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1 Introduction

Recent studies have developed econometric procedures for the analysis of the

time series properties of panel data sets consisting of large numbers of short

individual time series (eg. Anderson and Hsiao (1981), Chamberlain (1984),

Holtz-Eakin, Newey and Rosen (1988), and Arellano and Bond (1991)). The

analysis is typically based on empirical autoregressive equations including

time and individual effects, and possibly observed time-varying exogenous

variables. Individual effects are removed by differencing and lagged vari-

ables are used as instruments in order to retrieve consistent estimators of the

autoregressive coefficients of the levels equation. Alternatively, one could

choose moving average processes and components of variance to model the

autocovariance matrix of the data in first differences, using methods of mo-

ments estimation and testing as well (as done, for example, by Abowd and

Card (1989)). In either case, the motivation for this type of analysis with

micro data is often to establish a mapping between the observed dynamic

interactions and those implied by a theoretical model, or at least to test

particular time series implications of such model.

The purpose of this paper is to formulate procedures for the analysis of

the time series behaviour of panel data subject to censoring. We apply these

methods to analyse the dynamics of female labour supply and wages using

PSID data. We follow the standard latent variable approach to models with

selectivity and assume a linear autoregressive model for a latent variable

which is only partly observed due to a selection mechanism.

These models arise as a natural limited-dependent-variable extension of

similar linear models, and may be a representation of the reduced form of
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interesting structural models. In this regard, it is important to distinguish

an interest in the dynamics of the censored variable given the selection rule,

from a concern with the dynamics of the selection process. For example, in

terms of our application, we are interested in the time series behaviour of

female labour supply and wages conditional on participation and individual

effects. If the focus were on the dynamics of participation, it would be impor-

tant to model dependence on past states as well as unobserved heterogeneity

(see Heckman (1981) for a menu of alternative models), In effect, the mod-

els we consider are strictly speaking models of selectivity in the sense that

qualitative choice models are not covered, since at least some values of the

latent variables (not just their sign) must be observed.

The paper is organized as follows. Section 2 presents the model and com-

pares our assumptions with those typically made for linear models. Section 3

discusses methods of parameter estimation and testing. The basic method of

estimation can be regarded as an application of the asymptotic least squares

procedures of Gourieroux, Monfort and Trognon (1985). Section 4 contains

the application to female labour supply and wages using two samples from

the Michigan database. Finally, Section 5 presents some concluding remarks.
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2 The Model

We begin by considering a first-order autoregression for a scalar latent vari-

able y∗it including an individual effect ηi. The index i denotes cross-sectional

observations and t refers to time periods. Specifically, we have

y∗it = αy∗i(t−1) + ηi + vit | α |< 1 (1)

with

E(vit | y∗i1, ..., y∗i(t−1)) = 0.
The variable y∗it is observed subject to endogenous selection. We use

the notation yit for the observed variable, and the sample consists of N

independently distributed individual time series of length T . Throughout, T

is small and N is large. This framework will include truncated, and Type I

and Type II Tobit censored autoregressive models (using the terminology of

Amemiya (1985), see below).

Even in the absence of selection, equation (1) presents the problem that

the permanent effect ηi is unobserved. However, the equation error in first

differences satisfies

E(∆y∗it − α∆y∗i(t−1) | y∗i1, ..., y∗i(t−2)) = 0 (2)

which implies moment restrictions on the joint distribution of (y∗i1, ..., y
∗
iT ),

but marginal with respect to ηi. In particular we have the following (T −
2)(T − 1)/2 orthogonality conditions:

E
h
y∗i(t−j)(∆y

∗
it − α∆y∗i(t−1))

i
= 0 (j = 2, ..., (t− 1); t = 3, ..., T ) (3)

which are the basis for instrumental variables inferences in the linear model

without selectivity.
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For later use, we notice that the orthogonality conditions (3) can also be

written in terms of the coefficients of the best linear predictors of y∗it and

y∗i(t−1) given (y
∗
i1, ..., y

∗
i(t−2)). Letting

πt−1 =
h
E
³
xi(t−2)x

0
i(t−2)

´i−1
E
³
xi(t−2)y∗i(t−1)

´
(4)

pt =
h
E
³
xi(t−2)x

0
i(t−2)

´i−1
E
³
xi(t−2)y∗it

´
(5)

where xi(t−2) = (y∗i1, ..., y
∗
i(t−2))

0, the orthogonality conditions in (3) can be

written as

(pt − πt−1) = α(πt−1 − qt−2) (t = 3, ..., T ) (6)

where qt−2 is a (t− 2)× 1 vector which has one in the last position and zero
elsewhere. Clearly, the coefficients pt are related to the πt and the relation

is given by

pt = (It−2 : πt−1)πt (7)

This approach is attractive because it places no restrictions on the distri-

bution of the effects given the observed conditioning variables. However, it

cannot be directly used in our case since we only observe sample moments

conditional on selection. That is, we do not observe sample counterparts of

the population regression coefficients πt.

In fact, the selection model is unidentified in the absence of additional

prior restrictions on the distribution of the latent variable. If T where suffi-

ciently large, we could choose to place restrictions on the conditional distribu-

tion of y∗it while treating the realizations of ηi as parameters to be estimated.

Honoré (1992) presents a static Type I Tobit model with fixed effects to-

gether with a consistent and asymptotically normal estimator for that model
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with fixed T and large N . Honoré’s estimator places no restrictions on the

distribution of ηi given the exogenous variables. In return, he requires the

distribution of the errors given the exogenous variables and the effects to be

fully stationary, hence ruling out time series heteroskedasticity. In a similar

vein, Honoré (1993) gives moment conditions that do not depend on ηi for

a Type I Tobit model with a lagged dependent variable, strictly exogenous

variables, and stationary and serially uncorrelated errors.

Here we achieve identification by placing restrictions on the conditional

distribution of the latent variables y∗it given y
∗
i1, ..., y

∗
i(t−1) but not ηi. Firstly,

we specify the mean of y∗it | y∗i1, ..., y∗i(t−1) as an unrestricted (non-Markovian)
linear regression. That is, we assume that this mean coincides with the cor-

responding linear projection (which, for example, would be the case if the y∗it

were jointly normally distributed). This amounts to specifying the mean of

the effects given y∗i1, ..., y
∗
i(T−1) and so we assume some knowledge of the con-

ditional distribution of ηi. In doing this we follow the work of Chamberlain

(1984). Secondly, additional features of the distribution of y∗it | y∗i1...y∗i(t−1)
will be specified to overcome the selection problem, using methods existing in

the literature. A benefit of this approach is that we can consider Type I and

Type II censored models within the same framework. Another advantage is

that nonstationary errors (like errors with time series heteroskedasticity) are

not ruled out.

