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Abstract

We develop likelihood-based estimators for autoregressive panel data
models that are consistent in the presence of time series heteroskedastic-
ity. Bias corrected conditional score estimators, random effects maximum
likelihood (RML) in levels and first differences, and estimators that impose
mean stationarity are considered for AR(p) models with individual effects.
We investigate identification under unit roots, and show that RML in levels
may achieve substantial efficiency gains relative to estimators from data in
differences. In an empirical application, we find evidence against unit roots
in individual earnings processes from the PSID and the Spanish section of
the European Panel.
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1. Introduction

The generalized method of moments (GMM) is routinely employed in the esti-
mation of autoregressive models from short panels, because it provides simple
estimates that are fixed-T consistent and optimally enforce the model’s restric-
tions on the data covariance matrix. Yet they are known to frequently exhibit
poor properties in finite samples and may be asymptotically biased if T is not
treated as fixed.
There are also available in the literature fixed-T consistent maximum likeli-

hood methods that are likely to have very different properties to GMM in finite
samples and double asymptotics. This category includes random effects esti-
mators of the type considered by Blundell and Smith (1991) and Alvarez and
Arellano (2003), the conditional likelihood estimator in Lancaster (2002), and the
estimators for first-differenced data in Hsiao, Pesaran, and Tahmiscioglu (2002).
However, the existing likelihood-based estimators require that the error variances
remain constant through time for fixed-T consistency. Lack of robustness to time
series heteroskedasticity is an important limitation because the dispersion of the
cross-sectional distribution of errors at each period may differ not only due to
nonstationarity at the individual level but also as a result of aggregate effects.
In this paper we develop likelihood-based estimators of autoregressive models

that are robust in the sense that remain consistent under the same assumptions
as standard panel GMM procedures.1 From a GMM perspective, likelihood-based
estimation can be motivated as a way of reducing the number of moments available
for estimation, and hence the extent of bias in second-order or double asymptotics.
Our methods are robust in the sense used in Gourieroux, Monfort, and Trognon
(1984) of providing consistent estimates of the conditional mean parameters when
the chosen likelihood function does not necessarily contain the true distribution.
The paper is organized as follows. Section 2 presents the model and a dis-

cussion of the assumptions. Section 3 explains how to obtain fixed-T consistent
estimates of AR(p) coefficients from bias-corrected first-order conditions of a het-
eroskedastic within-groups likelihood (BCS).
Section 4 presents ML estimates from a likelihood averaged with respect to

normally distributed effects and initial observations (RML). We show that such an

1Cf. Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover
(1995), and Ahn and Schmidt (1995).
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averaging leads to a modified within-groups criterion that balances off the within
and between biases. The modification term, which depends on the data in levels,
may lead to substantial efficiency gains relative to estimators from differenced data
alone, and is crucial for identification in very short panels. Heteroskedastic RML is
our recommended likelihood-based method. It is computationally straightforward
and can be easily extended to unbalanced and multivariate panels.
Section 5 presents RML estimates from data in differences, and Section 6

discusses conditional and marginal ML estimation under stationarity in mean.
Interestingly, we show that the random effects likelihood for the differenced data
coincides with the likelihood conditioned on the estimated effects under mean
stationarity, so that this restriction is immaterial to the data in differences when
homoskedasticity is not imposed.
Section 7 discusses the possibility of identification failure for a first-order

process with an unit root, in view that in a three-wave panel a random walk
without heterogeneous drift is known to be underidentified. We show that in a
four-wave panel there is local identification but not global identification under het-
eroskedasticity, and global identification but first-order underidentification under
homoskedasticity. In panels with more than four waves, we find that the autore-
gressive coefficient is globally identified unless the error variances change with a
constant rate of growth.
Section 8 reports numerical calculations of the asymptotic variances of BCS

and RML estimators in differences relative to RML in levels, calculated under
the assumption of normality. In Section 9 we present estimates of first- and
second-order autoregressive equations for individual labour income using data
from the PSID and the Spanish section of the European Panel, and find evidence
against unit roots in earnings. The PSID result is in contrast with the income
processes that impose a unit root, often employed in the empirical literatures on
consumption and labour supply (e.g. Hall and Mishkin, 1982; Abowd and Card,
1989, or Meghir and Pistaferri, 2004). Our result is unaffected by adding moving
average components to the specification of the earnings process.
Finally, Section 10 contains some concluding remarks on double asymptotic

properties. Proofs and technical material are in the Appendix.
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2. Model and Assumptions

We consider an autoregressive model for panel data given by

yit = α1yi(t−1) + ...+ αpyi(t−p) + ηi + vit (t = 1, ..., T ; i = 1, ..., N) . (2.1)

The variables
³
yi(1−p), ..., yi0, ..., yiT

´
are observed but ηi is an unobservable in-

dividual effect. The p × 1 vector of initial observations is denoted as y0i =³
yi(1−p), ..., yi0

´0
.2 We abstract from additive aggregate effects by regarding yit

as a deviation from a time effect. It is convenient to introduce the notation
xit =

³
yi(t−1), ..., yi(t−p)

´0
, α = (α1, ...,αp)

0, and write the model in the form:

yi = Xiα+ ηiι+ vi (2.2)

where yi = (yi1, ..., yiT )
0, Xi = (xi1, ..., xiT )

0, ι is a T × 1 vector of ones, and
vi = (vi1, ..., viT )

0.
The following assumption will be maintained throughout:

Assumption A : {ηi, y0i , yi1, ..., yiT}Ni=1 is a random sample from a well defined joint
distribution with finite fourth-order moments that satisfies

E
³
vit | ηi, y0i , yi1, ..., yi(t−1)

´
= 0 (t = 1, ..., T ) . (2.3)

This is our core condition in the sense that we wish to consider estimators
that are consistent and asymptotically normal for fixed T and large N under
Assumption A.
Note that neither time series or conditional heteroskedasticity are assumed.

That is, the unconditional variances of the errors, denoted as

E
³
v2it
´
= σ2t , (2.4)

are allowed to change with t and to differ from the conditional variances

E
³
v2it | ηi, y0i , yi1, ..., yi(t−1)

´
.

Time series homoskedasticity is a particularly restrictive assumption in the
context of short micropanels, both because estimators that enforce homoskedas-
ticity are inconsistent when the assumption fails, and because it can be easily
violated if aggregate effects are present in the conditional variance of the process.

2We assume that y0i is observed for notational convenience, so that the actual number of
waves in the data is T o = T + p.
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Also note that under stability of the process,3 we do not assume stationarity
in mean. Let the covariance matrix of (ηi, y

0
i ) be denoted as

V ar

Ã
ηi
y0i

!
=

Ã
σ2η γη0
γ0η Γ00

!
. (2.5)

For example, when p = 1 (so that α = α1, y0i = yi0, and Γ00 = γ00) model (2.1)
can be written as

yit =
³
1 + α+ ...+ αt−1

´
ηi + αtyi0 +

³
vit + αvi(t−1) + ...+ αt−1vi1

´
. (2.6)

Thus, when |α| < 1, for large t E (yit | ηi) tends to the steady state mean µi =
ηi/ (1− α). If the process started in the distant past we would have

yi0 =
ηi

(1− α)
+

∞X
j=0

αjvi(−j), (2.7)

implying γη0 = σ2η/ (1− α) and γ00 = σ2η/ (1− α)2+
P∞
j=0 α

2jσ2−j.
4 However, here

γη0 and γ00 are treated as free parameters. Note that an implication of lack of
stationarity in mean is that the data in first differences will generally depend on
individual effects.
In a short panel, steady state assumptions about initial observations are also

critical since estimators that impose them lose consistency if the assumptions
fail. Moreover, there are relevant applied situations in which a stable process
approximates well the dynamics of data, and yet there are theoretical or empirical
grounds to believe that the distribution of initial observations does not coincide
with the steady state distribution of the process (cf. Hause, 1980, or Barro and
Sala-i-Martin, 1995, and discussion in Arellano, 2003a).

3. Bias-Corrected Conditional Score Estimation

3.1. Normal Likelihood Given Initial Observations and Effects

Under the normality assumption

yit | y0i , ..., yi(t−1), ηi ∼ N
³
α1yi(t−1) + ...+ αpyi(t−p) + ηi,σ

2
t

´
(t = 1, ..., T ) ,

(Assumption G1)

3That is, when the roots of the equation zp−α1z
p−1− ...−αp = 0 are inside the unit circle.

4With the addition of homoskedasticity γ00 = σ2η/ (1− α)2 + σ2/
¡
1− α2

¢
.
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the log density of yi conditioned on (y0i , ηi) is given by

ln f
³
yi | y0i , ηi

´
= −1

2
ln detΛ− 1

2
v0iΛ

−1vi (3.1)

where Λ is a diagonal matrix with elements (σ21, ...,σ
2
T ) .

The MLE of ηi for given α,σ21, ...,σ
2
T that maximizes (3.1) is

bηi = yi − x0iα (3.2)

where yi denotes a weighted average yi =
PT
t=1 ϕtyit with weights

ϕt =
σ−2t

σ−21 + ...+ σ−2T
. (3.3)

Concentrating the log likelihood function with respect to the individual effects
we obtain

L∗ =
N

2
ln detΦ− NT

2
lnωT − 1

2ωT

NX
i=1

v0i (Φ− Φιι0Φ) vi (3.4)

where Φ is a diagonal matrix with elements (ϕ1, ...,ϕT ) and ωT is the variance of
the weighted average error:

ωT = V ar (vi) =
1

σ−21 + ...+ σ−2T
. (3.5)

It is useful at this point to note that the following identities hold:

v0iD
0 (DΛD0)−1Dvi =

1

ωT
v0i (Φ− Φιι0Φ) vi =

TX
t=1

(vit − vi)2
σ2t

(3.6)

ln det (DΛD0) = − ln detΦ+ (T − 1) lnωT (3.7)

where D is the (T − 1) × T first-difference matrix operator. Thus, L∗ can be
equally regarded as a function of the data in first differences or in deviations from
(weighted) means. Note that with T = 3 (i.e. (3 + p) time series observations per
unit), DΛD0 is unrestricted:

DΛD0 =

Ã
σ21 + σ22 −σ22
−σ22 σ22 + σ23

!
.
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Moreover, the relationship between period-specific and within-group variances is
given by

σ2t = E
h
(vit − vi)2

i
+ ωT (t = 1, ...T ) . (3.8)

The MLE of α for given weights is the following heteroskedastic within-groups
estimator

bα = "
NX
i=1

TX
t=1

ϕt (xit − xi) (xit − xi)0
#−1 NX

i=1

TX
t=1

ϕt (xit − xi) (yit − yi) , (3.9)

which in first differences can also be written as

bα = "
NX
i=1

X 0
iD

0 (DΛD0)−1DXi

#−1 NX
i=1

X 0
iD

0 (DΛD0)−1Dyi. (3.10)

Finally, the MLE of ωT for given weights is

bωT = 1

TN

NX
i=1

TX
t=1

ϕt (vit − vi)2 .

Note that, in common with the situation under homoskedasticity, both bα andbωT suffer from the incidental parameters problem. Firstly, although xit and vit are
orthogonal, their deviations, (xit − xi) and (vit − vi), are not, leading to a bias inbα. Secondly, bωT evaluated at the true errors and weights will be inconsistent for
fixed T due to lack of degrees of freedom adjustment, as evidenced by the equality

ωT = E

"
1

(T − 1)
TX
t=1

ϕt (vit − vi)2
#
. (3.11)

3.2. Likelihood Conditioned on the ML Estimates of the Effects

Provided G1 holds, the ML estimates of the effects at the true values of the
common parameters bηi = ηi + vi satisfy

bηi | y0i , ηi ∼ N (ηi,ωT ) . (3.12)

Moreover, the conditional log density of yi given yi0, ηi, bηi is given by
ln f

³
yi | y0i , ηi, bηi´ = −12 ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi, (3.13)
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which is a within-group density that does not depend on ηi. Thus, (3.1) admits
the decomposition

f
³
yi | y0i , ηi

´
= f

³
yi | y0i , bηi´ f ³bηi | y0i , ηi´ , (3.14)

which confines the dependence on ηi to the conditional density of bηi. Similarly,
any marginal density for yi | y0i which imposes a prior distribution on the effects
can be written as

f
³
yi | y0i

´
= f

³
yi | y0i , bηi´ f ³bηi | y0i ´ . (3.15)

The log likelihood conditioned on bηi is therefore given by
LC =

N

2
ln detΦ− N (T − 1)

2
lnωT − 1

2ωT

NX
i=1

v0i (Φ− Φιι0Φ) vi (3.16)

or

LC = −N
2
ln det (DΛD0)− 1

2

NX
i=1

v0iD
0 (DΛD0)−1Dvi, (3.17)

which is similar to the concentrated likelihood (3.4) except that it incorporates
a correction for degrees of freedom. In a model with strictly exogenous xit, LC
coincides with the likelihood conditioned on sufficient statistics for the effects,
which provides consistent estimates of both the regression and residual variance
parameters. However, in the autoregressive situation, the estimator of α that
maximizes LC satisfies a heteroskedastic within-group equation of the same form
as (3.9) and is therefore inconsistent for fixed T .
Inference from a likelihood conditioned on the ML estimates of the effects may

lead to consistent estimates provided the scores of the common parameters and
the effects are uncorrelated (Cox and Reid, 1987). Cox and Reid’s approximate
conditional likelihood approach was motivated by the fact that in an exponential
family model, it is optimal to condition on sufficient statistics for the nuisance
parameters, and these can be regarded as the MLE of nuisance parameters chosen
in a form to be orthogonal to the parameters of interest. From this perspective,
the inconsistency of within-groups in the autoregressive model results from lack
of orthogonality between the scores of α and the effects.
In the homoskedastic case with p = 1, Lancaster (2002) showed that a like-

lihood conditioned on the ML estimate of an orthogonalized effect led to a bias-
corrected score and a consistent method-of-moments estimator under homoskedas-
ticity. Following a similar approach, we construct a heteroskedasticity-consistent
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estimator as the solution to a bias corrected version of the first-order conditions
from the likelihood conditioned on the MLE of the effects.

