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Lecture 1

Incidental Parameters and Fixed Effects
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I. Introduction

• Nonlinear panel data models with individual effects are very common in economics.

Examples of nonlinear models

• Discrete choice models:
yit = 1

(
x ′it θ + αi + vit > 0

)
e.g. labor force participation (Hyslop, 1999).

• VAR models of transmission of shocks:

yit = (βyit−1 + α1i + vit ) dit
dit = 1 (γdit−1 + α2i + φvit + εit )

e.g. employment status and earnings (Altonji, Smith, and Vidangos, 2009).
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Nonlinear examples (continued)

• Distributional dynamics in a location—scale model:

yit = x
′
it θ1 + α1i + σ

(
x ′it θ2, α2i

)
εit

e.g. earnings dynamics (Meghir and Pistaferri, 2004; Hospido, 2012).

• A semiparametric generalization of the above is the quantile model

yit = x
′
it β (uit ) + αiγ (uit )

where uit is the rank of the error vit , so that

uit | xi1, ..., xiT , αi ∼ U (0, 1) ,

and β (u) and γ (u) are nonparametric functions.
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Nonlinear examples (continued)

• Structural models with unobserved heterogeneity
e.g. schooling choice, search-matching models, production functions...

• Non-additive fixed effects may also arise in continuous response functions. An
example is the following heterogeneous constant elasticity of substitution (CES)
production function:

log yit = λ log xit + (1− λ) log
[
γhσi
it + (1− γ) zσi

it

]1/σi + αi + vit ,

• This model allows for different degrees of complementarity between high-skill labor
(hit ), low-skill labor (xit ), and capital equipment (zit ).
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Remarks

Additive vs non-additive errors

• Linear panel ideas generalize easily to nonlinear models with additive errors. These
include nonlinear WG:

yit = gt (xit , θ0) + αi0 + vit where E (vit |xi , αi0) = 0

and nonlinear implicit structural equations (Euler equations, production functions):

ρt (wit , θ0) = αi0 + vit where E (vit |zi , αi0) = 0.

• For these models one can construct moment conditions that mimic the linear ones.
• Linear models with random coeffi cients generalize to nonlinear models that are linear
in the random coeffi cients:

yit = g0 (xit , θ) + g1 (xit , θ)
′ αi + vit .

This model was studied in Chamberlain (1992) and has been recently re-examined in
Arellano & Bonhomme (2012) and Graham & Powell (2012).

• The situation is fundamentally different in the absence of additivity. A leading
example is the binary choice model.

6



Remarks (continued)

Policy parameters (derivative effects)

• Effect on y of changing x from xA to xB . In linear models:

(xB θ0 + αi0 + vit )− (xAθ0 + αi0 + vit ) = (xB − xA) θ0

• In binary choice the effect is individual-specific:

1 (xB θ0 + αi0 + vit ≥ 0)− 1 (xAθ0 + αi0 + vit ≥ 0)

Letting F be the cdf of v , the average effect for a given αi0 is

F (xB θ0 + αi0)− F (xAθ0 + αi0)

• The conclusion is that in nonlinear models derivative effects mix common and
individual effects.
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Average derivative effects

• A derivative version of the above is

∂F (xθ0 + αi0)

∂x
|x=xA

• We may wish to consider averages wrt αi0 using either the marginal density of αi0
(Chamberlain 1984): ∫

∂F (xθ0 + αi0)

∂x
|x=xA dG (αi0)

or the density of αi0 conditioned on x = xA :∫
∂F (xθ0 + αi0)

∂x
|x=xA dG (αi0 | x = xA) .

• The former is the identifiable quantity in the Blundell-Powell control function
approach for cross-sectional models with endogeneity, whereas the latter is identified
in the approach of Altonji and Matzkin discussed below.

• The difference between these two averages is similar to the difference between
average treatment effects and average treatment effects on the treated in the
program evaluation literature.
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II. Integrated / weighted likelihood

• Parametric likelihood model: fi (θ0, αi0) = f (yi1, ..., yiT |xi ; θ0, αi0), i = 1, ...,N .
• Interest centers in the estimation of θ or other common policy parameters.

• Central feature of this estimation problem is the presence of many nuisance
parameters (the individual effects) when N is large relative to T .

• Many approaches to estimation of θ are based on an average or integrated likelihood
that assigns weights to different values of αi :

f ai (θ) =
∫
fi (θ, αi )wi (αi ) dαi

where wi (αi ) is a weight, broadly defined.

• Weights may depend on θ, on the distribution of the data, as well as on covariates.

• An estimate of θ is then usually chosen to maximize the integrated likelihood of the
sample under cross-sectional independence:

N

∏
i=1

f ai (θ) .
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II.1 Fixed effects maximum likelihood

• A fixed effects approach that estimates θ jointly with the individual effects falls in this
category with weights assigning all mass to αi = α̂i (θ), where α̂i (θ) is the MLE of
the i -th effect for given θ.

• That is,
wi (αi ) = δ (αi − α̂i (θ))

where δ (.) is Dirac’s delta function.

• The resulting average likelihood in this case is just the concentrated likelihood:

fi (θ, α̂i (θ)) .

• In this case the weights depend on the data.
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II.2 Random effects maximum likelihood

• A random effects approach is also based on an average likelihood in which the weights
are chosen as a model for the distribution of individual effects in the population given
covariates and initial observations.

• In this case wi (αi ) is a parametric or semiparametric density or probability mass
function, which does not depend on θ, but includes additional unknown coeffi cients:

wi (αi ) = gi (αi ; ξ) .

• The integrated likelihood is the random-effects (pseudo) likelihood:∫
fi (θ, αi ) gi (αi ; ξ) dαi

• Examples include:

• Gaussian uncorrelated-RE ML: g is the normal density. It depends on parameters
ξ = (µ, σ2α).

• Chamberlain (1984)’s correlated-effects probit: g also depends on covariates xi .

• Wooldridge (2005)’s approach to solving the initial conditions problem.

• Discrete (mass point) probability distributions.
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II.3 Bayesian inference

• In a Bayesian approach, an average likelihood is also constructed, choosing as weights
a formulation of the prior probability distribution of αi given θ, covariates and initial
observations.

• Assuming prior independence conditional on θ:

π(α1, ...αN |θ) = π1(α1 |θ)...πN (αN |θ).

• Inference is based on the posterior:

π(θ|y , x) ∝ π(θ)
N

∏
i=1

[∫
fi (θ, αi )πi (αi |θ)dαi

]
.

• Weights wi (αi ) = πi (αi |θ) may depend on θ and covariates.

• Random-effects specifications are a special case of hierarchical Bayesian approaches,
where the prior of the effects is assumed independent of common parameters.
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III. Fixed-T perspective

• All previous approaches, in general, lead to estimators of θ that are not consistent as
N tends to infinity for fixed T , but have biases of order 1/T .

• This situation, known as the “incidental parameter problem”, is of particular concern
when T is small relative to N , and has become one of the main challenges in modern
econometrics.

• In (micro) panels typically T is much smaller than N .

• The traditional reaction to this problem has been to look for estimators yielding
fixed-T consistency as N goes to infinity.

• One drawback of these methods is that they are somewhat limited to linear models
and certain nonlinear models, often due to the fact that fixed-T point identification
itself is problematic.

• Other considerations are that their properties may deteriorate as T increases, and
that there may be superior methods that are not fixed-T consistent.
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The incidental parameter problem

• The fixed effects estimator θ̂ solves the first order conditions

N

∑
i=1

∂ ln fi (θ, α̂i (θ))
∂θ

= 0

where α̂i (θ) = arg maxα ln fi (θ, α) (based on T observations).

• Computationally ok even if N is large (the Newton-Raphson iteration decomposes
nicely due to additivity of the log likelihood in the effects).

• Under standard regularity conditions θ̂ is consistent if T is large:

1
NT

N

∑
i=1

∂ ln fi (θ0, α̂i (θ0))
∂θ

p→ 0 as T → ∞

but in general

plim
N→∞

1
NT

N

∑
i=1

∂ ln fi (θ0, α̂i (θ0))
∂θ

6= 0.

• The reason is that α̂i (θ0) is a noisy estimate of αi0 and the noise only goes away as
T increases.
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The incidental parameter problem: Example 1

• Consider yit ∼ N (αi0, θ0) so that

ln fi (θ, αi ) = k −
T
2
ln θ − 1

2θ

T

∑
t=1

(yit − αi )
2

• Here α̂i (θ) = y i for all θ, and

θ̂ =
1
NT

N

∑
i=1

T

∑
t=1

(yit − y i )2

• Taking a cross-sectional expectation

E
(

θ̂
)
= E

(
1
T

T

∑
t=1

(yit − y i )2
)
= θ − θ

T

• The inconsistency only disappears as T increases.
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The incidental parameter problem: Example 2
• Let yit = 1 (θ0xit + αi0 + vit ≥ 0) where vit | xi , αi0 is logistic with cdf Λ (.), so that

ln fi (θ, αi ) =
T

∑
t=1
{yit lnΛ (θxit + αi ) + (1− yit ) ln [1−Λ (θxit + αi )]}

• Take T = 2 and xi1 = 0, xi2 = 1. Here α̂i (θ) solves the FOCs:

Λ (θxi1 + α̂i (θ)) +Λ (θxi2 + α̂i (θ)) = yi1 + yi2.

• Thus, α̂i (θ) = ∓∞ if yi1 + yi2 = 0 or 2, and α̂i (θ) = −θ/2 if yi1 + yi2 = 1.

• Next, the MLE θ̂ solves the FOCs from the concentrated likelihood:

1
N

N

∑
i=1

1 (yi1 + yi2 = 1) [yi2 −Λ (θ/2)] = 0,

leading to

θ̂ = 2 ln
(

p̂
1− p̂

)
,

where p̂ = P̂r (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1)→ Λ (θ0) as N → ∞.

• Therefore, θ̂ satisfies
plim
N→∞

θ̂ = 2θ0

• MLE estimates a relative log odds ratio that is twice as large as the truth.
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Fixed effects fixed-T approaches
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Fixed effects fixed-T approaches

• The general idea is separating the likelihood or at least finding a component of the
likelihood that is free from the incidental parameter problem:

• Likelihood separation: fixed-effects Poisson model.

• Conditional likelihood: conditional logit.

