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a b s t r a c t
This paper considers a new two-stage instrumental variable estimator of panel data models with
predetermined or endogenous explanatory variables. The instruments are fitted values from
period-specific first-stage equations based on all available lags, which are similar to those in
standard GMM estimation. The difference is that first-stage fitted values are not unrestricted but
are chosen to satisfy the constraints implied by a VAR process with random effects. As a result
the number of free first-stage parameters is dramatically reduced, while retaining predictive
power from all lags. The estimators are asymptotically efficient when the VAR restrictions hold,
but remain consistent if they do not. Since the instruments are parameterized using a fixed
number of coefficients for any value of T, the properties of the resulting estimators are not
fundamentally affected by the relative dimensions of T and N, contrary to standard panel GMM.
Empirical illustrations are reported using firm- and country-level panel data.

& 2015 University of Venice. Published by Elsevier Ltd. All rights reserved.
1. Introduction

This paper considers a new instrumental variable method for estimating panel data models with general predetermined
or endogenous explanatory variables. The instruments are fitted values from period-specific first-stage equations based on
all available lags. First-stage coefficients are chosen to satisfy the constraints implied by a stable multivariate process. This is
proposed as a framework for modelling optimal instruments in panel data analysis.

A popular method in dynamic panel data estimation is GMM, which is consistent in short panels, robust, has general
applicability, and provides a well-defined notion of optimality (Holtz-Eakin et al., 1988; Arellano and Bond, 1991). However, in
practice the application of GMM often entails too many moment conditions for acceptable sampling properties in either finite
or large samples when the time series dimension is not fixed (Alvarez and Arellano, 2003).

For autoregressive models there are also available likelihood-based methods which exhibit better finite sample prop-
erties than GMM but can be seriously biased if certain auxiliary assumptions are violated. Moreover, these methods cannot
be readily extended to cover models with endogenous or general predetermined variables.1 There is therefore an acute
robustness-efficiency trade-off in the choice among existing techniques. In addition, some methods are designed for short
panels of large cross-sections, while others target long panels of small cross-sections, but there is a vacuum in between. The
y Elsevier Ltd. All rights reserved.
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literature does not seem to have much to offer to researchers interested in “small N, small T” panels or other panels that are
not easily classifiable.

GMM estimators can be regarded as providing implicit models for the optimal instruments. The problem is that in the panel
context these models are often overparameterized, leading to poor properties in finite samples and double asymptotics. This paper
provides a framework for parsimoniousmodelling of optimal instruments in panel data, which is, first, coherent with the fixed T, large
N perspective; second, has good theoretical properties in a double asymptotic setup, and thirdly provides estimators with the same
robustness features as popular GMM methods. More research is needed on panel data methodology from a time series perspective,
and this paper is intended as a contribution towards a marriage of the cross-sectional (fixed T) and time-series (long T) perspectives.

Recent results by Newey and Smith (2004) on the higher order properties of empirical likelihood (EL) and GMM indicate that
panel EL estimators may exhibit better finite sample properties than their GMM counterparts. However, while the double
asymptotic properties of panel EL estimation remain to be explored, the fact that a panel EL estimator will be inconsistent for fixed
N, large T (as long as it is based on an increasing number of moment conditions) suggests that EL estimation will be less robust to
double asymptotic plans than the instrumental variable methods considered in this paper.

The paper is organized as follows. Section 2 presents the model, links GMM with the parametric optimal-instrument per-
spective, and introduces projection-restricted simple IV estimation (SIV). Section 3 discusses the asymptotic biases of one-step
GMMwhen both T and N tend to infinity. It is shown that the order of magnitude of the bias depends onwhether the explanatory
variables are predetermined or endogenous, and that in the latter situation GMM is inconsistent. In Section 4 we present an
auxiliary random effects VAR model for the vector of instruments, and obtain sequential linear projections of the effects. Section 5
describes the form of optimal instruments and provides several examples. Section 6 considers pseudo maximum likelihood
estimation (PML) of the auxiliary VARmodel. Section 7 discusses the properties of feasible projection-restricted IV estimators with
and without strictly endogenous variables, and the calculation of asymptotic standard errors. Section 8 contains empirical illus-
trations and Monte Carlo simulations. Section 8.1 reports estimates of autoregressive employment and wage equations from firm
panel data; Section 8.2 presents the results of a simulation exercise calibrated to the previous firm panel, and Section 8.3 reports
estimates of country growth convergence rates using a panel of 92 countries observed at five-year intervals. Finally, Section 9 ends
with some concluding remarks and plans for future work. All proofs and technical details are contained in Appendices.
2. Model and optimal instruments: overview

