributions of latent wages,
by separating them from changes in employment composition. Wage inequality for those
at work may provide a distorted picture of market-level wage inequality.

In regression models, correcting for sample selection involves adding a selection factor
as a control. In quantile regression models, we show that selection-corrected estimates

1This paper was the basis for Arellano’s Walras–Bowley lecture given at the North American Summer
Meeting of the Econometric Society in 2011. We are grateful to the Editor and two anonymous referees.
We thank Xiaohong Chen, David Cox, Ivan Fernández-Val, Toru Kitagawa, Roger Koenker, José Machado,
Costas Meghir, Blaise Melly, Alex Torgovitsky, and seminar audiences at various venues for comments.

2Gosling, Machin, and Meghir (2000) used quantile regression to study the evolution of wage inequality in
the UK. Recent studies for the U.S. are Autor, Katz, and Kearney (2005) and Angrist, Chernozhukov, and
Fernández-Val (2006).
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can be obtained by suitably shifting the percentile levels as a function of the amount of
selection. In practice, this amounts to rotating the “check” function that is optimized in
standard quantile regression. The objective function is “discordantly tilted,” since the per-
turbations applied to percentile levels are observation-specific and depend on the strength
of selection. This rotation preserves the linear programming structure, and thus the com-
putational simplicity of quantile regression methods.

In our quantile model, sample selection is modeled via the bivariate cumulative distri-
bution function, or copula, of the errors in the outcome and the selection equation. Our
identification analysis covers the case where the copula is left unrestricted. However, in
practice, one may wish to let the copula depend on a low-dimensional vector of parame-
ters.3 As in linear sample selection models, excluded variables (e.g., determinants of em-
ployment that do not affect wages directly) are key to achieving credible identification. We
show how to estimate the parameters of the copula by minimizing a method-of-moments
criterion that exploits variation in excluded regressors.

Our estimation algorithm consists of three steps: estimation of the propensity score
of participation, the copula parameter, and the quantile parameters, in turn. We derive
the asymptotic distribution of the estimator. We also analyze a number of extensions of
the method. In particular, we propose a bounds method to assess the influence on the
quantile estimates of the parametric restrictions imposed on the copula.

We apply the method to study the evolution of wage inequality in the UK in the last
quarter of the twentieth century. We find that correcting for selection into employment
strongly affects male wages at the bottom of the distribution, which is consistent with low-
skilled males being progressively driven out of the labor market. Sample selection has
smaller effects for females. As a result, correcting for sample selection accentuates the
decrease in the gender wage gap at the bottom (though less at the top) of the distribution.
We also perform several robustness checks, in particular regarding the specification of the
copula.

Lastly, we propose a method to obtain counterfactual distributions of wages taking into
account general equilibrium effects. Our approach combines the quantile selection model
of wages and participation with a labor demand side in the spirit of Katz and Murphy
(1992) and Card and Lemieux (2001). Because of demand responses, shifts in participa-
tion may affect latent equilibrium wage distributions. We apply the method to a counter-
factual exercise where potential out-of-work income, a strong policy-based determinant
of participation, is kept constant throughout the period.

Literature and Outline

Our approach connects with two complementary approaches that have been used to
deal with sample selection. Parametric and semiparametric versions of the Heckman
(1979) sample selection model have been extensively studied. See, for example, Heckman
and Sedlacek (1985), Heckman (1990), Ahn and Powell (1993), Donald (1995), Chen and
Khan (2003), and Das, Newey, and Vella (2003). Vella (1998) provided a number of ad-
ditional references. In comparison, bounds methods (Manski (1994), Blundell, Gosling,
Ichimura, and Meghir (2007), Kitagawa (2010)) have been less studied. The sensitivity

3Copulas have been extensively used in statistics and financial econometrics (e.g., Joe (1997) and Nelsen
(1999)). Single-parameter copula families have been shown to yield satisfactory fit to empirical data in various
contexts. For example, Bonhomme and Robin (2009) used a Plackett copula to model year-to-year earnings
mobility.
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analysis in Kline and Santos (2013) is also related to our approach. However, unlike in
the missing data settings that they considered, excluded variables in selection models pro-
vide information on the sign and strength of sample selection, which we exploit.

The paper also connects with the large literature on quantiles, distributions, and treat-
ment effects. Chernozhukov and Hansen (2005, 2006) developed an instrumental vari-
ables quantile regression approach. Unlike in this paper, they relied on a rank invariance
or rank similarity assumption (see also Vuong and Xu (2014)). Related models with con-
tinuous endogenous regressors were studied in Torgovitsky (2015) and D’Haultfoeuille
and Février (2015). Imbens and Rubin (1997) studied identification and estimation of un-
conditional distributions of potential outcomes in a treatment effects model with a binary
instrument, and achieved identification for compliers (as in Abadie (2003) and Abadie,
Angrist, and Imbens (2002)). Carneiro and Lee (2009) used the framework of Heckman
and Vytlacil (2005) to identify and estimate distributions of potential outcomes on suit-
able “complier” subpopulations. The tools we propose could be used to provide alter-
native estimators in treatment effects settings. In addition, being distribution-based, our
approach allows one to perform distributional decomposition exercises (as in DiNardo,
Fortin, and Lemieux (1996) and Firpo, Fortin, and Lemieux (2011)) while accounting for
sample selection.

The literature on quantile selection models, in contrast, is scarce (see the review in
Arellano and Bonhomme (2016)). Buchinsky (1998, 2001) proposed an additive approach
to correct for sample selection in quantile regression. Huber and Melly (2015) considered
a more general, non-additive quantile model, as we do; they focused on testing for addi-
tivity. In contrast, our focus is on providing a practical estimation method. Also related
are Neal (2004), who developed imputation methods to correct the black/white wage gap
among women, Olivetti and Petrongolo (2008), who applied similar methods to the gen-
der wage gap, and Picchio and Mussida (2010), who proposed a parametric model to cor-
rect the gender wage gap for selection into employment. See also Lee (1983) and Smith
(2003) for parametric distributional selection-correction methods.

The rest of the paper is as follows. In Section 2, we present the quantile selection model
and discuss identification. In Section 3, we describe the estimator and its asymptotic prop-
erties. In Section 4, we outline several extensions of our approach. The empirical analysis
is contained in Section 5, and the counterfactual exercise in Section 6. Lastly, we conclude
in Section 7. Computer codes and an appendix with additional results are provided in the
Supplemental Material (Arellano and Bonhomme (2017)).

2. MODEL AND IDENTIFICATION

2.1. Model and Assumptions

We consider the following sample selection model:

Y ∗ = q(U�X)�(1)

D= 1
{
V ≤ p(Z)}�(2)

Y = Y ∗ if D= 1�(3)

where Y ∗ is the latent outcome (e.g., market wage), D is the participation indicator (em-
ployment), U and V are error terms, and Z = (B�X) strictly contains X , so B are the
excluded covariates. We observe (Y�D�Z), so that potential outcomes Y ∗ = Y are ob-
served only when D= 1 (e.g., if the individual is a labor market participant).

We make four assumptions.
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ASSUMPTION 1:
A1 (Exclusion restriction) (U�V ) is jointly statistically independent of Z given X .
A2 (Unobservables) The bivariate distribution of (U�V ) given X = x is absolutely con-

tinuous with respect to the Lebesgue measure, with standard uniform marginals and rectan-
gular support. We denote its cumulative distribution function (c.d.f.) as Cx(u�v).

A3 (Continuous outcomes) The conditional c.d.f. FY ∗|X(y|x) and its inverse are strictly
increasing. In addition, Cx(u�v) is strictly increasing in u.

A4 (Propensity score) p(Z)≡ Pr(D= 1|Z) > 0 with probability 1.

Assumption A1 is satisfied if Z = (B�X) strictly contains X , and (U�V ) is jointly in-
dependent of B given X . In the example of wages and employment, B may measure op-
portunity costs of participation in the labor market. Following Blundell, Reed, and Stoker
(2003), our empirical application will use a measure of potential out-of-work welfare in-
come as exclusion restriction.