• Semiparametric generalizations: Find some feature of the data (eg moments or
medians) whose distribution depends on θ but not on α. These features are used to
estimating θ without making assumptions about α.

• Maximum score binary choice (Manski 1987).

• Censored regression (Honoré 1992).

• Dynamic binary choice (Honoré and Kyriazidou 2000).

• Functional differencing (Bonhomme 2012).
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Conditional likelihood

• Let fi (yi | θ, αi ) be the likelihood for unit i . Suppose there is a statistic si such that

fi (yi | θ, αi ) ≡ f1i (yi | si , θ, αi ) f2i (si | θ, αi ) = f1i (yi | si , θ) f2i (si | θ, αi )

• f1i is a component of the likelihood which does not depend on αi . The idea is to base
inference about θ on f1i as long as there is identification.

Example 1: Linear regression

• The Gaussian linear model is

yi | xi , θ0, αi ∼ N
(
Xi β0 + αi0 ιT , σ

2
0IT
)

• Letting si = y i , ỹit = yit − y i , etc.

ln f1 (yi | xi , y i , θ, αi ) = ln f1 (yi | xi , y i , θ) = k −
(T − 1)
2

ln σ2 − 1
2σ2

T

∑
t=1

(ỹit − x̃it β)2

• Maximizing ∑Ni=1 ln f1i wrt θ =
(

β, σ2
)
provides WG estimates of β and bias-corrected

estimates of σ2.
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Example 2: Conditional logit

• The model is
Pr (yit = 1 | xi , αi ) = Λ

(
x ′it θ0 + αi

)
where Λ (r ) = e r/ (1+ e r ) (Georg Rasch 1960, 1961).

• Take T = 2 to illustrate, and consider:

Pr (yi1, yi2 | xi , αi , yi1 + yi2) =


1 if (yi1, yi2) = (0, 0) or (1, 1)
1−Λ (∆x ′i2θ0) if (yi1, yi2) = (1, 0)
Λ (∆x ′i2θ0) if (yi1, yi2) = (0, 1)

• To see this, note that letting zit = x ′it θ0 + αi we have

Pr (yi1 = 0, yi2 = 1 | xi , αi , yi1 + yi2 = 1) =
Pr (yi1 = 0, yi2 = 1 | xi , αi )
Pr (yi1 + yi2 = 1 | xi , αi )

=
[1−Λ (zi1)]Λ (zi2)

[1−Λ (zi1)]Λ (zi2) +Λ (zi1) [1−Λ (zi2)]
=

ezi2

ezi2 + ezi1
= Λ (∆zi2) .

• So we obtain a binary logit likelihood for movers in which the two outcomes are
(yi1 = 0, yi2 = 1) and (yi1 = 1, yi2 = 0) and the x’s are in first differences.
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Semiparametric binary choice

• Manski (1987) considered a fixed-effects binary model

yit = 1
(
x ′it θ0 + αi + vit ≥ 0

)
,

in which the cdf of −vit | xi , αi is non-parametric.
• Basic assumption:

Pr(−vit ≤ r | xi , αi ) = Pr(−vis ≤ r | xi , αi ) = F (r | xi , αi ) for all t and s .

• That is, F (r | xi , αi ) does not change with t but is otherwise unrestricted.
• This imposes stationarity and strict exogeneity, but allows for serial dependence in vit .
• Time-invariance of F implies (for T = 2):

med (yi2 − yi1 | xi , yi1 + yi2 = 1) = sgn
(
∆x ′i2θ0

)
.
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• Given yi1 + yi2 = 1, the difference yi2 − yi1 can only equal 1 or −1. So the median
will be one or the other depending on whether

Pr (yi2 = 1, yi1 = 0 | xi ) Q Pr (yi2 = 0, yi1 = 1 | xi ) .

• Thus

med (∆yi2 | xi , yi1 + yi2 = 1) = sgn[Pr (yi2 = 1, yi1 = 0 | xi )−Pr (yi2 = 0, yi1 = 1 | xi )]

= sgn [Pr (yi2 = 1 | xi )− Pr (yi1 = 1 | xi )] .
• Moreover, given the model

Pr (yi1 = 1 | xi , αi ) = F
(
x ′i1θ0 + αi | xi , αi

)
Pr (yi2 = 1 | xi , αi ) = F

(
x ′i2θ0 + αi | xi , αi

)
,

and monotonicity of F , we have that for any αi (the constancy of F is crucial here):

Pr (yi2 = 1 | xi , αi ) Q Pr (yi1 = 1 | xi , αi )⇔ x ′i2θ0 Q x ′i1θ0.

• Therefore, the implication also holds on average:

Pr (yi2 = 1 | xi ) Q Pr (yi1 = 1 | xi )⇔ x ′i2θ0 Q x ′i1θ0.
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Identification and estimation

• Under some conditions, θ0 uniquely maximizes (up to scale) the expected agreement
between the signs of ∆x ′i2θ and ∆yi2 conditioned on yi1 + yi2 = 1

θ0 = arg max
θ
E
[
sgn

(
∆x ′i2θ

)
∆yi2 | yi1 + yi2 = 1

]
• Manski’s identification result required an unbounded support for at least one of the
explanatory variables with a non-zero coeffi cient.

Maximum score estimation

• This estimator selects the value that matches the signs of ∆x ′i2θ and ∆yi2 for as many
observations as possible in the subsample with yi1 + yi2 = 1 subject to ‖ θ ‖= 1:

θ̂ = arg max
θ

N

∑
i=1

sgn
(
∆x ′i2θ

)
(yi2 − yi1) .

• The estimation criterion is unaffected by removing observations having yi1 = yi2.
• It is consistent under the assumption that there is at least one unbounded continuous
regressor, but it is not root-N consistent, and not asymptotically normal.
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Alternative representations of the objective function
• The score objective function is

SN (θ) =
N

∑
i=1

{
d10i1

(
∆x ′i2θ < 0

)
+ d01i1

(
∆x ′i2θ ≥ 0

)}
.

where d10i = 1 (yi1 = 1, yi2 = 0) and d01i = 1 (yi1 = 0, yi2 = 1)
• The score SN (θ) gives the number of correct predictions we would make if we
predicted (yi1, yi2) to be (0, 1) whenever ∆x ′i2θ ≥ 0.

• In contrast, ∑Ni=1 sgn (∆x ′i2θ)∆yi2 gives the no. of successes minus the no. of failures.
• Median regression interpretation: minimizer of the no. of failures, which is given by

1
2

N

∑
i=1

1 (yi1 6= yi2)
∣∣∆yi2 − sgn

(
∆x ′i2θ

)∣∣ .
Smoothed Maximum Score
• Replace SN (θ) with a smooth S∗N (θ) whose limit a.s. as N → ∞ is the same as SN (θ):

S∗N (θ) =
N

∑
i=1

{
d10i

[
1−K

(
∆x ′i2θ/γN

)]
+ d01iK

(
∆x ′i2θ/γN

)}
where K (.) is a cdf and γN is a sequence of positive numbers with limN→∞ γN = 0.

• In this way we obtain an alternative estimator which is still not
√
N-consistent but is

asymptotically normal (as in Horowitz, 1992).
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Identification problems in binary choice with fixed T

• Useful to know which models for Pr (yi1, ..., yiT | xi , αi ) are point identified for fixed
T without restricting G (αi | xi ) and which ones are not.

• There are 2T different possible values of yi = (yi1, ..., yiT ), denoted dj j = 1, ..., 2T .
So a model is a 2T × 1 vector p (xi , θ, αi ) that specifies the probabilities

Pr
(
yi = dj | xi , θ0, αi

) (
j = 1, ..., 2T

)
.

• Let G0 (αi | xi ) be the true cdf. Identification will fail at θ0 if for all x in their support,
there is another cdf G ∗ (αi | xi ) and θ∗ 6= θ0 in the parameter space, such that∫

p (xi , θ0, αi ) dG0 (αi | xi ) =
∫
p (xi , θ

∗, αi ) dG
∗ (αi | xi )

• If so (θ0,G0) and (θ∗,G ∗) are observationally equivalent.

• In a binary model with Pr(−vit ≤ r | xi , αi ) = F (r ), if F is not logistic and x has
bounded support, θ0 suffers from local underidentification (Chamberlain 1992, 2010).

• Moreover, if x is unbounded, θ0 is identifiable but
√
N-consistent estimation is

possible only for the logit model.
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Partial identification: set identification

• Some results for dynamic discrete choice (more in lecture 2):
• dynamic logit: index parameters identified if T ≥ 4.
• dynamic probit: only set identified in general.

• In a discrete choice model where x and α are multinomial, the identified region can be
written as the solution to linear programming. This is a practical way of calculating
identified regions for simple models.

• Honoré and Tamer (2006) calculate identified regions in this way for an autoregressive
probit model with or without a time trend or time dummies.

• The main lessons are in establishing lack of point identification for these models, and
showing that, even for small values of T , the identified regions are small and tighten
fast as T increases.

• Lack of identification for models with multinomial individual effects imply
nonidentification of the corresponding fixed effects models.

• Set estimation and inference, a way forward (e.g. Chernozhukov, Hong, and Tamer,
2007).
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Partial identification: point identification of certain marginal effects

• In a panel model, some objects of interest may be identified while others are not.

Example 1: Random coeffi cients model with predetermined regressor

• A simple example of identification of average effects for movers (predetermined binary
regressor):

yit = βidit + αi + vit E (vit | dit , dit−1, ...) = 0 t = 1, 2

E (∆yi2 | di1 = 0) = E (βi | di1 = 0, di2 = 1)Pr (di2 = 1 | di1 = 0)
E (∆yi2 | di1 = 1) = −E (βi | di1 = 1, di2 = 0)Pr (di2 = 0 | di1 = 1)

• E (βi | di1 = 0, di2 = 1) and E (βi | di1 = 1, di2 = 0) are identified but not E (βi ).
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Example 2: Static probit with binary regressor
• Here the common parameter θ is not point-identified. The model is

yit = 1 {θxit + αi ≥ vit} vit | xi , αi ∼ N (0, 1) .
• The average effect of an increase in xit from 0 to 1 is:

∆ = E [E (yit |xit = 1, αi )− E (yit |xit = 0, αi )] = E [Φ (θ + αi )−Φ (αi )] .

• Although the overall average ∆ is not point-identified for fixed T , the average effect
on the subpopulation of units whose x’s change over time is.