2.1. A sequential conditional mean model

Let us consider a fixed effects panel data model of the form

yit ¼ x0itβþηiþεit ðt ¼ 1;…; T; i¼ 1;…;NÞ; ð1Þ
together with the conditional mean assumption

Eðεit jzti Þ � Et εitð Þ ¼ 0 ð2Þ
where zti ¼ ðz0i1;…; z0itÞ0 and yTi ; x

T
i ; z

T
i ;ηi

� �
are iid random variables; ηi represents an unobservable individual effect and zit is a

vector of instrumental variables.
The following remarks about the nature of the explanatory variables and the instruments are relevant. First, if an explanatory

variable xkit is predetermined for εi tþ jð Þ, then xki t� jð Þ is a component of zit. Second, an xkit may also be strictly endogenous in the
sense of not being predetermined for any lead of ε. Finally, zit may contain external instruments that are not part of xit or its lags.

An example of this type of model is an equation from a VAR with individual effects. Other examples are partial
adjustment equations with predetermined regressors, or a structural relationship between endogenous variables. As
illustrations of the latter we consider below cross-country growth and household consumption Euler equations.

2.2. Information bound and optimal instruments

Since the distribution of ηi∣zTi is unrestricted, all information about β is in the conditional moments for the errors in
differences or forward orthogonal deviations

Et y�it�x�0itβ
� �¼ Et ε�it

� �¼ 0 t ¼ 1;…; T�1ð Þ ð3Þ

where starred variables denote orthogonal deviations:

ε�it ¼
T�t

T�tþ1

� �1=2

εit�
1

ðT�tÞ εiðtþ1Þ þ⋯þεiT
� �� �

: ð4Þ

The advantage of orthogonal deviations is that if εit is homoskedastic and serially uncorrelated so is ε�it (Arellano and Bover, 1995).
Two-wave panel: If T¼2 there is just one equation in deviations (which coincides with first-differences):

E y�i1�x�0i1β∣z
1
i

� �¼ E1 ε�i1
� �¼ 0 ð5Þ
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and the optimal instrument is hi1 ¼ E1 x�i1
� �

=E1 ε�2i1
� �

, in the sense that the unfeasible IV estimator

~β1 ¼
XN
i ¼ 1

hi1x
�0
i1

 !�1 XN
i ¼ 1

hi1y
�
i1 ð6Þ

attains the variance bound for this problem (Chamberlain, 1987).
A parametric approach to feasible estimation is to specify functional forms for E1 x�i1

� �
and E1 ε�2i1

� �
and substitute suitable

estimates in the IV formula (6). 2SLS is an example of this approach that uses the sample linear projection of x�i1 on zi
1
as an

estimate of the optimal instrument. That is, 2SLS attains the variance bound when E1 x�i1
� �

is linear and E1 ε�2i1
� �

is constant.2

Thus, in a parametric approach to feasible IV estimation there are two levels of assumptions: the substantive conditional
moment restrictions used in estimation, and the auxiliary assumptions used in estimating the optimal instruments. The
former are related to consistency and the latter to asymptotic efficiency. This distinction between substantive and auxiliary
assumptions is central to the perspective adopted in this paper.

Multi-wave panel: If T42 the form of the optimal instrument is complicated by the fact that neither conditional het-
eroskedasticity or autocorrelation in ε�it is ruled out. The unfeasible optimal IV estimator in the general case solves

XN
i ¼ 1

XT�1

t ¼ 1

hit ~yit� ~x 0it
~β

� 	
¼ 0 ð7Þ

where hit ¼ Et ~xitð Þ=Et ~ε2
it

� 	
and

~ε i T�1ð Þ ¼ ε�i T�1ð Þ ð8Þ

~ε it ¼ ε�it�τt1 ~ε i tþ1ð Þ �⋯�τt T� t�1ð Þ ~εi T�1ð Þ t ¼ T�2;…;1ð Þ ð9Þ
with τtj ¼ Etþ j ε�it ~εi tþ jð Þ

� �
=Etþ j ~ε2i tþ jð Þ

� 	
.