First-Order Conditions The derivatives of LC with respect to α and θ =

(σ21...σ
2
T )
0 are given by

∂LC
∂α

=
NX
i=1

X 0
iD

0 (DΛD0)−1Dvi. (3.18)

∂LC
∂θ

=
1

2

NX
i=1

K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD
0 −DΛD0) (3.19)

where K is a (T − 1)2 × T selection matrix such that vec (DΛD0) = Kθ. Let dt
and kt be the t-th columns of D andK, respectively, so that DΛD0 =

PT
t=1 σ

2
tdtd

0
t,

Kθ =
PT
t=1 σ

2
tkt, and kt = dt ⊗ dt. Thus, also

∂LC
∂σ2t

=
1

2

NX
i=1

d0t (DΛD
0)−1 (Dviv0iD

0 −DΛD0) (DΛD0)−1 dt (t = 1, ..., T ) .

(3.20)
Maximizing LC with respect to ωT and (ϕ1...ϕT ) for given α, subject to the

adding-up restriction ι0Φι = 1, the first-order conditions for variance parameters
can also be written in a form analogous to (3.8) and (3.11) as

NX
i=1

"
1

(T − 1)v
0
i (Φ− Φιι0Φ) vi − ωT

#
= 0 (3.21)

NX
i=1

∙
(vit − vi)2 −

³
vi(t−1) − vi

´2 − ³σ2t − σ2t−1
´¸

= 0 (t = 2, ..., T ) . (3.22)

Thus, the conditional MLE of α and θ solve, respectively, (3.10) and

bθ = ³
K 0Υ−1K

´−1
K 0Υ−1

1

N

NX
i=1

vec (Dviv
0
iD

0) . (3.23)

where Υ = DΛD0 ⊗DΛD0.

Bias corrected conditional ML scores Under Assumption A the ex-
pected conditional ML scores are given by

E
h
X 0
iD

0 (DΛD0)−1Dvi
i
= −hT (α,ϕ) (3.24)
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E
h
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)
i
= 0 (3.25)

where

hT (α,ϕ) =

⎛⎜⎜⎝
ϕ0C1ι
...

ϕ0Cpι

⎞⎟⎟⎠ (3.26)

with

Cj =

Ã
0 0

B−1T−j 0

!
(3.27)

and BT−j is a (T − j)× (T − j) matrix such that

BT−j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 . . . 0 0
−α1 1 0 . . . 0 0

−α2 −α1 . . . 0 . . . 0 0
. . . . . . . . .

...
...

0 0 1 0
0 0 . . . −αp . . . −α1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.28)

When p = 1, hT (α,ϕ) is a scalar function given by

hT (α,ϕ) =
T−1X
t=1

³
1 + α+ ...+ αt−1

´
ϕt+1. (3.29)

Under homoskedasticity ϕt = T
−1 for all t, and the bias function (3.29) boils down

to the expression in Nickell (1981) and Lancaster (2002), which for |α| < 1 is5

hT (α) =
1

(1− α)

"
1− 1

T

Ã
1− αT

1− α

!#
. (3.30)

In view of (3.24)-(3.25), heteroskedasticity-consistent GMM estimators can be
obtained as the solution to the nonlinear estimating equations

NX
i=1

X 0
iD

0 (DΛD0)−1Dvi +NhT (α,ϕ) = 0 (3.31)

K 0 (DΛD0 ⊗DΛD0)−1 vec
NX
i=1

(Dviv
0
iD

0 −DΛD0) = 0. (3.32)

5Note that although the bias of the CML scores only depends on (α,ϕ), the asymptotic
bias of the CML estimator of α as N → ∞ also depends on the covariance matrix of

¡
ηi, y

0
i

¢
.

Approximate bias formulae for homoskedastic WG were derived by Hahn and Kuersteiner (2002),
and Alvarez and Arellano (2003). A bias-corrected estimator so constructed removes bias to
order T−2 but is not fixed-T consistent.
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Consistency of the bias-corrected score estimator (BCS) that solves (3.31)-(3.32)
does not depend on normality nor on conditional or time-series homoskedasticity.
BCS estimation is not possible from a (2 + p)-wave panel (i.e. T = 2) because

in that case α is not identified from the expected scores, which for p = 1 are given
by

E [(yi1 − yi0) (vi2 − vi1)] = −σ21 (3.33)

E
h
(vi2 − vi1)2

i
= σ21 + σ22. (3.34)

This situation is in contrast with Lancaster’s BCS estimator that enforces time
series homoskedasticity (hence achieving identification from (3.33)-(3.34)), or the
bias-corrected within-group estimator considered in Kiviet (1995).

3.3. Modified Conditional Likelihood Interpretation

If the weights ϕ are known and p = 1, the method of moments estimators of α
and ωT based on the bias corrected scores

E
∙
x0iD

0 ³DΦ−1D0´−1Dvi¸ = −ωThT (α,ϕ) (3.35)

E
∙
v0iD

0 ³DΦ−1D0´−1Dvi¸ = (T − 1)ωT (3.36)

can be regarded as the maximizers of the criterion function

LCR = LC +NbT (α,ϕ) (3.37)

where

bT (α,ϕ) =
T−1X
t=1

³
ϕt+1 + ...+ ϕT

´
t

αt, (3.38)

which is the integral of hT (α,ϕ) up to an arbitrary constant of integration that
may depend on ϕ.
Following Lancaster (2002), LCR can be interpreted as a Cox-Reid likelihood

conditioned on the ML estimate bλi of an orthogonal effect λi (Arellano, 2003a, p.
105)

LCR =
NX
i=1

ln f
³
yi | yi0, bλi´ , (3.39)
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or as an integrated likelihood

LCR =
NX
i=1

ln f (yi | yi0) =
NX
i=1

ln f (yi | yi0, bηi) + NX
i=1

ln f (bηi | yi0) (3.40)

in which the chosen prior distribution of the effects conditioned on yi0 is such that
the marginal density of bηi | yi0 satisfies:

f (bηi | yi0) = κi (ϕ) e
bT (α,ϕ) (3.41)

where κi (ϕ) is a version of the constant of integration.
The first interpretation is based on a decomposition conditional on bλi similar

to (3.14), whereas the second relies on factorization (3.15).
With unknown weights and p > 1 there is no orthogonal reparameterization,

but we show in Appendix C that for a heteroskedastic AR(p)model with unknown
weights, the BCS estimating equations coincide with the modified score vector
discussed in Arellano (2003b). Thus, in our setting a first-order bias adjustment
to the score is an exact correction that removes fully the bias, hence leading to
fixed-T consistency.

4. Random Effects Estimation

The analysis so far was conditional on y0i and bηi. Conditioning on y0i avoided
steady state restrictions, but by conditioning on bηi estimation is exclusively based
on the data in first-differences. We now turn to explore marginal maximum like-
lihood estimation based on a normal prior distribution of the effects conditioned
on y0i , with linear mean and constant variance. A sufficient condition that we use
for simplicity is:

Assumption G2: (ηi, y
0
i ) is jointly normally distributed with an unrestricted co-

variance matrix.

Normality of y0i is unessential because its variance matrix is a free parameter, so
the following analysis can be regarded as conditional on y0i . Clearly, assumptions
G1 and G2 together imply that(ηi, y

0
i , yi1, ..., yiT ) are jointly normally distributed.

The random effects log likelihood Under G2,

bηi | y0i ∼ N ³
φ0y0i ,σ

2
ε

´
, (4.1)
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where φ = Γ−100 γη0 and σ2ε = ωT + σ2η − γ0η0Γ
−1
00 γη0. So, using factorization (3.15),

the density of yi conditioned on y0i but marginal on ηi is:

ln f
³
yi | y0i

´
= −1

2
ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi

−1
2
lnσ2ε −

1

2σ2ε

³
yi − α0xi − φ0y0i

´2
. (4.2)

Thus, letting ui = yi − α0xi, the random effects log likelihood is a function of
(α,σ21, ...,σ

2
T ,φ,σ

2
ε) given by

LR = LC − N
2
lnσ2ε −

1

2σ2ε

NX
i=1

³
ui − φ0y0i

´2
, (4.3)

with scores:

∂LR
∂α

=
∂LC
∂α

+
1

σ2ε

NX
i=1

xi
³
ui − φ0y0i

´
(4.4)

∂LR
∂θ

=
∂LC
∂θ

+
1

σ2ε

NX
i=1

ΦD0 (DΛD0)−1Dui
³
ui − φ0y0i

´
(4.5)

∂LR
∂φ

=
1

σ2ε

NX
i=1

y0i
³
ui − φ0y0i

´
(4.6)

∂LR
∂σ2ε

=
1

2σ4ε

NX
i=1

∙³
ui − φ0y0i

´2 − σ2ε

¸
. (4.7)

Under Assumption A the expectations of the second terms in the scores for α
and θ at true values are:

E

"
1

σ2ε
xi
³
ui − φ0y0i

´#
= hT (α,ϕ) (4.8)

and

E

"
1

σ2ε
ΦD0 (DΛD0)−1Dvi

³
ui − φ0y0i

´#
= 0. (4.9)

Therefore, in view of (3.24) and (3.25), under Assumption A the expected
scores evaluated at the true values of the parameters are equal to zero:

E

"
X 0
iD

0 (DΛD0)−1Dvi +
1

σ2ε
xi
³
ui − φ0y0i

´#
= 0
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E
∙
1

2
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)

+
1

σ2ε
ΦD0 (DΛD0)−1Dvi

³
ui − φ0y0i

´#
= 0

E
h
y0i
³
ui − φ0y0i

´i
= 0

E
∙³
ui − φ0y0i

´2 − σ2ε

¸
= 0.

The random effects maximum likelihood estimator (RML) solves the estimat-
ing equations (4.4)-(4.7) and is consistent and asymptotically normal under as-
sumption A regardless of non-normality or conditional heteroskedasticity.
In a (2 + p)-wave panel (T = 2) the model is just-identified and the RML esti-

mator coincides with the Anderson-Hsiao (1981) estimator based on the instrumental-
variable conditions

E
h
y0i
³
∆yi2 − α1∆yi1 − ...− αp∆yi(2−p)

´i
= 0. (4.10)

Random effects likelihood functions for homoskedastic autoregressive models
under the normality assumption G2 have been considered in Chamberlain (1980,
234-235), Blundell and Smith (1991), Sims (2000), and Alvarez and Arellano
(2003).

Efficiency Comparisons In order to compare the relative efficiency of the
BCS and RML estimators, it is useful to notice that RML is asymptotically equiv-
alent to an overidentified GMM estimator that uses the moment conditions:

E
h
X 0
iD

0 (DΛD0)−1Dvi
i
= −hT (α,ϕ) (4.11)

E
h
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)
i
= 0 (4.12)

E

"
1

σ2ε
xi
³
ui − φ0y0i

´#
= hT (α,ϕ) (4.13)

E
h
D0 (DΛD0)−1Dvi

³
ui − φ0y0i

´i
= 0 (4.14)

E
h
y0i
³
ui − φ0y0i

´i
= 0 (4.15)

E
∙³
ui − φ0y0i

´2 − σ2ε

¸
= 0. (4.16)
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and a weight matrix calculated under the assumption of normality.6

BCS is based on moments (4.11) and (4.12), but RML is also using the infor-
mation from the data in levels contained in (4.13) and (4.14). Moments (4.13)
give the between-group covariance between the regressors and the error, in the
same way as the BCS moments (4.11) specified the within-group covariance. The
moments in (4.14) state the orthogonality between within-group and between-
group errors (partialling out the initial observations). Finally, (4.15) and (4.16)
are unrestricted moments that determine φ and σ2ε.
Therefore, if the data are normally distributed RML is asymptotically more

efficient than BCS. Otherwise, they cannot be ordered. Nevertheless, a GMM
estimator based on (4.11)-(4.16) and a robust weight matrix that remains optimal
under nonnormality will never be less efficient asymptotically than BCS, and may
achieve a significant reduction in the number of moments relative to standard
GMM procedures.

The concentrated random effects log-likelihood ConcentratingLR with
respect to σ2ε and φ we obtain the following criterion function that only depends
on α and θ:

L∗R = LC −
N

2
ln
h
(y − α0x)0 S0 (y − α0x)

i
(4.17)

where S0 = IN − Y0 (Y 00Y0)−1 Y 00 , and Y0 = (y01, ..., y0N)0.
L∗R can be regarded as a modified heteroskedastic within-group criterion with

a correction term that becomes less important as T increases.

A linear (OLS) Estimator of Variance Weights A simple consistent
estimator of the variance weights for given α can be obtained from the fact that
E (ui∆vit) = 0. Such estimator may be useful for providing starting values for
nonlinear likelihood-based estimation.
Enforcing the adding-up constraint, the average error can be written as

ui = ϕ1ui1 + ...+ ϕT−1ui(T−1) +
³
1− ϕ1 − ...− ϕT−1

´
uiT (4.18)

= uiT − ϕ1 (uiT − ui1)− ...− ϕT−1
³
uiT − ui(T−1)

´
.

6Interestingly,
¡
σ21,σ

2
2

¢
are identified from the RML scores when T = 2. In that case (4.12)

determines
¡
σ21 + σ22

¢
and (4.14) determines ϕ1. Note that when T = 2 one of the two moments

in (4.12) is redundant.
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Letting ϕo =
³
ϕ1, ...,ϕT−1

´0
and wi =

h
(uiT − ui1) , ...,

³
uiT − ui(T−1)

´i0
, we have

orthogonality between wi and ui

E [wi (uiT − w0iϕo)] = 0, (4.19)

which suggests the following OLS estimator of ϕo for given α:

eϕo =
Ã
NX
i=1

wiw
0
i

!−1 NX
i=1

wiuiT . (4.20)

This estimator satisfies the adding-up constraint, but not necessarily the non-
negativity restrictions.
Given the eϕt’s, estimates of ωT and the σ2t ’s can be obtained from

eωT =
1

(T − 1)N
NX
i=1

TX
t=1

eϕt (vit − vi)2 (4.21)

eσ2t =
eωTeϕt . (4.22)

5. Estimation from the Data in Differences

Until now, the starting point was an interest in the conditional distribution of
(yi1, ..., yiT ) given y0i and ηi under the assumption that y

0
i was observed but ηi

was not. That is, that the data consisted on a random sample of the vectors
(y00i , yi1, ..., yiT ). In this section we maintain the interest in the same conditional
distribution as before, but assume that only changes of the yit variables are ob-
served, so that the data on individual i is

³
∆yi(2−p), ...,∆yiT

´
. This situation is

clearly relevant when the data source only provides information on changes, but it
may also be interesting if it is thought that an analysis based on changes is more
“robust” than one based on levels. An objective of this and the next section is to
discuss the content of this intuition by relating ML in differences to the previous
conditional and marginal methods. Maximum likelihood estimation of autore-
gressive models using first-differences has been considered by Hsiao, Pesaran, and
Tahmiscioglu (2002).
As a matter of notation, note that observability of

³
∆yi(2−p), ...,∆yiT

´
is equiv-

alent to observing
³
y†i(2−p), ..., y

†
iT

´0
=
³
yi(2−p) − yi(1−p), ..., yiT − yi(1−p)

´0
, since the
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former results from multiplying the latter by the nonsingular transformation ma-
trix of order (T + p− 1):

D† =

Ã
1 0 · · · 0 0

D

!

with det
³
D†
´
= 1. Also note that by construction y†i(1−p) = 0.