• Let us see this when T = 2:

∆10 = E [E (yi1 |xi1 = 1, αi )− E (yi1 |xi1 = 0, αi ) | xi1 = 1, xi2 = 0]
= E [E (yi1 |xi1 = 1, xi2 = 0, αi )− E (yi2 |xi2 = 0, αi ) | xi1 = 1, xi2 = 0]
= E [E (yi1 |xi1 = 1, xi2 = 0, αi )− E (yi2 |xi1 = 1, xi2 = 0, αi ) | xi1 = 1, xi2 = 0]
= E [yi1 − yi2 |xi1 = 1, xi2 = 0] .

• We have used two assumptions:
• Strict exogeneity of xit , which ensures that E (yi1 |xi1, xi2, αi ) and E (yi1 |xi1, αi ) coincide.
• A stationarity assumption, which implies that the conditional expectation E (yit |xit , αi )
does not depend on t (Chernozhukov, Fernandez-Val, Hahn, and Newey 2012).

• A similar result holds for the average ∆01 over units with xi1 = 0 and xi2 = 1.
• However, the two remaining conditional averages ∆00 and ∆11 are not point-identified.
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Functional differencing

• In discrete choice models there is a large loss of information in going from the right-
to the left-hand side.

• Nonlinear fixed-effects models with continuous outcomes offer greater identification
opportunities (Bonhomme 2012).

• Firm-level nonlinear production functions and household-level consumption functions
are relevant contexts of application.

• General framework: The density of yi = (yi1, ..., yiT ) conditional on xi and αi is given
by the parametric function fyi |xi ,αi ,θ . The density fαi |xi is left unrestricted.
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Functional differencing: discrete outcomes

• Intuition: the multinomial case. Suppose that yi ∈ {ξ1, ..., ξJ} and αi ∈ {ζ1, ..., ζK }:

Pr
(
yi = ξ j | xi

)
= ∑K

k=1 Pr
(
yi = ξ j | xi , αi = ζk , θ

)
Pr (αi = ζk | xi )

• In matrix form:
Py |x = Px (θ)πx , for all x ,

where Px (θ) is the J ×K matrix of the model probabilities for xi = x , Py |x is the
J-vector of data frequencies, and πx the K -vector of probabilities of αi .

• If J ≥ K it is easy to obtain restrictions on θ that do not involve πx . When Px (θ) has
independent columns (for simplicity), we obtain the following restrictions on θ alone:[

IJ − Px (θ)
(
Px (θ)′Px (θ)

)−1 Px (θ)′]Py |x = 0.
• This “functional differencing” approach differences out the distribution of the effects.
• A differencing strategy works, even though the panel model is nonlinear, because the
system that relates outcome probabilities to individual effect probabilities is linear.

• This approach delivers conditional moment restrictions for θ (given xi ) because the
projection matrix above multiplies the vector of outcome probabilities.
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Functional differencing: continuous outcomes

• When outcomes are continuously distributed, the matrix Px (θ) of conditional
probabilities becomes the kernel of a linear mapping, or integral operator, which maps
functions of α to functions of y .

• The image of a function g (α) by this operator is given by a function Lθ,xg of y such
that:

[Lθ,xg ] (y ) =
∫
fy |x ,α (y |x , α; θ) g (α)dα, for all y .

• Bonhomme shows that a similar orthogonal projection (“functional differencing”)
approach as in the discrete case can be applied in the continuous case. This approach
provides conditional moment restrictions on θ that do not involve αi .

• For these restrictions to be informative it is necessary that the image of the operator
Lθ,x does not span the whole space of functions of y (non-injectivity of the transpose
of Lθ,x ).

• In the discrete case, this condition requires that the rows of the matrix Px (θ) be
linearly dependent, which is automatically satisfied provided the number of points of
support of yi exceeds that of αi .
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Lecture 2

Random Effects and Bias-Reduction
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Random effects methods
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Random effects methods

• Random effects index model:

yit = m (xit θ0 + αi + vit )

vit | xi , αi ∼ N (0, 1)
and

gi (αi | xi ) is N
[
λ (xi ) , σ

2
α

]
.

• Uncorrelated effects: λ (xi ) = µ

• Mundlak (1978): λ (xi ) = x iγ

• Chamberlain (1984): λ (xi ) = x ′i λ

• Newey (1994): λ (xi ) nonparametric.

• Altonji and Matzkin (2005): nonparametric generalization.
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Mundlak’s interpretation of WG

• WG can be interpreted in a much tighter random effects normal framework. In the
linear model

yit = x
′
it θ0 + αi + σvit ,

assuming
vit | xi , αi ∼ iidN (0, 1)

and
αi | xi ∼ N

(
x ′iγ, σ

2
α

)
,

it turns out that WG maximizes∫
∏T

t=1 f (yit | xi , αi ) f (αi | xi ) dαi .

• All variables are in deviations from means for simplicity.
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Uncorrelated random effects: linear model

• Consider a special case where there is independence between αi and xi (γ = 0):

αi | xi ∼ N
(
0, σ2α

)
.

• In this case, letting uit = αi + σvit and σ2 = Var (u i ) = σ2α +
(
σ2/T

)
, the integrated

log-likelihood is

L
(

β, σ2, σ2
)
= LWG

(
β, σ2

)
+ LBG

(
β, σ2

)
where

LWG
(

β, σ2
)
=

N

∑
i=1

[
− (T − 1)

2
ln σ2 − 1

2σ2

T−1
∑
t=1

(
y ∗it − x∗′it β

)2]
and

LBG
(

β, σ2
)
=

N

∑
i=1

[
−1
2
ln σ2 − 1

2σ2
(
y i − x ′i β

)2]
• The (uncorrelated) random effects estimator that maximizes L

(
β, σ2, σ2

)
is

consistent despite correlation between x and α, but only as T → ∞, because as T
increases the LBG

(
β, σ2

)
component of the likelihood becomes irrelevant.

• However, when T is small it is important to allow for dependence between x and α.
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Random effects probit

• The correlated random effects probit model is

yit = 1
(
x ′it θ0 + αi + vit ≥ 0

)
with the same distributional assumptions as in Mundlak’s model.

• The result is also a probit model with normal errors uit = εi + vit :

yit = 1
(
x ′it θ0 + x

′
iγ+ uit ≥ 0

)
where εi | xi ∼ N

(
0, σ2α

)
and the uit’s are autocorrelated due to the presence of εi .

• However, the robustness to distributional assumptions in the linear case does not
extend to binary choice.

• The uncorrelated random effects model is the special case with γ = 0.
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Altonji-Matzkin’s nonparametric generalization
• The model is

yit = m (xit , αi , vit )

(αi , vit ) ⊥ xi | λ (xi )

gi (αi | xi ) = gi (αi | λ (xi )) where λ (xi ) is an exchangeable function of xi (e.g. x i ).

• The following average derivative effect is identified:

β (xit ) ≡ E(α,v )|xt
[

∂m (xit , αi , vit )
∂xit

| xit
]
= Eλ|xt

[
∂E (yit | xit ,λ (xi ))

∂xit
| xit

]
• Note that

∂E (yit | xit ,λi )
∂xit

=
∂

∂xit

∫
(α,v )

m (xit , α, v ) f (α, v | xit ,λi ) d (α, v )

=
∫
(α,v )

∂m (xit , α, v )
∂xit

f (α, v | xit ,λi ) d (α, v ) .

The second equality follows from the conditional exogeneity of x given λ, i.e.
∂f (α, v | xit ,λi ) /∂xit = 0.

• Exchangeability is a strong assumption.

• Basic idea is conditioning on λ (xi ) as a substitute for conditioning on αi .
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Dynamic discrete choice panel models
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Dynamic discrete choice panel models
Introduction

• Prototypical model is

yit = 1
(

ρyi (t−1) + βxit + αi + vit ≥ 0
)

vit | xi , αi , yi (t−1), ..., yi1 ∼ iid F
• This is a model for

Pr
(
yit = 1 | y t−1i , xi , αi

)
= F

(
ρyi (t−1) + βxit + αi

)
• The lagged dependent variable yi (t−1) captures “state dependence” and is
“fixed-effects endogenous” by construction.

• The external regressor xit is also fixed-effects endogenous but strictly exogenous with
respect to vit .
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Spurious state dependence

• Unobserved heterogeneity may cause spurious state dependence. That is, we might
have no genuine state dependence:

Pr
(
yit = 1 | yi (t−1), αi

)
= Pr (yit = 1 | αi )

but spurious state dependence

Pr
(
yit = 1 | yi (t−1)

)
6= Pr (yit = 1)

just because

Pr
(
yit = 1 | yi (t−1)

)
=
∫
Pr (yit = 1 | αi ) dG

(
αi | yi (t−1)

)
and αi depends on yi (t−1) (Heckman 1981).
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Dynamic discrete choice panel models vs. duration models

• The previous model can be regarded as a convenient discrete duration model for exits
from two states:

hu (x , α) = Pr
(
yit = 1 | yi (t−1) = 0, xi , αi

)
= F (βxit + αi )

he (x , α) = Pr
(
yit = 0 | yi (t−1) = 1, xi , αi

)
= 1− F (ρ+ βxit + αi )

where hu (x , α) is the exit rate from state 0 into state 1 (e.g. exit rate from
unemployment) while he (x , α) is the exit rate from state 1 into state 0 (e.g. exit rate
from employment).

• Note that
∂hu (x , α)

∂xj
/

∂hu (x , α)
∂xk

=
βj
βk
= − ∂he (x , α)

∂xj
/

∂he (x , α)
∂xk

So, as a model for durations the specification above has the unattractive property
that relative effects from the two exit rates are equal but with opposite signs.

• An example of a more flexible specification in this context is in Card and Hyslop
(2005) discussed below.
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The initial conditions problem in dynamic models
• We have f (y1, ..., yT | x , α). To do random effects we integrate:

f (y1, ..., yT | x) =
∫
f (y1, ..., yT | x , α) dG (α | x)

• Now consider

f (y1, ..., yT | x , α) = ∏T
t=2 f (yt | yt−1, x , α) f (y1 | x , α) .

• If we proceed as above the density f (y1 | x , α) needs to be specified, which may not
be available. This is the so called “initial conditions problem”.

• Typically, we just have specified a model for the transitions f (yt | yt−1, x , α).
• f (y1 | x , α) could be chosen as the steady state distribution. One problem is that the
steady state may be unknown or may not exist. Another problem is that we may not
wish to impose stationarity in estimation even if available.

