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S1. BOUNDS ANALYSIS

WE SHOW THAT the quantile bounds (10) and (11) cannot be improved upon. In the anal-
ysis, we omit the x subscript for conciseness. Throughout, we work under the assumption
that the model is correctly specified. Hence there exists a copula C0 (with conditional cop-
ulaG0) and a c.d.f. F0, which are the true copula and c.d.f. of (U�V ) and Y ∗, respectively.
Let P denote the support of p(Z), and let p= supP p.

Let G̃ be a conditional copula strictly increasing in its first argument, and let us define
the following subcopula:

(S1) C(τ�p)≡ C0

(
G−1

0

(
G̃(τ�p)�p

)
�p
)
� for all (τ�p) ∈ (0�1)×P �

It is simple to see that C is a subcopula.1 It can thus be extended to a copula on (0�1)×
(0�1) (e.g., Lemma 2.3.5 in Nelsen (1999)). With some abuse of notation, we denote the
extension as C, and denote G(τ�p)= C(τ�p)/p.

Lastly, we assume that the supports of Y ∗ and Y coincide, denote the support as Y , and
we let

(S2) F(y)≡ G̃−1
(
G0

(
F0(y)�p

)
�p
)
� for all y ∈Y �

Note that F is a c.d.f.
Let (Ũ� Ṽ ) be a bivariate random variable drawn from C, independently of Z. Let

D̃ = 1{Ṽ ≤ p(Z)}, Ỹ ∗ = F−1(Ũ), and Ỹ = Ỹ ∗ if D̃ = 1. We start by showing that the
distributions of (Ỹ � D̃�Z) and (Y�D�Z) coincide. To see this, note that

Pr(Ỹ ≤ y|D̃= 1�Z = z)=G
(
F(y)�p(z)

)
=G

(
G̃−1

(
G0

(
F0(y)�p

)
�p
)
�p(z)

)
=G0

(
F0(y)�p(z)

)
= Pr(Y ≤ y|D= 1�Z = z)�

where we have used (S2) and (S1) in the second and third equalities, respectively.
Finally, to see that F in (S2) can get arbitrarily close to the bounds in (10) and (11),

we take G̃ to be arbitrarily close to the lower and upper Fréchet copula bounds. For
the upper bound, we take a conditional copula G̃ that satisfies Assumption A3 and is
arbitrarily close to (τ�p) �→ min( τ

p
�1). Similarly, for the lower bound, we take a G̃ that

satisfies Assumption A3 and is arbitrarily close to (τ�p) �→ max( τ+p−1
p
�0).2

1This is because C(τ�0)= C(0�p)= 0, and C is two-increasing; that is, C(τ2�p2)−C(τ2�p1)−C(τ1�p2)+
C(τ1�p1)≥ 0 for τ1 ≤ τ2 and p1 ≤ p2.

2For example, one may take G̃(τ�p)= Cθ(τ�p)/p for θ > 0, where

Cθ(τ�p)≡ 1
2(θ− 1)

(
1 + (τ+p)(θ− 1)−

√(
1 + (τ+p)(θ− 1)

)2 − 4τpθ(θ− 1)
)
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S2. NONPARAMETRIC SPECIFICATION WITH DISCRETE COVARIATES

Consider a model where covariates X and Z are discrete, with a nonparametric quan-
tile specification:

q(τ�X)=X ′βτ =
K∑
k=1

βτk1{X = xk}�

with xk denoting the points of support of X . Let Gk(τ� c) denote the mean of G(τ�p(Zi;
θ̂); c) for participants in cell Xi = xk. Let also r̂i denote the empirical rank of Yi in the
outcome distribution, conditional on (Di = 1�Xi). By (16), x′

kβ̂τk(c) is simply the empir-
ical Gk(τ� c)-quantile of Yi conditional on (Di = 1�Xi = xk). It follows that, conditional
on (Di = 1�Xi = xk), Yi ≤X ′

i β̂τ(c) is equivalent to r̂i ≤Gk(τ� c).
Let us replace the finite sum in (15) by an integral with respect to a continuous function