In general we have

E
³
y∗it | y∗i1, ..., y∗i(t−1)

´
= αy∗i(t−1) +E

³
ηi | y∗i1, ..., y∗i(t−1)

´
(8)
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and we assume

E
³
y∗it | y∗i1, ..., y∗i(t−1)

´
= πt1y

∗
i1 + ...+ πt(t−1)y∗i(t−1) = π0txi(t−1)

(t = 2, ..., T ) (9)

which implies that

E
³
ηi | y∗i1, ..., y∗i(T−1)

´
= λ1y

∗
i1 + ...+ λT−1y∗i(T−1) (10)

Notice that given (8) and (9), all the conditional expectations E(ηi | xit) are
linear and their coefficients are functions of λ1, ...,λT−1 and α. Using the law

of iterated expectations we have

E(ηi | xit) = E(λ1y
∗
i1 + ...+ λT−1y∗i(T−1) | xit)

=
tX

k=1

λky
∗
ik +

T−t−1X
j=1

λt+jE(y
∗
i(t+j) | xit)

and for j ≥ 2

E(y∗i(t+j) | xit) = π0t+j
j−1Y
s=1

(It+j−s−1
...πt+j−s)0xit.

The coefficients πt are nonlinear functions of α and the λ0s, with the

latter being nuisance parameters. For example, with T = 3 α is uniquely

determined given the π0s. In this case we have

E(y∗i2 | y∗i1) = π21y
∗
i1

E(y∗i3 | y∗i1, y∗i2) = π31y
∗
i1 + π32y

∗
i2

and

π21 = (α+ λ1)/(1− λ2), π31 = λ1, π32 = α+ λ2
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Solving for α we obtain

α =
(π31 + π21π32)− π21

π21 − 1 =
p31 − π21
π21 − 1 =

E(y∗i1∆y
∗
i3)

E(y∗i1∆y∗i2)

The expression on the right hand side is the population counterpart of the

Anderson-Hsiao (1981) instrumental variables estimator used in linear mod-

els. With T > 3 there are (1/2)(T −2)(T −1)−1 overidentifying restrictions
given the πt’s. Notice that with T = 3 a second-order autoregression with

individual effects would not be identified. Here we assume that although T

is small, it is sufficiently large to avoid problems of lag truncation.

When α > 0, the dependence of y∗it on both y
∗
i(t−1) and ηi generates

positive autocorrelation on y∗it. Having assumed that the reduced form au-

toregression (9) is a linear one, the structure of the model apportions the

overall serial correlation in y∗it between the autoregressive and the permanent

components.

In the censored sample selection model, the observed variable yit is given

by

yit = dity
∗
it (11)

where dit is a binary selection indicator. In the Type I model dit takes the

form

dit = 1(y
∗
it > 0) (12)

where 1(A) denotes an indicator function of the event A, while in the Type

II model we have

dit = 1(γ
0
twit + εit > 0) (13)

where εit is an unobserved error term and wit is a vector of variables which in-

cludes xi(t−1), but may also contain other variables known on a priori grounds
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to be independent of y∗it | xi(t−1). In this sense, predictors of the individual
effects ηi would be excluded. Finally, in the truncated model, yit consists of

observations from the distribution of y∗it conditional on y
∗
it > 0.

Although most of the discussion on estimation methods will be conducted

in terms of the first-order scalar autoregression presented above, the analysis

is intended to cover the following p-th order vector autoregression

y∗it = δt +
pX
j=1

Ajy
∗
i(t−j) + ηi + vit (14)

E(vit | y∗i1, ..., y
∗
i(t−1)) = 0

where y∗it is a g×1 vector of (at least partly) latent variables, ηi is a g×1 vector
of individual effects and δt is a vector of time effects treated as parameters

to be estimated (in the empirical section we consider a bivariate model with

p = 2 and time effects). The first-order scalar autoregression without time

effects is notationally much simpler to work with and yet does not miss

any essential aspect of the more general vector problem. Another remark

is that our framework is consistent with, but does not require the stronger

assumption E(vit | y∗i1, ..., y∗i(t−1), ηi) = 0.
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3 Estimation and Hypothesis Testing

A. Estimating the Reduced Form

We begin by considering the estimation of the set of (T − 1) equations

E(y∗it | y∗i1, ..., y∗i(t−1)) = π0txi(t−1) (t = 2, ..., T ) (15)

in the case where the selection mechanism is censored Type I, so that dit =

1(y∗it > 0). Let hi(t−1) be the indicator function of the event (y
∗
i1 > 0, ...y

∗
i(t−1) >

0). The coefficient vector πt will be estimated using the subsample with

hi(t−1) = 1, so that each estimated πt will be based on a different subsample.

Notice that these subsamples are exogenously selected for the purpose of esti-

mating πt. The choice of estimator will depend on the assumptions we make

about the distribution of y∗it | xi(t−1). We give the details for a fully paramet-
ric normal model, but the same ideas can be applied to any asymptotically

normal semiparametric method (like the trimmed least squares estimator

due to Powell (1986), which is a popular semiparametric alternative that we

employ in the empirical application, and is described in Appendix B). Our

analysis can also accommodate exogenous variables with some straightfor-

ward modifications, which are discussed in Appendix C.

Assuming that

y∗it | xi(t−1) ∼ N(π0txi(t−1),σ2t ) (16)

we can choose bθt = (bπ0t, bσt)0 to maximize
Lt =

NX
i=1

hi(t−1)

"
dit ln

1

σt
φ

Ã
yit − π0txi(t−1)

σt

!
+

(17)
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(1− dit) lnΦ
Ã−π0txi(t−1)

σt

!#
=

NX
i=1

`it(πt,σt) (t = 2, ..., T )

where φ(.) and Φ(.) are, respectively, the pdf and the cdf for a standard

normal variable.

The resulting stacked vector of estimates bπ = (bπ02...bπ0T )0 can be regarded
as maximising the criterion function

L(θ) =
TX
t=2

Lt(θt) (18)

Thus, bπ is not a full maximum likelihood estimator, since L(θ) does not take
into account the correlation between variables corresponding to different time

periods.

Subject to standard regularity conditions, a first order expansion of ∂L(bθ)/∂θ
about the true value of θ gives

Ã
− 1
N
diag

(
∂2Lt
∂θt∂θ

0
t

)!√
N(bθ − θ) =

1√
N

NX
i=1

⎛⎜⎜⎜⎜⎜⎝
∂`i2/∂θ2

...

∂`iT/∂θT

⎞⎟⎟⎟⎟⎟⎠+ op(1) (19)

fromwhich a joint limiting normal distribution for
√
N(bθ−θ) can be obtained.

A consistent estimator of the asymptotic covariance matrix of
√
N(bθ − θ) is

given by bVθ = cH−1
θ
bΨθ
cH−1

θ (20)

where cHθ = diag{N−1∂2 bLt/∂θt∂θ0t}
and bΨθ = N

−1
NX
i=1

(c∂`it
∂θt

·
c∂`is
∂θ0s

)
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where b̀it = `it(bπt, bσt) and bLt = PN
i=1

b̀
it.

The previous method for the Type I Tobit model illustrates the particu-

larities involved in the estimation of the system of equations (15). In the case

of the Type II Tobit model, the parametric method most frequently used in

practice is Heckman’s two-step estimator (see Heckman (1979)) which can

be applied to (15), equation by equation, on the basis of subsamples with

hi(t−1) = 1, where now

hi(t−1) = 1(di1 = 1, ..., di(t−1) = 1).