• Alternatively, we could start from

f (y2, ..., yT | y1, x , α) = ∏T
t=2 f (yt | yt−1, x , α)

and integrate using G (α | y1, x):

f (y2, ..., yT | y1, x) =
∫

∏T
t=2 f (yt | yt−1, x , α) dG (α | y1, x) .

• Doing this save us having to specify f (y1 | x , α) but requires us to specify
G (α | y1, x) as opposed to G (α | x).
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Fixed T consistent dynamic models

• Conditional logit does not work with lagged dependent variables or other
predetermined variables. It requires independence of all x’s on the transitory errors,
but there is still a fixed T fixed effects approach available under certain circumstances.

Autoregressive logit (Chamberlain 1985)

• The model is
Pr
(
yit = 1 | y t−1i , αi

)
= Λ

(
ρyi (t−1) + αi

)
• Consider T = 4. The main result is

Pr (yi2 = 1 | yi4, yi2 + yi3 = 1, yi1, αi ) = Λ [ρ (yi1 − yi4)] ,

which does not depend on α.

• Therefore, sequences of the form (y1, 0, 0, y4) or (y1, 1, 1, y4) drop out of the
conditional likelihood.

• Contributions of the form (y1, 1, 0, y4) and (y1, 0, 1, y4) are retained in principle. But
of those, observations with y1 = y4 are not informative about ρ.

• We are allowed to only retain (y1 = 1, y4 = 0) and (y1 = 0, y4 = 1) because we are
conditioning on these random variables.
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• So we end up with 4 different types of informative contributions:

(1, 1, 0, 0) −→ eρ

1+ eρ = p, say

(0, 1, 0, 1) −→ e−ρ

1+ e−ρ =
1

1+ eρ = 1− p

(1, 0, 1, 0) −→ 1
1+ eρ = 1− p

(0, 0, 1, 1) −→ 1
1+ e−ρ =

eρ

1+ eρ = p

• Let n1 = # (1, 1, 0, 0), n2 = # (0, 1, 0, 1), n3 = # (1, 0, 1, 0), n4 = # (0, 0, 1, 1), and
let the total number of usable observations be n5 = n1 + n2 + n3 + n4.

• So we can estimate p as

p̂ =
n1 + n4
n5

and

ρ̂ = ln
(

p̂
1− p̂

)
= ln

(
n1 + n4
n2 + n3

)
• Population wise we have ρ = ln (pA/pB ) where

pA = Pr {(1, 1, 0, 0) or (0, 0, 1, 1)}
pB = Pr {(0, 1, 0, 1) or (1, 0, 1, 0)} .
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Honoré and Kyriazidou’s (2000) method

• Their basic model is

Pr
(
yit = 1 | y t−1i , xi , αi

)
= Λ

(
ρyi (t−1) + βxit + αi

)
• The following is the central result:

Pr (yi2 = 1 | yi4, yi2 + yi3 = 1, yi1, xi , xi3 = xi4, αi ) = Λ [ρ (yi1 − yi4) + β (xi2 − xi3)]

• The method conditions on ∆xi4 = 0 in addition to the autoregressive-logit type of
conditioning.

• Identification relies on variation in ∆xi3 and in lack of variation in ∆xi4.
• If x is discrete root-N consistent estimation is possible, but not if x is continuous.

• We may think of this estimation problem as based on two functions of
xi1,∆xi2,∆xi3,∆xi4 (or just ∆xi3,∆xi4) for (y1 = 1, y4 = 0) and (y1 = 0, y4 = 1).

• Effectively, estimation of the model’s parameters is based on a nonparametric
estimate of a conditional expectation at one particular value (∆xi4 = 0).
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Random effects approaches for discrete choice dynamic models

• These include:
• Models with autocorrelation that are estimated by simulation (Hajivassiliou and Ruud
1994).

• Extensions of Chamberlain (1984)’s method to observed lagged dependent variables,
latent lagged dependent variables and general predetermined variables.

• Latent lagged dependent variables: Arellano, Bover, and Labeaga (1999) for censored
VAR models.

• Binary choice with general predetermined variables: Arellano and Carrasco (2003).

• Observed lagged dependent variables: Wooldridge (2005).
• The idea is to specify the density of the effects given strictly exogenous x’s and initial
conditions.
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Illustration: Effect of a time-limited earnings subsidy on welfare participation
(Card and Hyslop, 2005)

The SSP experiment (Self Suffi ciency Project, 1992—1995, Canada)
The following program was designed:

• Out of concern that the welfare system was promoting long-term dependency.
• The target group was single parents that were welfare recipients for at least one year.
• Those selected for the policy, become “eligible” for subsidy payments if they manage
to get a full time job within a year of selection.

• Once they are eligible, they can move back and forth between work and welfare. When
they are at (full time) work, they are entitled to subsidy payments, for 3 years from
the time of the first payment. After that, they return to regular welfare conditions.

• The subsidy is substantial. Some monthly figures are:
• maximum welfare grant: $712
• minimum wage job for 30 hours per week: $650
• min. wage + SSP subsidy = 650+ 1

2 (2500− 650) = $1575
• gain from welfare to work without SSP = —$62
• gain with SSP = $863

• SSP used a randomized design in two different locations:
• Control group: 2826 single parents (95.3% women, aged 32 on average)
• Program group: 2858 (of which 34% were eventually eligible for subsidies)
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Results of the experiment

• Figures 1a and 3 in the paper summarize the situation:
• Figure 3 shows employment rates of controls and treatments for the duration of the
program (approx 4 years): very large employment effects around the time of eligibility,
followed by declining effects until a full collapse and the end of the program.

• Figure 1a tells a similar story for welfare participation rates.

• The SSP experiment produced one of the largest impacts on welfare participation ever
recorded in the experimental evaluation literature. At peak, SSP produced a 14
percentage point reduction in welfare participation.

• The bad news is that SSP had no permanent impact, giving no support to the idea
that temporary wage subsidies can have a permanent effect on program dependency
(presumably through the development of work habits, labor market experience, etc.).
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A baseline empirical model for welfare participation for controls
• Let y = 1 if person is a welfare participant. Card and Hyslop say they “adopt a panel
data approach rather than a hazard modelling approach because of the high incidence
of multiple spells in our data”.

Pr (yit = 1 | yit−1, yit−2, xit , αi ) =
Λ (xit β+ (γ10 + γ11αi ) yit−1 + (γ20 + γ21αi ) yit−2 + (γ30 + γ31αi ) yit−1yit−2 + αi )

(t = 1, ...,T = 69)

P
(
yi1, ..., yiT | yi0, yi (−1), xi , αi

)
=

T

∏
t=1

P (yit | yit−1, yit−2, xit , αi )

P
(
yi1, ..., yiT | yi0, yi (−1), xi

)
=

∫
P
(
yi1, ..., yiT | yi0, yi (−1), xi , αi

)
dF
(

αi | yi0, yi (−1), xi
)

• The only x is time since random assignment (a fourth order polynomial)

• Because of the design, everyone has yi0 = yi (−1) = 1. Thus, F
(

αi | yi0, yi (−1), xi
)

does not vary with yi0, yi (−1), xi and we write just F (αi ) for shortness.
• If γk1 = 0, for k = 1, 2, 3 the degree of state dependence is restricted to be invariant
to the unobserved heterogeneity.

• Almost half of the sample have just one spell on welfare. For many individuals in the
sample the ML estimate of αi is +∞.
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This model specifies the following different transitions:

• Transition or exit rate (from work to welfare) in the first month of a work spell:

Λ (xit β+ (γ20 + γ21αi ) + αi )

• Transition rate (from work to welfare) in subsequent months of a work spell:

Λ (xit β+ αi )

• Transition rate (from welfare to work) in the first month of a welfare spell:

1−Λ (xit β+ (γ10 + γ11αi ) + αi )

• Transition rate (from welfare to work) in subsequent months of a welfare spell:

1−Λ (xit β+ (γ10 + γ11αi ) + (γ20 + γ21αi ) + (γ30 + γ31αi ) + αi )

They do a detailed and informative goodness of fit analysis.
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Joint model of welfare participation and eligibility for SSP payments for treatments

• The model for treatments is

Pr (yit = 1 | yit−1, yit−2, xit , αi ,Eit , tei )
= Λ [xit β+ (γ10 + γ11αi ) yit−1 + (γ20 + γ21αi ) yit−2

+ (γ30 + γ31αi ) yit−1yit−2 + αi + τit ]

where
τit = τ (t,Eit , t

e
i , yit−1)

and Eit = 1 if eligible at the beginning of month t.

A model of the eligibility process that accounts for the potential correlation between the
probability of entering or leaving welfare and the probability of attaining SSP eligibility.

• This is a hazard model for the event of establishing eligibility in month t, conditional
on not establishing it earlier:

Pr (Eit | Eit−1,Eit−2, ..., xit , αi ) =


Φ [d (t)− k (αi )]
1
0

if Eit−1 = 0 and t ≤ 14
if Eit−1 = 1
if Eit−1 = 0 and t > 14
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• Therefore, the model recognizes that Eit is an endogenous explanatory variable in the
sense that it is correlated with αi . We have

P
(
yi1, ..., yiT ,Ei1, ...,EiT | yi0, yi (−1), xi , αi

)
=

T

∏
t=1

P (yit ,Eit | yit−1, yit−2,Eit−1, xit , αi )

=
T

∏
t=1

P (yit | yit−1, yit−2,Eit , xit , αi )Pr (Eit | Eit−1,Eit−2, ..., xit , αi )

and

P
(
yi1, ..., yiT ,Ei1, ...,EiT | yi0, yi (−1), xi

)
=

∫ T

∏
t=1

P (yit | yit−1, yit−2,Eit , xit , αi )Pr (Eit | Eit−1,Eit−2, ..., xit , αi ) dF (αi ) .
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Experimental versus nonexperimental effects

• The point of the paper (similar to Ham and LaLonde, 1996) is that, although the
experimental comparisons between the treatment and control groups remain valid, the
interpretation of such impacts is confounded by the different treatment effects
associated with two different sets of incentives:
• An entitlement effect that makes you lower your reservation wage (and hence increase
your exit rate from welfare) while you still have a chance of attaining the eligibility
status.

• An establishment effect for those enjoying eligibility status that leads to a lower
reservation wage relative to controls and the non-established treated.