κ(τ). The above shows that, in the model with discrete covariates, ρ̂ minimizes∥∥∥∥∥
N∑
i=1

K∑
k=1

∫ 1

0
Di1{Xi = xk}ϕ(τ�Zi)

× [
1
{̂
ri ≤Gk(τ� c)

}−G(τ�p(Zi; θ̂); c)]κ(τ)dτ
∥∥∥∥∥�

Using the change in variables u ≡ Gk(τ� c), we equivalently have that ρ̂ minimizes the
following objective:∥∥∥∥∥

N∑
i=1

K∑
k=1

∫ 1

0
Di1{Xi = xk}ϕ

(
G

−1

k (u� c)�Zi
)

× [
1{̂ri ≤ u} −G(G−1

k (u� c)�p(Zi; θ̂); c
)]
κ
(
G

−1

k (u� c)
)∂G−1

k (u� c)

∂u
du

∥∥∥∥∥�
which is continuously differentiable with respect to c as long as ϕ, κ, G, and G

−1

k , ∂G
−1
k

∂u
,

are continuously differentiable with respect to τ and c, respectively.

S3. AN ALTERNATIVE ESTIMATOR FOR THE COPULA PARAMETER

From (6) we have, for all x ∈X and (z1� z2) ∈Zx ×Zx,

E
(
1
{
Y ≤ qd(τ� z2)

}|D= 1�Z = z1

)=G[G−1
(
τ�p(z2;θ);ρ

)
�p(z1;θ);ρ

]
�

where qd(τ� z2) denotes the τ-quantile of Y conditional on (D= 1�Z = z2).

is the Plackett copula family (e.g., Smith (2003)). Lower and upper Fréchet bounds correspond to θ→ 0 and
θ→ +∞, respectively.
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Given consistent estimates q̂d(τ� z) and θ̂, we thus propose estimating ρ by minimizing
the following objective with respect to c:

N∑
i=1

∑
j �=i

L∑
�=1

Di

(
1
{
Yi ≤ q̂d(τ��Bj�Xi)

}
−G[G−1

(
τ��p(Bj�Xi; θ̂); c

)
�p(Bi�Xi; θ̂); c

])2
�

In case covariates are discrete, the qd(τ� z) may be estimated as sample quantiles, cell-
by-cell, as in Chamberlain (1993). Alternatively, when covariates are continuous, non-
parametric quantile regression methods may be used, such as the series-based quantile
regression estimator of Belloni, Chernozhukov, and Fernández-Val (2011). The asymp-
totic properties of such estimators of ρ could be characterized using U-process techniques
(e.g., Jochmans (2013)), although we leave this analysis to future work.

The method can be iterated (possibly multiple times). Recall that the observed quan-
tiles satisfy qd(τ� z)= x′βG−1(τ�p(z);ρ). Hence, given estimates ρ̂ and β̂, one could estimate

q̃d(τ� z)≡ x′β̂G−1(τ�p(z);ρ̂)�

and update ρ by minimizing

N∑
i=1

∑
j �=i

L∑
�=1

Di

(
1
{
Yi ≤ q̃d(τ��Bj�Xi)

}
−G[G−1

(
τ��p(Bj�Xi; θ̂); c

)
�p(Bi�Xi; θ̂); c

])2
�

S4. ASYMPTOTIC PROPERTIES

In this section, we start by deriving the asymptotic distribution of β̂τ given a consistent
and asymptotically normal estimator of the copula parameter ρ. Then, in the second part
of the section, we derive the joint asymptotic distribution of β̂τ and ρ̂, for ρ̂ given by (15).
The derivations are standard (e.g., Section 7 in Newey and McFadden (1994)).

S4.1. Analysis Conditional on a Consistent and Asymptotically Normal Estimator of ρ

Let

giτ ≡Di

(
1
{
Yi ≤X ′

iβτ
}−G(τ�p(Zi;θ);ρ))�

We make the following assumptions.