In such a case let us redefine bθt = (bπ0t, bφt)0 to minimize
St =

NX
i=1

hit[yit − π0txi(t−1) − φtλ(bγ0twit)]2 = NX
i=1

sit(θt, bγt) (21)

where λ(.) = φ(.)/Φ(.), and bγt are probit estimates of γt in (13) using the
subsample with hi(t−1) = 1. That is, bγt maximizes

Lpt =
NX
i=1

hi(t−1) [dit lnΦit + (1− dit) ln(1− Φit)] (22)

=
NX
i=1

`pit(γt)

with Φit = Φ(γ0twit). Using similar arguments as above we can obtain

Ht
√
N(bθt − θt) = Bt

1√
N

NX
i=1

mit + op(1) (t = 2, ..., T ) (23)

where

mit =

⎛⎜⎝ ∂sit/∂θt

∂`pit/∂γt

⎞⎟⎠
Bt =

⎡⎣I ... − Ã ∂2St
∂θt∂γ0t

!Ã
∂2Lpt
∂γt∂γ

0
t

!−1⎤⎦
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and

Ht =
1

N

∂2St
∂θt∂θ

0
t

From such expressions one can obtain a joint limiting normal distribution

for
√
N(bθ − θ). A consistent estimator of the (t, s) block of the asymptotic

covariance matrix of
√
N(bθ − θ) is given by

dCov(bθt, bθs) = cH−1
t

bBt
Ã
1

N

NX
i=1

cmitcm0
is

! bB0scH−1
s (24)

where the symbols are as before but replacing true parameters by their esti-

mated values.

There are also available asymptotically normal semiparametric two-step

alternatives to Heckman’s estimator, like the series estimator of Newey (1988)

and the weighted kernel estimator of Powell (1989), both of which can also

be applied to our context (see also Newey, Powell and Walker (1990)).

B. Asymptotic Least Squares Estimation

We turn to consider the estimation of the autoregressive coefficient α.

Given consistent and asymptotically normal estimates of πt, it would be

possible to obtain joint minimum distance (MD) estimates of α and the λ’s

(see Chamberlain (1982)). However, the πt are highly nonlinear functions of

these parameters and, moreover, the λ’s are not parameters of direct interest.

For these reasons, it is more convenient to exploit the instrumental variables

restrictions in the form of the relationships between α and the πt given in

(6). Stacking the equations we have

f(α,π) = (p− π1)− α(π1 − q) = 0 (25)

where p = (p03...p
0
T )
0,π1 = (π02...π

0
T−1)

0 and q = (q01...q
0
T−2)

0.
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The vector p consists of functions of π = (π02...π
0
T )
0 of the form given in (7).

Given T > 3 and some consistent and asymptotically normal estimator bπ
together with a consistent estimator of its asymptotic covariance matrix bVπ,
say, an asymptotic least squares (ALS) estimator of α is given by

bα = argmin
α
f(α, bπ)0ANf(α, bπ) = (bπ1 − q)0AN(bp− bπ1)

(bπ1 − q)0AN(bπ1 − q) (26)

where bp = p(bπ) and AN is a weighting matrix (see Gourieroux, Monfort

and Trognon (1985), and Gourieroux and Monfort (1995, 9.1)). The opti-

mal choice of AN for given bπ is bV −1r , which corresponds to the inverse of a

consistent estimate of the asymptotic covariance matrix of f(α, bπ):
Vr = QVπQ

0 (27)

where Q is a (1/2)(T − 1)(T − 2)× (1/2)(T − 1)T matrix given by

Q =
∂f(α,π)

∂π0
= (I ⊗ π0)0

∂vecC

∂π0
+ C

∂π0

∂π0
− (1 + α)

∂π1

∂π0

and

C = diag[(1 : π2), ..., (IT−2 : πT−1)]

π0 = (π03...π
0
T )
0

The estimated variance bVr can be obtained replacing Vπ by cVπ in (27), and
evaluating Q at bπ and a preliminary consistent estimate of α. The optimal
ALS estimator of α based on f(α, bπ) is asymptotically equivalent to the
optimal MD estimator of α based on bπ−π(α,λ1, ...,λT−1) and solved jointly

with the λ’s (see Alonso-Borrego and Arellano (1996)).

A consistent estimate of the asymptotic variance of
√
N(bα− α) for arbi-

trary AN is given by

advar(bα) = (bπ1 − q)0AN bVrAN(bπ1 − q)
[(bπ1 − q)0AN(bπ1 − q)]2 (28)

13



C. Estimates based on orthogonal deviations

As an alternative to the moment conditions for the errors in first dif-

ferences given in (3), we can use similar moments for the errors in forward

orthogonal deviations (see Arellano and Bover (1995)). Contrary to the first

differenced errors, the errors in orthogonal deviations are free from serial

correlation if the original errors are not autocorrelated. Namely, we have

E
h
xi(t−1)

³ey∗it − αey∗it(−1)´i = 0 (t = 2, ..., T − 1) (29)

where

ey∗it = ct[y∗it − 1

(T − t)(y
∗
i(t+1) + ...+ y

∗
iT )]

ey∗it(−1) = ct[y∗it−1 − 1

(T − t)(y
∗
it + ...+ y

∗
i(T−1))]

and c2t = (T−t)/(T−t+1). As shown by Arellano and Bover (1995), in linear
models the two sets of moments produce the same optimal GMM estimates,

but this will not be the case here in general. Contrary to the linear case, in

our context there are no natural one-step estimators that are optimal under

certain assumptions. Thus we may expect preliminary consistent estimates

based on first-differences (and the two-step estimates based on them) to show

a different behaviour from those based on orthogonal deviations.

The moment conditions (29) translate into the following restrictions among

linear projection coefficients and the parameter α:

gt(α,π) = [πt|t−1 − 1

(T − t)(πt+1|t−1 + ...+ πT |t−1)]

−α[qt−1 − 1

(T − t)(πt|t−1 + ...+ πT−1|t−1)] = 0 (30)

where

πt+j|t = [E(xitx0it)]
−1E(xity∗i(t+j))
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so that in the previous notation πt = πt|t−1 and pt = πt|t−2. As before, the

coefficients πt+j|t are linked by the law of iterated projections and can all be

expressed as functions of (π2...πT ).1 Stacking the gt functions the analysis

can proceed as in the first-difference case developed above.

D. Testing the Overidentifying Restrictions

When T > 3, there are (1/2)(T−1)(T−2)−1 overidentifying restrictions
implied by the model which can be tested. The testing of these constraints is

facilitated by the fact that the minimized optimal ALS criterion multiplied

by the sample size has a limiting chi-squared distribution with degrees of

freedom equal to the number of overidentifying restrictions (a proof of this

result can be found in Gourieroux and Monfort (1989, vol. 2, p. 175, and

1995, vol. 2, p.154) and a similar method is proposed by Szroeter (1983)).

