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Abstract
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1. Introduction

The generalized method of moments (GMM) is routinely employed in the esti-
mation of autoregressive models from short panels, because it provides simple
estimates that are fixed-T' consistent and optimally enforce the model’s restric-
tions on the data covariance matrix. Yet they are known to frequently exhibit
poor properties in finite samples and may be asymptotically biased if T is not
treated as fixed.

There are also available in the literature fixed-7T' consistent maximum likeli-
hood methods that are likely to have very different properties to GMM in finite
samples and double asymptotics. This category includes random effects esti-
mators of the type considered by Blundell and Smith (1991) and Alvarez and
Arellano (2003), the conditional likelihood estimator in Lancaster (2002), and the
estimators for first-differenced data in Hsiao, Pesaran, and Tahmiscioglu (2002).
However, the existing likelihood-based estimators require that the error variances
remain constant through time for fixed-T' consistency. Lack of robustness to time
series heteroskedasticity is an important limitation because the dispersion of the
cross-sectional distribution of errors at each period may differ not only due to
nonstationarity at the individual level but also as a result of aggregate effects.

In this paper we develop likelihood-based estimators of autoregressive models
that are robust in the sense that remain consistent under the same assumptions
as standard panel GMM procedures.! From a GMM perspective, likelihood-based
estimation can be motivated as a way of reducing the number of moments available
for estimation, and hence the extent of bias in second-order or double asymptotics.
Our methods are robust in the sense used in Gourieroux, Monfort, and Trognon
(1984) of providing consistent estimates of the conditional mean parameters when
the chosen likelihood function does not necessarily contain the true distribution.

The paper is organized as follows. Section 2 presents the model and a dis-
cussion of the assumptions. Section 3 explains how to obtain fixed-T' consistent
estimates of AR(p) coefficients from bias-corrected first-order conditions of a het-
eroskedastic within-groups likelihood (BCS).

Section 4 presents ML estimates from a likelihood averaged with respect to
normally distributed effects and initial observations (RML). We show that such an

LCf. Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover
(1995), and Ahn and Schmidt (1995).



averaging leads to a modified within-groups criterion that balances off the within
and between biases. The modification term, which depends on the data in levels,
may lead to substantial efficiency gains relative to estimators from differenced data
alone, and is crucial for identification in very short panels. Heteroskedastic RML is
our recommended likelihood-based method. It is computationally straightforward
and can be easily extended to unbalanced and multivariate panels.

Section 5 presents RML estimates from data in differences, and Section 6
discusses conditional and marginal ML estimation under stationarity in mean.
Interestingly, we show that the random effects likelihood for the differenced data
coincides with the likelihood conditioned on the estimated effects under mean
stationarity, so that this restriction is immaterial to the data in differences when
homoskedasticity is not imposed.

Section 7 discusses the possibility of identification failure for a first-order
process with an unit root, in view that in a three-wave panel a random walk
without heterogeneous drift is known to be underidentified. We show that in a
four-wave panel there is local identification but not global identification under het-
eroskedasticity, and global identification but first-order underidentification under
homoskedasticity. In panels with more than four waves, we find that the autore-
gressive coefficient is globally identified unless the error variances change with a
constant rate of growth.

Section 8 reports numerical calculations of the asymptotic variances of BCS
and RML estimators in differences relative to RML in levels, calculated under
the assumption of normality. In Section 9 we present estimates of first- and
second-order autoregressive equations for individual labour income using data
from the PSID and the Spanish section of the European Panel, and find evidence
against unit roots in earnings. The PSID result is in contrast with the income
processes that impose a unit root, often employed in the empirical literatures on
consumption and labour supply (e.g. Hall and Mishkin, 1982; Abowd and Card,
1989, or Meghir and Pistaferri, 2004). Our result is unaffected by adding moving
average components to the specification of the earnings process.

Finally, Section 10 contains some concluding remarks on double asymptotic
properties. Proofs and technical material are in the Appendix.



2. Model and Assumptions

We consider an autoregressive model for panel data given by
Yit = Q1Yi—1) + - + WYi—p) + 0 + v (t=1,...,T;i=1,...,N). (2.1)

The variables (yi(l,p), ey Yi0s ...,yl-T) are observed but 7, is an unobservable in-
dividual effect. The p x 1 vector of initial observations is denoted as ) =
(yi(l—p)7 e ym),.z We abstract from additive aggregate effects by regarding v
as a deviation from a time effect. It is convenient to introduce the notation
Ty = (yi(t_l), s yi(t_p)>,, a = (ay,...,q,)", and write the model in the form:

Yi = Xia + n;t + v; (22)

where y; = (Yit, ..., vir)s Xi = (zi1,...,x7)’, ¢ is a T x 1 vector of ones, and
v; = (Vi1 .o, Vi) -

The following assumption will be maintained throughout:
Assumption A : {n;, 2, yi1, .-, yiT}f\il is a random sample from a well defined joint
distribution with finite fourth-order moments that satisfies

E (Uit | T],L-,y,?,yil, ~-'7yi(t—1)> = 0 (t = ]., ,T) . (23)

This is our core condition in the sense that we wish to consider estimators
that are consistent and asymptotically normal for fixed 7" and large N under
Assumption A.

Note that neither time series or conditional heteroskedasticity are assumed.
That is, the unconditional variances of the errors, denoted as

B (v}) = ot (2.4)
are allowed to change with ¢ and to differ from the conditional variances
E (/UZQt ‘ U y?? Yi1s - yi(tfl)) .

Time series homoskedasticity is a particularly restrictive assumption in the
context of short micropanels, both because estimators that enforce homoskedas-
ticity are inconsistent when the assumption fails, and because it can be easily
violated if aggregate effects are present in the conditional variance of the process.

2We assume that y? is observed for notational convenience, so that the actual number of
waves in the data is T° =T + p.



Also note that under stability of the process,®> we do not assume stationarity
in mean. Let the covariance matrix of (1;,3?) be denoted as

2
i On  Tno
Var = S I 2.5
()= (5 ) =
For example, when p = 1 (so that a = ay, ¥? = yi0, and Tgg = 7,) model (2.1)
can be written as

Yit = (1 +a+..+ at_l) n; + alyo + (vit + avip-1) + ... + at_lvil) . (2.6)

Thus, when |a| < 1, for large ¢ E (yi: | ;) tends to the steady state mean p, =
n;/ (1 — a). If the process started in the distant past we would have

Yio = i + i ijvi(fj)a (2.7)
(1-a) §=0

implying 7,0 = 02/ (1 — &) and 74y = 02/ (1 — @)’ + 332, 0¥ 02 ;.* However, here
Yo and g are treated as free parameters. Note that an implication of lack of
stationarity in mean is that the data in first differences will generally depend on
individual effects.

In a short panel, steady state assumptions about initial observations are also
critical since estimators that impose them lose consistency if the assumptions
fail. Moreover, there are relevant applied situations in which a stable process
approximates well the dynamics of data, and yet there are theoretical or empirical
grounds to believe that the distribution of initial observations does not coincide
with the steady state distribution of the process (cf. Hause, 1980, or Barro and
Sala-i-Martin, 1995, and discussion in Arellano, 2003a).

3. Bias-Corrected Conditional Score Estimation
3.1. Normal Likelihood Given Initial Observations and Effects
Under the normality assumption

Vit | 905 o Y1 m5 ~ N (i) + o+ gy +1,07) (E=1,..,T),
(Assumption G1)

3That is, when the roots of the equation 2 — a;2P~! — ... — oy, = 0 are inside the unit circle.
‘With the addition of homoskedasticity oo = 07/ (1 — @) + 02/ (1—a?).
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the log density of y; conditioned on (y?,n,) is given by
In f (yi | o) 7}~) = —llndetA — EU{A_lvi (3.1)
L 2 2"

where A is a diagonal matrix with elements (0%, ...,0%) .
The MLE of 7, for given o, 0%, ..., 0% that maximizes (3.1) is

M =Ty — T (3.2)

where 7, denotes a weighted average 7, = >.7_, o,y with weights

(3.3)

Concentrating the log likelihood function with respect to the individual effects
we obtain
., N NT 1 X, .
L* = —Indet® — — Inwy — =— > v} (P — Du/®) v, (3.4)
2 2 wr ;34
where ® is a diagonal matrix with elements (¢, ..., o) and wyr is the variance of
the weighted average error:

~ 1
wr = Var (7;) = e ——— (3.5)

It is useful at this point to note that the following identities hold:

-1 1 L (v — 7))
VD' (DAD) ' Dy = —ul (@ — 0u/®)v; = T (36)
wr t=1 Ot
Indet (DAD") = —Indet® + (T — 1) Inwr (3.7)

where D is the (T'—1) x T first-difference matrix operator. Thus, L* can be
equally regarded as a function of the data in first differences or in deviations from
(weighted) means. Note that with 7" = 3 (i.e. (3 4 p) time series observations per
unit), DAD' is unrestricted:

o+ 05 —03 )

I __
DAD _< —03 0%+ 02



Moreover, the relationship between period-specific and within-group variances is
given by
ol =F [(Uit - E)z] +wr (t=1,..T). (3.8)
The MLE of « for given weights is the following heteroskedastic within-groups
estimator

-1

Z Z @y (it — Ti) (Yie — T) 5 (3.9)

i=1t=1

a = [i > o (@i —T) (24 — Tz‘)’l

i=1 t=1
which in first differences can also be written as
N -1 N
a = [Z X!D' (DAD))™! DXZ.] N X/D'(DAD')™" Dy;. (3.10)
i=1 i=1
Finally, the MLE of wr for given weights is
~ 1 L& N2
wr = ﬁ;;% (vie —05)" .

Note that, in common with the situation under homoskedasticity, both & and
@7 suffer from the incidental parameters problem. Firstly, although z;; and v;; are
orthogonal, their deviations, (z; — T;) and (vy — 7;), are not, leading to a bias in
a. Secondly, Wr evaluated at the true errors and weights will be inconsistent for
fixed T" due to lack of degrees of freedom adjustment, as evidenced by the equality

wr=F ﬁ t:Zlgot (v — @-)2 ) (3.11)

3.2. Likelihood Conditioned on the ML Estimates of the Effects

Provided G1 holds, the ML estimates of the effects at the true values of the
common parameters 7); = n; + U; satisfy

Moreover, the conditional log density of y; given y;o,n;,7); is given by

1 1 _
In f (y,- | y?,m,ﬁi) =3 Indet (DAD') — §v£D’ (DAD") ! Duy;, (3.13)



which is a within-group density that does not depend on 7;. Thus, (3.1) admits
the decomposition

£ lwdom) = £ (vl o0:) £ (7 | 90omi) (3.14)
which confines the dependence on 7, to the conditional density of 7),. Similarly,

any marginal density for y; | ¢ which imposes a prior distribution on the effects

can be written as

Fuilo?) = (wlod i) £ (7] o?) (3.15)
The log likelihood conditioned on 7); is therefore given by
N N(T-1 1 ¥
Lo =—Indet® — NT-1) Inwr — —> v} (& — Pu/D) v, (3.16)
2 2wT i=1
or
N / 1 a 'y n—1
Lo = —5 Indet (DAD") — 3 > v;D'(DAD")"" Duj, (3.17)

i=1
which is similar to the concentrated likelihood (3.4) except that it incorporates
a correction for degrees of freedom. In a model with strictly exogenous x;;, L¢
coincides with the likelihood conditioned on sufficient statistics for the effects,
which provides consistent estimates of both the regression and residual variance
parameters. However, in the autoregressive situation, the estimator of « that
maximizes Lo satisfies a heteroskedastic within-group equation of the same form
as (3.9) and is therefore inconsistent for fixed 7T

Inference from a likelihood conditioned on the ML estimates of the effects may
lead to consistent estimates provided the scores of the common parameters and
the effects are uncorrelated (Cox and Reid, 1987). Cox and Reid’s approximate
conditional likelihood approach was motivated by the fact that in an exponential
family model, it is optimal to condition on sufficient statistics for the nuisance
parameters, and these can be regarded as the MLE of nuisance parameters chosen
in a form to be orthogonal to the parameters of interest. From this perspective,
the inconsistency of within-groups in the autoregressive model results from lack
of orthogonality between the scores of a and the effects.