ASSUMPTION S1:
(i) There exists a positive definite matrix Στ such that

√
N

⎛⎜⎜⎜⎝
1
N

N∑
i=1

Xigiτ

θ̂− θ
ρ̂− ρ

⎞⎟⎟⎟⎠ d→N (0�Στ)�
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(ii) The c.d.f. of Y given Z = Zi and Di = 1 is absolutely continuous, with continuous
density fi bounded away from zero and infinity at the points X ′

iβτ, i= 1� � � � �N .
(iii) The function G is continuously differentiable with respect to its second and third ar-

guments, with derivatives ∂pG and ∂ρG, respectively. The propensity score p(·;θ) is continu-
ously differentiable with respect to its second argument, with derivative ∂θp.

(iv) There exist a positive definite matrix Jτ, and matrices P1τ and P2τ, such that

Jτ = plim
N→∞

1
N

N∑
i=1

p(Zi;θ)XiX
′
ifi
(
X ′
iβτ

)
�

P1τ = plim
N→∞

1
N

N∑
i=1

p(Zi;θ)Xi

(
∂θp(Zi;θ)

)′
∂pG

(
τ�p(Zi;θ);ρ

)
�

P2τ = plim
N→∞

1
N

N∑
i=1

p(Zi;θ)Xi

(
∂ρG

(
τ�p(Zi;θ);ρ

))′
�

Part (i) requires that 1
N

∑N

i=1Xigiτ, θ̂, and ρ̂ jointly satisfy an asymptotic normality re-
sult. In particular, this requires ρ to be point-identified from (18). Under weak regularity
conditions, it is easy to show that

1√
N

N∑
i=1

Xigiτ
d→N

(
0�E

[
Gτi(1 −Gτi)p(Zi;θ)XiX

′
i

])
�

where we have denoted

(S3) Gτi ≡G
(
τ�p(Zi;θ);ρ

)
�

Part (ii) is standard in quantile regression (e.g., Theorem 4.2 in Koenker and Bassett
(1978)). The only difference here is that we work with the c.d.f. of Y given Z, and not
given X . Part (iii) requires that the copula and propensity score be differentiable. Most
of the usual parametric families of copulas are differentiable in both their arguments.
Exceptions are piecewise-constant empirical copulas, which are not continuous. Lastly,
part (iv) requires the existence of moments.

THEOREM S1: Let τ ∈ (0�1), and let Assumptions A1 to A4 and S1 hold. Then, as N
tends to infinity,

√
N(β̂τ −βτ) d→N

(
0� J−1

τ PτΣτP
′
τJ

−1
τ

)
�

where Pτ ≡ [Idimβ�−P1τ�−P2τ], and Jτ�P1τ�P2τ are given in Assumption S1.

Theorem S1 provides the asymptotic distribution of quantile estimates, corrected for
the fact that θ̂ and ρ̂ have been estimated. Note that, in the absence of sample selection,
the formula boils down to a well-known expression (Koenker (2005, p. 120)).

PROOF: By a standard result in quantile regression, the following approximate moment
condition is satisfied (see, e.g., Theorem 3.3. in Koenker and Bassett (1978)):

(S4)
1
N

N∑
i=1

Xigi(τ� β̂τ� θ̂� ρ̂)=Op
(

1
N

)
�
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where

gi(τ�b�a� c)≡Di

(
1
{
Yi ≤X ′

ib
}−G(τ�p(Zi;a); c))�

Under standard conditions, we have

1
N

N∑
i=1

Xigi(τ� β̂τ� θ̂� ρ̂)= Op

(
1
N

)

= Ê[Xigiτ] + ∂E[Xigiτ]
∂β′ (β̂τ −βτ)+ ∂E[Xigiτ]

∂θ′ (θ̂− θ)