The ~εit are forward filtered errors such that Et ~εitð Þ ¼ 0 and Etþ j ~εit ~ε i tþ jð Þ
� �¼ 0 so that the bound for T�1 periods is the sum of

the bounds for each period (Chamberlain, 1992):

JT�1 ¼
XT�1

t ¼ 1

E
Et ~xitð ÞEt ~xitð Þ0

Et ~ε2
it

� 	
0@ 1A: ð10Þ

If the ε�it 's are conditionally homoskedastic and serially uncorrelated ~ε it ¼ ε�it . The optimal instrument is hit �
ht zti
� �¼ Etðx�itÞ, and the unfeasible IVE

~β ¼
XN
i ¼ 1

XT�1

t ¼ 1

hitx�0it

 !�1 XN
i ¼ 1

XT�1

t ¼ 1

hity�it

 !
ð11Þ

attains the fixed-T, large-N variance bound.
Generalized method of moments: A One-step GMM estimator (GMM1) is an example of the parametric approach to

feasible IVE that uses the cross-sectional sample linear projections of x�it on zi
t
as an estimate of the optimal instruments.

GMM1 is based on the specification

ht zti
� �¼ z0i1πt1þ⋯þz0itπtt � zt0i πt ; ð12Þ

together with assumptions of homoskedasticity and lack of serial correlation.
In a time series context (large T, fixed N), these projections cannot be consistently estimated without further restrictions.

But as N-1 for fixed T, the IVE that uses the sample projection zt0i bπ t has the same asymptotic distribution as the unfeasible
IVE based on the population projection zt0i πt .

However, when both T and N tend to infinity at the same rate, the feasible and unfeasible estimators differ as shown for
autoregressive models in Alvarez and Arellano (2003), who found that GMM1 had an asymptotic bias of order 1=N. In the next
Sectionwe obtain the asymptotic bias of GMM1 for models (1) and (2) when both T and N tend to infinity. We show that the order
of magnitude of the bias depends on whether the explanatory variables are endogenous or predetermined. In the predetermined
case the bias is of order 1=N—as in Alvarez and Arellano (2003)—but in the endogenous case the bias is of order T=N, and hence a
potentially more serious problem. These results provide theoretical support for the approach developed in this paper, because the
proposed estimators are immune to asymptotic bias in a double asymptotics.

Under heteroskedasticity or autocorrelation, it is possible to obtain a GMM estimator based on the moments E zti v
�
it

� �¼ 0
that is more efficient than bβGMM1 by using as weight matrix the inverse of a robust estimate of the variance matrix of the
orthogonality conditions. These are the standard two-step robust GMM2 estimators (Arellano and Bond, 1991). A GMM2
estimator, however, will not attain the efficiency bound in general, although it may attain it under more general conditions
2 Incorporating these assumptions in estimation may reduce the variance bound for β. A trade-off between robustness and efficiency arises, since
estimates of β that exploit the extra restrictions may be inconsistent if they are false.
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than GMM1. Specifically, GMM2 will attain the bound under serial correlation and time series heteroskedasticity of the form
Eðv2it jzti Þ ¼ Eðv2itÞ ¼ σ2

t and Eðvitviðtþ jÞjztþ j
i Þ ¼ Eðvitviðtþ jÞÞ ¼ σtðtþ jÞ for j40.3

Semiparametric asymptotically efficient estimation for fixed T: It is also possible to devise estimators that attain the fixed-T efficiency
bound under more general assumptions than GMM1 or GMM2. This could be achieved by considering a semiparametric estimator
that replaces the unknown functions in (11) or (7) by nonparametric estimates. The former would be asymptotically efficient when
the conditional expectations Eðx�it jzti Þ are nonlinear but the errors are classical. The latter might be efficient in the general case.
Estimators of this type have been considered by Hahn (1997). Nevertheless, since these estimators use evenmore flexible estimates of
Eðx�it jzti Þ than GMM1, they would not be expected to perform better than GMM1 unless T=N is sufficiently close to zero.