• These effects are clear from a theoretical model of the welfare-work decision that
serves to guide the formulation of the empirical model.

• Treatment status is independent of αi by construction, but treatment status is not
independent of αi conditionally on Eit = 1. Thus, F (αi ) is the same for treatments
and controls but F (αi | Eit ) is not.

• Card and Hyslop claim that although their model is not fully structural (utility based),
it can be used to evaluate the impacts of alternative subsidy programs.
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Bayesian methods
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Bayesian methods
Integration versus simulation
• A classical approach to estimation is to maximize the log-average likelihood wrt
(θ, ξ), which requires computing integrals with respect to α.

• In nonlinear panels the integrals are generally not available in closed form and must
be approximated numerically (using quadrature or simulation-based approaches).

• The Bayesian connection suggests another way to estimate θ. Indeed, random-effects
ML coincides with the posterior mode of θ, where the prior for αi is gi (αi ; ξ), and
(θ, ξ) have independent flat (improper) priors.

• So, an alternative approach is to generate a Markov chain of parameter draws using
these priors, which may be interpreted as a computationally convenient way of
calculating random-effects ML estimates.

• The statistical equivalence between Bayesian and classical approaches is not limited
to posterior mode with flat priors. Any non-dogmatic priors on (θ, ξ) will result in
large-N asymptotically equivalent estimates.

• Using posterior mean instead of posterior mode has asymptotically negligible effects.

• Advances in computation have made Bayesian methods increasingly attractive from an
applied perspective. Leading to a pragmatic Bayesian-frequentist synthesis, as MCMC
methods are viewed as a way of computing estimators with a frequentist justification.

• Bayesian techniques are also useful for computing frequentist confidence intervals.
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Markov Chain Monte Carlo (MCMC) methods applied to panel models

• MCMC methods are used to generate a (recursive) sequence of draws from the
posterior distribution of the model’s parameters, starting with initial parameter values.

• The posterior corresponds to the equilibrium distribution of the Markov chain, which
is reached after a suffi ciently large number of steps.

• The output of the chain is interpreted as a sequence of draws from the parameters’
posterior distribution, so that its features (mean, mode..) can be directly computed.

• In a panel context, it is often convenient to treat α1, ..., αN as additional parameters
that are drawn jointly with (θ, ξ). The s-th step of the chain may take the form:

• Update ξ(s) given α
(s−1)
1 , ..., α

(s−1)
N . This step treats the draws of individual effects

obtained in the previous step as observations.
• For each i = 1, ...,N , update α

(s)
i given yi , xi , θ(s−1), and ξ(s).

• Update θ(s) given y1, ..., yN , x1, ..., xN , and α
(s)
1 , ..., α

(s)
N . To draw θ, the researcher

proceeds as if the individual effects were observed.

• Metropolis-Hastings methods are typically used here.

• An appealing feature is that the output of the Markov chain does not only provide
estimates of θ and ξ, but also asymptotically valid frequentist confidence intervals.
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Average marginal effects

• Common parameters aside, we are interested in averages of individual quantities taken
over the distribution of (xi , αi ). The general form for some known function m() is:

M = E(xi ,αi ) [m (xi , αi ; θ)] .

• Examples are moments of the distribution of individual effects: mi (θ, αi ) = αki , or the
marginal effect of a covariate in a probit model: mi (θ, αi ) = θk

1
T ∑Tt=1 φ (x ′it θ + αi ).

• Other examples are in Lucciano Villacorta’s (JMP 2015) cross-country analysis of
capital-labor substitution and technical change:

• Characteristics of the cross-country joint distribution of substitution elasticities and
technological parameters, like the average elasticity or the average derivative-effect of
capital-augmenting world technology on the labor share.
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Average marginal effects (continued)

• A first approach to estimate M is to replace in the expectation the distribution of
individual effects by its random-effects estimate. This results in the following estimate:

M̂ =
1
N

N

∑
i=1

∫
m
(
xi , αi ; θ̂

)
gi
(

αi ; ξ̂
)
dαi .

• Under correct specification, M̂ is root-N consistent. Numerical integration is required.

• An alternative estimate may be computed from the outcome of a Markov chain.
MCMC will deliver a sequence of draws of θ and α1, .., αN , from which it is easy to
get a sequence of draws from the posterior distribution of the average marginal effect

MN (θ, α1, ..., αN ) =
1
N

N

∑
i=1

m (xi , αi ; θ) .

• A natural estimate is then the posterior mode, or mean, of MN (θ, α1, ..., αN ).
• When gi (αi ; ξ) is misspecified, the posterior mean (or mode) of MN is large-T
consistent while M̂ is not. This is due to the impact of the prior of αi on the posterior
of M tending to disappear as T → ∞.
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Bias-reduction methods
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An alternative population framework: non-fixed T perspective

• Often T is much smaller than N and this situation has justified the mainstream
approach, which treats data as a multivariate sample from a cross-sectional
population with a fixed number of observations per unit.

• However, there are also panels in which T may not be negligible from the point of
view of time series inference, and not negligible relative to N , even if N may still be
much larger than T . For example, N may be small relative to T 3.

• An alternative approach in those situations is to think of the data as a realization
from a random field in which neither T nor N are fixed.

• This is an alternative population framework where statistical learning from individual
time series is not ruled out, so it may lead to different conclusions on what quantities
are identified.
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Non-fixed T asymptotic properties

• Let θ̂ be a fixed effects estimator that maximizes some concentrated (pseudo) log
likelihood ∑Ni=1 ∑Tt=1 ln fit (θ, α̂i (θ)) and let θT = plimN→∞ θ̂.

• In general θT 6= θ0, but usually for smooth objective functions

θT = θ0 +
B
T
+O

(
1
T 2

)
.

• Under standard regularity conditions θ̂ − θT is asymptotically normal as N ,T → ∞:
√
NT

(
θ̂ − θT

)
d→ N (0,V )

where V is the large-T asymptotic variance of θ̂.
• Under these conditions θ̂ is centered at θ0 if N/T → 0 but it is asymptotically biased
if T grows at the same rate as N . If N/T → c > 0 and N/T 3 → 0:

√
NT

(
θ̂ − θ0 −

B
T

)
d→ N (0,V ) .

• Thus, unless N/T ≈ 0, asymptotic confidence intervals based on θ̂ will be incorrect,

due to the limiting distribution of
√
NT

(
θ̂ − θ0

)
not being centered at 0.
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Bias-reduced estimation

• The aim in this literature has been to obtain estimators of θ with biases of order
1/T 2 (as opposed to 1/T ) and similar large-sample dispersion as the corresponding
uncorrected methods when T/N tends to a constant. That is, find θ̃ that satisfies

θ̃ = θ̂ − B
T
+ op (1) .

• This is done in the hope that the reduction in the order of magnitude of the bias will
essentially eliminate the incidental parameter problem, even in panels where T is
much smaller than N .

• An interesting property of panel data estimators is that bias reduction happens with
no increase in the asymptotic variance as N/T tends to a constant.

• To obtain suffi ciently accurate confidence intervals from this type of asymptotic
approximation, the bias should be small relative to the standard deviation.
• For first-order bias corrected estimators, this requires that N be small relative to T 3

(e.g. N small relative to 1, 000 or to 8, 000 for T = 10 or 20, respectively).
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Reducing the bias of estimating equations and the bias of the objective function

• Similar to the bias of the fixed effects estimand θT − θ0, the bias in the expected
fixed effects score at θ0 can be expanded in orders of magnitude of T :

E

[
1
T

T

∑
t=1

∂

∂θ
ln fit (θ0, α̂i (θ0))

]
=
bi (θ0)
T

+ o
(
1
T

)
and also the bias in the expected concentrated likelihood in a neighborhood of θ0:

E

[
1
T

T

∑
t=1

ln fit (θ, α̂i (θ))−
1
T

T

∑
t=1

ln fit (θ, αi (θ))

]
=

βi (θ)

T
+ o

(
1
T

)
where αi (θ) = plimT→∞ α̂i (θ) uniformly in θ.

• These expansions motivate alternative approaches to bias correction based on
adjusting

• the estimator (Hahn and Newey 2004, Hahn and Kuersteiner 2011),

• the estimating equation (Woutersen 2002, Arellano 2003, Carro 2007),

• or the objective function (Arellano and Hahn 2007, Bester and Hansen 2009).

• Each of them based on analytical or simulation-based approximations to the bias.
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Bias-reducing priors
• A different approach to bias reduction is in Arellano and Bonhomme (2009). They
consider estimators that maximize an integrated likelihood

θ̂ = argmax
θ

N

∑
i=1

ln
∫
fi (θ, αi )wi (αi ) dαi

and describe the class of weights wi (αi ) that produce first-order unbiased estimators.

• The idea is to look for priors such that the corresponding estimator has B = 0.

• It turns out that bias reducing priors depend on the data in general, unless an
orthogonal reparameterization is available.

• Bayesian techniques can be used for estimation.
• Asymptotically valid (as N ,T → ∞) confidence intervals can be read from the
posterior distribution of θ.

Random effects
• In general RE ML is not bias reducing. Exceptions are:

• a) The true population distribution of the effects belongs to the postulated family.

• b) Gaussian RE ML is bias reducing in models that are linear in the individual effects.

• c) Individual effects and common parameters are information orthogonal.

• The RE ML bias depends on the Kullback-Leibler distance between the population
distribution of the effects and its best approximation in the random effects family.
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Automatic bias reduction: jackknife approaches
• In addition to analytical approaches and weighted likelihood approaches, the literature
has emphasized automatic approaches to bias reduction.

• In static panel models, Hahn and Newey (2004) propose the delete-one jackknife:

θ̃ = T θ̂ − (T − 1) 1
T

T

∑
t=1

θ̂(t)

or

θ̃ = θ̂ − B̃
T

where θ̂(t) is the FE estimator based on the subsample excluding the t-th period
observation, and

B̃
T
= (T − 1)

(
1
T

T

∑
t=1

θ̂(t) − θ̂

)
• To see why this works consider

θT = θ0 +
B
T
+
D
T 2

+O
(
1
T 3

)
θT−1 = θ0 +

B
T − 1 +

D

(T − 1)2
+O

(
1

(T − 1)3

)

T θT − (T − 1) θT−1 = θ0 +

(
1
T
− 1
T − 1

)
D +O

(
1
T 2

)
= θ0 +O

(
1
T 2

)
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Jackknife approaches (continued)

• Hahn and Newey (2004) proved that
√
NT

(
θ̃ − θ0

)
has the same asymptotic

variance as
√
NT

(
θ̂ − θ0

)
when N/T → c and no asymptotic bias.