Thus, the test statistic is given by

S = Nf(bα, bπ)0 bV −1r f(bα, bπ) (31)

This test statistic can be regarded as an extension to sample selection

models of the Sargan specification tests of overidentifying restrictions for

linear panel data GMM estimators considered by Arellano and Bond (1991)

(cf. Sargan (1958 and 1988)). On the same lines, it is also possible to consider

extensions of Sargan difference tests in order to discriminate between nested

hypotheses.

1Specifically, we have

πt|t−j = (It−j : πt−j+1|t−j : ... : πt−1|t−j)πt|t−1
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E. Consistent OLS Estimation Using Predicted Differences

Calculation of the optimal ALS estimator of α requires a preliminary

consistent estimator in order to obtain bVr. The following estimator can be
computed in one step (given the bπt) and has a straightforward interpretation.
Let us define

∆by∗it|t−1 = x0i(t−1)(bπt − qt−1) (32a)

∆by∗it|t−2 = x0i(t−2)(bpt − bπt−1) (32b)

Then we consider the OLS regression of ∆by∗it|t−2 on ∆by∗i(t−1)|t−2 for all periods
and individuals with hi(T−2) = 1:

eα = PN
i=1 hi(T−2)

PT
t=3∆by∗i(t−1)|t−2∆by∗it|t−2PN

i=1 hi(T−2)
PT
t=3(∆by∗i(t−1)|t−2)2 (33)

Simple algebra reveals that

eα = PT
t=3(bπt−1 − qt−2)0Mt−2(bpt − bπt−1)PT
t=3(bπt−1 − qt−2)0Mt−2(bπt−1 − qt−2) (34)

where Mt−2 =
PN
i=1 hi(T−2)xi(t−2)x

0
i(t−2). Therefore, eα is a non-optimal ALS

estimator of the form given in (26) with weighting matrix given by

AN = diag(M1, ...,MT−2)

and estimated asymptotic covariance matrix of the form given by (28). Clearly,

an alternative consistent OLS estimator can be calculated along the same

lines using predicted orthogonal deviations as opposed to first-differences.
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4 An Application to Female Labour Supply

and Wages

We estimate separate autoregressive equations for annual hours of work and

log wages (average hourly earnings) for two different samples of the Panel

Study of Income Dynamics (PSID), covering the periods 1970-1976 and 1978-

1984. In both cases the observations correspond to prime-age, white, married

women from the random PSID sub-sample that were continuously married to

the same husband, and who were 30-65 years old in 1968 (for the first sample)

or 1976 (for the second). After selecting the samples with the criteria above,

and removing some inconsistencies and non-respondents, we had 660 women

available in the first sample, and 804 in the second.

The starting point for each dataset is the following second-order bivariate

autoregression

h∗it = aht + b
h
1h
∗
i(t−1) + b

h
2h
∗
i(t−2) + c

h
1 lnw

∗
i(t−1) + (35a)

ch2 lnw
∗
i(t−2) + ηhi + v

h
it

lnw∗it = a
w
t + b

w
1 h

∗
i(t−1) + b

w
2 h

∗
i(t−2) + c

w
1 lnw

∗
i(t−1)+ (35b)

cw2 lnw
∗
i(t−2) + ηwi + v

w
it (t = 3, ..., 7)

where h∗it is the supply of hours of work for individual i in period t and lnw
∗
it

is the natural log of the wage of individual i in period t. The variables ηhi

and ηwi are individual effects, and a
h
t and a

w
t are time effects.

Inferences will be based on the following conditional moment restrictions

E(∆vhi4 | h∗i1, h∗i2, lnw∗i1, lnw∗i2) = 0 (36)
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E(∆vhi5 | h∗i1, h∗i2, h∗i3, lnw∗i1, lnw∗i2, lnw∗i3) = 0
E(∆vhi6 | h∗i1, ..., h∗i4, lnw∗i1, ..., lnw∗i4) = 0
E(∆vhi7 | h∗i1, ..., h∗i5, lnw∗i1, ..., lnw∗i5) = 0

and similarly for first-differenced log wage errors (actually, we shall use er-

rors in orthogonal deviations for which similar conditions hold). Both h∗it

and w∗it are subject to censoring with a common selection mechanism. The

unconditional non-participation rates for all individuals and time periods are

around 50 percent in the first sample and 40 percent in the second. However,

conditional non-participation rates for the sequence of sub-samples on which

inferences will be based are much lower as can be seen from Table 1. The

frequency of non-participants is under 10 percent for the four subsamples

corresponding to the period 1970-76, and even lower for those of the more

recent period. This suggests that LDV estimates of the linear projection co-

efficients πt will have a small bias whatever the truth of the linear conditional

expectation assumption and of the specification of the selection mechanism.

Some additional descriptive information on the two datasets is provided on

Table A1 in the Appendix.

Tables 2 and 3 contain results for the hours and wage equations, respec-

tively. To the basic autoregressive equations we have added two children

variables which are treated as predetermined variables in the estimation (a

dummy for a child less than 6 years-old and another for a child between 6

and 9). All the results we present include these children dummies, but their

exclusion does not alter the observed dynamics of hours and wages in our

data.

All the results reported in both tables are optimal ALS estimates based
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on moment conditions in orthogonal deviations. The preliminary consistent

estimates are OLS using predicted differences in orthogonal deviations. The

differences among the columns are in the way the reduced form coefficients

are estimated, or in the number of moment conditions used. Columns la-

belled OLS present optimal ALS estimates based on OLS estimates of the

reduced form coefficients for the sequentially censored subsamples. Thus,

these estimates do not correct for selectivity, but given the low conditional

non-participation rates in the samples we would not expect them to differ

substantially from those with selectivity corrections. The estimates shown in

the remaining two columns are based on Heckman’s estimates of the reduced

form coefficients. Those in the second columns of Tables 2 and 3 use the same

moments as the ones in the first columns, and as expected the differences be-

tween the two sets of estimates are small. Finally, the estimates in the third

columns are also based on Heckman’s estimates of the reduced form, but

only use instrumental variables dated t-3 or less. The motivation for these

estimates arises from a concern with measurement errors in observed wages,

which would invalidate the moment conditions given in (36). However, if

the measurement error is not serially correlated, backdating the conditioning

variables one period the mean independence of the first-differenced errors

is restored. Tables A2 and A3 in the Appendix show some additional ALS

estimates of the hours and wage equations based on Powell’s (1986) symmet-

rically censored LS estimates of the reduced form, and also Tobit estimates

with and without allowance for measurement errors in wages.

Starting with the results for the hours equations, there are some signifi-

cant differences between the estimates with and without measurement error
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corrections which, nevertheless, are not signaled by the test statistics of over-

identifying restrictions. There appears to be an increase of the effect of past

hours of work on current hours in the second period, which is consistent with

the notion of a trend towards a steadier involvement with the labour market

for those who participate. The estimated effects of lagged wages on hours of

work are not robust, and lack a clear pattern. In the first sample the effect

is stronger when allowing for measurement error in wages, but this situa-

tion is reversed in the second sample. Lastly, the empirical coefficients of

the children dummies have the expected sign, but their magnitude becomes

consistently smaller when moving from the first panel to the second.

