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1 Unconditional quantiles

Let F (r) = Pr (Y ≤ r). For τ ∈ (0, 1), the τth population quantile of Y is defined to be

Qτ (Y ) ≡ qτ ≡ F−1 (τ) = inf {r : F (r) ≥ τ} .

F−1 (τ) is a generalized inverse function. It is a left-continuous function with range equal to the

support of F and hence often unbounded.

A simple example Suppose that Y is discrete with pmf Pr (Y = s) = 0.2 for s ∈ {1, 2, 3, 4, 5}.
For τ = 0.25, 0.5, 0.75, we have

{r : F (r) ≥ 0.25} = {r : r ≥ 2} ⇒ q0.25 = F−1 (0.25) = 2

{r : F (r) ≥ 0.50} = {r : r ≥ 3} ⇒ q0.5 = F−1 (0.50) = 3

{r : F (r) ≥ 0.75} = {r : r ≥ 4} ⇒ q0.75 = F−1 (0.75) = 4.

Asymmetric absolute loss Let us define the “check” function (or asymmetric absolute loss

function). For τ ∈ (0, 1)

ρτ (u) = [τ1 (u ≥ 0) + (1− τ)1 (u < 0)]× |u| = [τ − 1 (u < 0)]u.

Note that ρτ (u) is a continuous piecewise linear function, but nondifferentiable at u = 0. We should

think of u as an individual error u = y − r and ρτ (u) as the loss associated with u.1

Using ρτ (u) as a specification of loss, it is well known that qτ minimizes expected loss:

s0 (r) ≡ E [ρτ (Y − r)] = τ

∫ ∞
r

(y − r) dF (y)− (1− τ)

∫ r

−∞
(y − r) dF (y) .

Any element of {r : F (r) = τ} minimizes expected loss. If the solution is unique, it coincides with qτ
as defined above. If not, we have an interval of τth quantiles and the smallest element is chosen so

that the quantile function is left-continuous (by convention).

In decision theory the situation is as follows: we need a predictor or point estimate for a random

variable with posterior cdf F . It turns out that the τth quantile is the optimal predictor that minimizes

expected loss when loss is described by the τth check function.
1An alternative shorter notation is ρτ (u) = τu+ + (1− τ)u− where u+ = 1 (u ≥ 0) |u| and u− = 1 (u < 0) |u|.
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To illustrate the minimization property let us consider the median M = q0.5. Take r < M , then

E |Y − r| =

∫ r

−∞
(r − y) dF +

∫ ∞
r

(y − r) dF

=

[∫ M

−∞
(r − y) dF −

∫ M

r
(r − y) dF

]
+

[∫ M

r
(y − r) dF +

∫ ∞
M

(y − r) dF
]

=

∫ M

−∞
(r − y) dF + 2

∫ M

r
(y − r) dF +

∫ ∞
M

(y − r) dF

=

∫ M

−∞
(M −M + r − y) dF + 2

∫ M

r
(y − r) dF +

∫ ∞
M

(y − r −M +M) dF

=

[∫ M

−∞
(M − y) dF +

∫ ∞
M

(y −M) dF

]
+ 2

∫ M

r
(y − r) dF + (r −M)

∫ M

−∞
dF + (M − r)

∫ ∞
M

dF

= E |Y −M |+ 2

∫ M

r
(y − r) dF + (r −M)

1

2
+ (M − r) 1

2

= E |Y −M |+ 2

∫ M

r
(y − r) dF ≥ E |Y −M | ,

which is minimized at r = M . To complete the argument we proceed along similar lines for r > M .

Equivariance of quantiles under monotone transformations This is an interesting prop-

erty of quantiles not shared by expectations. Let g (.) be a nondecreasing function. Then, for any

random variable Y

Qτ [g (Y )] = g [Qτ (Y )] .

Thus, the quantiles of g (Y ) coincide with the transformed quantiles of Y . To see this in the case of a

monotonic transformation note that

Pr [Y ≤ Qτ (Y )] = τ ⇒ Pr (g (Y ) ≤ g [Qτ (Y )]) = τ .

Sample quantiles Given a random sample {Y1, ..., YN} we obtain sample quantiles replacing F
by the empirical cdf:

FN (r) =
1

N

N∑
i=1

1(Yi ≤ r).