• The delete-last-observation approach is not to be recommended as it will remove bias
but increase variance (ie using θ̂(T ) as the sample analog for θT−1).

Dynamic models
• The split-panel jackknife method of Dhaene and Jochmans (2015) allows for
dynamics and predetermined variables.

• The idea is to obtain the fixed-effects estimator on the two subsamples [1,T/2] and
[T/2+ 1,T ] (assuming T even for simplicity).

• Let θ̂1 and θ̂2 denote the two estimates, and let θ̂ denote the estimate based on the
full sample. The first-order bias term of θ̂1 is B/(T/2) = 2B/T , while that of θ̂ is
B/T . Thus, the following estimator is unbiased to first order:

θ̂
R
= 2θ̂ − θ̂1 + θ̂2

2
.

• Split-panel jackknife estimators have the same asymptotic variance as the MLE and
no asymptotic bias when N/T → c .

• Dhaene and Jochmans also show that within the class of split-panel jackknife
estimators, the half-panel jackknife estimator θ̂

R
minimizes all higher-order bias terms.
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Jackknife approaches (continued)
• Jackknife bias-corrected estimates of average marginal effects can be readily obtained.
• Split-panel jackknife relies on stationarity and this rules out aggregate time effects.
• Fernández-Val and Weidner (2016) discuss a generalized jackknife approach to deal
simultaneously with individual and time effects.

Finite sample performance of bias-reduction estimators
• The available evidence on the finite-sample performance of the various approaches to
bias reduction is encouraging.

• In static and dynamic settings that mimic PSID data (e.g. Carro 2007), these
techniques tend to remove at least half of the bias, while keeping the variance
virtually unchanged.

• An issue concerns the possibility to reduce the bias further. Second-order bias
reduction can be simply implemented using a variant of the split-panel jackknife
approach. However, the Monte Carlo evidence presented in Dhaene and Jochmans
suggests that higher-order bias reduction may be associated with increased variance.

• There is so far too little comparison of the various bias reduction approaches on
simulated data.

• Moreover, although panel data bias reduction has been used in some empirical
applications (e.g. Fernández-Val and Vella 2011, Hospido 2012), more applications
are needed.
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Concluding remarks

• The random effects perspective is a general estimation approach.

• Link between classical RE and Bayesian approaches. Worth stressing because MCMC
methods are convenient for computing RE estimates and their confidence intervals.

• RE approaches, however, rely on parametric assumptions on the distribution of REs.
When violated, RE estimates are subject to an incidental parameter problem, just as
fixed-effects MLE. As a result, RE estimators are generally fixed T inconsistent.

• Point identification may fail when T is fixed and the distribution of REs is left
unrestricted. In discrete choice panel models, parameters are typically set-identified.

• However, in models with continuous outcomes, panel data offer opportunities for
point-identification that remain largely unexplored.

• When T is not negligible relative to N , it makes sense to view incidental parameter
problems as TS finite-sample bias. In general, RE estimates are consistent as T → ∞.
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Concluding remarks (continued)

• The first-order bias of RE MLE is a function of the (Kullback-Leibler) distance
between the true RE density and its best approximation in the parametric family.

• This characterization suggests that one may achieve bias reduction by letting the
parametric distribution of REs become increasingly flexible as N → ∞.

• In the absence of covariates, this is within reach but in the presence of covariates,
however, achieving the required level of “flexibility” so as to remove the first-order
bias on the parameter of interest is more challenging.
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Lecture 3

Quantile Response and Panel Data
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Introduction

• In this lecture I provide an introduction to quantile regression and discuss applications
of quantile techniques to panel data.

• Quantile regression is a useful tool for studying conditional distributions.

• The application of quantile techniques to panel data is interesting because it offers
opportunities for identifying nonlinear models with unobserved heterogeneity and
relaxing exogeneity assumptions.

• Importantly it also offers the opportunity to consider conceptual experiments richer
than a static cross-sectional treatment, such as dynamic responses.
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Introduction (continued)

• The first application looks at the effect of child maturity on academic achievement
using group data on students and their schools.

• The second application examines the effect of smoking during pregnancy on the
birthweight of children.

• The third application examines the persistence of permanent income shocks in a
nonlinear model of household income dynamics.

• The applications are based on:

—Arellano and Weidner (2015)

—Arellano and Bonhomme (2016)

—Arellano, Blundell, and Bonhomme (2016).

• Each empirical application illustrates different methodological aspects.
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Part 1

Quantile regression
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Conditional quantile function

• Econometrics deals with relationships between variables involving unobservables.

• Consider an empirical relationship between two variables Y and X .

• Suppose that X takes on K different values x1, x2, ..., xK and that for each of those
values we have Mk observations of Y : yk1, ..., ykMk .

• If the relationship between Y and X is exact, the values of Y for a given value of X
will all coincide, so that we could write

Y = q(X ).

• However, in general units having the same value of X will have different values of Y .

• Suppose that yk1 ≤ yk2 ≤ ... ≤ ykMk , so the fraction of observations that are less
than or equal to ykm is ukm = m/Mk .

• It can then be said that a value of Y does not only depend on the value of X but also
on the rank ukm of the observation in the distribution of Y given X = xk .

• Generalizing the argument:
Y = q (X ,U)
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Conditional quantile function (continued)

• The distribution of the ranks U is always the same regardless of the value of X , so
that X and U are statistically independent.

• Also note that q (x , u) is an increasing function in u for every value of x .

• An example is a growth chart where Y is body weight and X is age (Figure 1).

• In this example U is a normalized unobservable scalar variable that captures the
determinants of body weight other than age, such as diet or genes.

• The function q (x , u) is called a conditional quantile function.

• It contains the same information as the conditional cdf (it is its inverse), but is in the
form of a statistical equation for outcomes that may be related to economic models.

• Y = q (X ,U) is just a statistical statement: e.g. for X = 15 and U = 0.5, Y is the
weight of the median girl aged 15, but one that can be given substantive content.
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Quantile function of normal linear regression

• If the distribution of Y conditioned on X is the normal linear regression model of
elementary econometrics:

Y = α+ βX + V with V | X ∼ N
(
0, σ2

)
,

the variable U is the rank of V and it is easily seen that

q (x , u) = α+ βx + σΦ−1 (u)

where Φ (.) is the standard normal cdf.

• In this case all quantiles are linear and parallel, a situation that is at odds with the
growth chart example.
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Linear quantile regression (QR)

• The linear QR model postulates linear dependence on X but allows for a different
slope and intercept at each quantile u ∈ (0, 1)

q (x , u) = α (u) + β (u) x (1)

• In the normal linear regression β (u) = β and α (u) = α+ σΦ−1 (u).

• In linear regression one estimates α and β by minimizing the sum of squares of the
residuals Yi − a− bXi (i = 1, ..., n).

• In QR one estimates α (u) and β (u) for fixed u by minimizing a sum of absolute
residuals where (+) residuals are weighted by u and (-) residuals by 1− u.

• Its rationale is that a quantile minimizes expected asymmetric absolute value loss.

• For the median u = 0.5, so estimates of α (0.5), β (0.5) are least absolute deviations.

• All observations are involved in determining the estimates of α (u), β (u) for each u.

• Under random sampling and standard regularity conditions, sample QR coeffi cients
are
√
n-consistent and asymptotically normal.

• Standard errors can be easily obtained via analytic or bootstrap calculations.

• The popularity of linear QR is due to its computational simplicity: computing a QR is
a linear programming problem (Koenker 2005).
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Linear quantile regression (QR) (continued)

• One use of QR is as a technique for describing a conditional distribution. For
example, QR is a popular tool in wage decomposition studies.

• However, a linear QR can also be seen as a semiparametric random coeffi cient model
with a single unobserved factor:

Yi = α (Ui ) + β (Ui )Xi

where Ui ∼ U (0, 1) independent of Xi .
• For example, this model determines log earnings Yi as a function of years of schooling
Xi and ability Ui , where β (Ui ) represents an ability-specific return to schooling.

• This is a model that can capture interactions between observables and unobservables.

• A special case of model with an interaction between Xi and Ui is the heteroskedastic
regression Y | X ∼ N

[
α+ βX , (σ+ γX )2

]
.

— In this case α (u) = α+ σΦ−1 (u) and β (u) = β+ γΦ−1 (u).

• As a model for causal analysis, linear QR faces similar challenges as ordinary linear
regression. Namely, linearity, exogeneity and rank invariance.

• Let us discuss each of these aspects in turn.
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Flexible QR

• Linearity is restrictive. It may also be at odds with the monotonicity requirement of
q (x , u) in u for every value of x .

• Linear QR may be interpreted as an approximation to the true quantile function
(Angrist, Chernozhukov, and Fernández-Val 2006).

• An approach to nonparametric QR is to use series methods:

q (x , u) = θ0 (u) + θ1 (u) g1 (x) + ...+ θP (u) gP (x) .

• The g’s are anonymous functions without an economic interpretation. Objects of
interest are derivative effects and summary measures of them.

• In practice one may use orthogonal polynomials, wavelets or splines (Chen 2007).

• This type of specification may be seen as an approximating model that becomes more
accurate as P increases, or simply as a parametric flexible model of the quantile
function.

• From the point of view of computation the model is still a linear QR, but the
regressors are now functions of X instead of the X s themselves.
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Exogeneity and rank invariance

• To discuss causality it is convenient to use a single 0− 1 binary treatment Xi and a
potential outcome notation Y0i and Y1i .

• Let U0i ,U1i be ranks of potential outcomes and q0 (u), q1 (u) the quantile functions.

• Note that unit i may be ranked differently in the distributions of the two potential
outcomes, so that U0i 6= U1i . The causal effect for unit i is given by

Y1i − Y0i = q1 (U1i )− q0 (U0i ) .
• Under exogeneity Xi is independent of (Y0i ,Y1i ).
• The implication is that the quantile function of Yi | Xi = 0 coincides with q0 (u) and
the quantile function of Yi | Xi = 1 coincides with q1 (u), so that

β (u) = q1 (u)− q0 (u) .
• This quantity is often called a quantile treatment effect (QTE). In general it is just
the difference between the quantiles of two different distributions.