Turning to the wage equations, the estimates in this case exhibit larger

differences between the two periods. Firstly, there is a positive effect of lagged

wages (net of individual effects) in the first period, which disappears alto-

gether -or becomes even negative- in the second period. Secondly, there is a

positive effect of lagged hours on wages whose size doubles from the first pe-

riod to the second. The change in the effect of lagged wages suggests higher

occupational mobility, while the change in the effect of lagged hours points to

higher returns to experience. Finally, in no case have the children dummies

a significant effect on wages.

Table 4 presents alternative estimates without individual effects for com-

parison. The reported estimates are pooled OLS for each of the two samples

of participants in previous periods (Table A4 presents Tobit estimates for the

same models and data). As expected, the wage equations without perma-

nent effects show a stronger autoregressive pattern for lagged wages. It is,

however, noticeable the change in the pattern of serial dependence in wages
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between the two panels that is broadly consistent with the results found for

the models with individual effects. Notice that these equations include edu-

cation and age variables, whose effects are captured by individual and year

effects in the equations in orthogonal deviations.

We now turn to interpret the previous empirical autoregressions in terms

of a life-cycle labour supply framework. Let us consider the following labour

supply equation

h∗it = µit + β lnw∗it + β lnλit (37)

where µit reflects variation in preferences due to individual and time specific

factors, λit is the marginal utility of wealth and the parameter β divided by h∗it

represents the intertemporal substitution elasticity. Browning, Deaton and

Irish (1985, pp. 521-2) obtain the profit function from which this equation

can be derived.2 They also show (among other authors, see also Heckman

and MaCurdy (1980) and MaCurdy (1981)) that the first difference of lnλit

can be approximated by a time effect plus a serially uncorrelated innovation

ξit. The innovation ξit will be correlated with current wages but uncorrelated

to all lagged variables in the individual’s information set.

We assume that µit can be represented as the sum of time and individual

effects, the effects of children, and a disturbance term vit. Given the observed

autoregressive behaviour of hours of work and the fact that in model (37)

2Equation (37) assumes that labour supply and goods are additive within periods. The

introduction of an extra term of the form w
∗−1/2
it to relax this assumption (as suggested

by Browning et al. (1995)) would make impossible the direct mapping with our VAR. The

estimates of the effect of this additional variable reported by Browning et al. for cohorts

male labour supply never turned out to be significantly different from zero.
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this can only be rationalized through serial correlation in vit, we specify

vit = ρvi(t−1) + εit.

Excluding children dummies for simplicity of presentation, the labour supply

equation in first differences can be written in the form

∆h∗it = ∆δt+ρ∆h
∗
i(t−1)+β∆ lnw

∗
it−ρβ∆ lnw∗i(t−1)+(ξit−ρξi(t−1)+∆εit) (38)

Let us denote a simplified model for the change in log wages excluding second-

order lags as

∆ lnw∗it = ∆awt + c∆ lnw
∗
i(t−1) + b∆h

∗
i(t−1) +∆vwit (39)

Now combining equations (38) and (39), the life-cycle labour supply model

implies that the process for hours follows

∆h∗it = ∆aht +m∆h∗i(t−1) + γ∆ lnw∗i(t−1) +∆vhit (40)

where

m = ρ+ βb (41)

γ = β(c− ρ)

aht = δt + βawt

∆vhit = ξit − ρξi(t−1) +∆εit + β∆vwit

Therefore, under the previous interpretation the coefficient on lagged wages

in the autoregressive hours equation can be regarded as an estimate of

β(c−ρ), where β divided by h∗it gives the intertemporal labour supply elastic-
ity. However, given the lack of robustness of the estimated effects of lagged
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wages on hours of work, we may expect the implied estimates of β to be

very imprecise (indeed if c − ρ = 0 the parameter β would be unidenti-

fied). This result is similar to the finding of Abowd and Card (1989) for men

labour supply using moving average representations, and suggests that the

dynamics of hours and wages in these data sets contains little information

on intertemporal labour supply responses.

5 Concluding Remarks

The methods developed in this paper are based on the observation that the

subsamples which only include individuals without censored past observa-

tions (those with hi(t−1) = 1) are exogenously selected for the purpose of

estimating features of the distribution of y∗it conditional on its past. In the

application to female labour supply and wages presented in Section 3, it

turns out that most of the selectivity due to censoring is accounted by the

permanent effects, and our methods make precise the sense in which this is

so. For other applications, however, these procedures may retain very few or

no observations with hi(t−1) = 1 for the larger values of t. In practice, such

problem could be addressed by considering distributions that are conditional

on the more recent observations only. In effect, if the linearity of the condi-

tional expectation of y∗it given (y
∗
i1, ..., y

∗
it−1) holds, we might expect this to

hold for any time sequence since the initial observation is often arbitrary. In

such case, we could rely on the linearity of the conditional expectation of y∗it

given y∗i(t−1), ..., y
∗
i(t−s) for any t and s in devising asymptotic least squares es-

timates of the parameters of interest. This may create a trade off between the
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number of moment restrictions being used and the actual sample size, which

remains to be explored. Future work will also have to address ways of relax-

ing some of the distributional asumptions, and consider ways of introducing

stationarity restrictions.

24



References

[1] Abowd, J.M. and D. Card (1989): ”On the Covariance Structure of

Earnings and Hours Changes”, Econometrica, 57, 411-445.

[2] Alonso-Borrego, C. and M. Arellano (1996): ”Symmetrically Normalized

Instrumental-Variable Estimation Using Panel Data”, Working Paper

9612, CEMFI, Madrid.

[3] Anderson, T.W. and C. Hsiao (1981): ”Estimation of Dynamic Models

with Error Components”, Journal of the American Statistical Associa-

tion, 76, 598-606.

[4] Amemiya, T. (1985): Advanced Econometrics, Blackwell, Oxford.

[5] Arellano, M. and S.R. Bond (1991): ”Some Tests of Specification for

Panel Data: Monte Carlo Evidence and an Application to Employment

Equations”, Review of Economic Studies, 58, 277-297.

[6] Arellano, M. and O. Bover (1995): ”Another Look at the Instrumental

Variable Estimation of Error-Components Models”, Journal of Econo-

metrics, 68, 29-51.

[7] Browning, M., A. Deaton and M. Irish (1985): ”A Profitable Approach

to Labor Supply and Commodity Demands over the Life-Cycle”, Econo-

metrica, 53, 503-543.

[8] Chamberlain, G. (1982): ”Multivariate Regression Models for Panel

Data”, Journal of Econometrics, 18, 5-46.

25



[9] Chamberlain, G. (1984): ”Panel Data”, in Z. Griliches and M.D. Intril-

ligator (eds.), Handbook of Econometrics, vol. II, Elsevier Science.

[10] Gourieroux, C., A. Monfort and A. Trognon (1985): ”Moindres Carrés

Asymptotiques”, Annales de l’Inséé, 58, 91-122.

[11] Gourieroux, C. and A. Monfort (1989): Statistique et Modèles

Econométriques, Vol. 2, Économica, Paris.

[12] Gourieroux, C. and A. Monfort (1995): Statistics and Econometric Mod-

els, Vols. 1 and 2, Cambridge University Press.