In the homoskedastic case with p = 1, Lancaster (2002) showed that a like-
lihood conditioned on the ML estimate of an orthogonalized effect led to a bias-
corrected score and a consistent method-of-moments estimator under homoskedas-
ticity. Following a similar approach, we construct a heteroskedasticity-consistent
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estimator as the solution to a bias corrected version of the first-order conditions
from the likelihood conditioned on the MLE of the effects.

First-Order Conditions The derivatives of Lo with respect to a and 6 =

(02...0%)" are given by

8LC N -1
=2 =3 XD (DAD')"! Du;. (3.18)
da =
N
% _ %Z (DAD' @ DAD') " vee (Dvl D' — DAD') (3.19)

where K is a (T — 1)* x T selection matrix such that vec (DAD’) = K0. Let d,
and k; be the t-th columns of D and K, respectively, so that DAD' = S°T | o2d,d,
K0 =T 0%k, and k, = d; ® d;. Thus, also

oL _
=3 ¢ = =3 Zd/ (DAD') ™" (Dvjv.D' — DAD') (DAD'Y 'd, (t=1,..,T).
Jt i=1
(3.20)
Maximizing Lc with respect to wr and (¢;...¢p) for given «, subject to the
adding-up restriction /®: = 1, the first-order conditions for variance parameters

can also be written in a form analogous to (3.8) and (3.11) as
al 1
—— 0 (D — DL/ D) v; — = 21
;[(T—I)U’( w'®)v le 0 (3.21)
N ) )
> {(vit —T;)" — (v,-(t,l) — @) — (Jf — af_l)] =0 (t=2,..,7).(3.22)

i=1

Thus, the conditional MLE of a and 6 solve, respectively, (3.10) and
~ —1 1 X
6= (K'T'K) K053 vee (DowiD'). (3.23)
i=1
where T = DAD' @ DAD'.

Bias corrected conditional ML scores Under Assumption A the ex-

pected conditional ML scores are given by
E [X{D'(DAD')™ Dvi| = —hr (a, ) (3.24)

8



E[K'(DAD' ® DAD')™" vec (DvjviD’' — DAD')| = 0 (3.25)

where
QOlclb
hr (a, ) = : (3.26)
@'Cpt
with
0 O
and Br_j is a (T — j) x (T — j) matrix such that
1 o ... 0 ... 0 0
—a; 1 o ... 0
Br_; = —ay —aq - 0 ... 0 (3.28)
0 0 1 0
0 0 ... —ap ... —oq 1
When p =1, hr («, ) is a scalar function given by
T—1
hr(o,0) =3 (T+a+..+a ) g, (3.29)
t=1

Under homoskedasticity ¢, = T~! for all ¢, and the bias function (3.29) boils down
to the expression in Nickell (1981) and Lancaster (2002), which for |o| < 1 is®

hr (@) = 5 i 3 [1 - % <11__O;T>] . (3.30)

In view of (3.24)-(3.25), heteroskedasticity-consistent GMM estimators can be
obtained as the solution to the nonlinear estimating equations

N
N X!D'(DAD')™" Du; + Nhr (a,0) = 0 (3.31)
=1
N
K'(DAD' @ DAD') " vee Y (Dva;D' — DAD') = 0. (3.32)

=1

®Note that although the bias of the CML scores only depends on (a, ), the asymptotic
bias of the CML estimator of a« as N — oo also depends on the covariance matrix of (772-, y?)
Approximate bias formulae for homoskedastic WG were derived by Hahn and Kuersteiner (2002),
and Alvarez and Arellano (2003). A bias-corrected estimator so constructed removes bias to
order T2 but is not fixed-T consistent.



Consistency of the bias-corrected score estimator (BCS) that solves (3.31)-(3.32)
does not depend on normality nor on conditional or time-series homoskedasticity.
BCS estimation is not possible from a (2 + p)-wave panel (i.e. T = 2) because

in that case a is not identified from the expected scores, which for p = 1 are given
by

E[(ya — %) (vi2 —var)] = —o3 (3.33)
El(va—w)?| = ol+0a3. (3.34)

This situation is in contrast with Lancaster’s BCS estimator that enforces time
series homoskedasticity (hence achieving identification from (3.33)-(3.34)), or the
bias-corrected within-group estimator considered in Kiviet (1995).

3.3. Modified Conditional Likelihood Interpretation

If the weights ¢ are known and p = 1, the method of moments estimators of «
and wr based on the bias corrected scores

E

D' (D<1>*1D')*1 sz} = —wrhr (o, ) (3.35)

E

oD (D3 'D) ! sz} — (T 1wy (3.36)
can be regarded as the maximizers of the criterion function
Ler = Le + Nbp (a, ) (3.37)

where

br (o, ) = - a’, (3.38)

which is the integral of hr («, ¢) up to an arbitrary constant of integration that
may depend on .

Following Lancaster (2002), Lcr can be interpreted as a Cox-Reid likelihood
conditioned on the ML estimate \; of an orthogonal effect \; (Arellano, 2003a, p.
105)

N
Ler =Y I f (yi | yio, Mi) (3.39)

=1
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or as an integrated likelihood

N N N
Lor =Y Inf (i | o) = > _In f (yi | yoo, i) + >_In f (; | wio) (3.40)
i=1 =1

=1

in which the chosen prior distribution of the effects conditioned on y;q is such that
the marginal density of 7, | y;o satisfies:

F (@i | o) = ki () €79 (3.41)

where k; (¢) is a version of the constant of integration.

The first interpretation is based on a decomposition conditional on \; similar
to (3.14), whereas the second relies on factorization (3.15).

With unknown weights and p > 1 there is no orthogonal reparameterization,
but we show in Appendix C that for a heteroskedastic AR(p) model with unknown
weights, the BCS estimating equations coincide with the modified score vector
discussed in Arellano (2003b). Thus, in our setting a first-order bias adjustment
to the score is an exact correction that removes fully the bias, hence leading to
fixed-T" consistency.

4. Random Effects Estimation

The analysis so far was conditional on ) and 7. Conditioning on y? avoided
steady state restrictions, but by conditioning on 7); estimation is exclusively based
on the data in first-differences. We now turn to explore marginal maximum like-
lihood estimation based on a normal prior distribution of the effects conditioned
on ¢!, with linear mean and constant variance. A sufficient condition that we use
for simplicity is:

Assumption G2: (n;,v?) is jointly normally distributed with an unrestricted co-

variance matrix.

Normality of ¢ is unessential because its variance matrix is a free parameter, so
the following analysis can be regarded as conditional on 3?. Clearly, assumptions
G1 and G2 together imply that(n;, y2, y1, ..., yir) are jointly normally distributed.

The random effects log likelihood Under G2,
0 Ly ~ N (840, 02), (4.1)

11



where ¢ = T'55,9 and 02 = wr 4 02 — 7,0Lo0 V0 S0, using factorization (3.15),
the density of y; conditioned on ¢ but marginal on 7, is:

1 1 .
nf (s |4) = —ndet(DAD) = So{D' (DAD)™ Dy
1 9 1 /. _ 0\ 2
—5ino; - 202 (?Jz —a'T; - ¢/yi> : (4.2)

Thus, letting u; = 7, — &'T;, the random effects log likelihood is a function of

(Oé, U%a ) 0"%/‘7 ¢a Ug) given by

Lr=Lc— gln - (w — ¢’y$)2 , (4.3)
€ =1
with scores:
oL a 1 &
N

aaLeR - a —2 Z '(DAD')™" Du; (@; — ¢'y}) (4.5)
oL
5er { d

= U; — 0. - (47)
Oo? 204 ; ( )

Under Assumption A the expectations of the second terms in the scores for o
and 6 at true values are:

E [Uix (W — 'y )] r(a, ) (4.8)

€

and

o

1 _
E [—2®D’ (DAD") ' Du; (ﬂi — gb/y?)] = 0. (4.9)

Therefore, in view of (3.24) and (3.25), under Assumption A the expected
scores evaluated at the true values of the parameters are equal to zero:

(- daf)| <o

1_
E lng' (DAD')™" Dv; + —
0'

3
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1 )
E [§K’ (DAD' @ DAD') " vec (Duw.D' — DAD')

1 / n—1 — /.0 _
+U—g<1>D (DAD')™ Du; (m; — ¢'yf)| =0
B (7w~ o'wl)] = 0
The random effects maximum likelihood estimator (RML) solves the estimat-
ing equations (4.4)-(4.7) and is consistent and asymptotically normal under as-
sumption A regardless of non-normality or conditional heteroskedasticity.
In a (2 + p)-wave panel (T = 2) the model is just-identified and the RML esti-

mator coincides with the Anderson-Hsiao (1981) estimator based on the instrumental-
variable conditions

E {yg (Ayiz — 1Ay — .. — apAyi(g,p))] =0. (4.10)

Random effects likelihood functions for homoskedastic autoregressive models
under the normality assumption G2 have been considered in Chamberlain (1980,
234-235), Blundell and Smith (1991), Sims (2000), and Alvarez and Arellano
(2003).

Efficiency Comparisons In order to compare the relative efficiency of the
BCS and RML estimators, it is useful to notice that RML is asymptotically equiv-
alent to an overidentified GMM estimator that uses the moment conditions:

E[X/D'(DAD')™" Du;| = —hr (a, ) (4.11)
E|K'(DAD' ® DAD')™" vec (DvviD’' — DAD')| = 0 (4.12)
B |5 (w - 68) | = a.s) (413)

E D' (DAD)™ Dv; (@ — ¢'yf)| = 0 (4.14)

Ely (m—¢y)] = 0 (4.15)

E {(a - ¢’y?)2 - az} = 0. (4.16)



and a weight matrix calculated under the assumption of normality.5

BCS is based on moments (4.11) and (4.12), but RML is also using the infor-
mation from the data in levels contained in (4.13) and (4.14). Moments (4.13)
give the between-group covariance between the regressors and the error, in the
same way as the BCS moments (4.11) specified the within-group covariance. The
moments in (4.14) state the orthogonality between within-group and between-
group errors (partialling out the initial observations). Finally, (4.15) and (4.16)
are unrestricted moments that determine ¢ and o2.

Therefore, if the data are normally distributed RML is asymptotically more
efficient than BCS. Otherwise, they cannot be ordered. Nevertheless, a GMM
estimator based on (4.11)-(4.16) and a robust weight matrix that remains optimal
under nonnormality will never be less efficient asymptotically than BCS, and may

achieve a significant reduction in the number of moments relative to standard
GMM procedures.

The concentrated random effects log-likelihood Concentrating Lz with
respect to 02 and ¢ we obtain the following criterion function that only depends
on « and 6:

L= Lo gm (@ - a'7) S (7 — a'D) (4.17)

where Sy = Iy — Yo (Y{Yo) ' Y{, and Yy = (39, ...,3%)".
L7}, can be regarded as a modified heteroskedastic within-group criterion with

a correction term that becomes less important as 7" increases.

A linear (OLS) Estimator of Variance Weights A simple consistent
estimator of the variance weights for given o can be obtained from the fact that
E (u;Avy) = 0. Such estimator may be useful for providing starting values for
nonlinear likelihood-based estimation.

Enforcing the adding-up constraint, the average error can be written as

U; = Pl + ...+ @Tflui(T,l) + (1 — P — ... — 90T71> U;T (418)

= Ui — @1 (Wi — Ui1) — . — Q4 (uiT - Ui(Tﬂ)) .

SInterestingly, (c3,03) are identified from the RML scores when T' = 2. In that case (4.12)
determines (0% + 03) and (4.14) determines ¢,. Note that when 7' = 2 one of the two moments
in (4.12) is redundant.