We shall use the notation y†i = yi − yi(1−p)ιT and X†
i = Xi − yi(1−p)ιT ι0p.

Similarly, y†i = y
†0
i ΦιT = yi− yi(1−p), etc. The following is an expression of y†i that

makes explicit the connection to the data in differences:

y†i =
pX
j=1

∆yi(1−p)+j +
TX
t=2

Ã
TX
s=t

ϕs

!
∆yit. (5.1)

The original model can be written as

y†i1 = α1y
†
i0 + ...+ αp−1y

†
i(2−p) + η†i + vi1 (5.2)

y†it = α1y
†
i(t−1) + ...+ αpy

†
i(t−p) + η†i + vit (t = 2, ..., T ) . (5.3)

where
η†i = ηi − (1− α1 − ...− αp) yi(1−p). (5.4)

Thus, the model for the deviations y†it can be regarded as a version of the original
model in which y†i(1−p) = 0 for all individuals and the effect is given by η†i . From
the point of view of this section, bundling together yi(1−p) and ηi into η†i makes
sense because they are both unobserved. The usefulness of this notation is that
it allows us to easily obtain densities for the variables in first differences relying
on the previous results for the levels.
Since the shocks vit remain the same in representation (5.2)-(5.3), applying

(3.13) we have

ln f
³
y†i | y0†i , η†i , bη†i´ = −12 ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi (5.5)

where at true values

bη†i = y†i − α0x†i = η†i + vi = ui − (1− α0ιp) yi(1−p), (5.6)

and following (3.12): bη†i | y0†i , η†i ∼ N ³
η†i ,ωT

´
. (5.7)
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Also, mimicking the marginal density decomposition in (3.15):

f
³
y†i | y0†i

´
= f

³
y†i | y0†i , bη†i´ Z f ³bη†i | y0†i , η†i´ dG ³η†i | y0†i ´ . (5.8)

Moreover, since y†i(1−p) = 0 with probability one, for p = 1 densities conditioned
on y0†i coincide with unconditional densities, and for p > 1 conditioning on y0†i
is equivalent to conditioning on ∆y0i =

³
∆yi(2−p), ...,∆yi0

´0
. Thus, for p > 1,

f
³
y†i | ∆y0i

´
= f

³
y†i | y0†i

´
and

bη†i | ∆y0i , η†i ∼ N ³
η†i ,ωT

´
, (5.9)

so that
f
³
y†i | ∆y0i

´
= f

³
y†i | ∆y0i , bη†i´ f ³bη†i | ∆y0i ´ . (5.10)

Recall that the density f
³
y†i | ∆y0i

´
is also the density of the first-differences

of the data (∆yi1, ...,∆yiT ) conditioned on ∆y0i , which we are expressing as the
product of the usual within-group conditional density and the density of bη†i con-
ditioned on ∆y0i . Therefore, in the absence of steady state assumptions about
initial conditions, the form of the density of panel AR(p) data in first differences
depends on the distribution of the effects. In the next section we shall see that
this dependence vanishes under the assumption of mean stationarity.
Let

³
φ†,σ2†ε

´
denote the linear regression coefficients of bη†i on ∆y0i , so that σ

2†
ε

satisfies
σ2†ε = σ2η† + ωT − φ†0V ar

³
∆y0i

´
φ†. (5.11)

Under the normality assumption G2

bη†i | ∆y0i ∼ N ³
φ†0∆y0i ,σ

2†
ε

´
,

we have the following “random effects” log density for the data in first differences

ln f
³
∆yi1, ...,∆yiT | ∆y0i

´
= −1

2
ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi

−1
2
lnσ2†ε −

1

2σ2†ε

³
y†i − x†iα− φ†0∆y0i

´2
(5.12)

Therefore, the random effects log likelihood for the data in first-differences is
a function of

³
α,σ21, ...,σ

2
T ,σ

2†
ε ,φ

†´ given by
LRD = LC − N

2
lnσ2†ε −

1

2σ2†ε

NX
i=1

³
y†i − α0x†i − φ†0∆y0i

´2
. (5.13)
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ConcentratingLRD with respect to σ2†ε and φ
†, and letting S0∆ = IN−Y 0∆ (Y 00∆ Y 0∆)−1 Y 00∆

with Y 0∆ = (∆y01, ...,∆y
0
N)

0, we obtain the following criterion function that only
depends on α and θ:

L∗RD = LC −
N

2
ln
³
y† − α0x†

´0
S0∆

³
y† − α0x†

´
, (5.14)

which, in common with (4.17), can be regarded as a modified heteroskedastic
within-group criterion with a small T correction term.
The random effects ML estimator in first-differences (RML-dif) maximizes

L∗RD and is consistent and asymptotically normal under assumption A regardless
of nonnormality or conditional heteroskedasticity.
In the p = 1 case, the term ∆y0i does not occur, so that (5.12) becomes a

marginal density for the data in first differences and the log likelihood is just a
function of

³
α,σ21, ...,σ

2
T ,σ

2†
ε

´
given by

LRD = LC − N
2
lnσ2†ε −

1

2σ2†ε

NX
i=1

³
y†i − αx†i

´2
. (5.15)

Underidentification in a (2 + p)-Wave Panel (T = 2) In common with
BCS, RML-dif estimation is not possible from a (2 + p)-wave panel because α

is not identified from the expected scores of LRD. In contrast, RML achieves
identification by relying on the data in levels. The relationship between the two
procedures is best illustrated by examining for p = 1 the covariance matrix of the
transformed series

V ar

⎛⎜⎝ yi0
∆yi1
∆yi2

⎞⎟⎠ = Ω∗ =

⎛⎜⎝ γ00 γ0∆1 γ0∆2
γ0∆1
γ0∆2 Ω∆

⎞⎟⎠ ,
where Ω∗ is a non-singular transformation of the covariance matrix in levels and
Ω∆ is the covariance matrix in first-differences. Thus, a model of Ω∆ is equiva-
lent to a model of Ω∗ that leaves the coefficients γ00, γ0∆1 and γ0∆2 unrestricted
(Arellano, 2003a, p. 67). With T = 2, the only identifying information about
α is precisely the restriction γ0∆2 = αγ0∆1 satisfied by those coefficients, hence
lack of identification from Ω∆. Under time series homoskedasticity, α is identifi-
able from Ω∆ when T = 2, but in that case all the information comes from the
homoskedasticity assumption.
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Efficiency Comparisons If the data are normally distributed RML is as-
ymptotically more efficient than RML-dif, which in turn is more efficient than
BCS. The relative efficiency of RML-dif with respect to BCS under normality is
a consequence of the fact that both are statistics of the first differenced data, but
the former is the maximum likelihood estimator.
In the absence of normality, the estimators cannot be ranked. However, re-

gardless of normality, under Assumption A estimates based on first-differences
alone will never be more efficient than an optimal GMM estimator based on the
full covariance structure for the data in levels.

6. Estimation Under Stationarity in Mean

In this section we consider conditional and marginal maximum likelihood esti-
mators that allow for time series heteroskedasticity but exploit the stationarity
in mean condition discussed in Section 2. Namely, that for every t the mean
of yit conditioned on ηi coincides with the steady state mean of the process
µi = ηi/ (1− α0ιp). Specifically, we assume:

γη0 =

⎛⎜⎜⎝
Cov

³
ηi, yi(1−p)

´
...

Cov (ηi, yi0)

⎞⎟⎟⎠ = σ2η
(1− α0ιp)

ιp. (Assumption B)

Under assumptions A andB the correlation between yit and ηi does not depend
on t, so that the first differenced data are orthogonal to the effects. This situation
led to orthogonality conditions for errors in levels used in the “system” GMM
methods considered by Arellano and Bover (1995) and Blundell and Bond (1998).
SystemGMM remained consistent in the presence of time series heteroskedasticity,
and the random effects estimator discussed below can be regarded as a likelihood-
based counterpart to these procedures.

6.1. Conditional Maximum Likelihood Estimation

In order to construct a likelihood conditioned on the ML estimator of the effects
under mean stationarity, we consider the following conditional normality assump-
tion for y0i given the effects:

y0i | µi ∼ N (µiιp,Σ00) (Assumption G3)
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where Σ00 satisfies Σ00 = Γ00 − ιpι
0
pσ
2
η/ (1− α0ιp)

2.
Under assumptions G1 and G3

yTi | µi ∼ N (µiι, V ) (6.1)

where yTi = (y
00
i , yi1, ..., yiT )

0, ι denotes a vector of ones of order (T + p), and

V = ΓΛ†Γ0 (6.2)

with

Λ† =

Ã
Σ00 0
0 Λ

!
, Γ =

Ã
Ip 0

−B−1T BTp B−1T

!
(6.3)

and

BTp =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−αp −αp−1 . . . −α1
0 −αp . . . −α2
0 0

. . .
...

...
0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6.4)

Thus

ln f
³
yTi | µi

´
= −1

2
ln detV − 1

2

³
yTi − µiι

´0
V −1

³
yTi − µiι

´
. (6.5)

The MLE of µi for given α and Λ† is

bµi = ³
ι0V −1ι

´−1
ι0V −1yTi . (6.6)

Next, to obtain the density of yTi conditioned on bµi (at true values of α and Λ†),
it is simpler to use the transformation matrix

H =
Ã
(ι0V −1ι)−1 ι0V −1

D

!
, (6.7)

which transforms yTi into
³bµi, DyTi ´, where D denotes the (T + p− 1)× (T + p)

first-difference matrix operator. Since yTi | µi is normal so is HyTi | µi. Moreover,

V ar
³
HyTi | µi

´
=

Ã
(ι0V −1ι)−1 0

0 DVD
0

!
(6.8)

so that bµi and DyTi are conditionally independent. Therefore,
f
³
yTi | µi

´
= f

³
HyTi | µi

´
|detH| = f

³
DyTi

´
f (bµi | µi) . (6.9)
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This is so becauseDyTi is independent of µi and the fact that |detH| = 1 (Arellano,
2003a, p. 94).
Therefore, the density of yTi conditional on bµi does not depend on µi and

coincides with the density for the data in first differences:

f
³
yTi | bµi, µi´ = f

³
yTi | µi

´
f (bµi | µi) = f

³
DyTi

´
, (6.10)

which is

ln f
³
DyTi

´
= −1

2
ln det

³
DVD

0´− 1
2
yT 0i D

0 ³
DVD

0´−1
DyTi . (6.11)

This result is similar to the one discussed by Lancaster (2002) for a homoskedastic
stationary model with p = 1.

Comparison with the Marginal Likelihood for First Differenced Data
Thus, the log likelihood conditioned on the ML estimates of the effects under mean
stationarity is a function of (α,σ21, ...,σ

2
T , vechΣ00) given by

LCS = −N
2
ln det

³
DVD

0´− 1
2

NX
i=1

yT 0i D
0 ³
DVD

0´−1
DyTi . (6.12)

In the previous section we obtained a random effects likelihood (5.13) for
data in first-differences without assuming mean stationarity as a function of³
α,σ21, ...,σ

2
T ,σ

2†
ε ,φ

†´. This likelihood was conditioned on ∆y0i (unless p = 1), but
adding to it the likelihood of∆y0i , we can write the likelihood ofDy

T
i in the absence

of mean stationarity as a function of
³
α,σ21, ...,σ

2
T ,σ

2†
ε ,φ

†´ and Σ∆ = V ar (∆y
0
i )

given by7

LRDU = LRD − N
2
ln detΣ∆ − 1

2
tr
³
Σ−1∆ Y

00
∆ Y

0
∆

´
. (6.13)

If p = 1 the likelihood of DyTi in the absence of mean stationarity is just the
expression for LRD in (5.15).
In general, σ2†ε satisfies expression (5.11), which under mean stationarity be-

comes 8

σ2†ε = (1− α0ιp)
2
σ00 + ωT − σ010D

0
p

³
DpΣ00D

0
p

´−1
Dpσ10 (6.14)

7Note that Σ∆ = DpΓ00D0
p where Dp is the first-difference operator of order (p− 1)× p.

8When p = 1 we just have σ00 = Σ00 and σ2†ε = (1− α)
2
σ00 + ωT .
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where we are using the partition of Σ00

Σ00 =

Ã
σ00 σ010
σ10 Σ11

!
. (6.15)

Similarly, under mean stationarity

φ† =
³
DpΣ00D

0
p

´−1
Dpσ10. (6.16)

However, both σ2†ε and φ† remain free parameters because so is Σ00.
Thus, the restriction of mean stationarity is immaterial to the data in first

differences. LRDU and LCS are different parameterizations of the same criterion.
Depending on ones taste it can be regarded as a mean-stationary conditional
likelihood or as a nonstationary random effects likelihood for the first differenced
data. In particular the estimator that maximizes LCS (or LRD) will be consistent
under Assumption A regardless of mean stationarity.9

Note that under homoskedasticity or covariance stationarity the situation is
different because Σ00 is no longer a matrix of free parameters, but tied to α and
the common variance σ2.