[13] Heckman, J.J. (1979): ”Sample Selection Bias as a Specification Error”,

Econometrica, 47, 153-161.

[14] Heckman, J.J. (1981): ”Statistical Models for Discrete Panel Data”, in

C.F. Manski and D. McFadden (eds.), Structural Analysis of Discrete

Data with Econometric Applications, MIT Press, Cambridge, Mass.

[15] Heckman, J.J. and T.E. MaCurdy (1980): ”A Lyfe-Cycle Model of Fe-

male Labour Supply”, Review of Economic Studies, 47, 47-74.

[16] Holtz-Eakin, D., W. Newey and H. Rosen (1988): ”Estimating Vector

Autoregressions with Panel Data”, Econometrica, 56, 1371-1395.

[17] Honoré, B. (1992): ”Trimmed LAD and Least Squares Estimation of

Truncated and Censored Regression Models with Fixed Effects”, Econo-

metrica, 60, 533-565.

26



[18] Honoré, B. (1993): ”Orthogonality Conditions for Tobit Models with

Fixed Effects and Lagged Dependent Variables”, Journal of Economet-

rics, 59, 35-61.

[19] Huber, P.J. (1967): ”The Behaviour of Maximum Likelihood Estimates

Under Nonstandard Conditions”, Proceedings of the Fifth Berkeley Sym-

posium on Mathematical Statistics and Probability, 1, 221-233.

[20] MaCurdy, T.E. (1981): ”An Empirical Model of Labor Supply in a Life-

Cycle Setting”, Journal of Political Economy, 89, 1059-1085.

[21] Newey, W.K. (1988): ”Two Step Series Estimation of Sample Selection

Models”, unpublished discussion paper, Princeton University.

[22] Newey, W.K., J.L. Powell and J. R. Walker (1990): ”Semiparametric Es-

timation of Selection Models: Some Empirical Results”, The American

Economic Review Papers and Proceedings, 80,324-328.

[23] Powell, J.L. (1986): ”Symmetrically Trimmed Least Squares Estimation

for Tobit Models”, Econometrica, 54, 1435-1460.

[24] Powel, J.L. (1989): ”Semiparametric Estimation of Censored Selection

Models”, mimeo.

[25] Sargan, J.D. (1958): ”The Estimation of Economic Relationships Using

Instrumental Variables”, Econometrica, 26, 393-415.

[26] Sargan, J.D. (1988): ”Testing for Misspecification after Estimating Us-

ing Instrumental Variables”, in E. Maasoumi (ed.): Contributions to

Econometrics: John Denis Sargan, Vol. 1, Cambridge University Press.

27



[27] Szroeter, J. (1983): ”Generalized Wald Methods for Testing Nonlinear

Implicit and Overidentifying Restrictions”, Econometrica, 51, 335-353.

28



TABLE 1

Conditional Participation Frequencies

Subsample Size No. of non-participants Percentage

First Sample, 1970-76, N = 660

(Period 1 = 1970)

h1 > 0, h2 > 0 N1 = 303 no(h3 = 0 | h1 > 0, h2 > 0) = 30 9.9

h1 > 0, ..., h3 > 0 N2 = 273 no(h4 = 0 | h1 > 0, ..., h3 > 0) = 13 4.8

h1 > 0, ..., h4 > 0 N3 = 260 no(h5 = 0 | h1 > 0, ..., h4 > 0) = 16 6.2

h1 > 0, ..., h5 > 0 N4 = 244 no(h6 = 0 | h1 > 0, ..., h5 > 0) = 18 7.4

h1 > 0, ..., h6 > 0 N5 = 226 no(h7 = 0 | h1 > 0, ..., h6 > 0) = 16 7.1

Second Sample, 1978-84, N = 804

(Period 1=1978)

h1 > 0, h2 > 0 N1 = 438 no(h3 = 0 | h1 > 0, h2 > 0) = 25 5.7

h1 > 0, ..., h3 > 0 N2 = 413 no(h4 = 0 | h1 > 0, ..., h3 > 0) = 27 6.5

h1 > 0, ..., h4 > 0 N3 = 386 no(h5 = 0 | h1 > 0, ..., h4 > 0) = 25 6.5

h1 > 0, ..., h5 > 0 N4 = 361 no(h6 = 0 | h1 > 0, ..., h5 > 0) = 23 6.4

h1 > 0, ..., h6 > 0 N5 = 338 no(h7 = 0 | h1 > 0, ..., h6 > 0) = 19 5.6
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TABLE 2
Hours Equations

(Optimal ALS Estimates Using Orthogonal Deviations)

OLS Reduced LS with Select. Measurement
Form Projections Correction Error Correction

Panel A: Sample 1970-76

ht−1 0.167 0.188 0.310
(3.38) (3.10) (3.74)

ht−2 0.126 0.120 0.145
(2.95) (2.32) (2.30)

lnwt−1 20.37 83.01 287.59
(0.48) (1.41) (4.88)

lnwt−2 94.76 123.84 85.40
(2.81) (3.18) (2.29)

D1t −312.46 −310.26 −362.02
(−3.99) (−3.73) (−3.51)

D2t −43.16 −41.95 −98.45
(−0.87) (−0.76) (−1.30)

S 82.68(58) 63.47(58) 56.00(42)

Panel B: Sample 1978-84

ht−1 0.466 0.379 0.337
(11.2) (6.46) (5.29)

ht−2 −0.051 −0.072 0.002
(−1.47) (−2.08) (0.52)

lnwt−1 253.56 232.72 −13.01
(4.91) (4.20) (−0.22)

lnwt−2 −20.44 −28.52 −104.67
(−0.58) (−0.77) (−3.07)

D1t −250.07 −209.30 −152.67
(−3.85) (−2.84) (−1.43)

D2t −16.62 7.97 −246.94
(−0.29) (0.14) (−4.38)

S 54.61(58) 56.09(58) 37.73(42)
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Notes to Table 2

(i) Time dummies are included in all equations.
(ii) Figures in parentheses are t-ratios.
(iii) D1t = 1 if at least one child less than 6 years old is present.
D2t = 1 if at least one child older than 5 and younger than 10 years old

is present.
(iv) S is the chi-squared test statistic of overidentifying restrictions.
(v) Estimates in cols. (1) and (2) use variables dated t − 2 and less as
instruments, while the estimates in col (2) use only variables dated at most
t− 3.
(vi) Estimates in cols. (2) and (3) use Heckman’s estimates of the reduced
form.
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TABLE 3
Wage Equations

(Optimal ALS Estimates Using Orthogonal Deviations)

OLS Reduced LS with Selectivity Measurement
Form Projections Correction Error Correction

Panel A: Sample 1970-76

ht−1 0.00027 0.00020 0.00022
(7.15) (3.87) (4.48)

ht−2 0.00006 0.00006 −0.00025
(1.78) (1.60) (−5.90)

lnwt−1 0.140 0.210 0.576
(2.92) (3.72) (23.0)

lnwt−2 0.078 0.079 −0.281
(2.72) (1.84) (−10.7)