That is, we choose q̂τ = F−1N (τ) ≡ inf {r : FN (r) ≥ τ}, which minimizes

sN (r) =

∫
ρτ (y − r) dFN (y) =

1

N

N∑
i=1

ρτ (Yi − r) . (1)

An important advantage of expressing the calculation of sample quantiles as an optimization problem,

as opposed to a problem of ordering the observations, is computational (specially in the regression

context). The optimization perspective is also useful for studying statistical properties.
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Linear program representation An alternative presentation of the minimization of (1) is

min
r,u+i ,u

−
i

N∑
i=1

[
τu+i + (1− τ)u−i

]
subject to2

Yi − r = u+i − u
−
i , u+i ≥ 0, u−i ≥ 0, (i = 1, ..., N)

where here
{
u+i , u

−
i

}2N
i=1

denote 2N artificial additional arguments, which allow us to represent the

original problem in the form of a linear program. A linear program takes the form:3

min
x
c′x subject to Ax ≥ b, x ≥ 0.

The simplex algorithm for numerical solution of this problem was created by George Dantzig in 1947.

Nonsmoothness in sample but smoothness in population The sample objective function

sN (r) is continuous but not differentiable for all r. Moreover, the gradient or moment condition

bN (r) =
1

N

N∑
i=1

[1(Yi ≤ r)− τ ]

is not continuous in r. Note that if each Yi is distinct, so that we can reorder the observations to

satisfy Y1 < Y2 < ... < YN , for all τ we have

|bN (q̂τ )| ≡ |FN (q̂τ )− τ | ≤ 1

N
.

Despite lack of smoothness in sN (r) or bN (r), smoothness of the distribution of the data can

smooth their population counterparts. Suppose that F is differentiable at qτ with positive derivative

f (qτ ), then s0 (r) is twice continuously differentiable with derivatives:4

d

dr
E [ρτ (Y − r)] = −τ [1− F (r)] + (1− τ)F (r) = F (r)− τ ≡ E [1(Y ≤ r)− τ ]

d2

dr2
E [ρτ (Y − r)] = f (r) .

2Note that

u+ − u− = 1 (u ≥ 0) |u| − 1 (u < 0) |u| = 1 (u ≥ 0)u+ 1 (u < 0)u = u.

3See Koenker, 2005, section 6.1, for an introduction oriented to quantiles.
4The required derivatives are:

d

dr

∫ r

−∞
(y − r) f (y) dy = d

dr

∫ r

−∞
yf (y) dy − d

dr
[rF (r)] = rf (r)− [F (r) + rf (r)] = −F (r)

and

d

dr

∫ ∞
r

(y − r) f (y) dy =
d

dr

∫ ∞
r

yf (y) dy − d

dr
{r [1− F (r)]} = d

dr

[∫ ∞
−∞

yf (y) dy −
∫ r

−∞
yf (y) dy

]
− d

dr
{r [1− F (r)]}

= −rf (r)− {[1− F (r)]− rf (r)} = − [1− F (r)] .
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Consistency Consistency of sample quantiles follows from the theorem by Newey and McFadden

(1994) that we discussed in a previous class note. This theorem relies on continuity of the limiting

objective function and uniform convergence. The quantile sample objective function sN (r) is contin-

uous and convex in r. Suppose that F is such that s0 (r) is uniquely maximized at qτ . By the law of

large numbers sN (r) converges pointwise to s0 (r). Then use the fact that pointwise convergence of

convex functions implies uniform convergence on compact sets.5

Asymptotic normality The asymptotic normality of sample quantiles cannot be established

in the standard way because of the nondifferentiability of the objective function. However, it has

long been known that under suitable conditions sample quantiles are asymptotically normal and there

are direct approaches to establish the result.6 Here we just re-state the asymptotic normality result

for unconditional quantiles following the discussion in the class note on nonsmooth GMM around

Newey and McFadden’s theorems. The general idea is that as long as the limiting objective function is

differentiable the familiar approach for differentiable problems is possible if a stochastic equicontinuity

assumption holds.

Fix 0 < τ < 1. If F is differentiable at qτ with positive derivative f (qτ ), then

√
N (q̂τ − qτ ) = − 1√

N

N∑
i=1

1 (Yi ≤ qτ )− τ
f (qτ )

+ op (1) .

Consequently,

√
N (q̂τ − qτ )

d→ N
(

0,
τ (1− τ)

[f (qτ )]2

)
.

The term τ (1− τ) in the numerator of the asymptotic variance tends to make q̂τ more precise

in the tails, whereas the density term in the denominator tends to make q̂τ less precise in regions of

low density. Typically the latter effect will dominate so that quantiles closer to the extremes will be

estimated with less precision.