Model (1)–(3) depends on two sources of unobserved heterogeneity: the latent out-
come rank U and the percentile rank V . In Assumption A2, we normalize their marginal
distributions to be uniform on the unit interval, independent of Z. In particular, τ �→
q(τ�x) is the conditional quantile function of Y ∗ given X = x, and it is increasing in τ by
Assumption A3. A special case is the linear quantile model Y ∗ =X ′βU , which is widely
used in applied work since Koenker and Bassett (1978). The Skorohod representation (1)
is without loss of generality.4

Joint independence between (U�V ) and Z given X , as stated in Assumption A2, is
stronger than marginal independence. This requires the conditional c.d.f. (i.e., the copula)
of the pair (U�V ) given (B�X) to solely depend on X . The presence of dependence
between U and V is the source of sample selection bias.

Lastly, Assumption A3 restricts the analysis to absolutely continuous outcomes, and
Assumption A4 is a support assumption on the propensity score often made in sample
selection models.

EXAMPLES: Before discussing identification of model (1)–(3), we briefly outline two
special cases. A first special case is obtained when outcomes are additive in unobservables:
Y ∗ = g(X)+ ε, where (ε�V ) is independent of Z. Note that Assumption A1 is satisfied,
with U = Fε(ε), for Fε the c.d.f. of ε. Moreover, the following restrictions hold (as in Das,
Newey, and Vella (2003)):

E(Y |D= 1�Z)= g(X)+E
(
ε|V ≤ p(Z)�Z) = g(X)+ λ(p(Z))�

where λ(p)≡ E(ε|V ≤ p).
As a second special case, suppose the following reservation rule:

D= 1
{
Y ∗ ≥R(Z)+η}

�(4)

where (Y ∗�η) is statistically independent of Z givenX . In a labor market application, (4)
may represent the participation decision of an individual, who compares her potential
wage Y ∗ with a reservation wage R(Z)+η. Note that (4) may equivalently be written as

D= 1
{
V ≤ Fη−Y ∗|Z

(−R(Z)|Z)}
�

4Indeed, U = FY ∗|X(Y ∗|X), where FY ∗|X is the conditional c.d.f. of Y ∗ given X . Moreover, U being inde-
pendent of Z given X is equivalent to the potential outcome Y ∗ being independent of Z given X .
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where V ≡ Fη−Y ∗|Z(η− Y ∗|Z)= Fη−Y ∗|X(η− Y ∗|X) is uniformly distributed on the unit
interval, and independent of Z. Letting Y ∗ = q(U�X), (U�V ) is independent of Z
given X , so Assumption A1 is satisfied. At the same time, however, U and V are not
jointly independent of X . Thus, in this reservation wage model, the copula Cx(·� ·) de-
pends on x in general.

2.2. Main Restrictions and Identification

We have, conditional on participation and for all τ ∈ (0�1):

Pr
(
Y ∗ ≤ q(τ�x)|D= 1�Z = z) = Pr

(
U ≤ τ|V ≤ p(z)�Z = z)�(5)

=Gx

(
τ�p(z)

)
�

where Gx(τ�p)≡ Cx(τ�p)/p, and we have used Assumptions A1 to A4. The conditional
copulaGx(·� ·)measures the dependence betweenU and V , which is the source of sample
selection bias. As a special case, if U and V are conditionally independent given X = x,
then Gx(τ�p(z))= τ. More generally, (5) shows that Gx maps ranks τ in the distribution
of latent outcomes (given X = x) to ranks Gx(τ�p(z)) in the distribution of observed
outcomes conditional on participation (given Z = z).

An implication of (5) is that, for each τ ∈ (0�1), the conditional τ-quantile of Y ∗ co-
incides with the conditional Gx(τ�p(z))-quantile of Y given D = 1. Hence, if we knew
the mapping Gx from latent to observed ranks, one could recover q(τ�x) as a quantile of
observed outcomes, by suitably shifting percentile ranks.

Equation (5) is instrumental to correct quantile functions from selection. Given knowl-
edge of the mapping Gx, latent quantiles can readily be recovered. Moreover, the exclu-
sion restriction provides information about Gx. The intuition for this is that (5) holds for
all z in the support of Z given X = x, thus generating restrictions on Gx.

The following result spells out the restrictions on the conditional copula Gx. We de-
note as X the support of X , and as Zx the support of Z given X = x. G−1

x and F−1
Y |D=1�Z

denote the inverses of Gx and FY |D=1�Z with respect to their first arguments, which exist
by Assumption A3. Proofs are given in Appendix A.1.

LEMMA 1: Let x ∈X . Then, under Assumptions A1 to A4:

FY |D=1�Z

(
F−1
Y |D=1�Z(τ|z2)|z1

) =Gx

(
G−1
x

(
τ�p(z2)

)
�p(z1)

)
�(6)

for all (z1� z2) ∈Zx ×Zx�

Moreover, for any Gx satisfying (6), one can find a distribution of latent outcomes FY ∗|X
such that Gx(FY ∗|X(y|x)�p(z))= FY |D=1�Z(y|z) for all (z� y) in the support of (Z�Y) given
X = x.

Note that the restrictions in (6) are uninformative in the absence of an exclusion re-
striction. They may become informative as soon as the conditional support of Z given
X = x contains two or more values. Moreover, the second part of Lemma 1 shows that
these are the only restrictions on Gx, in the sense that, for any Gx satisfying (6), one can
find a distribution of latent outcomes that rationalizes the data.
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Nonparametric Point-Identification

Two simple conditions lead to nonparametric point-identification of Gx, and hence to
point-identification of q(·�x) as well. We denote as Px the conditional support of the
propensity score p(Z) given X = x.

PROPOSITION 1: Let Assumptions A1 to A4 hold. Let x ∈X . Suppose that one of the two
following conditions holds:

(i) (Identification at infinity) There exists some zx ∈Zx such that p(zx)= 1.
(ii) (Analytic extrapolation) Px contains an open interval and, for all τ ∈ (0�1), the func-

tion p �→Gx(τ�p) is real analytic on the unit interval.
Then the functions (τ�p) �→Gx(τ�p) and τ �→ q(τ�x) are nonparametrically identified.

Both conditions in Proposition 1 allow one to point-identify the dependence mapping
Gx and the quantile function q(·�x) using an extrapolation strategy. Under (i), identifi-
cation is achieved at the boundary of the support of the propensity score (“at infinity”).
Under (ii), extrapolation is based on the property that real analytic functions that co-
incide on an open neighborhood coincide everywhere. Absent conditions (i) and (ii) of
Proposition 1, the model is nonparametrically partially identified in general.

Partial Identification

Let x ∈X and z̃ ∈Zx. Using the worst-case Fréchet bounds (Fréchet (1951), Heckman,
Smith, and Clements (1997)) on the copula Cx, we can bound

(7) max
(
τ+p(̃z)− 1

p(̃z)
�0

)
≤Gx

(
τ�p(̃z)

) ≤ min
(

τ

p(̃z)
�1

)
� for all τ ∈ (0�1)�

Let now z ∈Zx. Evaluating (6) at (z1� z2)= (z� z̃), and using (7) to bound Gx(τ�p(̃z)),
we obtain the following bounds on Gx(τ�p(z)):

Gx

(
τ�p(z)

) ≤ inf
z̃∈Zx

FY |D=1�Z

[
F−1
Y |D=1�Z

(
min

(
τ

p(̃z)
�1

)∣∣∣̃z)∣∣∣z]�(8)

Gx

(
τ�p(z)

) ≥ sup
z̃∈Zx

FY |D=1�Z

[
F−1
Y |D=1�Z

(
max

(
τ+p(̃z)− 1

p(̃z)
�0

)∣∣∣̃z)∣∣∣z]�(9)

Moreover, using (5) and (7), we have the following bounds on the quantiles of latent
outcomes:

q(τ�x) ≤ inf
z̃∈Zx

F−1
Y |D=1�Z

(
min

(
τ

p(̃z)
�1

)∣∣∣̃z)�(10)

q(τ�x) ≥ sup
z̃∈Zx

F−1
Y |D=1�Z

(
max

(
τ+p(̃z)− 1

p(̃z)
�0

)∣∣∣̃z)�(11)

The quantile bounds in (10) and (11) were first derived by Manski (1994, 2003) in a
slightly more general selection model. In related work, Kitagawa (2009, 2010) provided
comprehensive studies of the role of independence and first-stage monotonicity restric-
tions in LATE and sample selection settings, respectively. The bounds in (10) and (11)
coincide with the choice of the upper or lower Fréchet bounds for the copula of (U�V ).
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In this sense, these are worst-case bounds.5 In Section S1 of the Supplemental Material
(Arellano and Bonhomme (2017)), we show that these bounds cannot be improved upon.
Importantly, in this paper, we work under the maintained assumption that the model is
correctly specified; that is, that (1)–(2)–(3) hold. If the threshold specification in (2) were
relaxed, for example in the absence of monotonicity, it would be possible to improve over
the quantile bounds (10) and (11), as shown in Kitagawa (2010).