+ ∂E[Xigiτ]
∂ρ′ (ρ̂− ρ)+ op

(
1√
N

)
�

where Jτ = ∂E[Xigiτ]
∂β′ , P1τ = − ∂E[Xigiτ]

∂θ′ , and P2τ = − ∂E[Xigiτ ]
∂ρ′ exist by Assumption S1, parts (ii),

(iii), and (iv), and Ê[Zi] = 1
N

∑N

i=1Zi denotes a sample mean. Hence, as Jτ is non-singular,

β̂τ −βτ = −J−1
τ

[
Ê[Xigiτ] − P1τ(θ̂− θ)− P2τ(ρ̂− ρ)]+ op

(
1√
N

)
(S5)

= −J−1
τ Pτ

⎛⎝Ê[Xigiτ]
θ̂− θ
ρ̂− ρ

⎞⎠+ op
(

1√
N

)
�

The result then comes from part (i) in Assumption S1. Q.E.D.

S4.2. Joint Analysis of β̂τ and ρ̂

We now derive the joint asymptotic distribution of β̂τ and ρ̂, for ρ̂ given by (15). For
simplicity, we focus on the just-identified case, where ρ and ϕ have the same dimensions.3

The estimation of θ, ρ, and βτ1� � � � �βτL is based on the following just-identified system
of moment restrictions (in addition to the score equations for θ):

L∑
�=1

E
[
ϕ(τ��Zi)gi(τ��βτ�� θ�ρ)

]= 0�

E
[
Xigi(τ1�βτ1� θ�ρ)

]= 0�

· · · · · · · · ·
E
[
Xigi(τL�βτL� θ�ρ)

]= 0�

Throughout this subsection, we assume that the conditions of Theorem 7.2 in Newey
and McFadden (1994) are satisfied, so the estimators are root-N consistent and jointly
asymptotically normal. We gather relevant notation in the following assumption, with the
aim of deriving explicit expressions for asymptotic variances.

3Note that the instrument function ϕ(τ�Zi)= p(Zi; θ̂) used in Section 5 depends on θ̂. This slightly affects
the formula for the asymptotic variance. For simplicity, here we do not account for this dependence.
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ASSUMPTION S2:
(i) There exists a positive definite matrix H, and a function Si ≡ s(Di�Zi), such that

(S6) θ̂− θ= −H−1
Ê[Si] + op

(
1√
N

)
�

(ii) For all �, there exist a positive definite matrix J̃τ� , and matrices P̃1τ� and P̃2τ� , such that

J̃τ� = plim
N→∞

1
N

N∑
i=1

p(Zi;θ)ϕ(τ��Zi)X ′
ifi
(
X ′
iβτ�

)
�

P̃1τ� = plim
N→∞

1
N

N∑
i=1

p(Zi;θ)ϕ(τ��Zi)
(
∂θp(Zi;θ)

)′
∂pG

(
τ��p(Zi;θ);ρ

)
�

P̃2τ� = plim
N→∞

1
N

N∑
i=1

p(Zi;θ)ϕ(τ��Zi)
(
∂ρG

(
τ��p(Zi;θ);ρ

))′
�

(iii) The following matrix inverse exists:

Aρ ≡
[

L∑
�=1

(
P̃2τ� − J̃τ�J−1

τ�
P2τ�

)]−1

�(S7)

Part (i) will be satisfied if θ̂ is asymptotically linear, for example when it is a regular
maximum likelihood estimator. Parts (ii) and (iii) require that some moments exist.