6.2. Random Effects

If in addition to assumptionsG1 andG3 we assume that µi is normally distributed
(as implied by G2), we can obtain the integrated density marginal on µi:

f
³
yTi
´
=
Z
f
³
yTi | µi

´
dG (µi) (6.17)

whose log is given by

ln f
³
yTi
´
= −1

2
ln detΩ− 1

2
yTi

0Ω−1yTi (6.18)

with
Ω = σ2µιι

0 + V. (6.19)

Therefore, the random effects log likelihood under mean stationarity is a func-
tion of

³
α,σ21, ...,σ

2
T , vechΣ00,σ

2
η

´
given by

LRS = −N
2
ln detΩ− 1

2

NX
i=1

yTi
0Ω−1yTi . (6.20)

9A conceptual difference is that since σ2†ε and φ
† do not depend on σ2η under mean stationarity,

they would remain constant as σ2η →∞.

22



The random effects ML estimator subject to mean stationarity (RML-s) max-
imizes LRS and is consistent and asymptotically normal under assumptions A and
B regardless of non-normality or conditional heteroskedasticity.
In a three-wave panel with p = 1 (T = 2), the mean stationarity assumption

imposes one restriction in the data covariance matrix Ω, which corresponds to the
orthogonality conditions for the system GMM estimator simulated in Arellano
and Bover (1995):

E [yi0 (∆yi2 − α∆yi1)] = 0

E [∆yi1 (yi2 − αyi1)] = 0.

RML-s provides a one-step estimator based on T + 1 + p (p+ 3) /2 moment
conditions that is asymptotically equivalent to two-step GMM system estimators
under conditional homoskedasticity, and more efficient than standard one-step
system estimators under time series heteroskedasticity.
As in the previous sections, the comparison between conditional and marginal

ML estimates under stationarity can be understood as a straightforward compar-
ison between covariance matrices of data in levels and first-differences

Relation to RML without Mean Stationarity Equation (4.3) in Sec-
tion 4 gave the random effects log likelihood conditioned on y0i . Adding to this
expression the likelihood of y0i , we can write the likelihood of y

T
i in the absence

of mean stationarity as a function of (α,σ21, ...,σ
2
T ,φ,σ

2
ε, vechΓ00) given by

LRU = LR − N
2
ln detΓ00 − 1

2
tr
³
Γ−100 Y

0
0Y0

´
. (6.21)

If p = 1, in the parameterization of LRU , mean stationarity can be expressed as
the restriction

σ2ε = (1− α)φ (1− φ) γ00 + ωT . (6.22)

Thus, RML-s can also be obtained maximizing LRU subject to (6.22) in that case.

7. Unit Roots

In this section we discuss the possibility of identification failure when the autore-
gressive process has a unit root. We focus on the p = 1 case, so that the unit root
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model is
yit = tηi + vit + vi(t−1) + ...+ vi1 + yi0.

For this process, if σ2η = 0 the rank condition for GMM based on lagged
levels as instruments for errors in differences fails, because changes in yit are
uncorrelated to lagged levels (e.g. Arellano and Honoré, 2001).10 Thus, α would
not be identified from RML in a three-wave panel (T = 2) when the true value is
one, since in that case RML coincides with the IV estimator based on

E [yi0 (∆yi2 − α∆yi1)] = 0.

Since the estimating criteria for the previous estimators depend on the data
exclusively through second moments, it is useful to look at the restrictions implied
by the model on the data covariance matrix. Following Ahn and Schmidt (1995),
for T ≥ 3 these restrictions can be represented as

E
h
yis
³
∆yit − α∆yi(t−1)

´i
= 0 (t = 2, ..., T ; s = 0, ..., t− 2) (7.1)

E
h³
∆yi(t−1) − α∆yi(t−2)

´ ³
yit − αyi(t−1)

´i
= 0 (t = 3, ..., T ) . (7.2)

When T = 3 and the true values are α = 1 and σ2η = 0, (7.2) consists of just
one quadratic equation

a1α
2 + b1α+ c1 = 0 (7.3)

with coefficients given by

a1 = E (yi2∆yi1) = σ21

b1 = −E (yi2∆yi2 + yi3∆yi1) = −
³
σ21 + σ22

´
c1 = E (yi3∆yi2) = σ22

where σ21, σ
2
2 and σ23 denote the true values of the error variances.

Equation (7.3) has two roots given by

σ21 + σ22 ± (σ22 − σ21)

2σ21
=

(
α∗1 = σ22/σ

2
1

α = 1
(7.4)

10When α = 1 and σ2η = 0, heterogeneity only plays a role in the determination of the
initial observations of the process. In contrast, if σ2η 6= 0 the model is a random walk with
heterogeneous linear growth.
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Therefore, under time series heteroskedasticity there is local identification from
(7.3) but not global identification. If σ21 = σ22 there is global identification but
first-order underidentification, because the first derivative of (7.3)

2a1α+ b1 = 0 (7.5)

vanishes at α = 1. In that case there is second-order identification because α = 1
is the only solution to equation (7.5) and the second derivative does not vanish
(Sargan, 1983).
In general, we get T − 2 equations of the same form as (7.3), each one with a

solution of the form α∗t = σ2t+1/σ
2
t , aside from unity. Thus, for T > 3 there is both

first-order and global identification from (7.2) under heteroskedasticity, unless
the unconditional variances change at a constant rate of growth (i.e. σ2t+1/σ

2
t is

constant for t = 1, ..., T − 2).

Heteroskedastic BCS and Unit Roots Next, we develop the local iden-
tification result for the bias-corrected CML scores when T = 3. The expected
BCS equations are given by

E
h
x0iD

0 (DΛD0)−1Dvi
i
= −hT (α,ϕ) (7.6)

E
h
K 0 (DΛD0 ⊗DΛD0)−1 vec (Dviv0iD

0 −DΛD0)
i
= 0. (7.7)

where

Dxi =

Ã
∆yi1
∆yi2

!
, Dyi =

Ã
∆yi2
∆yi3

!
,

(DΛD0)−1 =
1

(σ21σ
2
2 + σ21σ

2
3 + σ22σ

2
3)

Ã
σ22 + σ23 σ22

σ22 σ21 + σ22

!
,

and

hT (α,ϕ) = ϕ2 + (1 + α)ϕ3 =
σ21

(σ21σ
2
2 + σ21σ

2
3 + σ22σ

2
3)

h
σ23 + (1 + α)σ22

i
.

When the true values are α = 1 and σ2η = 0, the first score (7.6) can be written
as

tr

"Ã
σ22 + σ23 σ22

σ22 σ21 + σ22

!Ã
ασ21 −σ22
0 ασ22

!#
= σ21

h³
σ22 + σ23

´
+ ασ22

i
(7.8)
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Moreover,

E (Dviv
0
iD

0) =

Ã
σ22 + α2σ21 −ασ22
−ασ22 σ23 + α2σ22

!
.

Hence, in view of the second block of scores (7.7), we have

σ22 + α2σ21 = σ21 + σ22 (7.9)

ασ22 = σ22

σ23 + α2σ22 = σ22 + σ23

Now, substituting in (7.8)

tr

"Ã
σ23 + α2σ22 ασ22

ασ22 σ22 + α2σ21

!Ã
ασ21 −σ22
0 ασ22

!#
=
³
σ22 + α2σ21 − ασ22

´ ³
σ23 + 2α

2σ22
´
,

which can be rearranged as

(1− α)
³
σ22 − σ21α

´ ³
σ23 + 2σ

2
2α

2
´
= 0. (7.10)

Thus, as before there are two real roots: α = 1 and α∗ = σ22/σ
2
1. Corresponding

to α = 1 we have ⎛⎜⎝ σ21
σ22
σ23

⎞⎟⎠ =
⎛⎜⎝ σ21

σ22
σ23

⎞⎟⎠ , (7.11)

and corresponding to α = σ22/σ
2
1

⎛⎜⎝ σ21
σ22
σ23

⎞⎟⎠ =
⎛⎜⎝ σ2∗1

σ2∗2
σ2∗3

⎞⎟⎠ ≡
⎛⎜⎜⎜⎝

σ22
σ42
σ21

σ23 − σ42
σ41
(σ21 − σ22)

⎞⎟⎟⎟⎠ . (7.12)

Expected RML Likelihood Finally, we consider the expected random ef-
fects likelihood for one observation when T = 3, α = 1 and σ2η = 0. This is a
function of (α,σ21,σ

2
2,σ

2
3,φ,σ

2
ε) given by

E (LRi) = −1
2
ln det (DΛD0)− 1

2
tr
h
(DΛD0)−1E (Dviv0iD

0)
i

(7.13)

−1
2
lnσ2ε −

1

2σ2ε
E
h
(ui − φyi0)

2
i

Note that the true values of φ and σ2ε are φ = 0 and σ2ε = ωT .
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Maximizing E (LRi) with respect to φ,σ2ε for given (α,σ
2
1,σ

2
2,σ

2
3) we get

φ = 1− α (7.14)

σ2ε = E
h
(yi − αxi − (1− α) yi0)

2
i
= E

∙³
y†i − αx†i

´2¸
. (7.15)

Therefore, the concentrated expected likelihood for the data in levels and in dif-
ferences coincide. An implication is that when α = 1 and σ2η = 0, RML in levels
and RML in differences are asymptotically equivalent.
Moreover, the maximum of E (LRi) is attained at

maxE (LRi) = −1
2
ln
³
σ21σ

2
2σ
2
3

´
− 3
2

(7.16)

by
³
α,σ21,σ

2
2,σ

2
3,φ,σ

2
ε

´
and (α∗,σ2∗1 ,σ

2∗
2 ,σ

2∗
3 ,φ

∗,σ2∗ε ), where

φ∗ = 1− α∗ = 1− σ22
σ21

(7.17)

σ2∗ε =
σ21σ

2
2σ
2
3

σ22σ
2
3 + σ42

σ23
σ21
+

σ102
σ61

, (7.18)

which completes the characterization of the two observationally equivalent points.

8. Calculations of Relative Asymptotic Variances

We perform numerical calculations of the asymptotic variances for various esti-
mators of the autoregressive coefficient. We report, for p = 1, the asymptotic
variances of both homoskedastic and heteroskedastic BCS and RML-dif estima-
tors, relative to the corresponding RML in levels, calculated under the assumption
of normality. Formulae for the asymptotic variances are derived in Appendix B.
The interest of the exercise is in providing information on the efficiency gains

that can be expected from the levels of the data, relative to only using first-
differences, when RML is the maximum likelihood estimator, and stationarity
restrictions are not enforced. In addition, we also get to know about the magnitude
of the asymptotic inefficiency of BCS relative to RML-dif under normality.
Figures 1 and 2 show values of the asymptotic standard deviations of the

homoskedastic BCS and RML-dif estimators relative to the standard deviation
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of RML, for non-negative values of α. The calculations are for T = 2, 3, and 9,
under stationarity and homoskedasticity with σ2 = 1.11

The T = 2 case is special because in that situation BCS and RML-dif coincide
and their ability to identify α rests exclusively on the homoskedasticity restriction.
In Figure 1 the variance of the effects has been set to zero (λ = σ2η/σ

2 = 0),
whereas in Figure 2 σ2η and σ2 are equal (λ = 1). The relative inefficiency of both
estimators increases monotonically with α and decreases with λ and T . Figure 1
shows potentially important efficiency gains from using the levels when T = 3 and
α is large, but the gains become much smaller when λ = 1, as shown in Figure 2.
In Figure 3 we explore the impact of nonstationarity. We calculate the same

relative inefficiency measures as in the previous figures for different values of the
ratio of the actual to the steady state standard deviations of y0. Thus, under
stationarity κ = 1, and a value of κ = 2 means that the standard deviation
of initial conditions is twice the standard deviation of the steady state standard
deviation of the process. We set T = 3, λ = 0, and α = 0.9, so that we essentially
calculate the maximal inefficiencies for each value of κ. For κ < 1, the inefficiency
of BCS can be enormous, whereas the inefficiency of RML-dif is much smaller and
shows a non-monotonic pattern.
Turning to heteroskedastic estimators, Figures 4 and 5 display relative ineffi-

ciency ratios for heteroskedastic BCS and RML-dif, similar to those in the previous
figures. The calculations are under homoskedasticity and stationarity, for λ = 0
and 1, T = 3 and 9, and σ2 = 1. As before, the inefficiencies of heteroskedastic
BCS and RML-dif increase with α and decrease with λ and T , but they have
larger magnitudes than those of their homoskedastic counterparts.
Table 1 illustrates the extent of these differences by showing the inefficien-

cies of homoskedastic and heteroskedastic estimators for selected values of the
parameters. Some of the inefficiencies are quite large. For example, for the het-
eroskedastic estimators with α = 0.8, T o = 4 and λ = 0, the standard error of
RML-dif is more than twice that of RML-lev, and the standard error of BCS is
more than three times as large.
Finally, Figure 6 reports asymptotic standard deviations of BCS and RML

when α = 1 and λ = 0 (in this case RML-dif and RML-lev are asymptotically
equivalent) for T = 6 and a single break in the error variance. Standard deviations

11Because of stationarity γ00 = σ2/
¡
1− α2

¢
, so that it increases with α.
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(scaled by
√
900) are given as a function of the percentage change in variance and

for two different locations of the variance break (which takes place either during
the last 2 or the last 4 periods).12 As expected, asymptotic standard deviations
decrease with the strength of heteroskedasticity, and are smaller when the variance
break is centrally located than when it only occurs during the last two periods.

9. Empirical Illustration: Individual Earnings Dynamics

In order to illustrate the properties of the previous methods, we estimate first-
and second-order autoregressive equations for individual labour income using two
different samples. The first one is a sample of Spanish men from the European
Community Household Panel (ECHP) for the period 1994-1999. The second is a
sample from PSID for the period 1977-1983 taken from Alvarez, Browning, and
Ejrnæs (2001).
There are 632 individuals in the Spanish data set and 792 in the PSID sample.

All individuals in both data sets are married males, who are aged 20-65 during
the sample period, heads of household, and continuously employed. The earnings
variable is similarly defined in the two samples as total annual labour income of
the head.
The variables that we use in the estimation are log earnings residuals from first-

stage regressions on age, age squared, education and year dummies (see Alvarez,
Browning, and Ejrnæs, 2001, for further details on the PSID sample, and tables
A1 and A2 for the Spanish sample). Log earnings have a much higher variance
in the PSID sample than in the Spanish one. Moreover, the PSID data show a
sharp rise in the variance of earnings in 1982 (a widely documented fact), whereas
there is no appreciable change in the variance in the Spanish sample during the
(different) years that we observe.
The AR(1) results for the Spanish data are reported in the first part of Table 2.