14



/ !/
Letting ¢, = (4,01, s <,0T71> and w; = [(uzT — U)oy (uiT — ui(T,l)ﬂ , we have
orthogonality between w; and w;

E [w; (wir — wip,)] =0, (4.19)

which suggests the following OLS estimator of ¢, for given a:

_lN

N
Po = <Z wiw;> > wilir. (4.20)
i=1 i=1

This estimator satisfies the adding-up constraint, but not necessarily the non-
negativity restrictions.
Given the @,’s, estimates of wy and the 0?’s can be obtained from

or = ﬁ SN (vie —T)° (4.21)

i=11t=1

5 = 2T (4.22)

Pt
5. Estimation from the Data in Differences

Until now, the starting point was an interest in the conditional distribution of
(i1, -, yir) given P and 7, under the assumption that y? was observed but 7,
was not. That is, that the data consisted on a random sample of the vectors
(vY, yi1, .., yi7). In this section we maintain the interest in the same conditional
distribution as before, but assume that only changes of the y;; variables are ob-
served, so that the data on individual 7 is (Ayi(g,p), e AyiT). This situation is
clearly relevant when the data source only provides information on changes, but it
may also be interesting if it is thought that an analysis based on changes is more
“robust” than one based on levels. An objective of this and the next section is to
discuss the content of this intuition by relating ML in differences to the previous
conditional and marginal methods. Maximum likelihood estimation of autore-
gressive models using first-differences has been considered by Hsiao, Pesaran, and
Tahmiscioglu (2002).

As a matter of notation, note that observability of (Ayi(g_p), ey AyiT) is equiv-

. / / .
alent to observing (y;.r(g_p), e ij) = (yi(g_p) — Yi(1—p)s s YiT — yi(l_p)) , since the
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former results from multiplying the latter by the nonsingular transformation ma-
trix of order (T'+p — 1):
10 -+ 00
t =
()

with det (DT> = 1. Also note that by construction y;.r(l_p) =0.
We shall use the notation yiT = Y — Yiq-p)tr and XJ = X, — yi(l_p)LTL;.
Similarly, le = y;r 'Oy =7, — Yi(1—p), etc. The following is an expression of @T that

makes explicit the connection to the data in differences:

p T /T
ET = Z Ayi1—py4j + Z (Z %) Ayis. (5.1)
j=1 =2 \is=t

The original model can be written as

yh = aylh+ oy yle ) 0l o (5.2)
szt = aly;[(t—l) +ot apy;‘r(t—p) + 772 top (t=2,..T). (5.3)

where
== (1= a1 — . — @) Giap)- (5.4)

Thus, the model for the deviations yiTt can be regarded as a version of the original
model in which y;r(l_p) = 0 for all individuals and the effect is given by 772T . From
the point of view of this section, bundling together y;;_,) and 7, into mT makes
sense because they are both unobserved. The usefulness of this notation is that
it allows us to easily obtain densities for the variables in first differences relying
on the previous results for the levels.

Since the shocks v; remain the same in representation (5.2)-(5.3), applying
(3.13) we have

1 1 _
I f (y! [ 9" 0l 7)) = —5 Indet (DAD') = Sv/D' (DAD') ' Du; (5.5)
where at true values
J—

77;[ = y;r —ar = 77;[ +7; =0 — (1 — O‘/Lp) Yi(1—-p)> (5.6)

and following (3.12):
ot nl ~ N (o] wr) - (5.7)
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Also, mimicking the marginal density decomposition in (3.15):
£l 1) = £ (ul 1ot /f ol ynl)dG (nl [ 4) . (5.8)

Moreover, since y;r(l_p) = 0 with probability one, for p = 1 densities conditioned

on y) " coincide with unconditional densities, and for p > 1 conditioning on f
!

is equivalent to conditioning on Ag? = (Ayl 2-p) Ayzo) . Thus, for p > 1,

(w1 Ay) = f (vl |47 and
Al Ayl ~ N (n]wr) (5.9)

so that
£l 1 Ag) = f (ol | Agd,00) £ (30| &) (5.10)
Recall that the density f (yzT | Ayf) is also the density of the first-differences
of the data (Ay, ..., Ayir) conditioned on Ay?, which we are expressing as the
product of the usual within-group conditional density and the density of ﬁ;r con-
ditioned on AyY. Therefore, in the absence of steady state assumptions about
initial conditions, the form of the density of panel AR(p) data in first differences
depends on the distribution of the effects. In the next section we shall see that
this dependence vanishes under the assumption of mean stationarity.
Let (gb*, a?*) denote the linear regression coefficients of 7! on Ay?, so that o2t
satisfies

ot = nf +wp — ¢'Var (Ayz) o' (5.11)

Under the normality assumption G2
Ay ~ N (¢7Ayf,021)
we have the following “random effects” log density for the data in first differences

1 1 _
I f (Aya, o Ayir | Ay) = —5 Indet (DAD') — SviD' (DAD') ' Du;

1 1

_Z 2t _ _ T

5 Ino? 252 (yZ Tia — ¢ Ayl ) (5.12)

Therefore, the random effects log likelihood for the data in first-differences is
a function of (a, 02, ..,0%, 02 ¢T) given by
N 2t i
Lrp = Le— =Ino? — QT ( —dT - ¢ Ayl> . (5.13)

2 0511
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Concentrating Lgp with respect to o2t and ¢f, and letting S = In—Y2 (Y2Y2) ' YY
with Y = (Ay?, ..., Ay%)’, we obtain the following criterion function that only
depends on « and 6:

o = Lo — %ln (7' - o'7') S (7 - o). (5.14)

which, in common with (4.17), can be regarded as a modified heteroskedastic
within-group criterion with a small 7" correction term.
The random effects ML estimator in first-differences (RML-dif) maximizes
%p and is consistent and asymptotically normal under assumption A regardless
of nonnormality or conditional heteroskedasticity.
In the p = 1 case, the term Ay does not occur, so that (5.12) becomes a
marginal density for the data in first differences and the log likelihood is just a

function of (a, 03y, 0%, 03T> given by

N ot 1 X 4 1\ 2
LRD:LC—EIDUE —FZ(yZ —Oél'i) . (515)

Os =1

Underidentification in a (2 + p)-Wave Panel (7' =2) In common with
BCS, RML-dif estimation is not possible from a (2 + p)-wave panel because «
is not identified from the expected scores of Lrp. In contrast, RML achieves
identification by relying on the data in levels. The relationship between the two
procedures is best illustrated by examining for p = 1 the covariance matrix of the

transformed series

Yio Yoo  Yoar “Yoa2
Var | Aya =" = [ a1 )
Ay Yoa2 Qa

where 2* is a non-singular transformation of the covariance matrix in levels and
QA is the covariance matrix in first-differences. Thus, a model of 25 is equiva-
lent to a model of * that leaves the coefficients vy, Yoa1 and yya. unrestricted
(Arellano, 2003a, p. 67). With T" = 2, the only identifying information about
« is precisely the restriction yypro = ayoa; satisfied by those coefficients, hence
lack of identification from (2A. Under time series homoskedasticity, « is identifi-
able from QA when T" = 2, but in that case all the information comes from the
homoskedasticity assumption.

18



Efficiency Comparisons If the data are normally distributed RML is as-
ymptotically more efficient than RML-dif, which in turn is more efficient than
BCS. The relative efficiency of RML-dif with respect to BCS under normality is
a consequence of the fact that both are statistics of the first differenced data, but
the former is the maximum likelihood estimator.

In the absence of normality, the estimators cannot be ranked. However, re-
gardless of normality, under Assumption A estimates based on first-differences
alone will never be more efficient than an optimal GMM estimator based on the
full covariance structure for the data in levels.

6. Estimation Under Stationarity in Mean

In this section we consider conditional and marginal maximum likelihood esti-

mators that allow for time series heteroskedasticity but exploit the stationarity

in mean condition discussed in Section 2. Namely, that for every ¢ the mean

of y; conditioned on 7, coincides with the steady state mean of the process
w; =mn;/ (1 —a't,). Specifically, we assume:

Cov (i, yi1-r) 2

= : =—"1 . Assumption B

Tno : (1 — o Lp) P ( P )

Cov (1, Yio)

Under assumptions A and B the correlation between y;; and 1), does not depend
on t, so that the first differenced data are orthogonal to the effects. This situation
led to orthogonality conditions for errors in levels used in the “system” GMM
methods considered by Arellano and Bover (1995) and Blundell and Bond (1998).
System GMM remained consistent in the presence of time series heteroskedasticity,
and the random effects estimator discussed below can be regarded as a likelihood-
based counterpart to these procedures.

6.1. Conditional Maximum Likelihood Estimation

In order to construct a likelihood conditioned on the ML estimator of the effects
under mean stationarity, we consider the following conditional normality assump-
tion for y? given the effects:

Y |1 ~ N (i, Zoo) (Assumption G3)
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: _ ’ 2 ’,\2
where Y satisfies Yoo = oo — tptp,05/ (1 — a't)"

Under assumptions G'1 and G3
Ui | i~ N (i, V) (6.1)

where y7 = (4, yi1, ..., yir) , T denotes a vector of ones of order (T + p), and

V =TAT (6.2)
with
Yoo 0 I 0
t_ [ 200 _ p
AT = ( 0 A ) ’ - ( —B;:'Br, Bp! ) (6.3)
and
-0y —0p1 ... —O
0 —Qp ... —O
Br,=| 0 0o . . (6.4)
0 0 0
Thus
1 1 o _
I f (yf | ) = —5IndetV— o (5 —pt) V7' (uf —pz). (65)

The MLE of y, for given a and AT is
= (V) TVl (6.6)

Next, to obtain the density of y conditioned on fi; (at true values of o and AT),

it is simpler to use the transformation matrix

" ( (z’V—lz)Elz’V—l ) | (6.7)

which transforms y! into (ﬁi,ﬁyiT ), where D denotes the (T'+p —1) x (T + p)
first-difference matrix operator. Since y! | y; is normal so is Hy/ | u;. Moreover,

Var (Hy? | ,ui> = < (ZIV;;Z)_ Eﬁgﬁ/ ) (6.8)

so that fi; and Dy are conditionally independent. Therefore,
F (ol ) = £ (Hy! | ) det H| = £ (Dy)) f (7 | ) - (6.9)
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This is so because Dy} is independent of i, and the fact that |det H| = 1 (Arellano,
2003a, p. 94).

Therefore, the density of y! conditional on i, does not depend on u; and
coincides with the density for the data in first differences:

T~ _f(y;‘r|ﬂi)_ — 7
/ (?Jz‘ | Nz’aﬂi) = (s | M_i) =f (Dyi ) ) (6.10)
which is
In f (Dy?) = _% ndet (DVD') - %yffﬁ (DvD) ' Dy, (6.11)

This result is similar to the one discussed by Lancaster (2002) for a homoskedastic

stationary model with p = 1.

Comparison with the Marginal Likelihood for First Differenced Data
Thus, the log likelihood conditioned on the ML estimates of the effects under mean
stationarity is a function of (a, 0%, ..., 0%, vechYy) given by

N
Los =~ ndet (DVD)) 3~ yD (DVD) "Dyl . (6.12)

i=1
In the previous section we obtained a random effects likelihood (5.13) for
data in first-differences without assuming mean stationarity as a function of
(a, o2 ... 0% ot gzﬁT). This likelihood was conditioned on Ay? (unless p = 1), but
adding to it the likelihood of Ay, we can write the likelihood of Dy in the absence
of mean stationarity as a function of (a, o2 ... 0% 0t ng) and X = Var (Ay))

given by’

Lapy = Lep — gln det £ — %tr (Za'YRYR). (6.13)

If p = 1 the likelihood of Dyl in the absence of mean stationarity is just the
expression for Lgp in (5.15).