Define the following matrices:

Bρ ≡ −Aρ

[
J̃τ1J

−1
τ1
� � � � � J̃τLJ

−1
τL

]
�(S8)

Cρ ≡Aρ

(
L∑
�=1

[
P̃1τ� − J̃τ�J−1

τ�
P1τ�

]
H−1

)
�(S9)

and, for a given τ ∈ (0�1):

Aβ(τ)≡ J−1
τ P2τAρ�(S10)

Bβ(τ)≡ J−1
τ P2τBρ�(S11)

Cβ(τ)≡ J−1
τ

(
P2τCρ − P1τH

−1
)
�(S12)

Then, let

Δτ ≡
(
Aβ(τ) −J−1

τ Bβ(τ) Cβ(τ)
Aρ 0 Bρ Cρ

)
�

Lastly, let

σi�m ≡ min{Gτ�i�Gτmi} −Gτ�iGτmi�

σi�(τ)≡ min{Gτ�i�Gτi} −Gτ�iGτi�

σi(τ)≡Gτi(1 −Gτi)�
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where Gτi is given by (S3), and define

(S13) Ωτ ≡

⎛⎜⎜⎜⎜⎝
Ω1�1
τ Ω1�2

τ · · · Ω1�L+2
τ 0

Ω2�1
τ Ω2�2

τ · · · Ω2�L+2
τ 0

· · · · · · · · · · · · · · ·
ΩL+2�1
τ ΩL+2�2

τ · · · ΩL+2�L+2
τ 0

0 0 · · · 0 E
[
SiS

′
i

]

⎞⎟⎟⎟⎟⎠ �
where Ωτ is symmetric, and

Ω1�1
τ ≡

L∑
�=1

L∑
m=1

E
[
σi�mp(Zi;θ)ϕ(τ��Zi)ϕ(τm�Zi)′

]
�

Ω1�2
τ ≡

L∑
�=1

E
[
σi�(τ)p(Zi;θ)ϕ(τ��Zi)X ′

i

]
�

Ω1�2+m
τ ≡

L∑
�=1

E
[
σi�mp(Zi;θ)ϕ(τ��Zi)X ′

i

]
� m= 1� � � � �L�

Ω2�2
τ ≡ E

[
σi(τ)p(Zi;θ)XiX

′
i

]
�

Ω2�2+m
τ ≡ E

[
σim(τ)p(Zi;θ)XiX

′
i

]
� m= 1� � � � �L�

Ω2+��2+m
τ ≡ E

[
σi�mp(Zi;θ)XiX

′
i

]
� �= 1� � � � �L�m= 1� � � � �L�

We have the following result.

THEOREM S2: Let Assumptions A1 to A4, S1, and S2 hold. Suppose that dimϕ= dimρ.
Then,

√
N

(
β̂τ −βτ
ρ̂− ρ

)
d→N

(
0�ΔτΩτΔ

′
τ

)
�

PROOF: As in the proof of Theorem S1, we start with an approximate moment equa-
tion:

L∑
�=1

Ê
[
ϕ(τ��Zi)gi(τ�� β̂τ�� θ̂� ρ̂)

]= op
(

1√
N

)
�

Moreover, we have
L∑
�=1

Ê
[
ϕ(τ��Zi)gi(τ�� β̂τ�� θ̂� ρ̂)

]=
L∑
�=1

{
Ê
[
ϕ(τ�� �Zi)giτ�

]+ J̃τ�(β̂τ� −βτ�)

− P̃1τ�(θ̂− θ)− P̃2τ�(ρ̂− ρ)}+ op
(

1√
N

)
�

So, by (S5),

op

(
1√
N

)
=

L∑
�=1

{
Ê
[
ϕ(τ��Zi)giτ�

]− P̃1τ�(θ̂− θ)− P̃2τ�(ρ̂− ρ)

− J̃τ�
(
J−1
τ�

[
Ê[Xigiτ�] − P1τ�(θ̂− θ)− P2τ�(ρ̂− ρ)])}+ op

(
1√
N

)
�
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So, by (S6),

ρ̂− ρ=
[

L∑
�=1

(
P̃2τ� − J̃τ�J−1

τ�
P2τ�

)]−1

×
{

L∑
�=1

Ê
[
ϕ(τ��Zi)giτ�

]−
L∑
�=1

J̃τ�J
−1
τ�
Ê[Xigiτ�]

+
(

L∑
�=1

[
P̃1τ� − J̃τ�J−1

τ�
P1τ�

]
H−1

)
Ê[Si]