Heteroskedastic bias-corrected score (BCS) and random effects (RMLr) estimates
of the autoregressive coefficient are very similar. They are also very close to the
homoskedastic random effects estimate (RMLnr), which is not surprising given the
absence of change in the period-specific variance estimates reported in the table.

12When α = 1, we considered choices of γ00 and γη0 of the form γ00 = κσ2 + κ2σ2η and

γη0 = κσ2η, where σ
2 = T−1

PT
t=1 σ

2
t . But for the calculations in Figure 6, since σ

2
η = 0 the

results turn out to be invariant to the choice of κ.
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By comparison, the AR(1) GMM estimates (one- and two-step) are very small,
given that GMM, BCS, and RMLr are all consistent under similar assumptions.
The system GMM estimator, that relies on mean stationarity, is more in line
with the likelihood-based estimates, although probably for the wrong reasons,
given the rejection of mean stationarity that is apparent from the Sargan test.
The RMLr estimate subject to mean stationarity is smaller than system-GMM,
but a Wald test of the mean stationarity restriction rejects (with a “t ratio” for
σ2ε of 2.54). Finally, within-groups (WG) and the random effects estimate that
rules out correlation between the effects and initial observations (RML, φ = 0)
exhibit, respectively, the downward and upward biases that would be predicted
from theory.
The AR(1) results for the PSID sample, reported in Table 3, also show a

marked discrepancy between the likelihood-based estimates and GMM, and a
similar rejection of mean stationarity from the incremental Sargan test, although
not from RML estimation (the “t ratio” for σ2ε is just 0.16). In the PSID data
there is more state dependence than in the Spanish data, at least as measured by
the first-order autoregressive coefficient. There is also more variation in the errors
and substantial time series heteroskedasticity. The latter translate into a small
but noticeable upward bias in the RML estimate calculated under the assumption
of homoskedasticity.
Given the AR(1) estimates reported in the tables, the variance of the effects

can be recovered from σ2η = σ2ε + φ2γ00 − ωT (as explained in Section 4), which
gives bσ2η = 0.05 for the Spanish data, and bσ2η = 0.07 for the PSID.
GMM estimates are known to be downward biased in finite samples, specially

when the number of moments is large and the instruments are weak. However,
the magnitude of the bias in our application (relative to the likelihood estimates)
is puzzling for the values of α and T/N that we have, suggesting misspecification
as the most likely reason for these discrepancies. This impression is confirmed by
the AR(2) estimates and the simulation results reported below.
The upshot from the AR(2) estimates reported in the second parts of tables 2

and 3 is that there is a positive autoregressive root, in the (0.4, 0.5) range for the
Spanish panel and in the (0.6, 0.7) range for PSID, and a negative root of around
−0.2 in both datasets (so that an ARMA(1,1) model would provide a similar fit).
AR(2) GMM estimates are still smaller than the likelihood-based estimates,
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and there is a discrepancy between BCS and RMLr (specially for PSID), all of
which suggests that there may be some remaining misspecification.13 Mean sta-
tionarity is rejected in both datasets and, when enforced, leads to somewhat larger
positive roots.
However, in contrast with other studies that either imposed or found a unit

root in individual earnings (e.g. MaCurdy, 1982), we find no evidence of unit
roots. The only way we managed to obtain a near-unit root is by imposing the
restriction that the initial observations of earnings are orthogonal to the unob-
served component (i.e. φ = 0). Doing this led to an estimated positive root of
0.95 in both panels. Clearly, if only heterogeneity that is orthogonal to initial
observations is allowed, any nonorthogonal heterogeneity will be captured by the
autoregressive part of the model as spurious state dependence.

Moving Average Errors We checked whether this conclusion was affected
by adding a moving average component to the specification of PSID earnings.
In such a case the autoregressive coefficients can no longer be interpreted as a
model for the conditional expectation of earnings given past observations, but an
ARMA model might lead to a more parsimonious specification. Moreover, models
of earnings that specify a measurement error component imply a reduced form
with moving average errors. Appendix D describes our ARMA specification and
the random effects ML estimators that we used.
Table 4 reports ARMA(1,1), ARMA(1,2), and ARMA(2,1) estimates from

the PSID sample. As expected, the ARMA(1,1) estimates are similar to those ob-
tained from the AR(2) specification. However, the ARMA(1,2) and the ARMA(2,1)
estimates were very imprecise, suggesting that there is no enough variation in the
data covariance matrix to support a three-parameter dynamic specification within
this class of models.

Testing for Nonnormality The distributions of the effects and the au-
toregressive errors are nonparametrically identified and can be estimated using
deconvolution techniques as in Horowitz and Markatou (1996).
Horowitz and Markatou carried out graphical tests of normality of the distri-

13We found that the BCS equations, in addition to the stable solution, had another solution
with an explosive root.
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butions of errors and effects in a static earnings model using a two-wave panel
from the CPS.14 We used their diagnostics and found very similar results for PSID
autoregressive models. A normal probability plot of residuals in first-differences
(Figure 7) indicates that the tails of the distribution of errors are thicker than
those of the normal distribution. However, a plot of the log empirical character-
istic function of the effects against minus the square of its argument is almost a
straight line, hence showing no deviation from normality (Figure 8).

Monte Carlo Simulations To illustrate the properties of the estimators,
we performed a small simulation exercise calibrated to the likelihood-based AR(1)
estimates from PSID data. We generated 1000 replications with N = 792, T o = 7,
ηi ∼ N

³
0,σ2η

´
, vit ∼ N (0,σ2t ), σ2η = 0.07, and mean stationarity.

In Table 5 we report means and standard deviations of the WG, GMM1,
RML(nr), RML(r), and BCS estimators of the AR(1) model for α = 0.4 and 0.8
(with σ20 = 0.11 and 0.28, respectively). The results show that both RML(r)
and BCS are virtually unbiased. Those for α = 0.4 nicely reproduce the WG
downward bias and the RML(nr) upward bias that we found in the PSID sample.
However, the results fail to explain the performance of GMM with the real data,
which reinforces the evidence of misspecification in the AR(1) earnings models.

10. Concluding Remarks

From a GMM perspective, a motivation for considering likelihood based estima-
tors is to reduce the number of moments available for estimation. The number
of orthogonality conditions of optimal GMM estimators in autoregressive panel
models grows at a rate of T (T − 1) /2, whereas the number of score equations
for the heteroskedastic likelihood estimators grows at a rate of T . An interesting
question is to characterize the potential incidental parameter problem that occurs
for these estimators as T tends to infinity.
From ongoing work by the authors, we conjecture that in a double asymptotic

setup where T/N tends to a finite constant, the estimators with unrestricted time
series variances remain consistent and asymptotically normal, but have a bias term
in the asymptotic distribution when the data are not symmetrically distributed.

14Figures 1 and 5 in their paper
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Table 1
Relative Inefficiency Ratios∗

Homosk. Heterosk.
BCS RMLdif BCS RMLdif

α = 0.6
T o = 4 λ = 0 1.45 1.33 2.21 1.59

λ = 1 1.14 1.05 1.56 1.12

T o = 10 λ = 0 1.06 1.04 1.07 1.05
λ = 1 1.02 1.00 1.03 1.00

α = 0.8
T o = 4 λ = 0 1.93 1.70 3.16 2.15

λ = 1 1.22 1.07 1.69 1.15

T o = 10 λ = 0 1.22 1.13 1.28 1.15
λ = 1 1.08 1.01 1.12 1.01

∗Ratios of Asymptotic St.Deviations: Denominator is
St.Dev. of RML-lev; T o =no. of waves; λ = σ2η/σ

2.
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Table 2
Autoregressive Model of Earnings

AR(1) Estimates for Spanish Data, 1994-1999
N = 632, T 0 = 6

WG GMM1 GMM2 System-GMM
α −0.022 0.042 0.038 0.183

(−0.95) (0.93) (0.87) (7.00)
Sargan test (df) 6.11(9) 22.71(13)

m1 −9.67 −9.89 −13.73
m2 0.27 0.23 1.83

Likelihood-based Estimates
BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)
α 0.218 0.200 0.207 0.164 0.926

(7.04) (7.07) (3.83) (5.32) (87.05)

σ21 (1995) 0.025 0.023 0.023 0.023 0.049
(11.34) (11.91) (25.14) (11.65) (12.81)

σ22 (1996) 0.022 0.021 0.021 0.042
(8.55) (9.28) (9.04) (14.40)

σ23 (1997) 0.023 0.023 0.023 0.039
(8.23) (9.55) (9.16) (15.96)

σ24 (1998) 0.023 0.023 0.022 0.039
(10.26) (10.60) (10.47) (14.74)

σ25 (1999) 0.023 0.025 0.025 0.047
(10.93) (11.63) (11.51) (14.80)

φ 0.567 0.560 0.607 0.†

(18.27) (11.72) (15.05)
σ2ε 0.020 0.020 0.024† 0.003

(10.37) (7.53) (9.77)
γ00 0.111 0.100

(14.35) (16.13)
Data are log earnings residuals from a regression on age,
education and year dummies. γ00 is the sample variance of y0.
t−ratios robust to conditional heteroskedasticity.
m1 and m2 are serial correlation tests for differenced errors.
(φ,σ2ε) are regression coeffs. of

³
y − αy−1

´
on y0. †Implied by constraint.
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Table 2 (continued)
Autoregressive Model of Earnings

AR(2) Estimates for Spanish Data, 1994-1999
N = 632, T 0 = 6

WG GMM1 GMM2 System-GMM
α1 −0.131 0.112 0.138 0.311

(5.06) (1.20) (1.58) (7.91)
α2 −0.118 0.051 0.070 0.176

(3.78) (0.93) (1.41) (4.87)
Sargan test (df) 4.21 (7) 16.02 (11)

m1 −6.41 −7.02 −11.56
m2 −0.75 −0.87 −1.55

Likelihood-based Estimates
BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)
α1 0.218 0.201 0.210 0.300 0.600

(4.47) (4.89) (2.73) (4.69) (25.40)
α2 0.104 0.094 0.100 0.102 0.338

(2.57) (2.47) (1.35) (2.16) (15.90)

σ21 (1996) 0.022 0.022 0.023 0.026 0.037
(7.93) (8.69) (25.14) (7.17) (11.90)

σ22 (1997) 0.025 0.024 0.026 0.035
(7.34) (9.15) (8.84) (13.59)

σ23 (1998) 0.023 0.023 0.024 0.033
(8.85) (9.87) (10.10) (12.85)

σ24 (1999) 0.024 0.024 0.034 0.035
(10.68) (11.34) (6.13) (13.04)

φ1 0.253 0.247 0.
(5.39) (5.50)

φ2 0.334 0.326 0.
(6.51) (6.12)

σ2ε 0.016 0.015 0.005
(8.24) (7.57) (12.62)

Root1 0.450 0.424 0.437 0.503 0.954
Root2 −0.232 −0.223 −0.228 −0.203 −0.354
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Table 3
Autoregressive Model of Earnings

AR(1) Estimates for PSID Data, 1977-1983
N = 792, T 0 = 7

WG GMM1 GMM2 System-GMM
α 0.184 0.171 0.157 0.311

(6.08) (3.37) (3.54) (9.76)
Sargan test (df) 15.61 (14) 46.59 (19)

m1 −6.36 −6.40 −7.42
m2 1.82 1.64 2.36

Likelihood-based Estimates
BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)
α 0.387 0.367 0.416 0.366 0.902

(9.64) (10.09) (8.27) (10.04) (43.93)

σ21 (1978) 0.061 0.059 0.068 0.059 0.113
(7.73) (7.83) (28.14) (7.83) (10.14)

σ22 (1979) 0.062 0.058 0.058 0.085
(6.10) (6.08) (6.07) (8.73)

σ23 (1980) 0.054 0.052 0.052 0.079
(7.21) (7.55) (7.54) (9.02)

σ24 (1981) 0.046 0.046 0.046 0.080
(6.62) (7.41) (7.40) (8.79)

σ25 (1982) 0.094 0.096 0.096 0.114
(3.55) (3.68) (3.67) (4.66)

σ26 (1983) 0.086 0.091 0.091 0.132
(5.34) (5.31) (5.31) (6.97)

φ 0.385 0.352 0.384 0.†

(11.84) (8.35) (11.75)
σ2ε 0.045 0.042 0.046† 0.008

(9.35) (7.55) (6.43)
γ00 0.239 0.237

(12.92) (13.34)
Data are log earnings residuals from a regression on age,
education and year dummies. γ00 is the sample variance of y0.
∗See notes to Table 1. †Value implied by constraint.
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Table 3 (continued)
Autoregressive Model of Earnings

AR(2) Estimates for PSID Data, 1977-1983
N = 792, T 0 = 7

WG GMM1 GMM2 System-GMM
α1 0.135 0.227 0.250 0.433

(3.61) (2.75) (3.37) (11.03)
α2 −0.028 0.047 0.062 0.119

(0.90) (1.17) (1.81) (3.93)
Sargan test (df) 12.29 (12) 30.96 (17)

m1 −4.94 −5.47 −7.05
m2 2.19 1.79 1.45

Likelihood-based Estimates
BCS RML(r) RML(nr) RML(r) RML(r)

(robust) (robust) (homosk.) (mean stat.) (φ = 0)
α1 0.473 0.419 0.496 0.518 0.673

(5.29) (8.32) (5.49) (8.79) (18.30)
α2 0.157 0.115 0.176 0.159 0.260

(2.78) (3.14) (2.55) (3.56) (8.26)

σ21 (1979) 0.070 0.064 0.076 0.071 0.082
(4.84) (6.19) (28.14) (7.00) (8.52)

σ22 (1980) 0.061 0.056 0.063 0.074
(5.50) (7.48) (8.34) (9.32)

σ23 (1981) 0.057 0.051 0.059 0.072
(5.21) (7.01) (7.88) (8.36)

σ24 (1982) 0.092 0.097 0.102 0.109
(3.69) (3.71) (3.91) (4.23)

σ25 (1983) 0.091 0.090 0.096 0.108
(4.88) (5.28) (5.68) (6.47)

φ1 0.096 0.065 0.
(2.95) (2.06)