In general, 02! satisfies expression (5.11), which under mean stationarity be-
comes ®

-1
o2t = (1= a'1,)" 500 + wr — D}, (D00 D)) Dyorig (6.14)

"Note that Yo = D,TooD,, where D, is the first-difference operator of order (p — 1) x p.

8When p = 1 we just have ogg = Yoo and 27 = (1 — a)2 o000 + wr.
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where we are using the partition of g

To0 T
200 = : 6.15
0 ( 010 211 ) ( )

Similarly, under mean stationarity
-1
¢' = (DpSaD,,)  Dyoro. (6.16)

However, both o2 and ¢T remain free parameters because so is Y.

Thus, the restriction of mean stationarity is immaterial to the data in first
differences. Lrpy and L¢g are different parameterizations of the same criterion.
Depending on ones taste it can be regarded as a mean-stationary conditional
likelihood or as a nonstationary random effects likelihood for the first differenced
data. In particular the estimator that maximizes Log (or Lrp) will be consistent
under Assumption A regardless of mean stationarity.’

Note that under homoskedasticity or covariance stationarity the situation is
different because Yy is no longer a matrix of free parameters, but tied to « and

the common variance o2.

6.2. Random Effects

If in addition to assumptions G'1 and G3 we assume that p, is normally distributed
(as implied by G2), we can obtain the integrated density marginal on p;:

7 (W) = [ £ (o7 1 1) dG (1) (6.17)
whose log is given by
1 1
In f (yZT) =—3 Indet 2 — §yiT’Q*1yiT (6.18)
with
Q=o' +V. (6.19)

Therefore, the random effects log likelihood under mean stationarity is a func-

: 2 2 2\ o
tion of (a, Oy eny UT,UGChEOO,O'n) given by

_ N 1 i1 T
Lrs = 5 Indet 2 22% Q 'y . (6.20)
i=1

9 A conceptual difference is that since o' and (;ST do not depend on U% under mean stationarity,
2

they would remain constant as o; — oo.
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The random effects ML estimator subject to mean stationarity (RML-s) max-
imizes Lrs and is consistent and asymptotically normal under assumptions A and
B regardless of non-normality or conditional heteroskedasticity.

In a three-wave panel with p = 1 (7" = 2), the mean stationarity assumption
imposes one restriction in the data covariance matrix €2, which corresponds to the
orthogonality conditions for the system GMM estimator simulated in Arellano
and Bover (1995):

E [yiO (Ain - OéAyﬂ)] =0
E [Ayii (yi2 — ayin)] = 0.

RML-s provides a one-step estimator based on T'+ 1 + p (p + 3) /2 moment
conditions that is asymptotically equivalent to two-step GMM system estimators
under conditional homoskedasticity, and more efficient than standard one-step
system estimators under time series heteroskedasticity.

As in the previous sections, the comparison between conditional and marginal
ML estimates under stationarity can be understood as a straightforward compar-
ison between covariance matrices of data in levels and first-differences

Relation to RML without Mean Stationarity Equation (4.3) in Sec-
tion 4 gave the random effects log likelihood conditioned on y?. Adding to this
expression the likelihood of ¢, we can write the likelihood of y! in the absence

of mean stationarity as a function of (a, 02, ...,0%, ¢, 02, vechT'yo) given by
N 1
LRU = LR — ? In det F[)O — 5157‘ (Fa&%%) . (621)

If p = 1, in the parameterization of Lgy, mean stationarity can be expressed as
the restriction

ol = (1= )¢ (1 =)y +wr (6.22)

Thus, RML-s can also be obtained maximizing Lgy subject to (6.22) in that case.

7. Unit Roots

In this section we discuss the possibility of identification failure when the autore-
gressive process has a unit root. We focus on the p = 1 case, so that the unit root
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model is
Yit = 11; + Vit + Vye—1) + ... + Vi1 + Yio-

For this process, if 0727 = 0 the rank condition for GMM based on lagged
levels as instruments for errors in differences fails, because changes in y;; are
uncorrelated to lagged levels (e.g. Arellano and Honoré, 2001).1° Thus, o would
not be identified from RML in a three-wave panel (T" = 2) when the true value is
one, since in that case RML coincides with the IV estimator based on

E [yio (Ayiz — aAy;)] = 0.

Since the estimating criteria for the previous estimators depend on the data
exclusively through second moments, it is useful to look at the restrictions implied
by the model on the data covariance matrix. Following Ahn and Schmidt (1995),
for T' > 3 these restrictions can be represented as

B [yis (Mg — alyin)| =0 (t=2,..,T;5=0,..,t —2) (7.1)

FE [(Ayz(t—l) - CYAyZ'(t_Q)) (yzt - ayi(t—l))} =0 (t = 3, ceey T) . (72)

When 7" = 3 and the true values are @ = 1 and 6727 =0, (7.2) consists of just
one quadratic equation
aa? +bja+c; =0 (7.3)

with coefficients given by
a1 = E(ynlyn) =70,
bi = —FE YAy + yisAyi) = — (Ef + 53)
a = E(ysAys) = Eg

where 2, 72 and o2 denote the true values of the error variances.
Equation (7.3) has two roots given by

=2 =2 =2 =2 =2 /=2
01 +0, £ (@ —01) _ [ of =73/57 (7.4)
203 a=1 '
"0When o = 1 and 072] = 0, heterogeneity only plays a role in the determination of the

initial observations of the process. In contrast, if a% # 0 the model is a random walk with
heterogeneous linear growth.
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Therefore, under time series heteroskedasticity there is local identification from
(7.3) but not global identification. If 3 = &3 there is global identification but
first-order underidentification, because the first derivative of (7.3)

2&10( + bl =0 (75)

vanishes at o = 1. In that case there is second-order identification because a = 1
is the only solution to equation (7.5) and the second derivative does not vanish
(Sargan, 1983).

In general, we get T'— 2 equations of the same form as (7.3), each one with a
solution of the form af =57, /77, aside from unity. Thus, for 7' > 3 there is both
first-order and global identification from (7.2) under heteroskedasticity, unless
the unconditional variances change at a constant rate of growth (i.e. 77,.,/77 is
constant for t = 1,....,T — 2).

Heteroskedastic BCS and Unit Roots Next, we develop the local iden-
tification result for the bias-corrected CML scores when T' = 3. The expected
BCS equations are given by

E [&}D' (DAD')™" Dui| = —hr (a, ) (7.6)
E[K'(DAD' ® DAD') ™" vec (DvD' — DAD')| = 0. (7.7)
where
Ay Ayi
D i ) D i
! ( Ay ) ( Ay )
- 1 o3+0% o3
DAD/ 1 — 2 3 2
( ) (0303 + 030 + 0303) ( o3 o? + 03 ) ’
and

2
01

hr (0,9) = @y + (1 @) = ¢ ) 05+ (1+a)a3).

0302 + 0203 + o302

When the true values are @ = 1 and 6727 = 0, the first score (7.6) can be written

as
os+o2 ol oG —0o3
tr K 2,03 2 ) ( 01 2 )1 =0} [(Jg—i-ag)—i-ozag} (7.8)

2 2 =2
lops 01+ 035 a0,
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Moreover,

E (Dv;v;D")

=2 2=2 =2

Hence, in view of the second block of scores (7.7), we have

=2 2—=2 2 2
O'2+Oé U]. = 01"’02 (7.9)
=2 2
060'2 == 0'2
—2 2—-2 2 2

Now, substituting in (7.8)

=2 22 =2 =2 =2

o3 +a‘o ao aoy —0 _ — —2\ (= —

tr S o= (0% +a%7] - 040%) (a% + 204203) ;
oo, 05 + 0] 0 ooy

which can be rearranged as
(1—a) (73 — 1) (75 + 2030%) = 0. (7.10)

Thus, as before there are two real roots: @ = 1 and a* = 73 /3. Corresponding
to ae = 1 we have

o} 71
o3 | =1 7% |, (7.11)
2 =2
93 93
: _ =2 /=2
and corresponding to a = 73 /77
=2
0,2 0,2* 22
N (2 o
_ * — =2
ag = ag = 7 : (7.12)
. _
o o =2 _ 0 (=2 __ =2
3 3 O3 = 7 (@1 —73)

Expected RML Likelihood Finally, we consider the expected random ef-
fects likelihood for one observation when 7' = 3, @ = 1 and Ef, = 0. This is a

function of (o, 02, 02,02, $,0?) given by

E(Lg) = —% Indet (DAD') — %tr ((DAD)™ E(Dv;D')|  (7.13)
1., 1 .
—5111 O, — T‘QE [(U,l — ¢y20> }

)

Note that the true values of ¢ and o2 are ¢ = 0 and 72 = wr.
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Maximizing E (Lg;) with respect to ¢, o2 for given (o, 03,03, 03) we get

p=1-a (7.14)

2= B[ -am - (1))’ = B|( -aal)’|. (1)

Therefore, the concentrated expected likelihood for the data in levels and in dif-
ferences coincide. An implication is that when @ = 1 and 6,,27 = 0, RML in levels
and RML in differences are asymptotically equivalent.

Moreover, the maximum of E (Lg;) is attained at

1 3
max B (Lp;) = — In (77353) — 5 (7.16)
by (@,E?,Eg,ﬁg,a,ﬁg) and (a*, 0%, 02 02*, ¢*, 0%*), where
—2
* * 02
10302
o = 17273 -1 (7.18)

2
=2=2 =493

which completes the characterization of the two observationally equivalent points.

8. Calculations of Relative Asymptotic Variances

We perform numerical calculations of the asymptotic variances for various esti-
mators of the autoregressive coefficient. We report, for p = 1, the asymptotic
variances of both homoskedastic and heteroskedastic BCS and RML-dif estima-
tors, relative to the corresponding RML in levels, calculated under the assumption
of normality. Formulae for the asymptotic variances are derived in Appendix B.
The interest of the exercise is in providing information on the efficiency gains
that can be expected from the levels of the data, relative to only using first-
differences, when RML is the maximum likelihood estimator, and stationarity
restrictions are not enforced. In addition, we also get to know about the magnitude
of the asymptotic inefficiency of BCS relative to RML-dif under normality.
Figures 1 and 2 show values of the asymptotic standard deviations of the
homoskedastic BCS and RML-dif estimators relative to the standard deviation
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of RML, for non-negative values of a. The calculations are for 7' = 2, 3, and 9,
under stationarity and homoskedasticity with o = 1.1

The T = 2 case is special because in that situation BCS and RML-dif coincide
and their ability to identify a rests exclusively on the homoskedasticity restriction.

In Figure 1 the variance of the effects has been set to zero (A = o2 /0% = 0),
whereas in Figure 2 0727 and o2 are equal (A = 1). The relative inefficiency of both
estimators increases monotonically with o and decreases with A and 7T'. Figure 1
shows potentially important efficiency gains from using the levels when 7' = 3 and
« is large, but the gains become much smaller when A\ = 1, as shown in Figure 2.

In Figure 3 we explore the impact of nonstationarity. We calculate the same
relative inefficiency measures as in the previous figures for different values of the
ratio of the actual to the steady state standard deviations of gyy. Thus, under
stationarity k = 1, and a value of Kk = 2 means that the standard deviation
of initial conditions is twice the standard deviation of the steady state standard
deviation of the process. We set T'= 3, A = 0, and a = 0.9, so that we essentially
calculate the maximal inefficiencies for each value of k. For k < 1, the inefficiency
of BCS can be enormous, whereas the inefficiency of RML-dif is much smaller and
shows a non-monotonic pattern.

Turning to heteroskedastic estimators, Figures 4 and 5 display relative ineffi-
ciency ratios for heteroskedastic BCS and RML-dif, similar to those in the previous
figures. The calculations are under homoskedasticity and stationarity, for A = 0
and 1, T'= 3 and 9, and 02 = 1. As before, the inefficiencies of heteroskedastic
BCS and RML-dif increase with « and decrease with A and T, but they have
larger magnitudes than those of their homoskedastic counterparts.