3. ESTIMATION

We adopt a flexible semiparametric specification. Following a large literature on quan-
tile regression, we assume that quantile functions are linear, that is,

(12) q(τ�x)= x′βτ� for all τ ∈ (0�1) and x ∈X �

Although our estimation strategy can be extended to deal with nonlinear specifications,
the linear quantile model is convenient for computation. We discuss a nonparametric
extension in the next section.

We assume that the copula function, and hence the functionGx, is indexed by a param-
eter vector ρ; that is,

Gx(τ�p)≡G(τ�p;ρ)= C(τ�p;ρ)
p

�

The statistical literature offers a number of convenient parsimonious specifications, in-
cluding the Gaussian, Frank, or Gumbel copulas. See Nelsen (1999) and Joe (1997) for
comprehensive references. Flexible families may be constructed, for example, by relying
on the Bernstein family of polynomials (Sancetta and Satchell (2004)). In all these exam-
ples, one may let the vector ρ depend on x.6 For simplicity, we omit the dependence of ρ
on x in the following.

The parametric assumptions on the copula are substantive. Restricting the analysis to
a finite-dimensional ρ allows us to focus on the case where ρ is point-identified and to
propose a simple estimation method. In addition, below we propose a bounds approach
to assess the influence on quantile estimates of the parametric assumptions made on the
copula.

Lastly, the propensity score p(z;θ) is specified as a known function of a parameter θ.
This assumption may be relaxed, at the cost of making the asymptotic analysis more in-
volved (see the next section).

The Functional Form of Selected Quantiles

Before describing the estimator, we first comment on the form of the conditional quan-
tiles given participation, when quantile functions of latent outcomes are linear as in (12).
The τ-quantile of outcomes of participants given z = (b�x) is, by (5),

(13) qd(τ� z)≡ F−1
Y |D=1�Z(τ|z)= x′βG−1(τ�p(z);ρ)�

5Note, however, that the Fréchet copula bounds do not satisfy (6) in general. By (8) and (9), the bounds on
Gx are generally tighter than the Fréchet bounds.

6For example, for scalar ρ ∈ (−1�1), one may specify ρ(x) = (ex
′γ − 1)/(ex′γ + 1), where γ is a vector of

parameters.
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Equation (13) makes it clear that sample selection affects all quantiles, and that quantile
functions of observed outcomes are generally non-additive in x and p(z). We have the
following result, where it is assumed that ρ does not depend on x.

PROPOSITION 2: Let τ ∈ (0�1). Suppose that ρ does not depend on x. Then z �→ qd(τ� z)
is non-additive in x and p(z), unless:

(i) all coefficients of βτ but the intercept are independent of τ, or
(ii) U and V are statistically independent.

Additive specifications such as qd(τ� z)= x′βτ+λτ(p(z)), for a smooth function λτ(p),
are sometimes used in applied work (see the review in Arellano and Bonhomme (2017)).
In contrast, in our framework, conditional quantiles of participants are non-additive.
Huber and Melly (2015) made a related point in a testing context. Correcting for sam-
ple selection thus requires shifting the percentile ranks of individual observations. We
now explain how this can be done in estimation.

3.1. Three-Step Estimation Strategy

Let (Yi�Di�Bi�Xi), i= 1� � � � �N , be an i.i.d. sample, with Zi ≡ (Bi�Xi). We propose to
compute selection-corrected quantile regression estimates in three steps. In the first step,
we compute θ̂, a consistent estimate of the propensity score parameter θ. In the second
step, we compute a consistent estimator ρ̂ of the copula parameter vector ρ. Lastly, given
θ̂ and ρ̂, for any given τ ∈ (0�1) we compute β̂τ, a consistent estimator of the τth quantile
regression coefficient.

The first step can be done using maximum likelihood. We now present the third and
second steps in turn.

Rotated Quantile Regression (Step 3)

Let us suppose that consistent estimators θ̂ and ρ̂ are available. Then, for any given
τ ∈ (0�1), we compute

β̂τ = argmin
b∈B

N∑
i=1

Di

[
Ĝτi

(
Yi −X ′

ib
)+ + (1 − Ĝτi)

(
Yi −X ′

ib
)−]
�(14)

where B is the parameter space for βτ, a+ = max(a�0), a− = max(−a�0), and

Ĝτi ≡G
(
τ�p(Zi; θ̂); ρ̂

)
�

Solving (14) amounts to minimizing a rotated check function, with individual-specific
perturbed τ. As with standard quantile regression, the optimization problem takes the
form of a simple linear program, and can thus be solved in a fast and reliable way. It
is instructive to compare the rotated quantile regression estimate β̂τ with the following
infeasible quantile regression estimate based on the latent outcomes:

β̃τ = argmin
b∈B

N∑
i=1

[
τ
(
Y ∗
i −X ′

ib
)+ + (1 − τ)(Y ∗

i −X ′
ib

)−]
�

We see that, in order to correct for selection in (14), τ is replaced by the selection-
corrected, individual-specific percentile rank Ĝτi.
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Estimating the Copula Parameter (Step 2)

From (5), we obtain the following conditional moment restrictions:

E
[
1
{
Y ≤X ′βτ

} −G(
τ�p(Z;θ);ρ)|D= 1�Z = z] = 0�

We propose to estimate the copula parameter ρ as

(15) ρ̂= argmin
c∈C

∥∥∥∥∥
N∑
i=1

L∑
�=1

Diϕ(τ��Zi)
[
1
{
Yi ≤X ′

i β̂τ�(c)
} −G(

τ��p(Zi; θ̂); c
)]∥∥∥∥∥�

where τ1 < τ2 < · · ·< τL is a finite grid on (0�1), ‖ · ‖ is the Euclidean norm, ϕ(τ�Zi) are
instrument functions with dimϕ≥ dimρ, and

β̂τ(c)≡ argmin
b∈B

N∑
i=1

Di

[
G

(
τ�p(Zi; θ̂); c

)(
Yi −X ′

ib
)+

(16)

+ (
1 −G(

τ�p(Zi; θ̂); c
))(
Yi −X ′

ib
)−]
�

Effectively, in this step we are estimating ρ together with βτ1� � � � �βτL . Hence, if the re-
searcher is only interested in βτ for τ ∈ {τ1� � � � � τL}, Step 3 is not necessary.

This step is computationally more demanding. In particular, the objective function
in (15) is not continuous, due to the presence of the indicator functions, and generally
non-convex. In practice, for low-dimensional ρ, one may use grid search, as in our appli-
cation. For higher-dimensional ρ, simulation-based methods such as simulated annealing
(see, e.g., Judd (1998)), or the pseudo-Bayesian approach of Chernozhukov and Hong
(2003), could be used. Importantly, evaluating the objective function is usually fast and
straightforward. The reason is that (16) is a linear programming problem, for which there
exist fast algorithms.7

In addition, in experiments we observed that using a large number of percentile values
τ� in (15) tends to smooth the objective function. In Section S2 of the Supplemental Ma-
terial, we consider a nonparametric quantile specification with discrete covariates, and
show that in this case an integrated version of the objective function in (15), with a con-
tinuum of τ values, is differentiable with respect to the copula parameter c under weak
conditions.