D1t −0.015 −0.014 −0.071
(−0.41) (−0.34) (−1.13)

D2t 0.149 0.118 0.009
(4.48) (3.15) (0.17)

S 76.98(58) 80.37(58) 56.02(42)

Panel B: Sample 1978-84

ht−1 0.00040 0.00043 0.00036
(11.9) (10.3) (8.30)

ht−2 0.00012 0.00012 0.00012
(5.56) (4.79) (3.82)

lnwt−1 −0.167 −0.089 −0.172
(−3.99) (−1.81) (−4.45)

lnwt−2 −0.106 −0.092 −0.132
(−5.54) (−4.07) (−6.19)

D1t 0.020 0.005 0.269
(0.46) (0.11) (5.08)

D2t −0.038 −0.051 0.053
(−1.00) (−1.33) (1.35)

S 48.57(58) 44.77(58) 32.52(42)

See Notes to Table 2
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TABLE 4
Levels Equations without Individual Effects

OLS estimates for the sample of participants in previous periods

Panel A: Sample 1970-76 (1306 observations)

Hours equations Wage equations

ht−1 0.663 0.659 0.00029 0.00029
(13.9) (13.9) (7.74) (7.76)

ht−2 0.127 0.131 −0.00011 −0.00010
(2.75) (2.87) (−2.89) (−2.63)

lnwt−1 205.46 205.69 0.514 0.484
(4.62) (4.45) (10.3) (9.66)

lnwt−2 −42.59 −34.50 0.239 0.206
(−0.92) (−0.70) (4.56) (3.94)

D1t − −191.39 − −0.104
(−1.79) (−1.41)

D2t − −61.66 − −0.011
(−1.09) (−0.24)

Education − −14.15 − 0.040
(−1.13) (3.44)

Age − −5.35 − −0.0035
(−2.89) (−2.52)
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TABLE 4 (continued)

Levels Equations without Individual Effects
OLS estimates for the sample of participants in previous periods

Panel B: Sample 1978-84 (1936 observations)

Hours equations Wage equations

ht−1 0.542 0.539 0.0002 0.0002
(16.0) (16.2) (5.25) (5.92)

ht−2 0.218 0.215 −0.00007 −0.000002
(6.59) (6.62) (−0.22) (−0.08)

lnwt−1 4.20 −0.073 0.349 0.325
(0.12) (−0.002) (8.52) (8.24)

lnwt−2 39.99 33.36 0.360 0.329
(1.00) (1.07) (8.67) (8.03)

D1t − −268.89 − −0.363
(−4.19) (−5.27)

D2t − −19.28 − 0.032
(−0.28) (0.51)

Education − 9.37 − 0.066
(1.02) (6.74)

Age − −3.96 − 0.0004
(−2.60) (0.29)

Notes:
(i) Time dummies are included in all equations.
(ii) Figures in parentheses are t-ratios robust to heteroskedasticity.
(iii) D1t = 1 if at least one child less than 6 years old is present.
D2t = 1 if at least one child older than 5 and younger than 10 years old is

present.
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TABLE A1
Descriptive Statistics

Full sample Sample of participants
in previous periods

Mean St. Dev. Mean St. Dev.

Panel A: Sample 1970-76

Participation 0.506 0.500 0.928 0.257
Hours 672.7 839.4 1379.6 732.9
Wages 1.847 2.899 3.837 3.060
Partic. (1972) 0.483 0.500 0.901 0.299
Hours (1972) 650.4 852.5 1319.6 808.6
Wages (1972) 1.571 2.422 3.102 2.413
Partic. (1976) 0.515 0.500 0.929 0.257
Hours (1976) 682.0 827.7 1426.0 687.9
Wages (1976) 2.379 3.771 4.570 3.282
D1 0.096 0.295 0.038 0.192
D2 0.115 0.319 0.084 0.278
Sample size 4620(= 660× 7) 1306

Panel B: Sample 1978-84

Participation 0.615 0.487 0.939 0.238
Hours 849.9 871.2 1433.2 719.5
Wages 3.637 5.094 6.367 5.961
Partic. (1980) 0.651 0.477 0.943 0.232
Hours (1980) 883.2 870.8 1397.1 726.9
Wages (1980) 3.422 4.185 5.135 4.491
Partic. (1984) 0.610 0.488 0.950 0.219
Hours (1984) 857.3 888.4 1486.3 722.3
Wages (1984) 4.561 7.214 8.040 8.990
D1 0.082 0.274 0.069 0.253
D2 0.078 0.269 0.084 0.278
Sample size 5628(= 804× 7) 1936
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Notes to Table A1:

(i) Wages are average hourly earnings.
(ii) D1 = 1 if at least one child less than 6 years old is present.
(iii)D2 = 1 if at least one child older than 5 and younger than 10 years old
is present.
(iv) The ”samples of participants in previous periods” includes participants
and non participants conditional on participation in the previous years avail-
able in the data. They effectively combine the sequentially censored subsam-
ples described in Table 1.
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TABLE A2
Hours Equations

(Optimal ALS Estimates Using Orthogonal Deviations)

Tobit Reduced SCLS Reduced Measurement
Form Projections Form Projections Error Correction

Panel A: Sample 1970-76

ht−1 0.423 0.179 0.248
(6.34) (3.89) (2.85)

ht−2 −0.001 0.155 0.167
(−0.26) (3.74) (2.99)

lnwt−1 −101.19 9.82 −94.44
(−1.35) (0.28) (−1.13)

lnwt−2 −45.35 83.53 −87.84
(−1.04) (2.48) (−1.69)

D1t −302.53 −312.68 −236.47
(−4.61) (−4.56) (−2.74)

D2t −14.46 −60.09 −229.18
(−0.20) (−1.18) (−2.44)

S 93.22 (58) 91.24 (58) 74.02(42)

Panel B: Sample 1978-84

ht−1 0.219 0.478 0.394
(3.78) (11.1) (6.49)

ht−2 −0.071 −0.055 0.043
(−2.31) (−1.71) (0.83)

lnwt−1 141.34 207.13 −255.38
(3.02) (4.14) (−4.76)

lnwt−2 −119.07 −32.50 −166.13
(−4.41) (−0.98) (−6.15)

D1t −294.65 −309.36 −247.40
(−3.70) (−4.84) (−2.32)

D2t 25.32 −29.51 −138.49
(0.42) (−0.54) (−1.64)

S 48.83(58) 74.64(58) 45.98(42)
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Notes to Table A2

(i) Time dummies are included in all equations.
(ii) Figures in parentheses are t-ratios.
(iii) D1t = 1 if at least one child less than 6 years old is present.
D2t = 1 if at least one child older than 5 and younger than 10 years old

is present.
(iv) S is the chi-squared test statistic of overidentifying restrictions.
(v) Estimates in cols. (1) and (2) use variables dated t − 2 and less as in-
struments, while the estimates in col (3) use only variables dated at most
t− 3.
(vi) Estimates in cols. (1) and (3) use Tobit estimates of the reduced form.
(vii) Estimates in col. (2) use Powell’s (1986) symmetrically censored least
squares (SCLS) estimates of the reduced form.
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TABLE A3
Wage Equations