• It will only represent the gain or loss from treatment of a particular unit under a rank
invariance condition. i.e. that the ranks of potential outcomes are equal to each other.

• Under rank invariance treatment gains may still be heterogeneous but a single
unobservable variable determines the variation in the two potential outcomes.

• Next we introduce IV endogeneity in a quantile model with rank invariance.
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Instrumental variable QR

• The linear instrumental variable (IV) model of elementary econometrics assumes

Yi = α+ βXi + Vi

where Xi and Vi are correlated, but there is an instrumental variable Zi that is
independent of Vi and a predictor of Xi .

• Potential outcomes are of the form Yx ,i = α+ βx + Vi so that rank invariance holds.

• If x is a 0− 1 binary variable, Y0,i = α+ Vi and Y1,i = α+ β+ Vi .

• A QR generalization subject to rank invariance is to consider

Yx ,i = q (x ,Ui ) .

• A linear version of which is

Yx ,i = α (Ui ) + β (Ui ) x .
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Instrumental variable QR (continued)

• Chernozhukov and Hansen (2006) propose to estimate α (u) and β (u) for given u by
directly exploiting the IV exclusion restriction.

• Specifically, if we write the model as

Yi = α (Ui ) + β (Ui )Xi + γ (Ui )Zi ,

the IV assumption asserts that Zi only affects Yi via Xi so that γ (u) = 0 for each u.

• Now let γ̂u (b) be the estimated slope coeffi cient in a u-quantile regression of
(Yi − bXi ) on Zi and a constant term.

• The idea, which mimics the operation of 2SLS, is to choose as estimate of β (u) the
value of b that minimizes |γ̂u (b)|, hence enforcing the exclusion restriction.

• In the absence of rank invariance the treatment effects literature (e.g. Abadie 2003)
has focused on QTEs for compliers in the context of a binary treatment that satisfies
a monotonicity assumption.
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Part 2

QR with fixed effects in large panels
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Basics

• The most popular tool in panel data analysis is a linear regression model with
common slope parameters and individual specific intercepts:

Yit = βXit + αi + Vit (i = 1, ...,N ; t = 1, ...,T ) ,

in which Xi = (Xi1, ...,XiT ) is independent of Vit but possibly correlated with αi .

• This is seen as a way of allowing for a special form of non-exogeneity (fixed-effect
endogeneity) but also a way of introducing heterogeneity and persistence.

• The estimator of β is OLS including individual dummies, or equivalently OLS of Y on
X in deviations from individual-specific means (within-group estimation).

• Observations may be from actual panel data, in which units are followed over time, or
from data with a group structure, in which case i denotes groups and T is group size.

• In practice group size will be group specific (Ti ) and techniques will be adapted
accordingly.
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QR with fixed effects

• A QR version of the within-group model specifies

Yit = β (Uit )Xit + αi (Uit )

where Uit ∼ U (0, 1) independent of Xi and αi (.).

• The term αi (Uit ) can be regarded as a function of Uit and a vector Wi of unobserved
individual effects of unspecified dimension: αi (Uit ) = r (Wi ,Uit ).

• Thus, the model allows for multiple individual characteristics that affect differently
individuals with different error rank Uit .

• For example, there may be a multiplicity of school characteristics, some of which are
only relevant determinants of academic achievement for high ability students while
others are only relevant for low ability students.

• In QR one estimates β (u) and α1 (u) , ..., αN (u) for fixed u.

• The large sample properties of these estimates are those of standard QR if T is large
in absolute terms and relative to N .

• However, if T is small relative to N or if T and N are of similar size, estimates of the
common parameter β (u) may be biased or even underidentified.

• The reason is too much sample noise due to estimating too many parameters relative
to sample size. This situation is known as the incidental parameter problem.
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Dealing with incidental parameters: fixed T and large T approaches

• In the static linear model, within-group estimates of the slope parameter are free from
incidental parameter biases, but in nonlinear models the opposite is true in general.

• In situations where T is very small relative to N one reaction is to consider models
and estimators of those models that are fixed-T consistent for large N .

• An example is the second application on the effect of smoking on birthweight, which
uses a sample of N = 12360 women with T = 3 children each.

• There are also panels in which T is not negligible and not negligible relative to N ,
even if N still is much larger than T .

• An example, is the dataset in our first application that contains N = 389 schools with
an average of T = 40 students per school.

• An alternative approach in those situations has been to approximate the sampling
distribution of the fixed effects estimator as T/N tends to a constant.

• For smooth objective functions this approach leads to a bias correction that can be
easily implemented by analytical or numerical methods.

• A simple implementation is Jackknife bias correction (delete-one Jackknife in Hahn
and Newey 2004; split-panel Jackknife in Dhaene and Jochmans 2015).
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Bias reduction in QR

• The existing techniques are not applicable to QR due to the non-smoothness of the
sample moment conditions of quantile models.

• Arellano and Weidner (2015) characterize the incidental parameter bias of QR and
instrumental-variable QR estimators.

• They also find bias correcting moment functions that are first-order unbiased, that is,
whose expected value is of order 1/T 2.

• Moment functions within their class depend on the choice of a weight sequence.
Some weight sequences are bias reducing while others are not.

• They uncover a bias-variance trade-off when attempting to correct bias, and provide
bias corrected estimators that balance this trade-off.

• Interestingly their discussion of bias correction around choice of weight sequence is
similar to bias reduction in nonparametric Kernel regression.

• Arellano and Weidner show that delete-one Jackknife is not first-order bias correcting
in QR due to the fact that the second-order bias has a non-standard structure.

• They find that a permutation-invariant version of split-panel Jackknife is
bias-correcting and exhibits good variance properties.
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Interpreting the incidental parameter bias

• Arellano and Weidner (2015) find that the leading-order bias term vanishes in the
special case where β (u) = β is constant over u.

• This result is of limited interest if the goal is to estimate nonlinear models, although
it may be useful in testing for linearity.

• They also provide an approximation to the leading order bias in the case where β (u)
is almost constant, so that β (u)− β is small.

• Under this approximation the leading order bias can be interpreted as resulting from
measuring β (u) at the wrong quantile u + ∆u and from smoothing out β (u) around
this wrong quantile with a density whose standard deviation shrinks at the rate T−1/2.

• The implication is that the incidental parameter bias would tend to average effects
across quantiles.
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The effect of child maturity on academic achievement

• Arellano and Weidner study the effect of age on academic achievement of school
children following Bedard and Dhuey (2006).

• Bedard and Dhuey consider multiple countries and students of different age groups.
Their question is whether initial maturity differences in kindergarten and primary
school have long-lasting effects.

• Here we only consider data from Canada for third and fourth graders (9 year old in
1995) from the Trends in International Mathematics and Science Study (TIMSS).

• There are 389 schools with an average of 40 students per school. Therefore, it is an
unbalanced pseudo-panel or dataset with a group structure.

• The outcome variable is the math test score of student t in school i normalized to
haven mean 50 and standard deviation 10 over the whole sample.

• The main regressor is observed age measured in months.
• Age is potentially endogenous because of grade retention and early or late school
enrolment (which are not observed).
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The effect of child maturity on academic achievement (continued)

• Following Bedard and Dhuey we use age relative to the school cutoff date to
instrument for age.

• The school cutoff date in Canada is January 1. So we define relative or assigned age
as z = 0 for children born in December and z = 11 for children born in January.

• Relative age is a strong instrument.
• We only require exogeneity of relative age conditional on school effects, which for
example will capture the age distribution at school level.

• Quantile analysis is interesting, because age effects might be different for low- and
high-performing students.

• Whether maturity and academic ability are substitutes or complements is an empirical
question that may have implications for school policy.

• Controlling for school fixed effects turns out to be important for the results. Age
composition may vary across schools, so age is likely fixed-effect endogenous.
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Table 1
Effect of Age on Math Test Scores at 3rd & 4th Grade
Canadian TIMSS 15549 students N = 394 schools

OLS IV OLS+FE IV+FE
0.017 0.184 -0.0332 0.178
(0.010) (0.026) (0.009) (0.0241)

Number in brackets are standard errors
IV uses assigned age to instrument for observed age

Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size
std(Y)=10, i.e. age effect of 0.18 is a 1.8% st dev
per month effect or 22% st deviations per year

• Table 1 reproduces results in Bedard and Dhuey (2006).

• IV estimates with and without school fixed effects are very similar, i.e. the instrument
appears to be uncorrelated with school effects.
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Table 2
Effect of Age on Math Test Scores at 3rd & 4th Grade

Quantile IV, no fixed effects

u = 0.1 u = 0.3 u = 0.5 u = 0.7 u = 0.9
0.14 0.16 0.18 0.24 0.19
(0.01) (0.01) (0.01) (0.07) (0.03)

IV uses assigned age to instrument for observed age
Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size

• Without controlling for school fixed effects, one finds a significant difference in age
effects across quantiles.

• Age effects are increasing.

• The results in Table 2 would point to maturity and ability as complements in the
production of test scores.
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Table 3
Effect of Age on Math Test Scores at 3rd & 4th Grade
Quantile IV with fixed effects, no bias correction

u = 0.1 u = 0.3 u = 0.5 u = 0.7 u = 0.9
0.18 0.15 0.18 0.19 0.16
(0.05) (0.03) (0.03) (0.04) (0.04)

IV uses assigned age to instrument for observed age
Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size

• Table 3: Once we control for school fixed effects, we do not find a significant
difference in age effects across quantiles.

• Age effects are relatively constant in u. But is this because there is really no effect, or
because the incidental parameter bias tends to average effects across quantiles?
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Table 4
Effect of Age on Math Test Scores at 3rd & 4th Grade

Quantile IV with fixed effects, bias correction

u = 0.1 u = 0.3 u = 0.5 u = 0.7 u = 0.9
0.21 0.15 0.18 0.18 0.09
(0.05) (0.03) (0.04) (0.04) (0.05)

IV uses assigned age to instrument for observed age
Controls: sex, grade, rural, mother native, father-native
both parents, calculator, computer, +100books, hh size

• Table 4: After bias correction age effects are decreasing in u.

• There seems to be evidence that maturity and ability are substitutes in academic
achievement.
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Part 3

QR with random effects in short panels
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Dimensionality reduction of fixed effects

• Application of QR with fixed effects is straightforward as it proceeds in a
quantile-by-quantile fashion allowing for a different fixed effect at each quantile.