Finally, solving (15) is only one possibility to estimate the copula parameter. In Sec-
tion S3 of the Supplemental Material, we describe an alternative estimator of ρ that re-
lies on the copula restrictions (6). The method provides a fast and straightforward way to
obtain good starting values to minimize the objective function in (15). Another possibility
would be to estimate ρ using a likelihood approach, based on the semiparametric struc-
ture of the model. An interesting question, which we do not address in this paper, would
be to construct a semiparametric efficient estimator for ρ by exploiting the continuum of
moment restrictions in (6).

REMARK—Unconditional Quantiles: Once θ and ρ have been estimated, the param-
eters βτ are estimated by simple quantile regression using the rescaled percentile levels

7For example, the Matlab version of Morillo, Koenker, and Eilers is directly applicable to the problem at
hand. Available at: http://www.econ.uiuc.edu/~roger/research/rq/rq.m.

http://www.econ.uiuc.edu/~roger/research/rq/rq.m


10 M. ARELLANO AND S. BONHOMME

Ĝτi =G(τ�p(Zi; θ̂); ρ̂) in place of τ. So, the techniques developed in the context of or-
dinary quantile regression can be used in the presence of sample selection. As an exam-
ple, counterfactual distributions may be constructed as explained in Machado and Mata
(2005) and Chernozhukov, Fernández-Val, and Melly (2013). Specifically, the uncondi-
tional c.d.f. of Y ∗ may be estimated as a discretized or simulated version of

F̂Y ∗(y)= 1
N

N∑
i=1

∫ 1

0
1
{
X ′
i β̂τ ≤ y}dτ�

and unconditional quantiles can be estimated as q̂(τ)= inf{y� F̂Y ∗(y)≥ τ}. Also, a perva-
sive problem in quantile regression is that estimated quantile curves may cross each other
because of sampling error. The approach proposed by Chernozhukov, Fernández-Val, and
Galichon (2010), based on quantiles rearrangement, may also be applied in our context.8

3.2. Asymptotic Properties

In Section S4 of the Supplemental Material, we derive the asymptotic distributions of
ρ̂ and β̂τ for given τ. Under standard conditions for quantile regression estimators (as in
Koenker (2005)), an identification condition to be discussed below, and suitable differen-
tiability conditions on G, the estimators satisfy

(17)
√
N

(
β̂τ −βτ
ρ̂− ρ

)
d→N (0� Vτ)�

where ρ and βτ denote true parameter values. We provide an explicit expression for the
asymptotic variance Vτ, which can be estimated using an approach similar to the one in
Powell (1986). These results can be easily generalized to derive the asymptotic distribu-
tion for a finite number of quantiles (β̂τ1� � � � � β̂τL). An interesting extension is to derive
the large sample theory of the quantile process τ �→ √

N(β̂τ − βτ), which can be done
along the lines of Koenker and Xiao (2002) or Chernozhukov and Hansen (2006). Confi-
dence bands for unconditional effects may be derived using the results in Chernozhukov,
Fernández-Val, and Melly (2013). Alternatively, given the distributional characterization
in (17), confidence intervals may be estimated using subsampling (Politis, Romano, and
Wolf (1999)). In our empirical application, given the large sample sizes, subsampling is
computationally attractive relative to other methods such as the conventional nonpara-
metric bootstrap.

An important condition in the asymptotic analysis is the identification of ρ based on
the following unconditional moment restrictions:

(18)
L∑
�=1

E
[
Dϕ(τ��Z)

(
1
{
Y ≤X ′βτ�(ρ)

} −G(
τ��p(Z;θ);ρ))] = 0�

where βτ(c) solves the population counterpart to (16). A rank condition for local iden-
tification is readily obtained.9 Identification intuitively requires that the propensity score

8A difference with standard quantile regression concerns inference, as one needs to take into account that
ρ and θ have already been estimated when computing asymptotic confidence intervals.

9For example, when L= 1 and τ1 = τ, it suffices that the following matrix be full column rank:

E
[
Dϕ(τ�Z)X ′fZ

(
X ′βτ

)]
E

[
DXX ′fZ

(
X ′βτ

)]−1
E

[
DX∇G′

Z

] −E
[
Dϕ(τ�Z)∇G′

Z

]
�
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vary sufficiently conditionally on X , and that both ϕ and the ρ-derivative of G depend
on it.

3.3. Estimating Bounds

The above method to estimate the copula parameter ρ relies on the assumption that the
copula, and hence the quantile functions, are point-identified. In the absence of functional
form assumptions on the copula, both G and q(τ�x) are partially identified in general. In
particular, the quantiles of latent outcomes are bounded by (10) and (11).10 In practice, a
simple way to informally assess the influence of functional form assumptions on the results
is to compute estimates of the bounds in (10) and (11), obtained from the semiparametric
model.

Denoting px = supb p(x�b) the supremum of the support of the excluded variable B
for given X = x, the model implies the following bounds:11

(19) q(τ�x)≡ x′β
G−1(max( τ+px−1

px
�0)�px;ρ) ≤ q(τ�x)≤ x′βG−1(min( τpx

�1)�px;ρ) ≡ q(τ�x)�

Under the assumption that the support of B given X = x is independent of x, px can be
consistently estimated by p̂x = supi∈{1�����N}p(x�Bi; θ̂). As these estimates may be sensitive
to outliers, in the application we will also consider alternative estimates based on a trim-
ming approach. Consistent estimates of q(τ�x) and q(τ�x) are then obtained by replacing
px, βτ, and ρ, by p̂x, β̂τ , and ρ̂, respectively.

We are thus using our model as a semiparametric specification for the self-selected
conditional quantiles, and therefore for the bounds, which themselves are nonparamet-
rically identified. An alternative, fully nonparametric strategy, robust to violation of the
parametric assumptions on the copula, would be to construct estimators and confidence
sets for the identified sets of the copula and quantile functions. We will return to this
possibility in the conclusion.

4. EXTENSIONS

In this section, we briefly discuss several extensions of our approach. More details are
given in Section S5 of the Supplemental Material.

Nonparametric Quantile Regression

Consistency of the estimator described in Section 3 requires quantile linearity (12) to
hold, at least at all τ values of interest.12 Nonparametric estimators could be used instead.

where fZ denotes the conditional density of Y given D= 1 and Z, and ∇GZ = ∂G(τ�p(Z;θ);ρ)
∂c

.
10Note that (10) and (11) do not impose a linear representation of the quantile functions as in q(τ�X) =

X ′βτ . Under linearity, one could in principle derive tighter bounds, although such bounds would not be valid
under misspecification of the quantile functions.

11One can show that, given that G(·� ·;ρ) is a conditional copula, p �→G−1(min( τ
p
�1)�p) is non-increasing,

and p �→G−1(max( τ+p−1
p
�0)�p) is non-decreasing, for all τ ∈ (0�1).

12For example, if one is only interested in the median β1/2, when using Step 2 of the algorithm withL= 1 and
τ1 = 1/2, consistency will only require a linearity assumption on the conditional median; that is, q(1/2�x) =
x′β1/2.
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As an example, denoting Xi net of the constant as X̃i, one might consider replacing (15)–
(16) using the following local linear approach:

ρ̂= argmin
c∈C

∥∥∥∥∥
N∑
i=1

L∑
�=1

Diϕ(τ��Zi)
[
1
{
Yi ≤ q̂τ�(c� X̃i)

} −G(
τ��p(Zi; θ̂); c

)]∥∥∥∥∥�
where

q̂τ(c�x)≡ argmin
b0∈B0

min
b1∈B1

N∑
i=1

Diκ

(
X̃i − x
h

)[
G

(
τ�p(Zi; θ̂); c

)(
Yi − b0

− (X̃i − x)′b1

)+ + (
1 −G(

τ�p(Zi; θ̂); c
))(
Yi − b0 − (X̃i − x)′b1

)−]
�

where h is a vanishing bandwidth and κ is a kernel function (e.g., Chaudhuri (1991)).