(Optimal ALS Estimates Using Orthogonal Deviations)

Tobit Reduced SCLS Reduced Measurement
Form Projections Form Projections Error Correction

Panel A: Sample 1970-76

ht−1 0.0004 −0.00002 0.0004
(8.07) (−0.44) (7.65)

ht−2 0.0001 −0.0002 0.00015
(2.70) (−1.20) (3.17)

lnwt−1 0.237 0.282 0.301
(3.89) (2.17) (5.79)

lnwt−2 0.051 0.119 0.022
(1.54) (1.85) (0.71)

D1t −0.063 1.218 −0.410
(−0.48) (7.45) (−3.16)

D2t 0.143 0.525 0.139
(2.31) (9.75) (2.63)

S 53.67(58) 59.05(58) 48.20(42)

Panel B: Sample 1978-84

ht−1 0.00033 0.00029 0.00034
(5.93) (8.67) (5.46)

ht−2 0.00009 0.00007 0.00011
(2.87) (3.47) (2.16)

lnwt−1 0.067 −0.217 −0.197
(1.75) (−5.07) (−3.77)

lnwt−2 0.025 −0.098 −0.161
(1.10) (−4.17) (−5.43)

D1t −0.352 −0.410 −0.464
(−4.42) (−13.1) (−4.94)

D2t 0.122 −0.107 −0.032
(1.60) (3.14) (−0.32)

S 53.35(58) 60.11(58) 52.83(42)

See Notes to Table A2
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TABLE A4
Levels Equations without Individual Effects

Tobit estimates for the sample of participants in previous periods

Panel A: Sample 1970-76 (1306 observations)

Hours equations Wage equations

ht−1 0.717 0.714 0.00034 0.00034
(13.4) (13.4) (7.73) (7.75)

ht−2 0.101 0.105 −0.00014 −0.00013
(1.97) (2.08) (−3.14) (−2.92)

lnwt−1 245.70 247.36 0.560 0.529
(4.77) (4.62) (10.1) (9.47)

lnwt−2 −63.23 −54.93 0.225 0.194
(−1.23) (−1.02) (3.97) (3.45)

D1t − −240.01 − −0.139
(−2.03) (−1.69)

D2t − −58.30 − −0.012
(−0.98) (−0.23)

Education − −16.00 − 0.038
(−1.20) (3.05)

Age − −5.96 − −0.0039
(−2.99) (−2.30)
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TABLE A4 (continued)

Levels Equations without Individual Effects
Tobit estimates for the sample of participants in previous periods

Panel B: Sample 1978-84 (1936 observations)

Hours equations Wage equations

ht−1 0.569 0.566 0.0002 0.0002
(15.8) (15.9) (5.45) (6.09)

ht−2 0.217 0.213 −0.00001 −0.000008
(6.18) (6.18) (−0.32) (−0.20)

lnwt−1 12.09 7.24 0.362 0.336
(0.32) (0.19) (8.19) (7.91)

lnwt−2 28.32 30.57 0.364 0.333
(0.83) (0.90) (8.22) (7.64)

D1t − −302.06 − 0.032
(−4.30) (0.50)

D2t − −14.82 − 0.0002
(−0.21) (0.12)

Education − 11.17 − 0.068
(1.15) (6.53)

Age − −4.21 − 0.004
(−2.63) (0.10)

Notes:

(i) Time dummies are included in all equations.
(ii) Figures in parentheses are t-ratios.
(iii) D1t = 1 if at least one child less than 6 years old is present.
D2t = 1 if at least one child older than 5 and younger than 10 years old is

present.
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Appendix B: Type I Tobit with Symmetric Trimming

Assuming that y∗it | xi(t−1) has a symmetric distribution with heteroskedas-
ticity of unknown form, we can estimate consistently the πt using Powell’s

(1986) symmetrically censored least squares method (SCLS). The SCLS es-

timator eπt solves the iteration
eπr+1t =

Ã
NX
i=1

hi(t−1)ϕit(eπrt )xi(t−1)x0i(t−1)
!−1

(B.1)

NX
i=1

hi(t−1)ϕit(eπrt )xi(t−1)min{yit, 2x0i(t−1)eπrt}
where ϕit(eπrt ) = 1(x0i(t−1)eπrt > 0) for r ≥ 1 and ϕit(eπ0t ) = 1 (that is, the initial
value is the OLS estimator).

In this case, since the SCLS estimation criterion is not differentiable we

cannot use the argument of Section 3 for normal Tobit or Heckman’s esti-

mator in order to obtain the asymptotic covariance matrix of eπ = (eπ2...eπ0T )0.
However, Powell (1986) following the approach of Huber (1967) obtains an

asymptotic relation (see equation (A.15) of his paper) which combined for

our (T-1) equations can be written as

(diag{Ct})
√
N(eπ − π) =

1√
N

NX
i=1

⎛⎜⎜⎜⎜⎜⎝
ψi2(π2)
...

ψiT (πT )

⎞⎟⎟⎟⎟⎟⎠+ op(1) (B.2)

where

Ct =
1

N

NX
i=1

E
h
hi(t−1)1(0 < yit < 2x0i(t−1)πt)xi(t−1)x

0
i(t−1)

i
and

ψit(πt) = 1(x
0
i(t−1)πt > 0)vitxi(t−1)
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vit = min{yit, 2x0i(t−1)πt}− x0i(t−1)πt

From this expression a joint limiting normal distribution for
√
N(eπ− π) can

be obtained. A consistent estimator of the asymptotic covariance matrix of
√
N(eπ − π) is given by

eVπ = (diag{ eC−1t }) eΨπ(diag{ eC−1t }) (B.3)

where eCt is a ”natural” estimator of Ct and eΨπ has the following block

structure: eΨr =
1

N

NX
i=1

{ψit(eπt)ψ0is(eπs)}
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Appendix C: Models with Exogenous Variables

The analysis for autoregressive models can accommodate exogenous vari-

ables in a straightforward manner. Suppose that model (1) is extended to

include a strictly exogenous variable zit:

y∗it = αy∗i(t−1) + βzit + ηi + vit (C.1)

such that

E(vit | y∗i1, ..., y∗i(t−1), zi1, ..., ziT ) = 0 (C.2)

This assumption implies that

E(xi(t−2)∆vit) = 0 (t = 3, ..., T ) (C.3)

or

(pt − πt−1) = α(πt−1 − qt−2) + βht (t = 3, ..., T ) (C.4)

where xi(t−2) has been re-defined as

xi(t−2) = (y∗i1, ..., y
∗
i(t−2), zi1, ..., ziT )

0 (C.5)

and pt, πt−1 and qt−2 are also re-defined accordingly. ht is a selection vector

of known constants such that

ht = [E(xi(t−2)x0i(t−2))]
−1E(xi(t−2)∆zit) (C.6)

The discussion in the main text will apply provided we can assume

E(y∗it | xi(t−1)) = π0txi(t−1) (C.7)

together with sufficient distributional assumptions about the distribution of

y∗it | xi(t−1) in order to identify its mean in the presence of selectivity.
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