φ2 0.262 0.174 0.
(4.73) (3.23)

σ2ε 0.028 0.023 0.012
(7.23) (5.65) (8.38)

Root1 0.698 0.607 0.736 0.735 0.947
Root2 −0.225 −0.189 −0.240 −0.217 −0.274
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Table 4
ARMA Models of Earnings

RML Estimates for PSID Data, 1977-1983
N = 792, T 0 = 7

ARMA(1, 1) ARMA(1, 2) ARMA(2, 1)
α1 0.655 0.336 0.210

(3.34) (1.74) (0.32)
α2 0.194

(0.24)
ψ1 0.205 −0.068 −0.175

(1.69) (0.41) (0.18)
ψ2 −0.139

(2.62)
σ21978 0.069 0.057

(4.74) (6.63)
σ21979 0.063 0.062 0.065

(6.69) (6.11) (0.48)
σ21980 0.057 0.056 0.056

(6.50) (7.85) (1.43)
σ21981 0.055 0.049 0.048

(4.80) (6.43) (1.52)
σ21982 0.094 0.099 0.096

(3.63) (3.68) (2.87)
σ21983 0.093 0.092 0.089

(5.32) (5.36) (4.68)
σ2η 0.021 0.073 0.064

(0.90) (1.75) (1.20)
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Table 5
Simulations for the First-Order Autoregressive Model
Means and standard deviations of the estimators

N = 792, T 0 = 7
WG GMM RML(nr) RML(r) BCS

True values: α = 0.4, σ20 = 0.11

α
0.178
(0.015)

0.396
(0.035)

0.430
(0.021)

0.400
(0.020)

0.400
(0.021)

σ21
0.059
(0.003)

0.059
(0.004)

σ22
0.058
(0.003)

0.058
(0.004)

σ23
0.052
(0.003)

0.052
(0.003)

σ24
0.046
(0.003)

0.046
(0.003)

σ25
0.096
(0.005)

0.096
(0.006)

σ26
0.091
(0.005)

0.091
(0.005)

True values: α = 0.8, σ20 = 0.28

α
0.488
(0.016)

0.772
(0.076)

0.882
(0.028)

0.804
(0.037)

0.804
(0.040)

σ21
0.059
(0.004)

0.059
(0.004)

σ22
0.058
(0.004)

0.058
(0.004)

σ23
0.052
(0.004)

0.052
(0.004)

σ24
0.046
(0.003)

0.046
(0.003)

σ25
0.096
(0.005)

0.096
(0.006)

σ26
0.091
(0.005)

0.091
(0.005)

1000 replications. Variance values: σ21 = 0.059,σ
2
2 = 0.058,

σ23 = 0.052,σ
2
4 = 0.046,σ

2
5 = 0.096,σ

2
6 = 0.091,σ

2
η = 0.07.
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Relative Inefficiency Under Nonstationary Initial Variance (T=3, alpha=0.9, lamda=0)
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Appendix for Robust Likelihood Estimation of Dynamic Panel
Data Models by Javier Alvarez and Manuel Arellano

A. Conditional Maximum Likelihood and Expected Scores

A.1. First-Order Conditions and Related Results

Equations (3.8), (3.11): Note that v = v0Φι and ωT = V ar (v) = (ι
0Λ−1ι)−1,

so that Λ−1 = (1/ωT )Φ. Moreover, the equivalences in (3.7) also imply

ln detΛ = ln det (DΛD0) + lnωT . (A.1)

Clearly 0 ≤ ϕt ≤ 1,
PT
t=1 ϕt = 1, and under homoskedasticity ϕt = 1/T for all t.

Regarding period-specific variances, taking into account that:

E
h
(vt − v)2

i
= σ2t + ωT − 2E (vtv) = σ2t + ωT − 2ϕtσ2t = σ2t + ωT − 2ωT ,

we obtain expression (3.8), and also

σ2t − σ2t−1 = E
h
(vt − v)2

i
−E

h
(vt−1 − v)2

i
(t = 2, ...T ) .

Finally, equation (3.11) is easily verified from (3.8).

Idempotent Matrices: Letting Q = Φ − Φιι0Φ, note that the matrix Q† =
I − Φ1/2ιι0Φ1/2 is idempotent, and that Q = Φ1/2Q†Φ1/2. Also

Q† = Λ1/2D0 (DΛD0)−1DΛ1/2 = I − ωTΛ
−1/2ιι0Λ−1/2

and D0 (DΛD0)−1D = Λ−1/2Q†Λ−1/2. So that

D0 (DΛD0)−1D = Λ−1 − ωTΛ
−1ιι0Λ−1 = ω−1T Q.

Derivatives: Letting ϕ = (ϕ1, ...,ϕT )
0 = Φι, we have the following result:

∂ϕ

∂θ0
= − (Φ− Φιι0Φ)Λ−1 = −D0 (DΛD0)−1DΦ. (A.2)

To see this recall that ϕs = ωT/σ
2
T and consider

dϕ = ωT
∂

∂θ0

⎛⎜⎜⎝
1/σ21
...

1/σ2T

⎞⎟⎟⎠ dθ +
⎛⎜⎜⎝
1/σ21
...

1/σ2T

⎞⎟⎟⎠ ∂ωT
∂θ0

dθ.

Also using
∂ωT
∂σ2s

=
1/σ4s³

σ−21 + ...+ σ−2T
´2 = ϕ2s, (A.3)
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we get

∂ϕ

∂θ0
= −ωT

⎛⎜⎜⎝
1/σ41 . . . 0
...

. . .
...

0 . . . 1/σ4T

⎞⎟⎟⎠+
⎛⎜⎜⎝
1/σ21
...

1/σ2T

⎞⎟⎟⎠ ³ ϕ21 . . . ϕ2T
´

= − 1

ωT
ΦΦ− 1

ωT

⎛⎜⎜⎝
ϕ1
...
ϕT

⎞⎟⎟⎠ ³ ϕ1 . . . ϕT
´
Φ = − 1

ωT
(Φ− Φιι0Φ)Φ.

First-Order Conditions Formulae (3.21)-(3.22): For a matrixA = (a1, ..., an)
0,

we use the notation vec (A) = (a01, ..., a
0
n)
0 and A ⊗ B = {ajkB}. The derivative

of LC with respect ωT is

∂LC
∂ωT

=
1

ω2T

NX
i=1

[v0i (Φ− Φιι0Φ) vi − (T − 1)ωT ] .

The concentrated likelihood with respect to ωT is

L∗C =
N

2

TX
t=1

lnϕt −
N (T − 1)

2
ln

NX
i=1

TX
t=1

ϕt (vit − vi)2 ,

and the Lagrangean

L = L∗C + λ

Ã
1−

TX
t=1

ϕt

!
,

so that

∂L
∂ϕt

=
N

2

1

ϕt
− 1

2bωT
NX
i=1

"
(vit − vi)2 − 2vitvi

Ã
1−

TX
s=1

ϕs

!#
− λ

∂L
∂λ

= 1−
TX
t=1

ϕt.

Inserting the restriction, the first-order conditions for the weights are

1

ϕt
=
1bωT 1N

NX
i=1

(vit − vi)2 + λ,

and taking first-differences to eliminate the Lagrange multiplier

bωT
ϕt
− bωT

ϕt−1
=
1

N

NX
i=1

∙
(vit − vi)2 −

³
vi(t−1) − vi

´2¸
.

Nonnegativity constraints: The nonnegativity constraints σ2t > 0 may be
enforced through the parameterization (ωT ,ϕ1, ...,ϕT ) imposing adding-up and
non-negativity restrictions to the weights. Alternatively, transformed variances
for errors in orthogonal deviations can be used, which confine nonnegativity re-
strictions to σ2T . This transformation is discussed next.
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A.2. Heteroskedastic Orthogonal Deviations

The following equivalences also hold

v0D0 (DΛD0)−1Dv =
T−1X
t=1

ev2teσ2t (A.4)

ln det (DΛD0) =
TX
t=1

lnσ2t + ln
³
σ−21 + ...+ σ−2T

´
=

T−1X
t=1

ln eσ2t (A.5)

where the heteroskedastic orthogonal deviations are given by

evt =
⎧⎪⎪⎨⎪⎪⎩
vT−1 − vT for t = T − 1

vt − σ−2t+1vt+1+...+σ
−2
T vT

σ−2t+1+...+σ
−2
T

for t = T − 2, ..., 1
(A.6)

eσ2t =
⎧⎪⎪⎨⎪⎪⎩

σ2T−1 + σ2T for t = T − 1

σ2t +
1

σ−2t+1+...+σ
−2
T

for t = T − 2, ..., 1
. (A.7)

or

evt =
⎧⎪⎨⎪⎩
vT−1 − vT for t = T − 1

(vt − vt+1) + λt+1evt+1 for t = T − 2, ..., 1
(A.8)

where λt = σ2t/eσ2t , (t = T − 1, ..., 1).
To clarify the mapping between (σ21, ...,σ

2
T ) and

³eσ21, ..., eσ2T−1´ note that
E [(vT−1 − vT ) (vT−2 − vT )] = σ2T

E (evt) = eσ2t (t = T − 1, ..., 1) .
So we identify σ2T as a covariance between (vT−1 − vT ) and (vT−2 − vT ), and eσ2T−1
as the variance of evT−1 = (vT−1 − vT ), so that σ2T−1 = eσ2T−1 − σ2T . We can get

λT−1 =
σ2T−1eσ2T−1 =

σ2T−1
σ2T−1 + σ2T

and use it to form evT−2 = (vT−2 − vT−1) + λT−1evT−1,
which allows us to get eσ2T−2. Now we can get σ2T−2 = eσ2T−2 − 1/ ³σ−2T−1 + σ−2T

´
,

λT−2 = σ2T−2/eσ2T−2, and proceed recursively to obtain the remaining terms. Note
that the eσ2t will be nonnegative by construction, so that the non-negativity prob-
lem is confined to σ2T .
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A.3. Score Bias Function

Proof of (3.24): We have

E
h
X 0
iD

0 (DΛD0)−1Dvi
i
= E

³
X 0
iΛ
−1vi

´
− ωTE

³
X 0
iΛ
−1ιι0Λ−1vi

´

= −ωTE

⎛⎜⎜⎝
x01iΛ

−1ιι0Λ−1vi
...

x0piΛ
−1ιι0Λ−1vi

⎞⎟⎟⎠ = −ωT
⎛⎜⎜⎝

ι0Λ−1E (x1iv0i)Λ
−1ι

...
ι0Λ−1E (xpiv0i)Λ

−1ι

⎞⎟⎟⎠
To obtain an expression for E (xjiv0i) we need to develop a suitable notation.

Let us write Ã
Ip 0
BTp BT

!Ã
y0i
yi

!
=

Ã
y0i

ηiι+ vi

!
(A.9)

where

³
BTp BT

´
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αp −αp−1 . . . −α1 1 0 . . . 0 . . . 0 0
0 −αp . . . −α2 −α1 1 0 . . . 0 0

0 0
. . . −α2 −α1 . . . 0 . . . 0 0

...
...

. . . . . . . . .
...

...
0 0 0 0 0 1 0
0 0 . . . 0 0 0 . . . −αp . . . −α1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Moreover, Ã
y0i
yi

!
=

Ã
Ip 0
CTp CT

!Ã
y0i

ηiι+ vi

!
(A.10)

where CT = B−1T and CTp = −B−1T BTp, so that
yi = CTpy

0
i + ηiCT ι+ CTvi. (A.11)

Thus,
E (yiv

0
i) = CTpE

³
y0i v

0
i

´
+ CTE (viv

0
i) = CTΛ. (A.12)

Let us consider now an expression for xji =
³
yi(1−j), ..., yi0, yi1, ..., yi(T−j)

´0
.

Since we have ⎛⎜⎜⎝
yi(1−j)
...
yi0

⎞⎟⎟⎠ = ³
0 Ij

´
y0i

and ⎛⎜⎜⎝
yi1
...

yi(T−j)

⎞⎟⎟⎠ = C(T−j)py0i + ηiCT−jιT−j + CT−j

⎛⎜⎜⎝
vi1
...

vi(T−j)

⎞⎟⎟⎠ ,
4



we can write xji as

xji =

Ã
0 Ij
C(T−j)p

!
y0i+ηi

Ã
0 0

CT−j 0

!Ã
ιT−j
ιj

!
+

Ã
0 0

CT−j 0

!
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎝
vi1
...

vi(T−j)

⎞⎟⎟⎠⎛⎜⎜⎝
vi(T−j+1)

...
viT

⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

xji = C
j
Tpy

0
i + ηiCjι+ Cjvi (j = 1, ..., p) (A.13)

where

Cj =

Ã
0 0

CT−j 0

!
CjTp =

Ã
0 Ij
C(T−j)p

!
.

Therefore,
E (xjiv

0
i) = CjΛ, (A.14)

and in view of the previous expression

E
h
X 0
iD

0 (DΛD0)−1Dvi
i
= −ωT

⎛⎜⎜⎝
ι0Λ−1C1ι

...
ι0Λ−1Cpι

⎞⎟⎟⎠ = −
⎛⎜⎜⎝

ϕ0C1ι
...

ϕ0Cpι

⎞⎟⎟⎠ .
Moreover, note that weighted averages are given by

xji = ϕ0xji = ηi (ϕ
0Cjι) +

³
ϕ0CjTp

´
y0i + ϕ0Cjvi (j = 1, ..., p) . (A.15)

Also note that the variance of the average error can be eliminated to give rise
to moment conditions that only depend on α and the weights.

Integral (3.38) of the Bias Function when p = 1:
To see that the integral of hT (α,ϕ) when p = 1 is given by (3.38) note that

using

hT (α,ϕ) =
T−1X
t=1

³
1 + α+ ..+ αt−1

´
ϕt+1

=
T−1X
t=1

ϕt+1 + α
T−1X
t=2

ϕt+1 + α2
T−1X
t=3

ϕt+1 + ...+ αT−2ϕT ,

we can write

bT (α,ϕ) = α
T−1X
s=1

ϕs+1 +
α2

2

T−1X
s=2

ϕs+1 +
α3

3

T−1X
s=3

ϕs+1 + ..+
αT−1

T − 1ϕT

=
T−1X
t=1

³
ϕt+1 + ...+ ϕT

´
t

αt.
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Derivatives of bT (α,ϕ) with respect to ϕt are:

∂bT (α,ϕ)

∂ϕt
=

(
0 for t = 1Pt−1
s=1

αs

s
for t > 1

and in view of (A.2):

∂bT (α,ϕ)

∂θ
=

Ã
∂ϕ

∂θ0

!0
∂bT (α,ϕ)

∂ϕ
= −ΦD0 (DΛD0)−1D

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
α

α+ α2

2

α+ α2

2
+ α3

3
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Proof of (4.8) and (4.9) for the Random Effects Scores:
Let ξi = ηi − φyi0, so that

σ2ε = V ar (vi) + V ar (ξi) .