Table 1 illustrates the extent of these differences by showing the inefficien-
cies of homoskedastic and heteroskedastic estimators for selected values of the
parameters. Some of the inefficiencies are quite large. For example, for the het-
eroskedastic estimators with o = 0.8, T° = 4 and A = 0, the standard error of
RML-dif is more than twice that of RML-lev, and the standard error of BCS is
more than three times as large.

Finally, Figure 6 reports asymptotic standard deviations of BCS and RML
when @ = 1 and A = 0 (in this case RML-dif and RML-lev are asymptotically
equivalent) for " = 6 and a single break in the error variance. Standard deviations

" Because of stationarity 7oy = 0%/ (1 — ?), so that it increases with .
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(scaled by 1/900) are given as a function of the percentage change in variance and
for two different locations of the variance break (which takes place either during
the last 2 or the last 4 periods).!? As expected, asymptotic standard deviations
decrease with the strength of heteroskedasticity, and are smaller when the variance
break is centrally located than when it only occurs during the last two periods.

9. Empirical Illustration: Individual Earnings Dynamics

In order to illustrate the properties of the previous methods, we estimate first-
and second-order autoregressive equations for individual labour income using two
different samples. The first one is a sample of Spanish men from the European
Community Household Panel (ECHP) for the period 1994-1999. The second is a
sample from PSID for the period 1977-1983 taken from Alvarez, Browning, and
Ejrnees (2001).

There are 632 individuals in the Spanish data set and 792 in the PSID sample.
All individuals in both data sets are married males, who are aged 20-65 during
the sample period, heads of household, and continuously employed. The earnings
variable is similarly defined in the two samples as total annual labour income of
the head.

The variables that we use in the estimation are log earnings residuals from first-
stage regressions on age, age squared, education and year dummies (see Alvarez,
Browning, and Ejrnaes, 2001, for further details on the PSID sample, and tables
A1l and A2 for the Spanish sample). Log earnings have a much higher variance
in the PSID sample than in the Spanish one. Moreover, the PSID data show a
sharp rise in the variance of earnings in 1982 (a widely documented fact), whereas
there is no appreciable change in the variance in the Spanish sample during the
(different) years that we observe.

The AR(1) results for the Spanish data are reported in the first part of Table 2.
Heteroskedastic bias-corrected score (BCS) and random effects (RMLr) estimates
of the autoregressive coefficient are very similar. They are also very close to the
homoskedastic random effects estimate (RMLnr), which is not surprising given the
absence of change in the period-specific variance estimates reported in the table.

2

?When o = 1, we considered choices of vy and 7, of the form v = £7° + K20} and

Yno = /{0727, where 52 = T~} Zthl o?. But for the calculations in Figure 6, since 02 = 0 the

n
results turn out to be invariant to the choice of k.
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By comparison, the AR(1) GMM estimates (one- and two-step) are very small,
given that GMM, BCS, and RMLr are all consistent under similar assumptions.
The system GMM estimator, that relies on mean stationarity, is more in line
with the likelihood-based estimates, although probably for the wrong reasons,
given the rejection of mean stationarity that is apparent from the Sargan test.
The RMLr estimate subject to mean stationarity is smaller than system-GMM,
but a Wald test of the mean stationarity restriction rejects (with a “t ratio” for
o2 of 2.54). Finally, within-groups (WG) and the random effects estimate that
rules out correlation between the effects and initial observations (RML, ¢ = 0)
exhibit, respectively, the downward and upward biases that would be predicted
from theory.

The AR(1) results for the PSID sample, reported in Table 3, also show a
marked discrepancy between the likelihood-based estimates and GMM, and a
similar rejection of mean stationarity from the incremental Sargan test, although
not from RML estimation (the “¢ ratio” for o2 is just 0.16). In the PSID data
there is more state dependence than in the Spanish data, at least as measured by
the first-order autoregressive coefficient. There is also more variation in the errors
and substantial time series heteroskedasticity. The latter translate into a small
but noticeable upward bias in the RML estimate calculated under the assumption
of homoskedasticity.

Given the AR(1) estimates reported in the tables, the variance of the effects
can be recovered from o7 = o2 + V40 — wr (as explained in Section 4), which
gives 8% = 0.05 for the Spanish data, and 8727 = 0.07 for the PSID.

GMM estimates are known to be downward biased in finite samples, specially
when the number of moments is large and the instruments are weak. However,
the magnitude of the bias in our application (relative to the likelihood estimates)
is puzzling for the values of o and T'/N that we have, suggesting misspecification
as the most likely reason for these discrepancies. This impression is confirmed by
the AR(2) estimates and the simulation results reported below.

The upshot from the AR(2) estimates reported in the second parts of tables 2
and 3 is that there is a positive autoregressive root, in the (0.4,0.5) range for the
Spanish panel and in the (0.6,0.7) range for PSID, and a negative root of around
—0.2 in both datasets (so that an ARMA(1,1) model would provide a similar fit).

AR(2) GMM estimates are still smaller than the likelihood-based estimates,
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and there is a discrepancy between BCS and RMLr (specially for PSID), all of
which suggests that there may be some remaining misspecification.!®> Mean sta-
tionarity is rejected in both datasets and, when enforced, leads to somewhat larger
positive roots.

However, in contrast with other studies that either imposed or found a unit
root in individual earnings (e.g. MaCurdy, 1982), we find no evidence of unit
roots. The only way we managed to obtain a near-unit root is by imposing the
restriction that the initial observations of earnings are orthogonal to the unob-
served component (i.e. ¢ = 0). Doing this led to an estimated positive root of
0.95 in both panels. Clearly, if only heterogeneity that is orthogonal to initial
observations is allowed, any nonorthogonal heterogeneity will be captured by the
autoregressive part of the model as spurious state dependence.

Moving Average Errors We checked whether this conclusion was affected
by adding a moving average component to the specification of PSID earnings.
In such a case the autoregressive coefficients can no longer be interpreted as a
model for the conditional expectation of earnings given past observations, but an
ARMA model might lead to a more parsimonious specification. Moreover, models
of earnings that specify a measurement error component imply a reduced form
with moving average errors. Appendix D describes our ARMA specification and
the random effects ML estimators that we used.

Table 4 reports ARMA(1,1), ARMA(1,2), and ARMA(2,1) estimates from
the PSID sample. As expected, the ARMA(1,1) estimates are similar to those ob-
tained from the AR(2) specification. However, the ARMA(1,2) and the ARMA(2,1)
estimates were very imprecise, suggesting that there is no enough variation in the
data covariance matrix to support a three-parameter dynamic specification within
this class of models.

Testing for Nonnormality The distributions of the effects and the au-
toregressive errors are nonparametrically identified and can be estimated using
deconvolution techniques as in Horowitz and Markatou (1996).

Horowitz and Markatou carried out graphical tests of normality of the distri-

13We found that the BCS equations, in addition to the stable solution, had another solution
with an explosive root.
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butions of errors and effects in a static earnings model using a two-wave panel
from the CPS.'* We used their diagnostics and found very similar results for PSID
autoregressive models. A normal probability plot of residuals in first-differences
(Figure 7) indicates that the tails of the distribution of errors are thicker than
those of the normal distribution. However, a plot of the log empirical character-
istic function of the effects against minus the square of its argument is almost a
straight line, hence showing no deviation from normality (Figure 8).

Monte Carlo Simulations To illustrate the properties of the estimators,
we performed a small simulation exercise calibrated to the likelihood-based AR(1)
estimates from PSID data. We generated 1000 replications with N = 792, T° =7,
n; ~N (O, 0727), vt ~ N (0,0?), 0727 = 0.07, and mean stationarity.

In Table 5 we report means and standard deviations of the WG, GMM1,
RML(nr), RML(r), and BCS estimators of the AR(1) model for = 0.4 and 0.8
(with 2 = 0.11 and 0.28, respectively). The results show that both RML(r)
and BCS are virtually unbiased. Those for o = 0.4 nicely reproduce the WG
downward bias and the RML(nr) upward bias that we found in the PSID sample.
However, the results fail to explain the performance of GMM with the real data,
which reinforces the evidence of misspecification in the AR(1) earnings models.

10. Concluding Remarks

From a GMM perspective, a motivation for considering likelihood based estima-
tors is to reduce the number of moments available for estimation. The number
of orthogonality conditions of optimal GMM estimators in autoregressive panel
models grows at a rate of T (7T — 1) /2, whereas the number of score equations
for the heteroskedastic likelihood estimators grows at a rate of 7. An interesting
question is to characterize the potential incidental parameter problem that occurs
for these estimators as T tends to infinity.

From ongoing work by the authors, we conjecture that in a double asymptotic
setup where 7'/N tends to a finite constant, the estimators with unrestricted time
series variances remain consistent and asymptotically normal, but have a bias term

in the asymptotic distribution when the data are not symmetrically distributed.

Figures 1 and 5 in their paper
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Table 1
Relative Inefficiency Ratios*

Homosk. Heterosk.
BCS RMLdif BCS RMLdif

a=0.6
Te=4 XN=0 145 1.33 2.21 1.59
A=1 1.14 1.05 1.56 1.12
T°=10 A=0 1.06 1.04 1.07 1.05
A=1 1.02 1.00 1.03 1.00

a=0.8
Te=4 X=0 1.93 1.70 3.16 2.15
A=1 1.22 1.07 1.69 1.15

T°=10 A=0 1.22 1.13 1.28 1.15
A=1 1.08 1.01 1.12 1.01

*Ratios of Asymptotic St.Deviations: Denominator is
St.Dev. of RML-lev; T° =no. of waves; A = 0727/02.
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Table 2
Autoregressive Model of Earnings
AR(1) Estimates for Spanish Data, 1994-1999

N =632,T°=6
WG GMM1 GMM2  System-GMM
o} —0.022 0.042 0.038 0.183
(—0.95)  (0.93)  (0.87) (7.00)
Sargan test (df) 6.11(9) 22.71(13)
ml —9.67 —9.89 —13.73
m2 0.27 0.23 1.83

Likelihood-based Estimates
BCS RML(r) RML(nr)  RML(r)  RML(x)
(robust) (robust) (homosk.) (mean stat.) (¢ =0)

a 0218 0.200 0.207 0.164 0.926
(7.04)  (7.07)  (3.83) (5.32) (87.05)
o2 (1995) 0.025  0.023 0.023 0.023 0.049
(11.34)  (11.91)  (25.14) (11.65) (12.81)
o2 (1996) 0.022  0.021 0.021 0.042
(8.55)  (9.28) (9.04) (14.40)
o2 (1997) 0.023  0.023 0.023 0.039
(8.23)  (9.55) (9.16) (15.96)
o2 (1998) 0.023  0.023 0.022 0.039
(10.26)  (10.60) (10.47) (14.74)
o2 (1999) 0.023  0.025 0.025 0.047
(10.93)  (11.63) (11.51) (14.80)
¢ 0.567 0.560 0.607 0.1
(18.27)  (11.72) (15.05)
o2 0.020 0.020 0.0241 0.003
(10.37)  (7.53) (9.77)
Yoo 0.111 0.100
(14.35) (16.13)

Data are log earnings residuals from a regression on age,
education and year dummies. 7, is the sample variance of yq.
t—ratios robust to conditional heteroskedasticity.

m1 and m2 are serial correlation tests for differenced errors.