Computing standard errors The asymptotic normality result justifies the large N approxi-

mation

f̂ (q̂τ )√
τ (1− τ)

√
N (q̂τ − qτ ) ≈ N (0, 1)

where f̂ (q̂τ ) is a consistent estimator of f (qτ ).7 Since

f (r) = lim
h→0

F (r + h)− F (r − h)

2h
≡ lim

h→0

1

2h
E [1(|Y − r| ≤ h)] ,

5See Amemiya (1985, p. 150) for a proof of consistency of the median, and Koenker (2005, p. 117—119) for conditional

and unconditional quantiles.
6See for example the proofs in Cox and Hinkley (1974, p. 468) and Amemiya (1985, p. 148—150).
7Alternatively we can use the density fUτ (r) of the error Uτ = Y − qτ noting that f (qτ ) = fUτ (0).
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an obvious possibility is to use the histogram estimator

f̂ (r) =
FN (r + hN )− FN (r − hN )

2hN
=

1

2NhN

N∑
i=1

[1(Yi ≤ r + hN )− 1 (Yi ≤ r − hN )]

=
1

2NhN

N∑
i=1

1(|Yi − r| ≤ hN )

for some hN > 0 sequence such that hN → 0 as N →∞.8 Thus,

f̂ (q̂τ ) =
1

2NhN

N∑
i=1

1(|Yi − q̂τ | ≤ hN ).

Other alternatives are kernel estimators for f (qτ ), the bootstrap, or directly obtain an approximate

confidence interval using the normal approximation to the binomial distribution (Chamberlain, 1994;

Koenker, 2005, p. 73).

2 Conditional quantiles

Consider the conditional distribution of Y given X:

Pr (Y ≤ r | X) = F (r;X)

and denote the τth quantile of Y given X as

Qτ (Y | X) ≡ qτ (X) ≡ F−1 (τ ;X) .

Now quantiles minimize expected asymmetric absolute loss in a conditional sense:

qτ (X) = arg min
c
E [ρτ (Y − c) | X] .

Suppose that qτ (X) satisfies a parametric model qτ (X) = g (X,βτ ), then

βτ = arg min
b
E [ρτ (Y − g (X, b))] .

Also, since in general

Pr (Y ≤ qτ (X) | X) = τ or E [1 (Y ≤ qτ (X))− τ | X] = 0,

it turns out that βτ solves moment conditions of the form

E {h (X) [1 (Y ≤ g (X,βτ ))− τ ]} = 0.

8A suffi cient condition for consistency is
√
NhN →∞. One possibility is hN = aN−1/3 for some a > 0.
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Conditional quantiles in a location-scale model The standardized variable in a location-

scale model of Y | X has a distribution that is independent of X. Namely, letting E (Y | X) = µ (X)

and V ar (Y | X) = σ2 (X), the variable

V =
Y − µ (X)

σ (X)

is distributed independently of X according to some cdf G. Thus, in a location scale model all

dependence of Y on X occurs through mean translations and variance re-scaling.

An example is the classical normal regression model:

Y | X ∼ N
(
X ′β, σ2

)
.

In the location-scale model:

Pr (Y ≤ r | X) = Pr

(
Y − µ (X)

σ (X)
≤ r − µ (X)

σ (X)
| X
)

= G

(
r − µ (X)

σ (X)

)
and

G

(
Qτ (Y | X)− µ (X)

σ (X)

)
= τ

or

Qτ (Y | X) = µ (X) + σ (X)G−1 (τ)

so that

∂Qτ (Y | X)

∂Xj
=
∂µ (X)

∂Xj
+
∂σ (X)

∂Xj
G−1 (τ) .

Under homoskedasticity, ∂Qτ (Y | X) /∂Xj is the same at all quantiles since they only differ by a

constant term. More generally, in a location-scale model the relative change between two quantiles

∂ ln [Qτ1 (Y | X)−Qτ2 (Y | X)] /∂Xj is the same for any pair (τ1, τ2). These assumptions have been

found to be too restrictive in studies of the distribution of individual earnings conditioned on education

and labor market experience.

In the classical normal regression model

Qτ (Y | X) = X ′β + σΦ−1 (τ) .

3 Quantile regression

A linear regression is an optimal linear predictor that minimizes average quadratic loss. Given data

{Yi, Xi}Ni=1 OLS sample coeffi cients are given by

β̂OLS = arg min
b

N∑
i=1

(
Yi −X ′ib

)2
.
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If E (Y | X) is linear it coincides with the least squares population predictor, so that β̂OLS consistently

estimates ∂E (Y | X) /∂X.

As is well known the median may be preferable to the mean if the distribution is long-tailed.