Using this expression and (A.15) we have

1

σ2ε
E
h
xi
³
ui − φ0y0i

´i
=

1

σ2ε

n
E (xivi) +E

h
xi
³
ηi − φ0y0i

´io
=

1

σ2ε

h
ω2TΛ

−1ι0E (viX 0
i)Λ

−1ι+ hT (α,ϕ)E (ηiξi)
i

=
1

σ2ε
[ωThT (α,ϕ) + hT (α,ϕ)Cov (ηi, ξi)]

= hT (α,ϕ)
1

σ2ε
[V ar (vi) + V ar (ξi)] = hT (α,ϕ) .

This proves result (4.8). Turning to (4.9), we have

E

"
1

σ2ε
ΦD0 (DΛD0)−1Dvi

³
ui − φ0y0i

´#
=

=
1

σ2ε
ΦD0 (DΛD0)−1E (Dvivi)

=
1

σ2ε
ΦD0 (DΛD0)−1DE (viv0i)Φι

=
1

σ2ε
ΦD0 (DΛD0)−1DΛΦι

=
ωT
σ2ε

ΦD0 (DΛD0)−1DΛΛ−1ι =
ωT
σ2ε

ΦD0 (DΛD0)−1Dι = 0.
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B. Asymptotic Variances of Estimators Under Normality

This Appendix presents the formulae for the asymptotic variances of RML and
BCS estimators used for the inefficiency calculations reported in the main body
of the paper. They are calculated under the assumption of normality for both
homoskedastic and heteroskedastic estimators when p = 1. These formulas are
not suggested for empirical standard error calculations (for which we use robust
sample expressions that remain consistent under conditional heteroskedasticity
and nonnormality), but in order to facilitate numerical comparisons of relative
efficiency among alternative estimators.

B.1. Asymptotic Variance of the RML-dif Estimator

Letting η†i = ηi − (1− α) yi0, the AR(1) model can be written as

∆yi1 = η†i + vi1
∆yit = α∆yi(t−1) +∆vit (t = 2, ..., T )

or in vector notation

B

⎛⎜⎜⎝
∆yi1
...

∆yiT

⎞⎟⎟⎠ = D†

⎛⎜⎜⎝
η†i + vi1
...

η†i + viT

⎞⎟⎟⎠ ≡ D†u†i

where B and D† are T × T matrices of the form

B =

⎛⎜⎜⎜⎜⎝
1 0 . . . 0 0
−α 1 . . . 0 0
...

. . .
...

0 0 . . . −α 1

⎞⎟⎟⎟⎟⎠ , D† =

Ã
1 0 · · · 0 0

D

!
.

Moreover,
V ar

³
D†u†i

´
= D† ³σ2η†ιι0 + Λ

´
D†0

where σ2η† = V ar
³
η†i
´
and under homoskedascity Λ = σ2IT .

Therefore,

V ar

⎛⎜⎜⎝
∆yi1
...

∆yiT

⎞⎟⎟⎠ = B−1D† ³σ2η†ιι0 + Λ
´
D†0B−10 ≡ Ω (γ) (B.1)

where γ =
³
α,σ21, ...,σ

2
T ,σ

2
η†
´0
.
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Moreover, note that the heteroskedastic marginal MLE for the data in differ-
ences can be written as

³bαD, bσ21..., bσ2T , bσ2η†´ = argmin
⎡⎢⎢⎣ln detΩ (γ) + 1

N

NX
i=1

(∆yi1, ...,∆yiT )Ω
−1 (γ)

⎛⎜⎜⎝
∆yi1
...

∆yiT

⎞⎟⎟⎠
⎤⎥⎥⎦ .

Thus, under normality the asymptotic variance matrix of
³bαD, bσ21..., bσ2T , bσ2η†´ is

given by15

2
n
H (γ)0D0

h
Ω−1 (γ)⊗ Ω−1 (γ)

i
DH (γ)

o−1
(B.2)

where

H (γ) =
∂vech [Ω (γ)]

∂γ0

and D is the selection matrix

D = ∂vecΩ

∂ (vechΩ)0
.

A similar expression is valid for the homoskedastic RML-dif estimator, except
that in that case the parameter vector is redefined as γ =

³
α,σ2,σ2η†

´0
.

B.2. Asymptotic Variance of the RML-lev Estimator

In order to exploit the previous result for the differences, we express the covariance
structure corresponding to the levels using the transformation:

V ar

⎛⎜⎜⎜⎜⎝
yi0
∆yi1
...

∆yiT

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ00 γ0η† αγ0η† . . . αT−1γ0η†
γ0η†
αγ0η† Ω (γ)
...

αT−1γ0η†

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = Ω∗ (γ∗)

where γ00 = V ar (yi0), γ0η† = Cov
³
yi0, η

†
i

´
, and γ∗ =

³
α,σ21, ...,σ

2
T ,σ

2
η†, γ0η†, γ00

´0
.

Arguing as in the previous case, the marginal MLE for the data in levels can
be written as ³bαL, eσ21, ..., eσ2T , eσ2η†, eγ0η†, eγ00´ =

argmin

⎡⎢⎢⎢⎢⎣ln detΩ∗ (γ∗) + 1

N

NX
i=1

(yi0,∆yi1, ...,∆yiT )Ω
∗−1 (γ∗)

⎛⎜⎜⎜⎜⎝
yi0
∆yi1
...

∆yiT

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ .

15See for example Arellano (2003, p. 72).
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Thus, under normality the asymptotic variance matrix of
³bαL, eσ21, ..., eσ2T , eσ2η†, eγ0η†, eγ00´

is given by

2
n
H∗ (γ∗)0D∗0

h
Ω∗−1 (γ∗)⊗ Ω∗−1 (γ∗)

i
D∗H∗ (γ∗)

o−1
(B.3)

where

H∗ (γ∗) =
∂vech [Ω∗ (γ∗)]

∂γ∗0

and D∗ is the selection matrix

D∗ = ∂vecΩ∗

∂ (vechΩ∗)0
.

Note that in this parameterization, under stationary initial conditions, γ00
remains a free parameter (which determines σ2η) given by

γ00 =
σ2η

(1− α)2
+ σ20

and

γ0η† ≡ Cov
³
yi0, η

†
i

´
= − (1− α)σ20

σ2η† ≡ V ar
³
η†i
´
= (1− α)2 σ20,

so that the restriction under mean stationarity is γ0η†/σ
2
η† = −1/ (1− α). Ho-

moskedasticity further restricts these coefficients to satisfy σ20 = σ2/ (1− α2).

B.3. Asymptotic Variance of the Homoskedastic BCS Estimator

Because of the incidental parameters problem, the ML estimates of α and σ2

estimated jointly with the effects are inconsistent for fixed T . However, as noted
by Lancaster (2002), we can obtain score adjusted estimators that are consistent
in view of the moment relationships:

E (x∗0i v
∗
i ) = −σ2hT (α)

E (v∗0i v
∗
i ) = (T − 1)σ2

where x∗i and v
∗
i denote orthogonal deviations of the original variables.

By substituting the second equation we can eliminate σ2 and get

E [ψi (α)] = 0

where

ψi (α) = x
∗0
i v
∗
i + v

∗0
i v

∗
i

hT (α)

(T − 1) . (B.4)
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Under suitable regularity conditions, if there is a consistent root of the equationPN
i=1 ψi (a) = 0,

16 its asymptotic variance is given by

vα =
v

d2
. (B.5)

where
v = E

h
ψ2i (α)

i
and

d = E

"
∂ψi (α)

∂α

#
.

Because of

∂ψi (α)

∂α
= −x∗0i x∗i − 2x∗0i v∗i

hT (α)

(T − 1) +
v∗0i v

∗
i

(T − 1)h
0
T (α) ,

we have

d = −E (x∗0i x∗i ) + 2σ2
h2T

(T − 1) + σ2h0T (B.6)

where we are using hT and h0T for shortness.
Similarly,

v = E
h
(x∗0i v

∗
i )
2
i
+E

h
(v∗0i v

∗
i )
2
i h2T
(T − 1)2 + 2E [(x

∗0
i v
∗
i ) (v

∗0
i v

∗
i )]

hT
(T − 1) . (B.7)

The availability of expression (B.1) allows us to calculate the term E (x∗0i x
∗
i )

that appears in (B.6) as follows

E (x∗0i x
∗
i ) = E

³
x0iD

0 (DD0)−1Dxi
´
= tr

h
(DD0)−1Ω∆11

i
(B.8)

where Ω∆11 = E (Dxix
0
iD

0) is the (T − 1)×(T − 1) north-west submatrix of Ω (γ)
under homoskedasticity.
Next, under normality and homoskedasticity we have

E
h
(x∗0i v

∗
i )
2
i
= σ4h2T + σ2E (x∗0i x

∗
i ) + σ4tr (QCTQCT ) (B.9)

E
h
(v∗0i v

∗
i )
2
i
= σ4 (T + 1) (T − 1) (B.10)

E [(x∗0i v
∗
i ) (v

∗0
i v

∗
i )] = −σ4hT (T + 1) (B.11)

where Q = IT − ιι0/T and CT is such that E (xiv0i) = σ2CT .

16A formal proof of consistency is given in Lancaster (2002), Theorem A1.
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Thus,

v = σ4h2T + σ2E (x∗0i x
∗
i ) + σ4tr (QCTQCT )− σ4h2T

µ
T + 1

T − 1
¶

or
v = σ2E (x∗0i x

∗
i ) + σ4tr (QCTQCT )− 2

(T − 1)σ
4h2T . (B.12)

To get the results (B.9)-(B.11) we have used the following intermediate for-
mulae for moments of quadratic forms in normal variables:

E
h
(x∗0i v

∗
i )
2
i
= [E (x∗0i v

∗
i )]

2
+ tr [E (x∗ix

∗0
i )E (v

∗
i v
∗0
i )] + tr [E (x

∗
i v
∗0
i )E (x

∗
i v
∗0
i )]

E
h
(v∗0i v

∗
i )
2
i
= tr2 [E (v∗i v

∗0
i )] + 2tr [E (v

∗
i v
∗0
i )E (v

∗
i v
∗0
i )] = (T − 1)2 σ4 + 2σ4 (T − 1)

E [(x∗0i v
∗
i ) (v

∗0
i v

∗
i )] = E (x∗0i v

∗
i )E (v

∗0
i v

∗
i ) + 2tr [E (x

∗
i v
∗0
i )E (v

∗
i v
∗0
i )]

= −σ4hT (T − 1)− 2σ4hT .

B.4. Asymptotic Variance of the Heteroskedastic BCS Estimator

The i-th unit log likelihood conditioned on the MLE of ηi and yi0 is given by

`i = −1
2
ln det (DΛD0)− 1

2
v0iD

0 (DΛD0)−1Dvi

whereD is the (T − 1)×T first-difference matrix operator andΛ = diag (σ21, ...,σ2T ).
Also, let dt be the t-th column of D, so that DΛD0 =

PT
t=1 σ

2
tdtd

0
t.

Using for shortness the notation Ω = DΛD0, the first and second derivatives
of `i with respect to α and σ2t are given by

17

∂`i
∂α

= x0iD
0Ω−1Dvi

∂`i
∂σ2t

=
1

2
d0tΩ

−1 (Dviv0iD
0 − Ω)Ω−1dt (t = 1, ..., T )

∂2`i
∂α2

= −x0iD0Ω−1Dxi

∂2`i
∂σ2t∂α

= −d0tΩ−1Dxiv0iD0Ω−1dt (t = 1, ..., T )

17Note that
∂d0tΩ−1dt

∂σ2s
= − ¡d0tΩ−1ds¢2

and
∂

∂σ2s
d0tΩ
−1 (Dviv0iD

0)Ω−1dt = −2
¡
d0tΩ
−1ds

¢ ¡
d0sΩ

−1Dviv0iD
0Ω−1dt

¢
.
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∂2`i
∂σ2t∂σ2s

= −
³
d0tΩ

−1ds
´ ³
d0tΩ

−1Dviv0iD
0Ω−1ds

´
+
1

2

³
d0tΩ

−1ds
´2
.

Let `1i = ∂`i/∂α, `2it = ∂`i/∂σ
2
t , `11i = ∂2`i/∂α

2, etc., γ = (α,σ21, ...,σ
2
T )
0, and

h = −E (`1i), h1 = ∂h/∂α, h2t = ∂h/∂σ2t . BCS is the GMM estimator based on
the moments

ψi =

Ã
ψ1i
ψ2i

!
=

Ã
`1i + h
`2i

!
whose asymptotic variance is

VBCS =
³
D0V −1D

´−1
where

D = E

Ã
∂ψi
∂γ0

!
= E

Ã
`11i `12i
`21i `22i

!
+

Ã
h1 h02
0 0

!
and

V = E (ψiψ
0
i) = E

Ã
`21i `1i`

0
2i

`2i`1i `2i`
0
2i

!
−
Ã
h2 0
0 0

!
.

Letting Ω∆11 = E (Dxix
0
iD

0), the expected second derivatives are

E (`11i) ≡ E
Ã
∂2`i
∂α2

!
= −tr

³
Ω−1Ω∆11

´
(B.13)

E (`21it) ≡ E
Ã

∂2`i
∂σ2t∂α

!
= −d0tΩ−1DC1ΛD0Ω−1dt (B.14)

E (`22its) ≡ E
Ã

∂2`i
∂σ2t∂σ2s

!
= −1

2

³
d0tΩ

−1ds
´2

(B.15)

where E (xiv0i) = C1Λ, and

C1 =

Ã
0 0

B−1T−1 0

!
.