Treatment Effects With Selection on Unobservables

As a direct extension of model (1)–(3), consider the following system of equations:

(20) Y ∗
0 = q(U0�X)� Y ∗

1 = q(U1�X)� Y = (1 −D)Y ∗
0 +DY ∗

1 �

where, in the spirit of Assumption A1, (U0�U1� V ) is assumed independent of Z givenX .
This model coincides with the standard potential outcomes framework in the treatment
effects literature (Vytlacil (2002)). In the context of the empirical application, Y ∗

0 = 0, and
Y ∗

1 is the partial equilibrium causal effect of working. In this framework, the quantile IV
method of Chernozhukov and Hansen (2005) relies on an assumption of rank invariance
or rank similarity which restricts the dependence between U0 and U1. Specifically, rank
invariance (respectively, similarity) requires the comonotonicity ofU0 andU1 (resp., given
V ), thus ruling out most patterns of sample selection. In contrast, in the identification
analysis, our approach leaves the joint distribution of U0, U1, and V givenX unrestricted.

The treatment effects literature has characterized quantities of economic interest,
which may be identified in model (20) absent rank invariance. Related to this paper,
Carneiro and Lee (2009) extended the analysis in Heckman and Vytlacil (2005) to identify
and estimate conditional distributions of potential outcomes. They provided conditions
under which conditional c.d.f.’s and quantiles of Y ∗

0 and Y ∗
1 are identified given V = p

and X = x, for p in the support of p(Z) given X = x. In estimation, Carneiro and Lee
specified potential outcomes as additive in X and an unobservable independent of Z. In-
terestingly, our approach may be used to estimate such conditional quantiles (or c.d.f.’s),
while allowing observables X and unobservables (U0�U1) to interact.13 At the same time,
as pointed out in Section 2, identification of the unconditional distributions of potential
outcomes in a nonseparable setup would require either identification at infinity or ana-
lytic extrapolation.14 In the absence of such conditions, unconditional quantiles may only
be bounded in general.

13Specifically, when applying our approach, one could parametrically specify the copulas of (U0�V ) and
(U1�V ) given X , or alternatively specify the trivariate copula of (U0�U1�V ) given X .

14A related though different extrapolation strategy was introduced in Brinch, Mogstad, and Wiswall (2015),
who relied on parametric restrictions on the marginal treatment effects functions.
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Other Extensions

In Section S5 of the Supplemental Material, we outline several additional extensions of
the framework. The first one is to allow for a nonparametric propensity score, instead of
a parametric specification. The second one is the construction of a test statistic to test for
the absence of sample selection. We also outline how to adapt the method to allow for
some regressors to be endogenous (as in Chernozhukov and Hansen (2005, 2006)), and
for outcomes to be partially censored (as in Powell (1986)).

5. WAGES AND LABOR MARKET PARTICIPATION IN THE UK

In this section, we apply our method to measure market-level changes in wage inequal-
ity in the UK. Moreover, we compare wages of males and females in the UK at different
quantiles, correcting for selection into work. Due to changes in employment rates, wage
inequality for those at work may provide a distorted picture of market-level inequality.
Our exercise decomposes actual changes in the aggregate wage distribution into different
interpretable sources (selection and non-selection components). Our procedure could
be standardized into building economic statistics, similar to other decomposition-based
statistics such as price indices adjusted for changes in quality.

In this application, the latent variable Y ∗ represents the opportunity cost of working
for each person, whether employed or not, at given employment rates. It is not a potential
outcome in the conventional treatment-effect sense, because Y ∗ depends on the market
price of skill, which may be affected by changes in participation rates. In order to account
for equilibrium effects on skill prices, in Section 6 we also propose an extension of the
method and we apply it to a counterfactual exercise.

5.1. Data and Methodology

We use data from the Family Expenditure Survey (FES) from 1978 to 2000. To con-
struct the sample, we closely follow previous work using these data: Gosling, Machin,
and Meghir (2000) and Blundell, Reed, and Stoker (2003), who focused on males, and
Blundell et al. (2007), who considered both males and females. We select individuals aged
23 to 59 who are not in full-time education, and drop observations for which education is
not reported, or for which wages are missing but the individual is working. Hourly wages
are constructed by dividing usual weekly pre-tax earnings by usual weekly hours worked.
In addition, we drop the self-employed from the sample. We end up with 77�630 observa-
tions for males, and 89�848 observations for females.

During the period of analysis, wage inequality increased sharply in the UK. For ex-
ample, in our sample, the logarithm of the 90/10 percentile ratio of male hourly wages
increased from 0�90 in 1978 to 1�34 in 2000. This is in line with previous evidence on
wage inequality (Gosling, Machin, and Meghir (2000)). Moreover, a comparison of mean
log-wages between males and females shows a mean log-wage gap of 0�44 in 1978, and a
mean gap of 0�30 in 2000. During the same period, the overall employment rate of males
fell from 92% to 80%. The mean employment rate of females also changed over the pe-
riod, though not in a monotone way. This suggests that correcting for selection into em-
ployment might be important. We now use our approach to provide selection-corrected
measures of wage inequality and gender wage gaps.

We use the quantile selection model to model log-hourly wages Y and employment
status D. Our controls X include linear, quadratic, and cubic time trends, four cohort
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TABLE I

DESCRIPTIVE STATISTICS (CONDITIONAL ON EMPLOYMENT)a

Mean Min Max q10 q50 q90

Males

Married
Log-wage 2�10 0�172 4�30 1�56 2�06 2�71
Propensity score 0�879 0�021 1�00 0�766 0�893 0�979

Single
Log-wage 1�99 0�319 4�28 1�45 1�95 2�58
Propensity score 0�753 0�259 1�00 0�574 0�765 0�916

Females

Married
Log-wage 1�64 −0�378 3�59 1�11 1�57 2�32
Propensity score 0�681 0�006 0�998 0�512 0�699 0�844

Single
Log-wage 1�78 −0�465 3�58 1�20 1�76 2�42
Propensity score 0�718 0�019 1�00 0�475 0�735 0�933

aSource: Family Expenditure Survey, 1978–2000. Note: The propensity score is estimated using a probit model.

dummies (born in 1919–1934, 1935–1944, 1955–1964, and 1965–1977, the baseline cate-
gory being 1945–1954), two education dummies (end of schooling at 17 or 18, and end of
schooling after 18), and 11 regional dummies. In addition, we include as regressors the
marital status and the number of kids split by age categories (six dummies, from 1 year
old to 17–18 years old). Our sample contains 75% of married men and 74% of married
women.

We follow Blundell, Reed, and Stoker (2003) and use their measure of potential out-
of-work (welfare) income, interacted with marital status, as our excluded regressor B.
This variable is constructed for each individual in the sample using the Institute of Fiscal
Studies (IFS) tax and welfare-benefit simulation model. We estimate the propensity score
using a probit model. In Table I, we report several descriptive statistics on the distribution
of log-wages, and on the distribution of the estimated propensity score, by gender and
marital status. Out-of-work income is a strong determinant of labor market participation.
For example, in the sample of married (respectively, single) males, the log-likelihood of
the probit model of participation increases from −21�454 to −20�438 (resp., −10�480 to
−10�275) when out-of-work income is added.

The main sources of variation in out-of-work income are the demographic composition
of households (age, household size) and the housing costs that households face, as well
as changes in policy over time. Our maintained assumption is that those determinants are
exogenous to the latent wage equation, and the participation equation satisfies a mono-
tonicity condition. Though not uncontroversial,15 out-of-work income provides a natural
choice for an excluded variable in this context. Moreover, variations in out-of-work in-

15For example, as argued by Blundell et al. (2007), the way the out-of-work income variable operates may
imply a positive correlation with potential wages, if individuals who earn more on the labor market have better
housing, hence a higher out-of-work income. Kitagawa (2010) tested the validity of independence assumptions
based on a discretization of X and B, and found a rejection in 5 out of 16 covariates cells.
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come over time are partly due to changes in policy, motivating the counterfactual analysis
that we will present at the end of this section.