}
+ op

(
1√
N

)
�

Hence:

ρ̂− ρ=Aρ

(
L∑
�=1

Ê
[
ϕ(τ��Zi)giτ�

])+BρÊ[Xigi] +CρÊ[Si] + op
(

1√
N

)
�

where Aρ, Bρ, and Cρ are given by (S7)–(S9), and

Ê[Xigi] =
⎛⎝Ê[Xigiτ1]· · ·
Ê[XigiτL]

⎞⎠ �
Let now τ ∈ (0�1). Using (S5),

β̂τ −βτ = −J−1
τ

[
Ê[Xigiτ] − P1τ(θ̂− θ)− P2τ(ρ̂− ρ)]+ op

(
1√
N

)

= −J−1
τ

[
Ê[Xigiτ] + P1τH

−1
Ê[Si]

− P2τ

(
Aρ

(
L∑
�=1

Ê
[
ϕ(τ��Zi)giτ�

])+BρÊ[Xigi] +CρÊ[Si]
)]

+ op
(

1√
N

)
�

So

β̂τ −βτ =Aβ(τ)

(
L∑
�=1

Ê
[
ϕ(τ��Zi)giτ�

])− J−1
τ Ê[Xigiτ]

+Bβ(τ)Ê[Xigi] +Cβ(τ)Ê[Si] + op
(

1√
N

)
�

where Aβ(τ), Bβ(τ), and Cβ(τ) are given by (S10)–(S12).
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Next, denote

ψiτ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

L∑
�=1

ϕ(τ��Zi)giτ�

Xigiτ
Xigiτ1· · ·
XigiτL
Si

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

From the above, we have

√
N

(
β̂τ −βτ
ρ̂− ρ

)
d→N (0� Vτ)�

with

Vτ =
(
Aβ(τ) −J−1

τ Bβ(τ) Cβ(τ)
Aρ 0 Bρ Cρ

)
×E

(
ψiτψ

′
iτ

)(Aβ(τ) −J−1
τ Bβ(τ) Cβ(τ)

Aρ 0 Bρ Cρ

)′
�

Finally, we check that E(ψiτψ′
iτ)=Ωτ given by (S13):

E

[(
L∑
�=1

ϕ(τ��Zi)giτ�

)(
L∑
m=1

ϕ(τm�Zi)giτm

)′]

=
L∑
�=1

L∑
m=1

E
[
σi�mp(Zi;θ)ϕ(τ��Zi)ϕ(τm�Zi)′

]
�

and similarly,

E

[(
L∑
�=1

ϕ(τ��Zi)giτ�

)
(Xigiτm)

′
]

=
L∑
�=1

E
[
σi�mp(Zi;θ)ϕ(τ��Zi)X ′

i

]
�

E
[
(Xigiτ�)(Xigiτm)

′]= E
[
σi�mp(Zi;θ)XiX

′
i

]
�

and, as Si is a function of (Di�Zi), we have E[giτ�S′
i] = 0.

This completes the proof of Theorem S2. Q.E.D.

Estimating the Asymptotic Variance

To construct an empirical counterpart of the asymptotic variance appearing in Theorem
S1, note that all matrices but Jτ can be estimated by sample analogs, replacing the popu-
lation expectations by empirical means. Moreover, following Powell (1986), a consistent
estimator of Jτ is

Ĵτ = 1
2NhN

N∑
i=1

1
{∣∣̂εi(τ)∣∣≤ hN}DiXiX

′
i �
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where ε̂i ≡ Yi −X ′
i β̂τ , and hN is a bandwidth that satisfies hN → 0 and Nh2

N → +∞ as N
tends to infinity. We may proceed similarly to estimate J̃τ that appears in Theorem S2.