Finally, the outer product terms are given by

E
³
`21i
´
= E

∙³
x0iD

0Ω−1Dvi
´2¸

E (`2it`1i) =
1

2
E
∙³
d0tΩ

−1Dvi
´2 ³

x0iD
0Ω−1Dvi

´¸
+
1

2

³
d0tΩ

−1dt
´
h

E (`2it`2is) =
1

4
E
∙³
d0tΩ

−1Dvi
´2 ³

d0sΩ
−1Dvi

´2¸− 1
4

³
d0tΩ

−1dt
´ ³
d0sΩ

−1ds
´
.
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Under normality:

E
³
`21i
´
= tr

³
Ω−1Ω∆11

´
+ tr

³
D0Ω−1DC1ΛD0Ω−1DC1Λ

´
+ h2 (B.16)

E (`2it`1i) = d0tΩ
−1DC1ΛD0Ω−1dt (B.17)

E (`2it`2is) =
1

2

³
d0tΩ

−1ds
´2

(B.18)

Proof: Note that under normality:

E
∙³
d0tΩ

−1Dvi
´2 ³

d0sΩ
−1Dvi

´2¸
= E

∙³
d0tΩ

−1Dvi
´2¸
E
∙³
d0sΩ

−1Dvi
´2¸

+2
n
E
h³
d0tΩ

−1Dvi
´ ³
d0sΩ

−1Dvi
´io2

=
³
d0tΩ

−1dt
´ ³
d0sΩ

−1ds
´
+ 2

³
d0tΩ

−1ds
´2
,

which proves (B.18) and also shows that E (`2it`2is) = −E (`22its).
To prove (B.16), let v∗i = Ω−1/2Dvi, x∗i = Ω−1/2Dxi and note that

E
³
`21i
´
= E

h
(x∗0i v

∗
i )
2
i

= [E (x∗0i v
∗
i )]

2
+ tr [E (x∗ix

∗0
i )E (v

∗
i v
∗0
i )] + tr [E (x

∗
i v
∗0
i )E (x

∗
i v
∗0
i )]

= h2 + tr
³
Ω−1Ω∆11

´
+ tr

³
Ω−1DC1ΛD0Ω−1DC1ΛD0´ .

Finally, (B.17) can be proved as follows:

E
h
d0tΩ

−1Dviv0iD
0Ω−1dt

³
x0iD

0Ω−1Dvi
´i
= E

h
d0tΩ

−1/20v∗i v
∗0
i Ω

−1/2dt (x∗0i v
∗
i )
i

= E
³
d0tΩ

−1/20v∗i v
∗0
i Ω

−1/2dt
´
E (x∗0i v

∗
i ) + 2E

³
d0tΩ

−1/20v∗i x
∗0
i

´
E
³
v∗i v

∗0
i Ω

−1/2dt
´

= −
³
d0tΩ

−1dt
´
h+ 2

³
d0tΩ

−1DC1ΛD0Ω−1dt
´

To see this, letting evit = d0tΩ−1/20v∗i , note that
E
h
d0tΩ

−1/20v∗i v
∗0
i Ω

−1/2dt (x∗0i v
∗
i )
i
=
X
s

E
³ev2itx∗isv∗is´

=
X
s

E
³ev2it´E (x∗isv∗is) + 2X

s

E (evitx∗is)E (evitv∗is)
= E

³
d0tΩ

−1/20v∗i v
∗0
i Ω

−1/2dt
´
E (x∗0i v

∗
i ) + 2E

³
d0tΩ

−1/20v∗i x
∗0
i

´
E
³
v∗i v

∗0
i Ω

−1/2dt
´
.

Thus, the information equality E (`2it`1i) = −E (`21it) also holds.
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C. Modified Conditional ML Score Interpretation of BCS

For the heteroskedastic AR(1) model we saw that BCS can be given a modified
conditional likelihood interpretation when the weights ϕ are known. More gener-
ally, we show here that for a heteroskedastic AR(p) model with unknown weights,
the BCS estimating equations coincide with the modified score vector discussed
in Arellano (2003b), which is first reviewed for convenience.

The Modified CML Score Let `i (β, ηi) be an individual log-likelihood
conditioned on zi, and let dβi (β, ηi), dηi (β, ηi), dηηi (β, ηi) and dβηi (β, ηi) be first
and second partial derivatives. The first argument is a vector common parameter
β and ηi is a scalar individual effect. Let `i (β, bηi (β)) be the concentrated log
likelihood, so that dβi (β, bηi (β)) is the concentrated score.
The modified score discussed in Arellano (2003b) is given by

dMi (β) = dβi (β, bηi (β))− 12 ∂

∂β
ln [−dηηi (β, bηi (β))] + qηi (β, bηi (β)) (C.1)

where

qηi (β, ηi) =
∂

∂ηi
qi (β, ηi) (C.2)

qi (β, ηi) =
κβηi (β, ηi)

κηηi (β, ηi)
(C.3)

and

κβηi (β0, ηi) = E
∙
1

T
dβηi (β0, ηi) | xi, ηi

¸
(C.4)

κηηi (β0, ηi) = E
∙
1

T
dηηi (β0, ηi) | xi, ηi

¸
. (C.5)

The first modification term provides a “degrees of freedom adjustment”, whereas
the second corrects for nonorthogonality between β and ηi. Note that if β and ηi
are information orthogonal κβηi (β, ηi) = 0, so that qηi (β, ηi) = 0 as well.
If there exists a scalar function ci (β, ηi) such that

∂

∂β
ci (β, ηi) = qηi (β, ηi) , (C.6)

the modified score corresponds to the objective function

`i (β, bηi (β))− 12 ln [−dηηi (β, bηi (β))] + ci (β, ηi) , (C.7)

which coincides with the Cox and Reid modified profile likelihood based on an
orthogonal reparameterization of the effects. If ci (β, ηi) does not exist, there is
no orthogonal reparameterization but the modified score dMi (β) may still achieve
bias reduction relative to dβi (β, bηi (β)).
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Application to AR(p) models In the AR(p) model, β = (α0, θ0)0, zi = y0i ,
and

`i (β, ηi) = −.5 ln detΛ− .5v0iΛ−1vi, dηηi (β, ηi) = −1/ωT ,

dβηi (β, ηi) = −
Ã
1

ωT
x1i, ...,

1

ωT
xpi,

1

σ41
vi1, ...,

1

σ4T
viT

!0
.

Thus, κηηi (β, ηi) = −1/ (TωT ),
κβηi (β0, ηi) = E

∙
1

T
dβηi (β0, ηi) | y0i , ηi

¸
= − 1

TωT

³
E
³
x1i | y0i , ηi

´
, ..., E

³
xpi | y0i , ηi

´
, 0, ..., 0

´0
,

and

qi (β, ηi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ηi (ϕ
0C1ι) +

³
ϕ0C1Tp

´
y0i

...
ηi (ϕ

0Cpι) +
³
ϕ0C1Tp

´
y0i

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, qηi (β, ηi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ0C1ι
...

ϕ0Cpι
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the modified score vector is

dMi (β) = dβi (β, bηi (β)) + 12 ∂

∂β
lnωT + (ϕ

0C1ι, ...,ϕ0Cpι, 0, ..., 0)
0

where

dβi (β, bηi (β)) = ∂

∂β

∙
−1
2
ln detΦ− T

2
lnωT − 1

2ωT
v0i (Φ− Φιι0Φ) vi

¸
,

which shows that BCS can be regarded as the solution to the estimating equationsPN
i=1 dMi (β) = 0.
In this case it does not exist a function ci (β, ηi) such that

(∂/∂β) ci (β, ηi) = (ϕ
0C1ι, ...,ϕ0Cpι, 0, ..., 0)

0
.

This can be easily seen when p = 1. In that case hT (α,ϕ) = ∂bT (α,ϕ) /∂α

where bT (α,ϕ) =
PT−1
t=1

³
ϕt+1 + ...+ ϕT

´
αt/t, so that possible solutions for ci (β, ηi)

would be of the form bT (α,ϕ) + c (θ). However, since ∂bT (α,ϕ) /∂σ2t depends on
α and varies with t,18 there is no c (θ) that can make ∂ci (β, ηi) /∂σ

2
t equal to zero

for any α and t as required.
Thus, in the heteroskedastic AR(p) setting, despite the lack of existence of

an orthogonal transformation, a first-order bias adjustment to the score is an
exact correction that removes fully the bias, hence leading to fixed-T consistent
estimation.
18The expression is ∂bT (α,ϕ) /∂σ2t = −ϕ2t

£
bT (α,ϕ) + α+ ..+ αt−1

¤
/ωT .
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D. ARMA Models

Consider the model

yit = α1yi(t−1) + ...+ αpyi(t−p) + ηi + vit (t = 1, ..., T ; i = 1, ..., N) (D.1)

where vit is a moving average error of order q.
Following the notation introduced in (A.9), we can writeÃ

Ip 0
BTp BT

!Ã
y0i
yi

!
=

Ã
y0i

ηiι+ vi

!
. (D.2)

For an AR(p) process we have

V ar

Ã
y0i

ηiι+ vi

!
=

Ã
Γ00 γ0ηι

0
T

ιTγ
0
0η σ2ηιT ι

0
T + Λ

!
(D.3)

where Λ = diag(σ21, ...,σ
2
T ).

Similarly, for an ARMA(p, q) process

V ar

Ã
y0i

ηiι+ vi

!
=

⎛⎜⎝ Γ00 Υpq γ0ηι
0
T−q

Υ0
pq

ιT−qγ00η
σ2ηιT ι

0
T + Λψ

⎞⎟⎠ . (D.4)

If p ≤ q, the elements of Υpq are all unrestricted. However, if p > q only the
last q rows are unrestricted, and the (p− q) first elements of the columns of Υpq

coincide with those of γ0η. Moreover, Λψ is a moving average covariance matrix
whose first q subdiagonals contain nonzero elements.
We adopt the following heteroskedastic moving-average specification for the

errors in (D.1):
vit = σtv

†
it (D.5)

v†it = ζit − ψ1ζi(t−1) − ...− ψqζi(t−q) (D.6)

where ζit is an iid (0, 1) random error. In this way, we allow for arbitrary time se-
ries heteroskedasticity and at the same time specify a stationary serial correlation
pattern for vit. Thus,

vi = Λ1/2Ψ
³
ζi(1−q), ..., ζiT

´0
(D.7)

and
Λψ = Λ1/2ΨΨ0Λ1/2 (D.8)

where Ψ is the T × (T + q) matrix

Ψ =

⎛⎜⎜⎜⎜⎝
−ψq −ψq−1 . . . −ψ1 1 0 . . . 0 . . . 0 0
0 −ψq . . . −ψ2 −ψ1 1 0 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 0 0 . . . −ψq . . . −ψ1 1

⎞⎟⎟⎟⎟⎠ .
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Therefore, the covariance matrix of yTi = (y
00
i , y

0
i)
0 is given by

Ω (γ∗) =

Ã
Ip 0
BTp BT

!−1⎛⎜⎝ Γ00 Υpq γ0ηι
0
T−q

Υ0
pq

ιT−qγ00η
σ2ηιT ι

0
T + Λψ

⎞⎟⎠Ã Ip 0
BTp BT

!−10
(D.9)

where the parameter vector γ∗ consists of the autoregressive and moving average
coefficients, γ0η,σ

2
η,σ

2
1, ...,σ

2
T , and the unrestricted elements in Γ00 and Υpq.

The ARMA(p, q) log likelihood is given by

LRS = −N
2
ln detΩ (γ∗)− 1

2

XN

i=1
yTi

0Ω (γ∗)−1 yTi . (D.10)

Noting that

det

Ã
Ip 0
BTp BT

!
= 1,

and letting ui = ηiι+ vi, Ω11 = σ2ηιι
0 + Λψ, Γ01 =

³
Υpq γ0ηι

0
T−q

´
, andÃ

Γ00 Γ01
Γ001 Ω11

!−1
=

Ã
Γ00 Γ01

Γ010 Ω11

!
,

where
Ω−111 = Ω11 − Γ010

³
Γ00

´−1
Γ01 (D.11)

detΩ (γ∗) = (detΩ11) /
³
detΓ00

´
, (D.12)

we have

yTi
0Ω (γ∗)−1 yTi =

³
y00i , u

0
i

´Ã Γ00 Γ01

Γ010 Ω11

!Ã
y0i
ui

!
(D.13)

= u0iΩ
−1
11 ui +

µ
y0i +

³
Γ00

´−1
Γ01ui

¶0
Γ00

µ
y0i +

³
Γ00

´−1
Γ01ui

¶
.

Therefore, letting Ψ00 = (Γ00)
−1 and Π01 = − (Γ00)−1 Γ01 = Γ01Ω

−1
11 , we obtain

the following expression for LRS:

LRS = −N
2
ln detΩ11 − 1

2

NX
i=1

u0iΩ
−1
11 ui (D.14)

−N
2
ln detΨ00 − 1

2

NX
i=1

³
y0i −Π01ui

´0
Ψ−100

³
y0i −Π01ui

´
.

Concentrating the likelihood with respect to Ψ00 (which is unrestricted), we get

L∗RS = −
N

2
ln detΩ11 − 1

2

NX
i=1

u0iΩ
−1
11 ui −

N

2
ln det

NX
i=1

³
y0i −Π01ui

´ ³
y0i −Π01ui

´0
,

(D.15)
which we found computationally very useful.
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Table A1
Sample characteristics: Spanish Data, 1994-1999

N = 632, T 0 = 6
Mean Min Max

age 43.5 23 65
tenure (years of exp in the job) 13.4 0 20
real labor income (euros) 13296.8 3529.1 72825.8
real capital income (euros) 276.6 0 27761.8
% less than sec educ 28.3
% secondary educ 46.3
% university educ 25.4
% industry 37.0
% service 63.0
% private sector 65.0

Table A2
Regression results first-step

Dependent variable: log of real labor income
Spanish Data, 1994-1999

Coefficient t-ratio
constant 7.269 54.98
age 0.076 12.79
age2 -0.001 -11.47
sec educ 0.267 19.98
univ educ 0.717 46.48
private sector 0.073 5.73
services -0.006 -0.50
d94 -0.040 -2.15
d95 -0.051 -2.79
d96 -0.054 -2.95
d97 -0.049 -2.68
d98 -0.027 -1.50
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