The median lacks the sensitivity to extreme values of the mean and may represent the position of an

asymmetric distribution better than the mean. For similar reasons in the regression context one may

be interested in median regression. That is, an optimal predictor that minimizes average absolute loss:

β̂LAD = arg min
b

N∑
i=1

∣∣Yi −X ′ib∣∣ .
If med (Y | X) is linear it coincides with the least absolute deviation (LAD) population predictor, so

that β̂LAD consistently estimates ∂med (Y | X) /∂X.

The idea can be generalized to quantiles other than τ = 0.5 by considering optimal predictors that

minimize average asymmetric absolute loss:

β̂ (τ) = arg min
b

N∑
i=1

ρτ
(
Yi −X ′ib

)
.

As before ifQτ (Y | X) is linear β̂ (τ) consistently estimates ∂Qτ (Y | X) /∂X. Clearly, β̂LAD = β̂ (0.5).

Structural representation Define U such that

F (Y ;X) = U.

It turns out that U is uniformly distributed independently of X between 0 and 1.9 Also

Y = F−1 (U ;X) with U | X ∼ U (0, 1) .

This is sometimes called the Skorohod representation. For example, the Skorohod representation of

the Gaussian linear regression model is Y = X ′β + σV with V = Φ−1 (U), so that V | X ∼ N (0, 1).

Linear quantile model A semiparametric alternative to the normal linear regression model is

the linear quantile regression

Y = X ′β (U) U | X ∼ U (0, 1) .

where β (u) is a nonparametric function, such that x′β (u) is strictly increasing in u for each value of

x in the support of X. Thus, it is a semiparametric one-factor random coeffi cients model.

This model nests linear regression as a special case and allows for interactions between observable

and unobservable determinants of Y . Partitioning β (U) into intercept and slope components β (U) =

9Note that if Pr (Y ≤ r | X) = F (r;X) then Pr (F (Y ;X) ≤ F (r;X) | X) = F (r;X) or Pr (U ≤ s | X) = s.
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[
β0 (U) , β1 (U)′

]′
, the normal linear regression arises as a particular case of the linear quantile model

with β1 (U) = β1 and β0 (U) = β0 + σΦ−1 (U).

The error U can be understood as the rank of a particular unit in the population. For example

of ability, in a situation where Y denotes log earnings and X contains education and labor market

experience.

The practical usefulness of this model is that for given τ ∈ (0, 1) estimation of β (τ) can be easily

obtained as the τ -th quantile linear regression coeffi cient, since Qτ (Y | X) = X ′β (τ).

4 Asymptotic inference for quantile regression

Using our earlier results, the first and second derivatives of the limiting objective function can be

obtained as

∂

∂b
E
[
ρτ
(
Y −X ′b

)]
= E

{
X
[
1
(
Y ≤ X ′b

)
− τ
]}

∂2

∂b∂b′
E
[
ρτ
(
Y −X ′b

)]
= E

[
f
(
X ′b | X

)
XX ′

]
= H (b)

Moreover, under some regularity conditions we can use Newey and McFadden’s asymptotic nor-

mality theorem, leading to

√
N
[
β̂ (τ)− β (τ)

]
= −H0−1

1√
N

N∑
i=1

Xi

{
1
[
Yi ≤ X ′iβ (τ)

]
− τ
}

+ op (1) .

where H0 = H (β (τ)) is the Hessian of the limit objective function at the truth, and

1√
N

N∑
i=1

Xi

{
1
[
Yi ≤ X ′iβ (τ)

]
− τ
} d→ N (0, V0)

where

V0 = E
({

1
[
Yi ≤ X ′iβ (τ)

]
− τ
}2
XiX

′
i

)
= τ (1− τ)E

(
XiX

′
i

)
.

Note that the last equality follows under the assumption of linearity of conditional quantiles.

Thus,

√
N
[
β̂ (τ)− β (τ)

]
d→ N (0,W0)

where

W0 = H0
−1V0H0

−1.

To get a consistent estimate of W0 we need consistent estimates of H0 and V0. A simple estimator

of H0 suggested in Powell (1984, 1986), which mimics the histogram estimator discussed above, is as

8



follows:

Ĥ =
1

2NhN

N∑
i=1

1
(∣∣∣Yi −X ′iβ̂ (τ)

∣∣∣ ≤ hN)XiX
′
i.