S5. EXTENSIONS

Nonparametric Propensity Score

Although the paper focuses on the case where the propensity score is parametrically
specified, our approach can accommodate a nonparametric modeling of p(Z) as well.
A difficulty is that the G function has p(Z) in the denominator. A similar problem arises
in Buchinsky and Hahn’s (1998) censored quantile regression estimator. Similarly as in
Buchinsky and Hahn, one could trim out the observations for which p̂(Zi) < c, where
p̂(Z) is a nonparametric estimate (e.g., a kernel-based Nadaraya–Watson estimator) and
c > 0 is a vanishing trimming threshold. We leave this extension to future work.

Testing for the Absence of Sample Selection

Under the null hypothesis of absence of sample selection, we haveG(τ�p(Z;θ);ρ)= τ.
So, βτ satisfies

E
[
1
{
Y ≤X ′βτ

}− τ|D= 1�Z = z]= 0� for all τ ∈ (0�1)�

This motivates using a test statistic of the form

S =
∥∥∥∥∥

L∑
�=1

N∑
i=1

Diϕ(τ��Zi)
(
1
{
Yi ≤X ′

i β̂τ�
}− τ�

)∥∥∥∥∥
2

�

where ϕ(τ�Zi) are instrument functions, and β̂τ is the quantile regression estimate of the
τ-specific slope coefficient, computed on the sample of participants (Di = 1).

Endogeneity

Let us assume that the latent outcome is given by the following linear quantile model:

(S14) Y ∗ =E′αU +X ′βU�

where the percentile level U is independent of X , but may be correlated with the en-
dogenous regressor E. As before, the participation equation is given by (2). Suppose that
(U�V ) is independent of Z givenX . Assume also that q(τ�X�E)≡E′ατ+X ′βτ is strictly
increasing in its first argument. Then, for any τ ∈ (0�1),

(S15) E
[
1
{
Y ≤E′ατ +X ′βτ

}−G(τ�p(Z;θ);ρ) |D= 1�Z = z]= 0�

To estimate ρ, θ, and {ατ�βτ} for any τ ∈ (0�1), one can use the following three-step es-
timation method, which extends Chernozhukov and Hansen’s (2006) estimator to correct
for selection. In the first step, we compute θ̂. In the second step, we compute ρ̂ as

ρ̂= argmin
c

∥∥∥∥∥
L∑
�=1

N∑
i=1

Diϕ(τ��Zi)
(
1
{
Yi ≤E′

iα̃τ�(c)+X ′
i β̃τ�

(̃
ατ�(c); c

)}
−G(τ��p(Zi; θ̂); c))

∥∥∥∥∥�
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where, for μτ(Zi) a dimα× 1 vector of instruments, we have defined

(
β̃τ(α; c)� γ̃τ(α; c))≡ argmin

(b�g)

N∑
i=1

Di

{
G
(
τ� p̂(Zi; θ̂); c

)(
Yi −X ′

ib−μτ(Zi)′g
)+

+ (
1 −G(τ� p̂(Zi; θ̂); c))(Yi −X ′

ib−μτ(Zi)′g
)−}
�

and

α̃τ(c)≡ argmin
a

∥∥γ̃τ(a; c)∥∥�
Lastly, once ρ̂ has been estimated, we compute α̂τ ≡ α̃τ(ρ̂), and β̂τ ≡ β̃τ(̂ατ; ρ̂).

Censoring

Suppose that Y ∗ is censored when Y ∗ < y0, where y0 is a known threshold, so that we
observe Y = max{Y ∗� y0} when D = 1. From the equivariance property of quantiles, the
τ-quantile of max{Y ∗� y0} is max{X ′βτ� y0}. So, under Assumptions A1 to A4,

(S16) Pr
(
Y ≤ max

{
X ′βτ� y0

}|D= 1�Z = z)=G(τ�p(z;θ);ρ)�
This implies that the G(τ�p(Z;θ);ρ)-quantile of observed outcomes coincides with

max{X ′βτ� y0}. The β coefficients can thus be estimated as in the main text, replacingX ′
ib

and X ′
i β̂τ(c) by max{X ′

ib� y0} and max{X ′
i β̃τ(c)� y0}, respectively, where

β̃τ(c)≡ argmin
b

N∑
i=1

Di

{
G
(
τ� p̂(Zi; θ̂); c

)(
Yi − max

{
X ′
ib� y0

})+
(S17)

+ (
1 −G(τ� p̂(Zi; θ̂); c))(Yi − max

{
X ′
ib� y0

})−}
�

The optimization problem in (S17) is a selection-corrected version of Powell’s (1986)
censored quantile estimator.