Implementation

We specify the copula C(·� ·;ρ) as a member of the one-parameter Frank family (Frank
(1979)). We provide details on Frank copulas in Section S6 of the Supplemental Material.
We let the copula parameter be gender- and marital-status specific, as both dimensions
play an important role in potential out-of-work income. We will return to the choice of
the copula below. In addition, to compute ρ̂ in (15), we take τ� = �/10 for � = 1� � � � �9,
and ϕ(τ��Zi)= ϕ(Zi)= p(Zi; θ̂).16 Finally, we use grid search for computation of ρ̂, and
take 200 grid points.

5.2. Selection-Corrected Wage Distributions

On the nine panels of Figure 1, we plot the evolution of the log-wage deciles for men
(thick lines) and women (thin lines). The solid lines show the deciles of observed log-
wages, conditional on employment. The dashed lines show the selection-corrected deciles,
by gender. To compute the latter, we estimated the selection-corrected quantile regression
coefficients using our method, and we then simulated the wage distribution using the
method of Machado and Mata (2005), readjusting the percentile levels in order to correct
for sample selection.17

Focusing first on male wages, we see that correcting for sample selection makes a strong
difference at the bottom of the wage distribution. For example, at the 10% percentile,
male wages increased by 10% conditional on employment, while latent wages remained
broadly flat. We also see sizable differences between latent and observed wages at the
20% and 30% percentiles. There are smaller differences in the middle and at the top of
the distribution. In addition, differences across quantiles illustrate the sharp increase in
male wage inequality in the UK over the period.

The results for male wages are consistent with low-skilled individuals being progres-
sively driven out of the labor market. Our estimated copula has a rank correlation of
−0�24 for married males, and of −0�79 for singles,18 which means that individuals with
higher wages (higher U) tend to participate more (lower V ). Thus, associated with the
fall in participation over time, positive selection into employment implies that individuals
at the bottom of the latent wage distribution tend to become increasingly non-employed.
Selection into employment is stronger for singles than for married males. The 95% confi-
dence intervals for the rank correlation coefficients are (−0�35�−0�06) for married males,
and (−0�84�−0�42) for singles, respectively.19

16When considering a two-parameter copula, we take p(Zi; θ̂) and p(Zi; θ̂)2 as instrument functions. We
also estimated the model with ϕ(τ��Zi)= √

τ�(1 − τ�)p(Zi; θ̂), in order to give more weight to central quan-
tiles, and obtained very similar results. As already mentioned, here we do not attempt to address the question
of efficient estimation of ρ.

17We jointly simulate wages and participation decisions as follows. For every individual, we draw
(U(m)

i � V (m)
i ),m= 1� � � � �M , from the relevant copula. Then we compute Y(m)

i =Xiβ̂U(m)i
, andD(m)

i = 1{V (m)
i ≤

p̂(Zi)}. Finally, we compute unconditional quantiles, either latent or conditional or participation, as empirical
quantiles from the simulated data (Y (m)

i �D(m)
i ). In practice, we take M = 20, and we round τ in β̂τ to the

closest percentile.
18The rank (or “Spearman”) correlation of a copula C is given by: 12

∫ 1
0

∫ 1
0 uvdC(u�v)− 3.

19We computed the confidence intervals using subsampling. Following Chernozhukov and Fernández-Val
(2005), we chose the subsample size as a constant plus the square root of the sample size, where the constant
(≈1000) was taken to ensure reasonable finite sample performance of the estimator.
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FIGURE 1.—Wage quantiles, by gender. Note: FES data for 1978–2000. Quantiles of log-hourly wages, con-
ditional on employment (solid lines) and corrected for selection (dashed). Male wages are plotted in thick lines
(top lines in each graph), while female wages are in thin lines (bottom lines).

Looking now at female wages, we observe less difference between wages conditional
on employment and latent wages. Indeed, we estimate a copula with rank correlation of
−0�17 for married females, and of −0�08 for singles, suggesting that there is less positive
selection into employment for women than for men. A tentative explanation could be that
for females, non-economic factors play a bigger role in participation decisions. The con-
fidence intervals for the correlation coefficients are (−0�30�−0�01) for married females,
and (−0�24�0�16) for singles.

As a result of this evolution, the selection-corrected gender wage gap tends to decrease
over time. This is especially true at the bottom of the wage distribution. For example, at
the 10% percentile, the difference in log-wages between men and women decreases from
45% at the beginning of the period to 18% at the end. A comparable decrease can be
seen at the 20% and 30% percentiles. Hence, correcting for sample selection magnifies
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FIGURE 2.—Fit to wage quantiles, by gender (employed individuals). Note: FES data for 1978–2000. Quan-
tiles of log-hourly wages conditional on employment, data (solid lines) and model fit (dashed). Male wages are
plotted in thick lines (top lines in each graph), while female wages are in thin lines (bottom lines).

the reduction in the wage gap in this part of the distribution. At the top of the distribution,
the gap seems to decrease less, from 39% to 24% at the 90% percentile.

Model Fit

Figure 2 shows the model fit to the wage percentiles of employed workers. To predict
wage percentiles, we simulated wages using our parameter estimates. The results show
that the fit to wage quantiles is accurate at the top of the distribution for both genders. At
the bottom of the distribution, we observe some discrepancies, particularly for females.
In addition, we estimated the model allowing the Frank copula parameter to vary with
calendar time, on subsamples before and after 1990, in addition to gender and marital
status (not reported). We found some evidence of increasingly positive selection into em-
ployment for females.20 The fit to the selected wage quantiles improved slightly. At the
same time, quantiles of latent wages were comparable to the ones in Figure 1.

Choice of Copula

We then investigated the robustness of our results to the choice of the copula. The sym-
metry properties of the Frank copula are apparent in the first two rows of Figure 3, which
shows the contour plots of the copula densities that we estimated on the FES data.21 As
a specification check, we consider an encompassing two-parameter family, which we call
the “generalized Frank copula.” This family may capture different degrees of dependence
in different regions of the (U�V ) plane, as we explain in Section S6 of the Supplemental
Material. The estimated copula densities in the generalized Frank family are shown in
the last two rows of Figure 3. We see that, for both males and females, the differences
between the estimated Frank and generalized Frank copulas are relatively small. More-
over, as shown by Figure 4, the quantiles of latent wages are quite similar for both genders
when using a Frank or a generalized Frank copula.

20On U.S. data, Mulligan and Rubinstein (2008) documented that women’s selection into participation
shifted from being negative in the 1970s to being positive in the 1990s.

21As a graphical convention (common in the literature on copulas), we plot the copula density by rescaling
the margins so that they are standard normal. That is, if C(u�v) denotes the copula, we plot the contours of

(x� y) �→φ(x)φ(y)
∂2C

∂u∂v

(
Φ(x)�Φ(y)

)
�

where φ and Φ denote the standard normal density and c.d.f., respectively.
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FIGURE 3.—Contour plots of the copula. Note: FES data for 1978–2000. Contour plots of the estimated cop-
ula. Negative correlation indicates positive selection into employment. The first row shows the Frank copula,
while the second row shows the generalized Frank copula; see Section S6 of the Supplemental Material.

Lastly, we also estimated the model based on a Gaussian copula. With a Gaussian cop-
ula and Gaussian marginals, the quantile selection model boils down to the Heckman
(1979) model. Our approach makes it possible to combine a Gaussian copula with a
non-Gaussian outcome distribution given by (12). The results of this specification (not

FIGURE 4.—Wage quantiles, by gender (generalized Frank copula). Note: FES data for 1978–2000. Per-
centiles of log-hourly wages, conditional on employment (solid lines) and corrected for selection (dashed).
Male wages are plotted in thick lines (top lines in each graph), while female wages are in thin lines (bottom
lines).
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reported) are very similar to the ones based on the Frank copula. In particular, the Spear-
man correlation coefficients of the estimated copulas are almost identical.22

Bounds Estimates

As a further check of the influence of functional forms on the estimates, in Figure 5 we
report estimates of the bounds derived in equation (19). On the top panel, we plot bounds
estimates by gender. We see that bounds on wage quantiles for males (in dashed lines)
are very close to each other. The bounds for females are wider, though still informative.
However, the results for females are sensitive to the estimator of the supremum of the
propensity score (px) that we use. Larger participation rates are associated with smaller
values of out-of-work income. On the middle panel of Figure 5, we report estimates of the
bounds when trimming 1% of extreme observations in out-of-work income. We see that,
while the results for males are very stable, those for females are very different, showing
extremely wide bounds throughout the wage distribution. This reflects the fact that the
selection problem is more severe for females, as their employment rates are lower.