(¢, 02) are regression coeffs. of (@ — o@,l) on 7. 'Implied by constraint.
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Table 2 (continued)
Autoregressive Model of Earnings
AR(2) Estimates for Spanish Data, 1994-1999

N =632,T°=6

WG GMM1 GMM2  System-GMM
aq —0.131 0.112 0.138 0.311

(5.06)  (1.20)  (L58) (7.91)
Qs —0.118 0.051 0.070 0.176

(3.78)  (0.93)  (1.41) (4.87)

Sargan test (df) 4.21(7) 16.02 (11)

ml —6.41 —7.02 —11.56
m2 —0.75 —0.87 —1.55

Likelihood-based Estimates
BCS RML(r) RML(nr)  RML(r)  RML(r)
(robust) (robust) (homosk.) (mean stat.) (¢ =0)

a 0218 0.201 0.210 0.300 0.600
(4.47)  (4.89)  (2.73) (4.69) (25.40)
as 0.104  0.094 0.100 0.102 0.338
(2.57)  (247)  (1.35) (2.16) (15.90)
o2 (1996) 0022  0.022 0.023 0.026 0.037
(7.93)  (8.69)  (25.14) (7.17) (11.90)
o2 (1997) 0.025  0.024 0.026 0.035
(7.34)  (9.15) (8.84) (13.59)
o2 (1998) 0.023  0.023 0.024 0.033
(8.85)  (9.87) (10.10) (12.85)
o2 (1999) 0.024  0.024 0.034 0.035
(10.68)  (11.34) (6.13) (13.04)

o, 0.253 0.247 0.

(5.39)  (5.50)
&, 0.334 0.326 0.
651)  (6.12)

o2 0.016 0.015 0.005
(8.24)  (7.57) (12.62)
Root, 0450  0.424 0.437 0.503 0.954
Roots —0.232 —0.223  —0.228 —0.203 —0.354
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Table 3
Autoregressive Model of Earnings
AR(1) Estimates for PSID Data, 1977-1983

N=792,T°=7
WG GMM1 GMM2  System-GMM
o 0.184 0.171 0.157 0.311
(6.08)  (3.37)  (3.54) (9.76)
Sargan test (df) 15.61 (14) 46.59 (19)
ml —6.36 —6.40 —7.42
m2 1.82 1.64 2.36

Likelihood-based Estimates
BCS RML(r) RML(nr)  RML(r)  RML(x)
(robust) (robust) (homosk.) (mean stat.) (¢ =

a 0.387  0.367 0.416 0.366 0.902
(9.64)  (10.09)  (8.27) (10.04) (43.93)
o2 (1978) 0.061  0.059 0.068 0.059 0.113
(7.73)  (7.83)  (28.14) (7.83) (10.14)
o2 (1979) 0.062  0.058 0.058 0.085
(6.10)  (6.08) (6.07) (8.73)
o2 (1980) 0.054  0.052 0.052 0.079
(7.21)  (7.55) (7.54) (9.02)
o2 (1981) 0.046  0.046 0.046 0.080
(6.62)  (7.41) (7.40) (8.79)
o2 (1982) 0.094  0.096 0.096 0.114
(3.55)  (3.68) (3.67) (4.66)
o2 (1983) 0.086  0.091 0.091 0.132
(5.34)  (5.31) (5.31) (6.97)
¢ 0.385 0.352 0.384 0.1
(11.84)  (8.35) (11.75)
o2 0.045 0.042 0.046! 0.008
(9.35)  (7.55) (6.43)
Yoo 0.239 0.237
(12.92) (13.34)

Data are log earnings residuals from a regression on age,
education and year dummies. 7, is the sample variance of yq.
*See notes to Table 1. TValue implied by constraint.
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Table 3 (continued)
Autoregressive Model of Earnings
AR(2) Estimates for PSID Data, 1977-1983

N=792,T°=7
WG GMM1 GMM2  System-GMM
aq 0.135 0.227 0.250 0.433
(3.61)  (2.75)  (3.37) (11.03)
Qo —0.028 0.047 0.062 0.119
(0.90)  (1.17)  (L.81) (3.93)
Sargan test (df) 12.29 (12) 30.96 (17)
ml —4.94 —5.47 —7.05
m2 2.19 1.79 1.45

Likelihood-based Estimates
BCS RML(r) RML(nr)  RML(r)  RML(r)
(robust) (robust) (homosk.) (mean stat.) (¢ =0)

a 0473 0.419 0.496 0.518 0.673
(5.20)  (8.32)  (5.49) (8.79) (18.30)
as 0.157  0.115 0.176 0.159 0.260
(2.78)  (3.14)  (2.55) (3.56) (8.26)
o2 (1979) 0.070  0.064 0.076 0.071 0.082
(4.84)  (6.19)  (28.14) (7.00) (8.52)
o2 (1980) 0.061  0.056 0.063 0.074
(5.50)  (7.48) (8.34) (9.32)
o2 (1981) 0.057  0.051 0.059 0.072
(5.21)  (7.01) (7.88) (8.36)
o2 (1982) 0.092  0.097 0.102 0.109
(3.69)  (3.71) (3.91) (4.23)
o2 (1983) 0.091  0.090 0.096 0.108
(4.88)  (5.28) (5.68) (6.47)
b, 0.096 0.065 0.
(2.95)  (2.06)
b, 0.262 0.174 0.
(4.73)  (3.23)
o2 0.028 0.023 0.012
(7.23)  (5.65) (8.38)
Root, 0.698  0.607 0.736 0.735 0.947
Roots —0.225 —0.189  —0.240 ~0.217 —0.274
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Table 4

ARMA Models of Earnings
RML Estimates for PSID Data, 1977-1983
N=792T=7

ARMA(L,1) ARMA(L2) ARMA(2,1)
a 0.655 0.336 0.210
(3.34) (1.74) (0.32)
as 0.194
(0.24)
b, 0.205 —0.068 ~0.175
(1.69) (0.41) (0.18)
by —0.139
(2.62)
02 0.069 0.057
(4.74) (6.63)
020 0.063 0.062 0.065
(6.69) (6.11) (0.48)
02 0.057 0.056 0.056
(6.50) (7.85) (1.43)
0% 0.055 0.049 0.048
(4.80) (6.43) (1.52)
02 0.094 0.099 0.096
(3.63) (3.68) (2.87)
02 0.093 0.092 0.089
(5.32) (5.36) (4.68)
o2 0.021 0.073 0.064
(0.90) (1.75) (1.20)
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Table 5
Simulations for the First-Order Autoregressive Model
Means and standard deviations of the estimators

N =792,T° =7
WG GMM  RML(ur) RML(r)  BCS
True values: « = 0.4, 72 = 0.11

0.178 0.396 0.430 0.400 0.400
(0015  (0.035)  (0.021)  (0.020)  (0.021)

2 0.059 0.059
! (0.003)  (0.004)

I 0.058 0.058
2 (0.003)  (0.004)

) 0.052 0.052
73 (0.003)  (0.003)

, 0.046 0.046
74 (0.003)  (0.003)

) 0.096 0.096
5 (0.005)  (0.006)

i 0.091 0.091
6 (0.005)  (0.005)

True values: a = 0.8, 72 = 0.28

0.488 0.772 0.882 0.804 0.804
 (0.016)  (0.076)  (0.028)  (0.037)  (0.040)

) 0.059 0.059
o1 (0.004)  (0.004)

, 0.058 0.058
72 (0.004)  (0.004)

) 0.052 0.052
73 (0.004)  (0.004)

) 0.046 0.046
74 (0.003)  (0.003)

, 0.096 0.096
5 (0.005)  (0.006)

) 0.091 0.091

Og

(0.005)  (0.005)

1000 replications. Variance values: o2 = 0.059, 02 = 0.058,
Ug = 0.052, Ji = 0.046,0% = (0.096, 0’% = 0.091, 0,27 = 0.07.
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Figure 3
Relative Inefficiency Under Nonstationary Initial Variance (T=3, apha=0.9, lamda=0)
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APPENDIX FOR ROBUST LIKELIHOOD ESTIMATION OF DYNAMIC PANEL
DATA MODELS BY JAVIER ALVAREZ AND MANUEL ARELLANO

A. Conditional Maximum Likelihood and Expected Scores

A.1. First-Order Conditions and Related Results

Equations (3.8), (3.11): Note that 7 = v/®¢ and wy = Var (7) = (/A1) ",
so that A™! = (1/wz) ®. Moreover, the equivalences in (3.7) also imply

Indet A = Indet (DAD') + Inwr. (A1)

Clearly 0 < ¢, < 1, >7, ¢, = 1, and under homoskedasticity ¢, = 1/T for all .
Regarding period-specific variances, taking into account that:

E {(Ut - 6)2} =07 +wyp — 2F (v0) = 07 + wr — 20,07 = 07 + wr — 2wr,
we obtain expression (3.8), and also
o} —0i = E|(w -0 - E[(vi1 -0)°] (t=2,..7).
Finally, equation (3.11) is easily verified from (3.8).

Idempotent Matrices: Letting Q = ® — ®u/®, note that the matrix Qf =
I — ®Y2,/P'/? is idempotent, and that Q = ®/2QT®1/2. Also

Q" = AY2D' (DAD') " DAY? = T — wp A2/ A~12
and D' (DAD')™' D = A~2QTA~1/2, So that
D' (DAD) 'D = A" —wpA VWA = w3 1Q.

Derivatives: Letting ¢ = (¢, ..., o7) = ®¢, we have the following result:

% — —(®—Du/D)A' = —D' (DAD') ' D&. (A.2)
To see this recall that ¢, = wr/0% and consider
1/o} AW
dp=wr— |+ lao+| | ZZas.
00 ) , | 00
/o7 1)o7
Also using
Ow 1/od
> = / 2 = ‘Pi? (A.3)

o3 (07 + . +07°)

1



we get

oy 1/o} ... 0 1/0%
oy = ~wr| o [+ (4 )
0 ... 1/o% 1/0%
Y1
1 1 1
= ——0——| i (¢ . opp )P=—— (D Du/D)D.
wr wr wr
YT

First-Order Conditions Formulae (3.21)-(3.22): For a matrix A = (ay, ..., a,),

we use the notation vec (A) = (a},...,a,)" and A ® B = {a;;,B}. The derivative
of Lo with respect wr is

OLe 1 &

Owr Wk & [v; (@ — Q') v; — (T — 1) wr].

The concentrated likelihood with respect to wr is
., NZ N
LCZEZlngpt ( anZgot Vit — ,
t=1 i=1t=
and the Lagrangean

T
EzL*C—F)\(l—Z(pt),

t=1

so that
oL N 1 1 X
T —— Vig — U;)" — 2050; | 1 — s A
EI T [ A (| B
oL

T

— = 1- .

8)\ ; Spt

Inserting the restriction, the first-order conditions for the weights are

1 11X

_:__Z Uzt_vz /\a

Pt

and taking first-differences to eliminate the Lagrange multiplier

or == Z [ Vit — — (Ui(t—l) — E‘) 2} .

Pt Pr—1 11

Nonnegativity constraints: The nonnegativity constraints o? > 0 may be
enforced through the parameterization (wr, ¢y, ..., o) imposing adding-up and
non-negativity restrictions to the weights. Alternatively, transformed variances
for errors in orthogonal deviations can be used, which confine nonnegativity re-
strictions to o%. This transformation is discussed next.
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A.2. Heteroskedastic Orthogonal Deviations

The following equivalences also hold

T-1
v'D' (DAD') ' Dv =Y =% (A.4)
t=1

T -1
Indet (DAD') = Inoj +1n (01_2 +...+ 0}2> => Ing; (A.5)
t=1

t=1

where the heteroskedastic orthogonal deviations are given by

V-1 — Ur fort=T-1

5, = (A.6)

-2 -2
o Vip1+...+op v
v — L -z fort=T-2,...,1
Gt+1+"'+GT

o2 | + 0% fort=T-1
G2 = ) X : (A7)
O't—i-m fOI't:T—Q,...,]_
or
Ur_1 — U fort=T-1

(Vg — Vgr1) + Nep1Op1 fort=T—-2,...,1
where \, = 02/6%, (t=T —1,...,1).
To clarify the mapping between (o3, ...,0%) and (&%, - 5%_1) note that
E|(vr-1 —vr) (vp-2 —vr)] = 0%
E@) =67 t=T-1,..,1).
So we identify 02 as a covariance between (vy_; — vr) and (vp_y — vr), and 53,

as the variance of oy, = (vr_; — vr), so that 02, = 53, — 02. We can get

2 2

Apq = Op_1 O7_1
- D) 2
Op_1 Op_y+to07p

and use it to form

Ur—g = (vr—2 — vr—1) + Ar_1071,
which allows us to get 2 ,. Now we can get 02 , = G35 — 1/ (‘75%1 + 052),
Ar_g = 0% _,/G%_,, and proceed recursively to obtain the remaining terms. Note

that the &7 will be nonnegative by construction, so that the non-negativity prob-
lem is confined to o%.