2.3. The crude time-series parametric approach

The conventional time-series parametric approach specifies

ht zti
� �¼ Xq

j ¼ 0

z0i t� jð Þγj ð13Þ

for some q.4 Eq. (13) has constant coefficients γj that can be consistently estimated time series-wise. It is based on
assumptions about the stability and degree of dependence in the zit process.

Panel data examples of the time-series approach are the stacked IV estimators for autoregressive models due to
Anderson and Hsiao (1982). From the point of view of fixed-T optimal IV estimation, however, the crude time-series
approach has two undesirable features. First, (13) cannot be calculated for periods without sufficient observations of the
initial lags, hence requiring trimming of the time series and loss of some cross-sections.

A second less obvious problem is that if the zit process contains heterogeneous intercepts—as may be expected given model (1)—
ht zti
� �

will depend on all lags, even if at the individual level z is characterized by stable low-order dependence of the kind that
supports (13) in a time series context. The reason is that all lags are predictors of the effects (as described in Section 4). Since the
predictions are updated each period, the coefficients of the predictor change over time. This is precisely the motivation behind (12).

2.4. Projection-restricted IV estimation

The problem with zt0i πt is that it often contains too many coefficients for good finite sample inference. If we have an
individual-effects, stable process for z characterized by a parameter vector γ, the πt are functions of γ. Therefore, instead of
an unrestricted linear projection we may consider a restricted one:

ht zti
� �¼ zt0i πt γ

� �
: ð14Þ

These restrictions are similar to the low order, stable dependence assumptions implicit in the time-series approach. The
difference is that we are using them in a fashion consistent with the fixed-T panel perspective.

For a long-T panel the outcome is essentially the same as in the crude time-series approach. For a very short-T panel the
outcome is essentially the same as in the standard GMM approach. But for other panels the number of first-stage coefficients
is kept constant, while using all waves and the predictive ability due to unobserved heterogeneity.

The suggested strategy is to specify a VAR for zit with individual effects and unrestricted initial conditions. The status of
this assumption is similar to that of (13) in the time-series approach. Then use as instruments the estimated restricted
projections zt0i πt γ

� �
, whose evaluation involves, as we shall see, a straightforward recursive Kalman-filter calculation.

Unrestricted πt in GMM are estimated by cross-sectional OLS. Restricted πt γ
� �

will be estimated using a modified WG
estimator, which is a multivariate generalization of the random effects PML in Alvarez and Arellano (2003).

We then obtain

bβ ¼
X
i

X
t

bhitx
�0
it

 !�1X
i

X
t

bhity
�
it : ð15Þ

GMM sets bhit ¼ zt0i bπ t where bπ t is an OLS estimate, and the projection-restricted IVE sets bhit ¼ zt0i πt bγ� � where bγ is a PML estimate.
For fixed T and large N both estimators have similar robustness properties in the sense of being consistent under the

same assumptions, but when T is not fixed the latter is immune to asymptotic biases because the number of first-stage
coefficients does not increase with T. If the auxiliary assumptions πt ¼ πt γ

� �
are violated, projection-restricted IV remains a

consistent estimate of β.
The goal is, therefore, to use the time-series parametric approach in such a way that the resulting estimator can still

achieve the fixed T efficiency bound under certain assumptions, in the same way as standard GMM only achieves the fixed T
bound under certain auxiliary assumptions.
3 A more restrictive two-step GMM estimator based on a weight matrix that only depends on the data second-order moments (Arellano and Bond,
1991, footnote 2) will attain the bound under the same conditions as the standard GMM2.

4 In this case it is better to think of ht zti
� �

as Et xit�xi tþ1ð Þ
� �

because x�it involves a different number of terms for each t.
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2.5. Related approaches

Brundy and Jorgenson (1971) is a classic precedent in the simultaneous equations literature of the perspective adopted in this
paper. The Brundy–Jorgenson estimator relied on preliminary structural form parameters to construct feasible optimal instru-
ments, which avoided estimating first-stage reduced form equations with a large number of variables included in them.

There is also a parallel with the asymptotic framework and estimation approach in Sargan (1975). Sargan (1975) argued that
conventional asymptotic theory, in which N-1 and the model remains constant, was inadequate for large models where the total
number of variables was large relative to the sample size. He considered instead an asymptotics inwhich the number of instruments
and the number of equations increased with sample size. He focused on estimation of a fixed number of parameters occurring in a
subsystem of equations and studied the asymptotic properties of a Brundy–Jorgenson iterated IV estimator that used the over-
identifying restrictions in forming the instruments.5 Similar to Sargan (1975), the panel data models in this paper can be regarded as
simultaneous systems in which the number of equations and the number of instruments tend to infinity as T increases.