Lastly, on the bottom panel of Figure 5, we compare the bounds, for males, for two
education groups: statutory schooling (71% of the sample, in thin lines) and high-school
and college (29%, in thick lines). We use a trimmed estimator of the supremum of the
propensity score. We see that the bounds are narrow for more educated individuals, and
that they are wider for the low educated whose employment rates are lower. We observe
some evidence of an increase in the education gap over time, particularly at the median,
although the evidence after correcting for selection is more mixed. The graphs also show
evidence of an inequality increase within the education groups that we consider (similarly
as in Blundell et al. (2007)).

6. COUNTERFACTUALS IN THE PRESENCE OF EQUILIBRIUM EFFECTS

In this last section, we consider a simple equilibrium model of wage quantile func-
tions and non-random selection into work as a flexible tool for examining changes in
the distribution of wages over time. We show how the simplicity of linear quantiles can
be essentially preserved while embedding wage functions in a model of human capital,
employment decisions, and labor demand. We then use the model to recompute wage
and employment distributions in a counterfactual scenario where potential out-of-work
income is kept at its 1978 value.

6.1. Model and Computation

We abstract from hours of work and dynamics. Let rst be the skill price of a worker of
education level s in time period t. Let also h(s�x�u) be the amount of human capital of a
worker with education (or “skill level”) s, observed characteristics x (such as cohort and
gender), and unobserved ability u. The wage rate for an individual i of schooling level Si
in period t is

Wit = rSit · h(Si�Xit�Uit)�

22Dependence of the copula on additional covariates could also be relevant. In unreported results, we found
that higher education, conditional on gender and marital status, tends to be associated with more positive
selection into employment, particularly for females.
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FIGURE 5.—Estimated bounds on latent wage quantiles. Note: FES data for 1978–2000. Estimated bounds
on quantiles of log-hourly wages (dashed). The solid lines show the quantiles conditional on employment. Top
two panels: male wages are plotted in thick lines, female wages are in thin lines. Bottom panel: wages for
high-school and college are plotted in thick lines, wages for statutory schooling are in thin lines.

where there are two skill levels (Si ∈ {1�2}). Note that the human capital function h is
time-invariant.23

Letting Zit = (Bit�Xit), the individual work decision is

Dit = 1
{
r
Si
t h(Si�Xit�Uit)≥W R(Si�Zit�ηit)

}
�

23This assumption is called the “proportionality hypothesis” in Heckman and Sedlacek (1985).
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Let Xit ≡ (Si�Xit). The log-human capital function and log-reservation wage are speci-
fied as lnh(Si�Xit�Uit)≡X ′

itβ(Uit), and lnW R(Si�Zit�ηit)≡X ′
itγ(ηit)+B′

itϕ, so that the
participation decision is

Dit = 1
{
X

′
itγ(ηit)−X ′

itβ(Uit)≤ ln rSit −B′
itϕ

} = 1
{
Vit ≤ F

(
ln rSit −B′

itϕ�Xit

)}
�

where the composite errorX
′
it(γ(ηit)−β(Uit)) is assumed independent ofZit givenXit =

x with c.d.f. F(·�x), and Vit is its uniform transformation. In practice, we approximate the
propensity score by a single-index (probit) model of the form F(ln rSit −Z′

itψ).
Using wage and participation equations, our quantile selection approach allows one

to perform partial equilibrium counterfactual exercises where skill prices rst are kept con-
stant. In order to allow for equilibrium responses in skill prices, we now introduce a model
for labor demand. See Heckman, Lochner, and Taber (1998) and Lee and Wolpin (2006)
for related approaches in dynamic structural settings.

Labor Demand

Consider a one-sector economy with one physical capital input (which we assume fixed)
and two types of human capital. We assume a standard aggregate production function:
Ft(Lt�Kt)=AtL

α
t K

1−α
t , where Lt is a CES aggregator of the human capital inputs: Lt =

[atHφ
1t + (1 −at)Hφ

2t]1/φ. If φ= 1, the two labor skills are perfect substitutes, in which case
an increase in the supply of one type of human capital does not affect the relative skill
prices. The scope for equilibrium effects critically depends on the structure of production.

From the first-order conditions, we obtain

(21) ln
(
r1
t

r2
t

)
= ln

(
at

1 − at
)

+ (φ− 1) ln
(
H1t

H2t

)
�

In Appendix A.2, we discuss how to recover estimates of H1t �H2t , φ, and at from micro-
data based on (21). In practice, due to weak identification from our time series, we cali-
brate φ= 0�4 using Card and Lemieux’s (2001) estimate on UK data. We take α= 0�6 in
the results below. We varied α between 0�4 and 0�8 and found small effects on the results.

Counterfactual Equilibrium Skill Prices

Suppose we are interested in estimating the counterfactual equilibrium skill prices, ln r̃st
say, that would have prevailed under technology conditions in period t and the labor force
composition or the welfare policy in some other period.

Equilibrium log-skill prices satisfy the equations

ln rst = lnAt + lnα+ (1 − α) ln
(
Kt

Lt

)
+ lnast + (φ− 1) ln

(
Hst

Lt

)
�

where a1t ≡ at and a2t ≡ 1 − at . In addition, the labor supply equations imply

Hst

(
rst

) =
∑
Si=s

F
(
ln rst −Z′

itψ
)∫ 1

0
eX

′
itβ(u) dG

[
u�F

(
ln rst −Z′

itψ
);ρ]� s= 1�2�(22)

Lt =
(
a1t

[
H1t

(
r1
t

)]φ + a2t

[
H2t

(
r2
t

)]φ)1/φ
�(23)
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FIGURE 6.—Latent wage quantiles and counterfactual equilibrium latent wage quantiles, by gender. Note:
FES data for 1978–2000. Quantiles of log-hourly wages corrected for selection. Latent wage quantiles (solid
lines) and counterfactual general equilibrium latent wage quantiles (dashed). Male wages are plotted in thick
lines (top lines in each graph), while female wages are in thin lines (bottom lines).

The log-difference between observed and counterfactual skill prices is given by

(24) ln r̃st − ln rst = (1 − α) ln
(
Lt

L̃t

)
+ (φ− 1)

[
ln

(
H̃st

L̃t

)
− ln

(
Hst

Lt

)]
� s = 1�2�

where the counterfactual skill aggregates H̃st and L̃t satisfy (22)–(23) at prices (̃r1
t � r̃

2
t ).

Note that capital (which is fixed) and neutral technical progress are common to both sets
of prices and thus cancel out in (24).

Counterfactual log-skill prices ln r̃1
t and ln r̃2

t are then obtained as the solution to the
two nonlinear equations in (24), subject to (22)–(23). This fixed-point problem depends
on the following inputs: the parameters β, ψ, ρ, and rst (estimated using our quantile
selection method), the aggregate quantities Hst and Lt and the technological shocks at
(estimated as explained in Appendix A.2), and the parameters φ and α (which we take
from the literature). As starting value for the counterfactual r̃st we take the estimated rst ,
and we solve for the fixed point iteratively.

6.2. Results

Figure 6 shows the estimates of latent wage quantiles in two scenarios: when out-of-
work income is as in the data (solid lines), and in a counterfactual scenario where out-of-
work income is kept at its 1978 value (dashed). The specification that we use has some
differences compared to the one in Figure 1. In particular, here the two education groups
are college and non-college, the specification is pooled across genders, and controls are
interacted with gender.24 We present the results by gender.