A.3. Score Bias Function
Proof of (3.24): We have

E[X/D'(DAD')™ Dui| = E (X[A™'v;) — wrB (XA /A" ;)

I A=, A1 e "N A-1
o AT Ay UATIE (z0) AN
= —wrk : = —wr :
I A=, A1 e "N A-1
2, AT AT UATE (zpv)) A1

To obtain an expression for E (z;v]) we need to develop a suitable notation.

Let us write . .
]p 0 yi _ yi
(om0 = () A9

where
-y, —Qpq —a; 1 0 0 0 O
0 —ay —ay —ap 1
0 0 —Qqy —Q

(BTp BT>: 2 1
0 0 0 0 0 1 0
0 0 0 0 0 —ay —ayp 1

Moreover,

0 0
vi \_( L 0 Y;
( Yi > N ( Crp, Cr ) ( ML+ U; ) (A-10)

where Cp = B, L and ﬁTp =—-B, 1BTP, so that

yi = Crpyf +0,Cre + Cru;. (A.11)
Thus,
E (yv)) = CrpFE (y?v;) + CrE (viv)) = CrA. (A.12)
Let us consider now an expression for z; = (yi(l_j), ceey Y305 Yil s ...,yi(T_j)>/.
Since we have
Yi(1—j)
: (0 I )y
Yio
and
Yi1 Vi1
: = C(T,j)py? +n:Cr—jtr—; + Cr—; : 5
Yi(r—j) Vi(T—j)




we can write z;; as

_ o -
0 Ij 0 0 0 lr—j 0 0 Ui(T—j)
’ (C(Tj)p )y ! (CT—j 0 ) ( Lj Cr—j 0 Vi(T—j+1)
- /l)iT -
or ,
2 = Chy) +n,Cie+Cyvs - (j=1,...,p) (A.13)
where
0 0 0 I;
C;, = cy — 7 .
! (OTJ 0) e (O(T—j)p>
Therefore,
and in view of the previous expression
JATICL ¢'C1t
E[X{D'(DAD')™ Duj| = —wr : -
VATICQ @' Cpt
Moreover, note that weighted averages are given by
i = Qwj =1 (P'Ci) + (&CF, ) o) + @ Chos (1 =1,..,p)- (A.15)

Also note that the variance of the average error can be eliminated to give rise
to moment conditions that only depend on o and the weights.

Integral (3.38) of the Bias Function when p = 1:

To see that the integral of hr (a, ) when p = 1 is given by (3.38) note that
using

T—1
hr(ong) = 3 (T+a+.+a ) g,
:tr_—ll T—1 T-1
= Pry1 T Z Ppy1 T o’ Z Ppy1 + -+ OéT72<PT7
t=1 =2 t=3
we can write
T—1 o2 T-1 ob -1 aT-1

bT (Oé, 90) = « Z Sszrl + = Z Sps+1 + = Z (szrl + .+ T — 190T

— (Sot+1 +o Tt SOT) ol

- 3




Derivatives of by («, ¢) with respect to ¢, are:

abT(a,go):{O fort=1

Do, Y1 fort>1

and in view of (A.2):

0
o

abT(OZ?SO): % /8bT(a’¢>:_¢DI(DAD/)*1D (]5+a_2
00 00) o+

Proof of (4.8) and (4.9) for the Random Effects Scores:
Let §; = n; — ¢yio, so that

o2 =Var (7;) + Var(§,).
Using this expression and (A.15) we have

aigE [Tz (E - ¢/y?)] = aig {E (@v;) + E [fz (Th - Qb,y?)}}
_ % [WEAYE (X)) AV + by () E ()]
1

= — lwrhr (o, ) + hr (@, ) Cov (n;,€,)]

£

= hr(a,9) o Var (1) + Var (&) = hr (0, ¢).

£

This proves result (4.8). Turning to (4.9), we have

1 o
E U—gqm’ (DAD') " Dy; (ui—gby?ﬂ -

1 _

= —®D'(DAD) ' E (D)
1 _

= —®D'(DAD')™" DE (vv}) &t
O-E
1 _

— —®D'(DAD')' DA®.

o2
— LoD (DAD') ' DAA Y = “LoD' (DAD)) ' Du = 0.

Oz Oz



B. Asymptotic Variances of Estimators Under Normality

This Appendix presents the formulae for the asymptotic variances of RML and
BCS estimators used for the inefficiency calculations reported in the main body
of the paper. They are calculated under the assumption of normality for both
homoskedastic and heteroskedastic estimators when p = 1. These formulas are
not suggested for empirical standard error calculations (for which we use robust
sample expressions that remain consistent under conditional heteroskedasticity
and nonnormality), but in order to facilitate numerical comparisons of relative
efficiency among alternative estimators.

B.1. Asymptotic Variance of the RML-dif Estimator
Letting n] = 1, — (1 — a) 40, the AR(1) model can be written as
Ay = nl+va
Ayit = @Ayi(tfl) + A/Uit (t = 2, ceey T)
or in vector notation
Ay !+
: =Dt : = D'y
Ayir 0+ vir

B

where B and D' are T x T matrices of the form

1 0 ... 0 0
-a 1 ... 0 0 10 --- 00
— T
P=1 P _< D '
0 0 . —a 1

Moreover,
Var (DTuD =Dt (O’%TLL, + A) DV

where o7, = Var (772T ) and under homoskedascity A = o21.
Therefore,

Ay
Var| i | =B'D'(ohu'+A) DB =0() (B.1)
Ayir

2 2 2
where v = (a, 01y ey Oy UnT) .



Moreover, note that the heteroskedastic marginal MLE for the data in differ-
ences can be written as

Ay
- 2 a2 4 : 1Y _
(aD, 5., 00, 0727T) = argmin |Indet Q () + N > (Ayi, oo, Ayir) O (7) :
= Ayir

Thus, under normality the asymptotic variance matrix of (&D, G2..., 5%, 8127T) is

given by!?
HHO D [0 ()@ ()] DH ()} (B.2)
where Soech )
H(y) = 22212 a,[y, )
and D is the selection matrix
Jveck?
B O (vechf))"

A similar expression is valid for the homoskedastic RML-dif estimator, except

!/
that in that case the parameter vector is redefined as v = (a, o2, J%T) :

B.2. Asymptotic Variance of the RML-lev Estimator

In order to exploit the previous result for the differences, we express the covariance
structure corresponding to the levels using the transformation:

Yo Yoo Yot Yoyt - - OéT*l’Yom
Ayi ont
Var _ = Yot Q(v) =Q" (v")
Ay _:
o 170nT

!/
where 759 = Var (yi), Yont = Cov (%’07773)7 and v* = (0470%7 e UQTa U%p%mf)’oo) .
Arguing as in the previous case, the marginal MLE for the data in levels can

be written as

P ~2 ~2 ~ o~ \ _
(OéLaala~-7‘7T=Un17%m7%0) =

Yio
) 1 X 1, s Ayin
argmin |Indet Q* (v*) + N Z (Yio» Ayit, -y Ayir) X1 (7F) .
i=1 :
Ay,r

15See for example Arellano (2003, p. 72).



Thus, under normality the asymptotic variance matrix of (a [,02, . O, O fﬁ, Yonts Y oo)
is given by

/ *— * *— * * TT* * -1
2{H"(v) D" [0 () @ 0 (v)| D' H" (v)} (B.3)
where Duech [ ()]
. vec v
H =
and D* is the selection matrix
Ovec)*
D= ———M .
O (vechQ*)’

Note that in this parameterization, under stationary initial conditions,
remains a free parameter (which determines afi) given by

Ty —2
= ————- + g
oo (1 a)2 0
and
Yot = Cov (yio,nl) =—(1-a)7;
2
afﬁ = Var (n;r) =(1-a)7;,
so that the restriction under mean stationarity is vo,./02 = —1/(1 — ). Ho-

moskedasticity further restricts these coefficients to satisfy a3 = 02/ (1 — o?).

B.3. Asymptotic Variance of the Homoskedastic BCS Estimator

Because of the incidental parameters problem, the ML estimates of o and o2
estimated jointly with the effects are inconsistent for fixed T. However, as noted
by Lancaster (2002), we can obtain score adjusted estimators that are consistent
in view of the moment relationships:

E(z}'v}) = —o’hr(a)
E@v) = (T—-1)0?

where z; and v denote orthogonal deviations of the original variables.
By substituting the second equation we can eliminate 0% and get

E;(a)] =0
where
hT (Oé)
T-1)

i (@) = zi'v] +vj'v]



Under suitable regularity conditions, if there is a consistent root of the equation
SN, (a) = 0,' its asymptotic variance is given by

Vo = ﬁ (B5)
where
v=E ¢} (a)
and 80 (o)
(a
d=F 2
T
Because of
8¢ (a / / hr (a) vy /
i\ g i Vi p,
da Ly Ly L v (T—l) (T—l) T(a)7
we have 12
d=—E (z7z}) + 20° T - ) + o?hl (B.6)
where we are using hr and h/. for shortness.
Similarly,
h2 hp

v=EM%mﬂ+Ewﬁmﬂ@iﬁg+%WﬁWMﬁﬁﬂ (B.7)

The availability of expression (B.1) allows us to calculate the term E (z}'z7)
that appears in (B.6) as follows

T-1)°

E («]'z}) = E (2;D'(DD')™! D) = tr [(DD') ™ Qan (B.8)

where Qa1 = E (Dz;xiD’) is the (T' — 1) x (T' — 1) north-west submatrix of €2 ()
under homoskedasticity.
Next, under normality and homoskedasticity we have

E {(mf’vf)ﬂ = o'W + 0*E (x}z}) + o*tr (QCrQCyT) (B.9)
E|@/v})’] =" (T +1)(T - 1) (B.10)
E|(z}"v]) (v'v])] = —o*hr (T +1) (B.11)

where Q = Ir — 1/ /T and Cr is such that E (z;v]) = 02Cr.

16 A formal proof of consistency is given in Lancaster (2002), Theorem Al.
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Thus,

v = o2 + 02 B (27'27) + o'tr (QCrQCy) — o h2 (%)
o 2 1 % 4 2 492
v=0"E(x]'z]) + o'tr (QCrQCr) — T 1)0 h7. (B.12)

To get the results (B.9)-(B.11) we have used the following intermediate for-
mulae for moments of quadratic forms in normal variables:

El@))’] = [E @) +tr[E (2z]) E (jo))] + tr[E (}v]) E (z}v]")]
B’ = tr?[E @) +2tr [E (]v)) E (v]v))] = (T —1)" o* + 20* (T -
E (7)) (vf'v))] = E(27']) B (v]'v]) + 2tr [E (z70]") E (vjv])]

—0*hy (T — 1) — 20*hy.

B.4. Asymptotic Variance of the Heteroskedastic BCS Estimator
The i-th unit log likelihood conditioned on the MLE of 7, and y; is given by

;= —% Indet (DAD') — %ng’ (DAD") ™" Du;

where D is the (T — 1) X T first-difference matrix operator and A = diag (03, ...,0%).
Also, let d; be the t-th column of D, so that DAD' = S"L | 62d,d,.

Usmg for shortness the notatlon Q= DAD’ the first and second derivatives
of ¢; with respect to o and o7 are given by '

ol;
oo z,D'Q ! Dy,
o
8£ / 'y -1
i
26'
g = = —2; D' D
«
82&' ' —1 ryO—1
S2pn = Y DD, (t=1,..T)
t
"Note that -
8dt§0_2 h_ (g0 ta,)?
and 5
552 4, (Dvv;D") Q1 dy = =2 (diQ 7' dy) (dyQ~ ' Dujv;D'Q ™ dy) .