S6. FRANK AND GENERALIZED FRANK COPULAS

Let us consider the following two-parameter family of copulas, which we call the “gen-
eralized Frank” family for reasons that will be clear below. The copula depends on two
parameters θ≥ 1 and γ ∈ (0�1), and is given by

(S18) C(u�v;γ�θ)= 1
δ

[
1 −

{
1 − 1

γ

[
1 − (1 − δu)θ][1 − (1 − δv)θ]} 1

θ
]
�

where δ= 1 − (1 − γ) 1
θ . Joe (1997) referred to (S18) as the “BB8” copula.

It is convenient to introduce the following concordance ordering ≺ on copulas:

C1 ≺ C2 if and only if C1(u�v)≤ C2(u�v) for all (u�v)�

As ≺ is the first-order stochastic dominance ordering, C1 ≺ C2 unambiguously indicates
that C1 induces less correlation than C2. The concordance of the generalized Frank copula



12 M. ARELLANO AND S. BONHOMME

given by (S18) increases in θ and γ. In particular, θ = 1 or γ → 0 correspond to the
independent copula.

An interesting special case is obtained when θ→ ∞, for fixed γ. Then

C(u�v;γ�θ) →
θ→∞

CF(u�v;γ)�

where

(S19) CF(u�v;γ)= 1
ln(1 − γ) ln

[
1 − 1

γ

{
1 − exp

[
ln(1 − γ)u]}{1 − exp

[
ln(1 − γ)v]}]�

CF given by (S19) is the Frank copula (Frank (1979)), with parameter η = − ln(1 − γ).
Here also, concordance increases with η.

The density of the Frank copula is symmetric with respect to the point ( 1
2 �

1
2) in the

(U�V ) plane. In comparison, the generalized Frank copula (S18) permits some asymme-
tries, by allowing the dependence to increase on the main diagonal. However, the gener-
alized Frank copula treats symmetrically u and v, so that it is symmetric with respect to
the main diagonal.

Taking negative η, the Frank copula exhibits negative dependence. This is important in
our empirical application, as we estimate thatU and V are negatively correlated. To allow
for negative dependence in the generalized Frank copula, we simply consider

C̃(u� v;γ�θ)= v−C(1 − u�v;γ�θ)�
which is the copula of (1 −U�V ) where (U�V ) is distributed as C.4 In addition, by taking
instead the copula of (U�1 − V ), we obtain

C̃(u� v;γ�θ)= u−C(u�1 − v;γ�θ)�
In this way, we may allow for decreasing dependence along the second diagonal.

S7. ADDITIONAL FIGURES: FIT OF THE MODEL USED IN THE EQUILIBRIUM
COUNTERFACTUAL EXERCISE

FIGURE S1.—Fit to wage quantiles, by gender. Note: FES data for 1978–2000. Specification used in Sec-
tion 6. Quantiles of log-hourly wages conditional on employment. Data (solid lines) and predicted by the
model (dashed). Male wages (at the top) are plotted in thick lines, while female wages are in thin lines.

4This is because Pr(1 −U ≤ u�V ≤ v)= Pr(V ≤ v)− Pr(1 −U > u�V ≤ v)= v−C(1 − u�v;γ�θ).
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FIGURE S2.—Fit to employment, by gender. Note: FES data for 1978–2000. Specification used in Section 6.
Employment rate in the data (solid lines) and predicted by the model (dashed). Male employment (at the top)
is plotted in thick lines, while female employment is in thin lines.
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