We see that accounting for general equilibrium responses tends to lower latent coun-
terfactual quantiles throughout the distribution. This is due to the fact that in the coun-
terfactual scenario, out-of-work income is lower, thus increasing employment rates, and
as a result pushing skill prices down. General equilibrium effects appear to be relatively
small for both genders, although they seem more sizable at the bottom of the distribution.

Figure 7 shows actual employment rates (as predicted by the model), and employment
rates in the partial equilibrium and general equilibrium counterfactuals. We see that in the

24The fit of the model used in this subsection is shown in Section S7 of the Supplemental Material.
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FIGURE 7.—Employment (actual and counterfactual), by gender. Note: FES data for 1978–2000. Actual
employment rate predicted by the model (solid lines), counterfactual employment rate at constant prices
(dashed), and counterfactual employment rate at equilibrium prices (dotted). Male employment is plotted
in thick lines (top lines), while female employment is in thin lines (bottom lines).

counterfactual scenario, employment rates tend to increase (dashed lines). The dampen-
ing effect on employment that comes from the general equilibrium response of skill prices
is quantitatively small (dotted lines).

Lastly, Figure 8 shows the actual evolution of wages conditional on employment as pre-
dicted by the model (solid lines), and the evolution in the counterfactual scenario where
out-of-work income is kept at its 1978 value, with skill prices fixed (dashed) and with
skill prices adjusting through general equilibrium (dotted). We see that, in the partial
equilibrium counterfactual, wages of male workers tend to be lower at the bottom of the
distribution, due to positive selection into employment. In addition, general equilibrium
responses imply further reduction in wages. In the middle and at the top of the distribu-
tion, and for females, differences between actual and counterfactual evolution appear to
be smaller.

7. CONCLUSION

We have presented a three-step method to correct quantile regression estimates for
sample selection. In a first step, the parameters of the participation equation are esti-

FIGURE 8.—Wage quantiles conditional on employment (actual and counterfactual), by gender. Note: FES
data for 1978–2000. Quantiles of log-hourly wages conditional on employment. Actual quantiles predicted by
the model (solid lines), counterfactual quantiles in partial equilibrium (dashed), and counterfactual quantiles
in general equilibrium (dotted). Male wages are plotted in thick lines (top lines in each graph), while female
wages are in thin lines (bottom lines).
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mated. In a second step, the parameters of the copula linking the percentile error of the
outcome equation to the participation error are computed by minimizing a method-of-
moments objective function. In a third step, quantile parameters are computed by mini-
mizing a weighted check function, using a fast linear programming routine. The method
provides a simple and intuitive way to compute selection-adjusted quantile parameters.
Moreover, our application shows that such selection corrections for quantiles may be as
empirically relevant as in the standard regression context of the popular Heckman (1979)
sample selection model.

An important issue is the choice of the copula. An approach that treats the copula
nonparametrically is conceptually attractive, for example a sieve approach based on con-
ditional moment restrictions as in Chen and Pouzo (2009, 2012). It would be desirable
to allow the copula to be unspecified, and to conduct inference on the identified set of
quantile functions. The empirical application suggests that nonparametric bounds might
be informative when selection is not too severe (as in the case of men in our application).

APPENDIX

A.1. Proofs on Identification

PROOF OF LEMMA 1: Equation (6) is a direct application of (5), using the fact that by
Assumption A3, both Gx and FY |D=1�Z are strictly increasing in their first argument.

To show the second part, let x ∈X and let Gx satisfy (6). Pick a zx ∈Zx, and define

FY ∗|X(y|x)≡G−1
x

(
FY |D=1�Z(y|zx)�p(zx)

)
�

For all (z� y) in the support of (Z�Y) given X = x, we have

Gx

(
FY ∗|X(y|x)�p(z)

) =Gx

(
G−1
x

(
FY |D=1�Z(y|zx)�p(zx)

)
�p(z)

)
= FY |D=1�Z

(
F−1
Y |D=1�Z

(
FY |D=1�Z(y|zx)|zx

)|z)
= FY |D=1�Z(y|z)�

where we have used (6) to obtain the second equality. Q.E.D.

PROOF OF PROPOSITION 1: Let us start with (i). Evaluating (6) at z1 = z and z2 =
zx, and noting that G−1

x (τ�1)= τ, we have that Gx(τ�p(z))= FY |D=1�Z(F
−1
Y |D=1�Z(τ|zx)|z).

Hence Gx is identified. The identification of q then comes from (5) and Assumption A3.
Let us now suppose (ii). Let Gx and G̃x satisfy model (1)–(3), and let Assumptions A1

to A4 hold. Then, by (6), we have

Gx

[
G−1
x (τ�p2)�p1

] − G̃x

[
G̃−1
x (τ�p2)�p1

] = 0� for all (p1�p2) ∈Px ×Px�

Hence, for each τ ∈ (0�1), the function

(p1�p2) �→Gx

[
G−1
x (τ�p2)�p1

] − G̃x

[
G̃−1
x (τ�p2)�p1

]
�

which is real analytic, is zero on a product of two open neighborhoods. As a result, it is
zero everywhere on (0�1)× (0�1), and evaluating it at p2 = 1 leads to

Gx(τ�p1)− G̃x(τ�p1)= 0� for all p1 ∈ (0�1)�
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Hence Gx and G̃x coincide on (0�1)× (0�1). This implies that Gx, and hence q (as in the
first part of the proof), are identified. Q.E.D.

PROOF OF PROPOSITION 2: For clarity here we denote x = (x̃�1), where x̃ contains
all covariates but the constant term. Let also β̃ contain all β coefficients except the in-
tercept. Finally, let q̃d(x�p) = x′βG−1(τ�p;ρ). For q̃d(x�p) to be additive in x̃ and p, it is
necessary and sufficient that β̃G−1(τ�p;ρ) does not depend on p. This happens only if β̃τ
does not depend on τ, or if G−1(τ�p;ρ) does not depend on p. In the second case, U
and V are independent on the relevant support. For example, if the conditional support
of p(Z) contains 1, taking p= 1 implies that G−1(τ�p;ρ)= τ for all (τ�p), so U and V
are independent. Q.E.D.

A.2. Estimating the Elasticity of Substitution

The estimation of equation (21) is based on time series aggregate data. We use the
micro-data to construct time series of the relevant aggregates. The time series of the log-
relative price of skill ln(̂r1

t /̂r
2
t ) is obtained from the estimation of the wage functions. Time

series of relative aggregate labor supplies can be estimated by aggregation of individual
units of human capital of employed workers:

ln
(̂
H1t

H2t

)
= ln

∑
Si=1

Wit

r̂1
t

− ln
∑
Si=2

Wit

r̂2
t

= ln
(∑
Si=1

Wit/
∑
Si=2

Wit

)
− ln

(̂
r1
t /̂r

2
t

)
�

The log ratio of factor-specific productivities ln( at
1−at ) is allowed to vary over time to

capture skill-biased technical change. It is specified as a trend λ(t) plus an unobservable
shock εt . The equation to be estimated is therefore

(A.1) ln
(̂
r1
t /̂r

2
t

) = λ(t)+ (φ− 1) ln(Ĥ1t/Ĥ2t)+ εt�
This equation was estimated on aggregate U.S. data by Katz and Murphy (1992), who
obtained φ̂ = 0�3. A comparable estimate on UK data in Card and Lemieux (2001) is
φ̂= 0�4. We then estimate at as

ât ≡Λ
(
ln

(̂
r1
t /̂r

2
t

) − (φ̂− 1) ln(Ĥ1t/Ĥ2t)
)
�

where Λ(r)= exp(r)/(1 + exp(r)).
Finally, note that the explanatory variable ln(Ĥ1t/Ĥ2t) is likely to be correlated with

εt in (A.1), in which case OLS estimates are inconsistent. Natural instrumental variables
would be aggregates (by skill) of labor supply shifters such as potential out-of-work wel-
fare income.
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