11
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o - (d;27'd,) (42 Dv}D'Q'd Lira1a,)
Go70gt ~ (A7) (407 Do D) 5 (7]

Let £1; = 04; /0, loy = O; /002, b11; = 0%; /002, ete., v = (a, 02, ...,0%), and
h = —E({y), hy = Oh/Oa, hyy = Oh/do?. BCS is the GMM estimator based on

the moments
¢. _ wli _ gli + h
' Vi Ly

whose asymptotic variance is

Vaos = (D’V‘lD)_l

where oy
i Ui b hy R,
D=F =F
<8'}’/> <£2li 522i>+< 0 0 )
and , )
_ N gli 6116122 _ h 0
Letting Qa11 = E (Dz;x,D'), the expected second derivatives are
0%; B
E (6111’) =F ((3@2) = —tr (Q IQAll) (B]_3)
— 82&. ry—1 r)—1
E (lo1q) = F 90700 = —d,QQ " DCIAD'Q™"d, (B.14)
. 8261 1 Jy—1 2
E (lyus) = E ( 507 wg) =3 (;27"d,) (B.15)

where E (z;v}) = C1A, and

0 0
Ol_(B;il 0)‘

Finally, the outer product terms are given by

E() = E (:U;D’Qlei)z]

E (byily;) = %E (d;ﬂ_lei)Q (x;D'Q_lei)] + (d;Q_ldt) h
E (boilais) = EE [(d;Q—IDUiY (d’sQ_lei)Q} B i

1
2
(d'dy) (di027"d,) .

12



Under normality:

E(6) = tr(Q7'Qan) +tr (D'QDCLAD'Q DC1A) + h? (B.16)
E (byyty;) = dQY'DCIAD'Q 4, (B.17)
B (binlsis) = %(dgg—lds)z (B.18)
Proof: Note that under normality:
E [(de-lmiY (d’sQ—le)Q} — B [(dgﬂ—lpwﬂ E [(d’sQ-leiﬂ
+2{E[(20' Dv;) (.07 Dv;)]}’
= (@97'd) (d07'd,) +2 (407",

which proves (B.18) and also shows that E (9;02;s) = —E (f2015)-
To prove (B.16), let vf = Q7Y2Dv;, ¥ = Q~Y/2Dx; and note that

E(6) = E[@v)?]
= [E(«fv))] +tr[E (z}2}) E (vjv])] + tr [E (zv)) E (z]v])]
— R4tr (Q‘lQAH) +tr (Q—lpclAD’Q—lpclAD') .

Finally, (B.17) can be proved as follows:
E [diQ 7 Do D'Qdy (2;D'Q7' Duy) | = E [di™ " oj07’ Q7 2d, (27'0])]
= F (d;Q_lm'v;‘vf'Q_lndt) E (x}'v]) +2F (d;Q_ln'v;‘xf') E (v;‘vg"Q_l/2dt)
= — (') h+2(dQ ' DCAD'Q ;)

To see this, letting ¥;; = d}Q~1/?v}, note that

EdiQ iy Q7 2y (a0))| = S0 E (Va0 )

= E(dQ 0oy Q7 %d,) B (a7'0]) + 2B (i vja)’) B (vjo)' Q') .

Thus, the information equality F (£9;,01;) = —E ({2141) also holds.
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C. Modified Conditional ML Score Interpretation of BCS

For the heteroskedastic AR(1) model we saw that BCS can be given a modified
conditional likelihood interpretation when the weights ¢ are known. More gener-
ally, we show here that for a heteroskedastic AR(p) model with unknown weights,
the BCS estimating equations coincide with the modified score vector discussed
in Arellano (2003b), which is first reviewed for convenience.

The Modified CML Score Let ¢;(3,n,) be an individual log-likelihood
conditioned on z;, and let dg; (8,n;), dyi (8,7;), dnyi (8,1;) and dgy; (8,n;) be first
and second partial derivatives. The first argument is a vector common parameter
B and 7, is a scalar individual effect. Let ¢; (3,7, (5)) be the concentrated log
likelihood, so that dg; (5,7; ()) is the concentrated score.

The modified score discussed in Arellano (2003b) is given by

10

s (8) = ds (8.7 (8)) — 5 510 = (8.7 ()] + 4 (B0 (8)) (1)
where 5
. N _ K (B,m:) C3
ai (ﬂ? ,r]z) KJnni (ﬂ’ 771) ( : )
and
1
om (Bos) = B |5 (B, | i (€4
1
s (Bos1) = B o (B i) | i (€3)

The first modification term provides a “degrees of freedom adjustment”, whereas
the second corrects for nonorthogonality between 3 and 7,. Note that if 3 and 7,
are information orthogonal xg,; (5,7,) = 0, so that ¢,; (3,1;) = 0 as well.

If there exists a scalar function ¢; (3,7,) such that

0
8_ﬁci (B,m:) = @ni (B, ) (C.6)
the modified score corresponds to the objective function
A 1 A

which coincides with the Cox and Reid modified profile likelihood based on an
orthogonal reparameterization of the effects. If ¢; (5,7;) does not exist, there is
no orthogonal reparameterization but the modified score dyy; () may still achieve
bias reduction relative to dg; (5,7; (3)).
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Application to AR(p) models In the AR(p) model, § = («/,8'), 2z = 17,
and
6 (B,m;) = —5Indet A — 50/ A vy, dyi (B,m;) = —1/wr,

1 11 1 '
dﬂm‘ (57 77i) = - (w—Txu‘; ey w_Txm'? 0—411%1; ey g%T) .
Thus, K,y (8,n;) = -1/ (Twr),

1
KBni (ﬁoﬂ?i) = K [fdﬂm' (5077h) | y??"i:|

= _Tin (E (Tu | Z/?,??Z-) . E (fpi | y?,m) 0, ...,0)/,
and
n; (¥'Cre) + (@’C}p) i ©'Che

(o 'L, ) 0 'Ct
q; (57 771) = i (90 CpL) _’(_)(SO CTp) Yi y  Qni (ﬂa 771) = 7 Op

0 0
Therefore, the modified score vector is

N 10 , , /
dMi (5) = dﬁz (5;771 (ﬁ)) + §a_ﬁlan + (()0 Cll’a cey P CpL707 70)

where

1 T 1
dﬂi (ﬂ, ﬁz (ﬂ)) = % —5 Indet ® — 5 hlu)T - EU; ((I) — (I)LL,(I)) Vi,

which shows that BCS can be regarded as the solution to the estimating equations

Zf\il dumi (ﬁ) =0.

In this case it does not exist a function ¢; (3,n,) such that

(8/8ﬂ) Gi (ﬂa 7%) = (Splclba s QOICpL, Oa ] 0)/ :

This can be easily seen when p = 1. In that case hr (@, p) = 0br (o, ¢) /O
where by (o, ) = 31! (gotH + ..+ goT) o' /t, so that possible solutions for ¢; (3, n;)

would be of the form br (a, ¢) + ¢ (6). However, since dbr (a, ¢) /0c? depends on
« and varies with ¢,'® there is no ¢ (#) that can make dc; (3, n,) /0c? equal to zero
for any « and t as required.

Thus, in the heteroskedastic AR(p) setting, despite the lack of existence of
an orthogonal transformation, a first-order bias adjustment to the score is an
exact correction that removes fully the bias, hence leading to fixed-T' consistent
estimation.

"8 The expression is dbr (a, @) /007 = —¢F [br (o, ) + a+ .. + &' Jwr.

15



D. ARMA Models

Consider the model
Yit = 0aYi—1) T -+ 0lig—p) + 1 + v (t=1,...,T;i=1,...,N) (D.1)

where v;; is a moving average error of order q.
Following the notation introduced in (A.9), we can write

I 0 Yy Yy
L) = ¢ ) D.2
(o) (5) - (0t o2

For an AR(p) process we have

0 /

Yi Loo YontT
% i) = / D3
@ ( Nl + ;i ) ( 1Yoy Oatrty + A ) (D:3)

where A = diag(c?,...,0%).
Similarly, for an ARMA(p, q) process

yo F00 qu fYOnL/qu
Var ( : ) = 1, 5 : (D.4)
nit + v e optriy + Ay

If p < g, the elements of T,, are all unrestricted. However, if p > ¢ only the
last g rows are unrestricted, and the (p — ¢) first elements of the columns of T,
coincide with those of v,,. Moreover, Ay is a moving average covariance matrix
whose first ¢ subdiagonals contain nonzero elements.

We adopt the following heteroskedastic moving-average specification for the
errors in (D.1):

Vi = atvjt (D.5)
U;rt = (y — ¢1Ci(t71) e ¢q<i(tfq) (D.6)

where (;, is an iid (0, 1) random error. In this way, we allow for arbitrary time se-
ries heteroskedasticity and at the same time specify a stationary serial correlation
pattern for v;;. Thus,

/
Vi = AP (Ci(l—q)? ) CZT) (D.7)
and
Ay = AV2TT A2 (D.8)
where U is the T' x (T + ¢) matrix
Y, Vg1 -~ 1 O ... 0 ... 0 O
0 0 .0 0 0 ... =¥, ... =9 1
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Therefore, the covariance matrix of 3! = (y%,4!)" is given by

I 0\ oo Tps Yonlr—q I 0\
Q) =1 3 Y 2 ’

BTp BT ’ o lrir + Aw BTp BT

tr—qYon K

(D.9)

where the parameter vector 7 consists of the autoregressive and moving average
coefficients, ,,, 02,07, ...,0%, and the unrestricted elements in oy and T,

The ARMA(p, q) log likelihood is given by

1

N N _
Lps == IndetQ(y") = 2320 o/ (v") " uil (D.10)

I, 0
det =1,
(BTP BT)

and letting u; = ;¢ + v;, Q1 = O'nLL + Ay, o1 = ( Ty 'yOnL’T_q ), and

FOO F01 71_ FOO FOl
F/01 Qll - FOl/ Qll 9

Noting that

where .
Qﬁl — Qll o FOl/ (PO[)) POI (Dll)
det  (v*) = (det yy) / (det T°), (D.12)
we have
o FOO FOl Z0
y'(y) Ty = (yz ; 1,) ( ror ot > ( Z@ ) (D.13)
- / -
=l + (y?+ (1) IFOIUi) 00 <y?+ (1) lI‘Olui).
Therefore, letting ¥oy = (T°) " and Ty, = — (M%) ' T = ', Q7)}, we obtain
the followmg expression for Lgg:
N 1 &,
LRS = —? Indet QH — 5 Z%Qn U; (D14)
i=1

—g Indet Uy — %i (y? — Holui)/ Voo (y? - Hmw) .

=1

Concentrating the likelihood with respect to Woo (which is unrestricted), we get

N 1Y N N !
Rg = 5 Indet 247 — 3 > wiu; — ) Indet (y? - HOlui) (y? - H01Uz’> ;
i=1 i=1

(D.15)
which we found computationally very useful.
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Table Al
Sample characteristics: Spanish Data, 1994-1999
N =632,7° =6

Mean Min Max

age 43.5 23 65
tenure (years of exp in the job) 13.4 0 20

real labor income (euros) 13296.8 3529.1 72825.8
real capital income (euros) 276.6 0 27761.8
% less than sec educ 28.3

% secondary educ 46.3

% university educ 25.4

% industry 37.0

% service 63.0

% private sector 65.0

Table A2

Regression results first-step
Dependent variable: log of real labor income
Spanish Data, 1994-1999

Coefficient t-ratio
constant 7.269 54.98
age 0.076 12.79
age2 -0.001 -11.47
sec educ 0.267 19.98
univ educ 0.717 46.48
private sector 0.073 5.73
services -0.006 -0.50
do4 -0.040 -2.15
dos -0.051 -2.79
d96 -0.054 -2.95
do7 -0.049 -2.68
dos -0.027 -1.50
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