• However, in short panels the incidental parameter problem is a challenge.

• Moreover, while being agnostic about the number of the unobserved group factors
affecting outcomes is attractive, sometimes substantive reasons suggest that only a
small number of underlying factors play a role.

• Whether one uses a quantile model with a different individual effect at each quantile
or a model with a small number of unobserved effects also has implications for
identification.

• Rosen (2010) shows that a fixed-effects model for a single quantile may not be point
identified.

• Arellano and Bonhomme (2016) show that a QR model with a scalar fixed effect is
nonparametrically identified in panel data with T = 3 subject to completeness
assumptions (Newey and Powell 2003; Hu and Schennach 2008).
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Flexible quantile modelling with random effects

• Arellano and Bonhomme aim to estimate models of the form:

Yit = β (Uit )Xit + γ (Uit ) ηi + α (Uit ) (2)

where Uit ∼ U (0, 1) independent of Xi and ηi , but Xi and ηi may be correlated.

• Model (2) is a special case of a series-based specification that allows for nonlinearities
and interactions between Xit and ηi :

Yit =
K1

∑
k=1

θk (Uit ) gk (Xit , ηi ) (3)

• The dependence of ηi on Xi is also specified as a flexible quantile model:

ηi =
K2

∑
k=1

δk (Vi ) hk (Xi ) (4)

where Vi is a uniform random variable independent of Uit and Xit for all t.

• This is a correlated random effects approach in the sense that a model for the
dependence between ηi and Xi is specified.

• However, it is more flexible than alternative specifications in the literature and can be
seen as an approximation to the conditional quantile function as K2 increases.

• If ηi is a vector of individual effects a triangular structure is assumed in place of (4).
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Simulation-based estimation

Basic intuition behind the Arellano and Bonhomme method

• If ηi were observed, one would simply run an ordinary QR of Yit on Xit and ηi .

• But since ηi is not observed they construct some imputations, say M imputed values

η
(m)
i , m = 1, ...,M for each individual in the panel. Having got those, one can get
estimates by computing a QR averaged over imputed values.

• For the imputed values to be valid they have to be draws from the distribution of ηi
conditioned on the data, which depends on the parameters to be estimated (θ’s and
δ’s in the flexible model).

• This is therefore an iterative approach.

• They start by selecting initial values for a grid of conditional quantiles of Yit and ηi ,
which then allows them to generate imputes of ηi , which can be used to update the
quantile parameter estimates and so on.

• To deal with the complication that θk (u) and δk (v ) are functions, they use a
finite-dimensional approximation to those functions based on interpolating splines
with L knots (similar to Wei and Carroll 2009).

• The resulting method is a stochastic EM algorithm.
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Simulation-based estimation (continued)

Stochastic EM algorithm

• A difference with most applications of EM algorithms is that parameters are not
updated in each iteration using maximum likelihood but QR.

• This is important because once imputes for ηi are available, QR estimates can be
calculated in a quantile-by-quantile fashion, which together with the convexity of QR
minimization make each parameter update fast and reliable.

• Arellano and Bonhomme obtain the asymptotic properties of the estimator based on
the stochastic EM algorithm for a fixed number of draws M in the case where the
parametric model is assumed correctly specified (extending results in Nielsen 2000).

• That, is K1, K2 and L are held fixed as N tends to infinity for fixed T .

• They also establish consistency as K1, K2 and L tend to infinity with N in the
large-M limit.

Other approaches

• Other recent approaches to quantile panel data models include Chernozhukov,
Fernández-Val, Hahn & Newey (2013), and Graham, Hahn, Poirier & Powell (2015).

• These approaches are non-nested with the previous model and will recover different
quantile effects.
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The effect of smoking on birth weight

• We revisit the effect of maternal inputs on children’s birth outcomes. Specifically, we
study the effect of smoking during pregnancy on children’s birthweights.

• Abrevaya (2006) uses a mother-FE approach to address endogeneity of smoking.

• We use QR with mother-specific effects to allow for both unobserved heterogeneity
and nonlinearities in the relationship between smoking and birthweight.

• We use a balanced subsample from the US natality data used in Abrevaya (2006),
which comprises 12360 women with 3 children each. Our outcome is log-birthweight.

• The main covariate is a binary smoking indicator. Age of the mother and gender of
the child are used as additional controls.

• An OLS regression yields a negative point estimate of the smoking coeffi cient: −.095.
The fixed-effects estimate is also negative, but it is twice as small: −.050 (significant).

• Moreover, running a standard (pooled) QR suggests that the effect of smoking is
more negative at lower quantiles of birthweights.

• However, these results might be subject to an endogeneity bias, which may not be
constant along the distribution.
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The effect of smoking on birth weight (continued)

• The left graph of Figure 2 shows the smoking coeffi cient in a pooled QR (solid line),
and the REQR estimate of the smoking effect (dashed line).

• REQR estimates use L = 21 knots. The stochastic EM algorithm is run for 100
iterations, with 100 random walk Metropolis-Hastings draws within each iteration.

• Parameter estimates are averages of the 50 last iterations of the algorithm.

• The smoking effect becomes less negative when correcting for time-invariant
endogeneity through the introduction of mother-specific fixed-effects.

• At the same time, the effect remains sizable, and is increasing along the distribution.

• The right graph shows the QTE of smoking as the difference in log-birthweight
between a sample of smoking women, and a sample of non-smoking women, keeping
all other characteristics (observed, Xi , and unobserved, ηi ) constant.

• This calculation illustrates the usefulness of estimating a complete model of the joint
distribution of outcomes and unobservables, to compute counterfactual distributions
that take unobserved heterogeneity into account.

• The solid line shows the empirical difference between unconditional quantiles, while
the dashed line shows the QTE that accounts for both observables and unobservables.

• The results are broadly in line with those reported on the left graph of Figure 2.
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Figure 2: QR coeffi cient of smoking and QTE (difference in potential outcomes)

0 0.2 0.4 0.6 0.8 1
0.25

0.2

0.15

0.1

0.05

0

percentile τ

sm
ok

in
g 

ef
fe

ct

0 0.2 0.4 0.6 0.8 1
0.25

0.2

0.15

0.1

0.05

0

percentile τ

qu
an

til
e 

tre
at

m
en

t e
ffe

ct
 o

f s
m

ok
in

g

• Data from Abrevaya (2006).

• Left: Solid line is the pooled QR smoking coeffi cient; dashed line is the panel QR
smoking coeffi cient.

• Right: Solid line is the raw QTE of smoking; dashed line is the QTE estimate based
on panel QR.
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QR with smoking interacted with mother heterogeneity and baby heterogeneity

• Lastly, we report the results of an interacted quantile model, where the specification
allows for all first-order interactions between covariates and the unobserved
mother-specific effect.

• In this model the quantile effect of smoking is mother-specific.

• The results on the right graph in Figure 3 show the unconditional QTE of smoking.
Results are similar to the ones obtained for the linear specification.

• However, on the left graph we see substantial mother-specific heterogeneity in the
conditional quantile treatment effect of smoking.

• For some mothers smoking appears particularly detrimental to children’s birthweight,
whereas for other mothers the smoking effect, while consistently negative, is much
smaller.

• This evidence is in line with the results of a linear random coeffi cients model reported
in Arellano and Bonhomme (2012).
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Figure 3: Quantile effects of smoking and QTE (interacted specification)
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• Data from Abrevaya (2006).

• Left: lines represent the percentiles .05, .25, .50, .75, and .95 of the heterogeneous
smoking effect across mothers, at various percentiles u.

• Right: Solid line is the raw QTE of smoking; dashed line is the QTE estimate based
on panel QR with interactions.
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Part 4

Dynamic quantile models
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Autoregressive models and predetermined variables

• The Arellano-Bonhomme approach covers dynamic autoregressive models and models
with general predetermined variables of the form:

Yit = QY (Yi ,t−1,Xit , ηi ,Uit )

• If the X s are strictly exogenous variables, the quantile model for the individual effect
is as before except for the inclusion of the initial outcome variable:

ηi = Qη (Yi1,Xi ,Vi )

• In the case of general predetermined variables the model is incomplete.

• To complete the specification a Markov feedback process is assumed:

Xit = QX (Yi ,t−1,Xi ,t−1, ηi ,Ait )

and the quantile model of the effects is conditioned only on initial values:

ηi = Qη (Yi1,Xi1,Vi )
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Models with time-varying unobservables

• The framework also extends to models with time-varying unobservables, such as the
following nonlinear permanent-transitory model:

Yit = ηit + Vit (5)

ηit = QY
(
ηi ,t−1,Uit

)
(6)

where Vit and Uit are i.i.d. distributed.

• Arellano, Blundell and Bonhomme (2016) use a quantile-based approach to document
nonlinear relationships between earnings shocks to households and their lifetime
profiles of earnings and consumption.

• They estimate model (5)-(6) using PSID household labor income data for the years
1998—2008.
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Persistence of permanent income shocks

• Evidence of nonlinearity in the persistence of earnings can be seen from Figure 4.

• This figure plots estimates of the average derivative of the conditional quantile
function of current income with respect to lagged income.

• The graphs show strong similarity in the patterns of the nonlinearity of household
earnings in the PSID survey data and in the population register data from Norway.

• They also show a clear difference in the impact of past shocks according to the
percentile of the shock and the percentile of the past level of income.

• A large positive shock for a low income family or a large negative shock for a high
income family appears to reduce the persistence of past shocks.
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Figure 4: Quantile autoregressions of log-earnings
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Note: Residuals of log pre-tax household labor earnings, Age 35-65 1999-2009 (US),
Age 25-60 2005-2006 (Norway). Estimates of the average derivative of the conditional
quantile function of yit given yi ,t−1 with respect to yi ,t−1.

111



Persistence of permanent income shocks (continued)

• Arellano, Blundell, and Bonhomme find that in the central range of the distribution,
measured persistence of ηi ,t−1 is of similar magnitude and close to unity, so that the
unit root model would be an acceptable description for this part of the distribution.

• However, a very negative shock reduces the persistence of a “positive history” (a
positive lagged level of η) but preserves the persistence of a negative history.

• At the other end, a very positive shock reduces the persistence of a negative history
but preserves the persistence of a good history.

• These results suggest a richer view of persistence, away from the conventional unit
root versus mean reversion dichotomy, and help explain household consumption
behavior.
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