This estimator is motivated by the following iterated expectations argument:

H0 = E
[
f
(
X ′β (τ) | X

)
XX ′

]
≡ lim

h→0

1

2h
E
{
E
[
1(
∣∣Y −X ′β (τ)

∣∣ ≤ h) | X
]
XX ′

}
= lim

h→0

1

2h
E
[
1(
∣∣Y −X ′β (τ)

∣∣ ≤ h)XX ′
]
.

If the quantile function is correctly specified a consistent estimate of V0 is

V̂ = τ (1− τ)
1

N

N∑
i=1

XiX
′
i.

Otherwise, a fully robust estimator can be obtained using

Ṽ =
1

N

N∑
i=1

{
1
[
Yi ≤ X ′iβ̂ (τ)

]
− τ
}2
XiX

′
i

Finally, if Uτ = Y −X ′β (τ) is independent of X (as in the location model) it turns out that

H0 = fUτ (0)E
(
XiX

′
i

)
so that

W0 =
τ (1− τ)

[fUτ (0)]2
[
E
(
XiX

′
i

)]−1
,

which can be consistently estimated as

ŴNR =
τ (1− τ)[
f̂Uτ (0)

]2
(

1

N

N∑
i=1

XiX
′
i

)−1

where

f̂Uτ (0) =
1

2NhN

N∑
i=1

1(
∣∣∣Yi −X ′iβ̂ (τ)

∣∣∣ ≤ hN ).

In summary, we have considered three different alternative estimators for standard errors: A non-

robust variance matrix estimator under independence ŴNR, a robust estimator under correct specifi-

cation: ŴR = Ĥ−1V̂ Ĥ−1, and a fully robust estimator under misspecification: ŴFR = Ĥ−1Ṽ Ĥ−1.
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5 Further topics

5.1 Flexible QR

• Linearity is restrictive. It may also be at odds with the monotonicity requirement of q (x, u) in

u for every value of x.

• Linear QR may be interpreted as an approximation to the true quantile function.

• An approach to nonparametric QR is to use series methods:

q (x, u) = θ0 (u) + θ1 (u) g1 (x) + ...+ θP (u) gP (x) .

• The g’s are anonymous functions without an economic interpretation. Objects of interest are
derivative effects and summary measures of them.

• In practice one may use orthogonal polynomials, wavelets or splines.

• This type of specification may be seen as an approximating model that becomes more accurate
as P increases, or simply as a parametric flexible model of the quantile function.

• From the point of view of computation the model is still a linear QR, but the regressors are now

functions of X instead of the Xs themselves.

5.2 Decompositions

• Basic idea of decomposition:

FM (y)− FF (y) =

∫
FM (y | x) fM (x) dx−

∫
FF (y | x) fF (x) dx

=

∫
[FM (y | x)− FF (y | x)] fM (x) dx+

∫
FM (y | x) [fM (x)− fF (x)] dx.

• We have added and subtracted the counterfactual cdf:

FCF (y) =

∫
FF (y | x) fM (x) dx.

• The indices (M,F ) could be male/female gender gaps, a pair of countries or two different periods.

• The decomposition can be done for cdf s (as shown) or for other distributional characteristics
such as quantiles or moments.

• When done for differences in means using linear regression they are called Oaxaca decompositions
(after the work of Ronald Oaxaca):

yM − yF = x′MβM − x′FβF = x′F (βM − βF ) + (xM − xF )′ βM .
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Machado-Mata method To do decompositions for quantiles or for distributions based on QR

models, we need to be able to calculate the marginal distribution of the outcome implied by the QR.

To do so we can use the following simulation method (Machado and Mata 2005):

1) Generate u1, ..., um ∼ iid U (0, 1).

2) Get β̂ (u1) , ..., β̂ (um) by running QRs from the actual data {yi, xi}ni=1.

3) Get a random sample of size m of the covariates: x∗1, ..., x
∗
m.

4) Compute y∗j = x∗j β̂ (uj) for j = 1, 2, ...,m.

5) The sample quantiles of y∗1, ..., y
∗
m are consistent estimates of the marginal quantiles of yi for

large n and m.

5.3 Other topics

• Crossings and rearrangements.

• Functional inference.

• Quantile regression under misspecification (Angrist et al, 2006).

• Asymptotic effi ciency: GLS and optimal instrument arguments.

• Instrumental variable models

—Chernozhukov and Hansen (2006) estimators.

—Chesher (2003) and Ma and Koenker (2006).

—Treatment effect perspectives.

• Censored regression quantiles

—Powell’s estimators.

—Chamberlain’s minimum distance approach.

—Honoré (1992) panel data approaches.

• Quantile selection models (Arellano and Bonhomme 2017).
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