Feasible parametric implementations of optimal instruments have been considered by West and Wilcox (1996) and West
et al. (2009) in the estimation of linear time series models with moving average disturbances; their notion of optimality is as
introduced in Hansen (1985) for conditional mean models with dependent observations. In common with our panel
methods, these time series estimators will not attain the efficiency bound if the auxiliary parametric specification is
incorrect, but retain consistency and some finite sample advantages relative to conventional GMM, due to the smaller
number of parameters involved in the construction of the instruments.
3. Double-asymptotic biases

In this sectionwe obtain the asymptotic bias of the one-step GMM estimator when both T and N tend to infinity. We show that
the order of magnitude of the bias depends on whether the explanatory variables are endogenous or predetermined.

It is well known that if the number of first-stage coefficients is large relative to the sample size, standard asymptotic
approximations may be a poor guide to the finite sample properties of IV estimates, specially when the instruments are
weak. In the panel context, double-asymptotic results provide formal approximations to the impact of nonnegligible T (and
hence of many instruments) relative to N on the properties of GMM estimates. They also provide a theoretical motivation for
the strategy for reducing the number of first-stage coefficients pursued in this paper.

The form of the GMM estimator is

bβ ¼
XT�1

t ¼ 1

X�0
t MtX

�
t

 !�1 XT�1

t ¼ 1

X�0
t Mty�t ; ð16Þ

where Mt ¼ Zt Z0
tZt

� ��1Z0
t is N�N, X�

t ¼ x�1t ;…; x�Nt
� �0 is N� k, Zt ¼ zt1;…; ztN

� �0 is N�mt, and y�t ¼ y�1t ;…; y�Nt
� �0 is N � 1, or in a

more compact notation

bβ ¼ X�0MX�
� 	�1

X�0My�: ð17Þ

3.1. Assumptions

Let us define the vector of variables wit ¼ εit ; x0it ; z
0
it

� �0. Depending on the model, x and z may contain elements in com-
mon. Also, some of the xs may be lags of y, and some of the zs may be lags of y and/or x. We make the following assumption:

Assumption 1. wit can be represented as a vector MA(1) of the form

wit ¼ μiþζitþΨ 1ζi t�1ð Þ þΨ 2ζi t�2ð Þ þ⋯ ð18Þ

where Ψ j

 �1

j ¼ 0 is absolutely summable, and ζit

 �1

t ¼ �1 is an i.i.d. sequence independent of the individual-specific mean
vector μi and with finite fourth-order moments. Moreover, the first element of μi is zero, and

X1
s ¼ �1

sj jγs ¼ B1o1 ð19Þ

where γs ¼ E xitεi t� sð Þ
� �

.

GMM estimators are typically motivated under less restrictive conditions than Assumption 1, which is only made for simplicity,
since our purpose is to exhibit some consequences of double-asymptotics in a leading situation, rather than providing an alter-
native basis for inference with GMM estimates. The results that follow are expected to hold under more general conditions.
5 Sargan's work on instrumental variables estimation is reviewed in Arellano (2002).
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Predeterminedness and endogeneity: If xit is predetermined for εit, then xit ‘ εit ; εi tþ1ð Þ; εi tþ2ð Þ;…
� �

but xite εi t�1ð Þ;
�

εi t�2ð Þ;…Þ, so that γ0 ¼ γ�1 ¼⋯¼ 0 but γsa0 for s40. If on the other hand xit is strictly endogenous

xite …; εi t�2ð Þ; εi t�1ð Þ; εit ; εi tþ1ð Þ; εi tþ2ð Þ;…
� �

;

in which case γsa0 for all s. Finally, if xit ‘ εi tþ jð Þ; εi tþ jþ1ð Þ;…
� �

we say that xit is endogenous but predetermined for εi tþ jð Þ,
and the corresponding γs vanish.

3.2. The order of the estimation error

Let us write the standardized estimation error as

bβ�β¼ 1
NT

XT�1

t ¼ 1

X�0
t MtX

�
t

 !�1
1
NT

XT�1

t ¼ 1

X�0
t Mtε�t � A�1

NT bNT : ð20Þ

A key result is given in the following theorem.

Theorem 1. Letting bNT ¼ NTð Þ�1PT�1
t ¼ 1 X

�0
t Mtε�t , under Assumption 1 if xit is predetermined, in the sense that E xitεi tþ jð Þ

� �¼ 0 for
jZ0, then

E bNTð Þ ¼O
m
N

� 	
: ð21Þ

If xit is endogenous, in the sense that E xitεitð Þa0, then

E bNTð Þ ¼O
mT
N

� �
: ð22Þ

Intuitively, in the predetermined case the “endogeneity bias” vanishes as T-1 because the within-group OLS (WG)
estimator is large-T consistent. However, WG is not T-consistent in the endogenous explanatory variable case. These results
also highlight the impact of m—the dimension of the instrument vector zit—on the order of magnitude of the bias.

3.3. The asymptotic bias of GMM

The previous setup can be used to extend the results in Alvarez and Arellano (2003) to analyzing the asymptotic
properties of GMM estimators with general predetermined or endogenous explanatory variables. Here we provide an
informal discussion of consistency by drawing parallels with the corresponding Alvarez–Arellano results.

Let us first consider the probability limit of NTð Þ�1 X�0MX�
� 	

. It is useful to introduce at this point the time series

individual-specific linear projection of xit on zit ; zi t�1ð Þ; zi t�2ð Þ;…

 �

:

pit � E� xit ∣zit ; zi t�1ð Þ;…
� �¼ϕiþ

X1
j ¼ 0

Φjzi t� jð Þ: ð23Þ

Letting ξit be the corresponding projection error, we have

xit ¼ pitþξit : ð24Þ
If xit is predetermined then xit ¼ pit and the errors ξit are identically zero for all i and t. In such a case, using similar

arguments as in Alvarez and Arellano (2003), when T=N-co1 we can obtain

plim
T-1;N-1

1
NT

X�0MX� ¼ E xit�μxi

� �
xit�μxi

� �0� 
 ð25Þ

where μxi corresponds to the partition μi ¼ 0;μ0
xi;μ

0
zi

� �0.
However, when xit is endogenous we have

1
NT

X�0MX� ¼ 1
NT

P�0MP�þ 1
NT

Ξ�0MP�þ 1
NT

P�0MΞ�þ 1
NT

Ξ�0MΞ� ð26Þ

where X� ¼ P�þΞ� denotes the matrix and orthogonal deviation counterpart to xit ¼ pitþξit . By analogy with the Alvarez–
Arellano results, when T=N-co1 we have

1
NT

P�0MP�-
p
E pit�ϕi

� �
pit�ϕi

� �0� 
 ð27Þ

1
NT

P�0MΞ� ¼O
m
N

� 	
ð28Þ
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1
NT

Ξ�0MΞ� ¼O
mT
N

� �
: ð29Þ

Decomposition (24) can also be used to examine the probability limit of NTð Þ�1 X�0Mε�
� 	

. We have

plim
T-1;N-1

1
NT

X�0Mε� ¼ plim
T-1;N-1

1
NT

P�0Mε�þ plim
T-1;N-1

1
NT

Ξ�0Mε�: ð30Þ

Extending the Alvarez–Arellano results (Lemma 2), it turns out that the first term on the right hand side of (30) vanishes, but
NTð Þ�1 Ξ�0Mε�

� 	
is of order O mT=N

� �
.

Thus, when xit is endogenous and T=N-co1, the form of the asymptotic bias is given by

plim
T-1;N-1

bβ�β
� 	

¼ E pit�ϕi

� �
pit�ϕi

� �0� 
þ plim
T-1;N-1

1
NT

Ξ�0MΞ�
( )�1

� plim
T-1;N-1

1
NT

Ξ�0Mε� ð31Þ

or

plim
T-1;N-1

bβ�β
� 	

¼ E pit�ϕi

� �
pit�ϕi

� �0� 
þE ξitξ
0
it

� �mc
2

n o�1
γ0
mc
2
: ð32Þ

Note that when x is predetermined γ0 ¼ 0 and ξit � 0, so that the bias vanishes as long as co1. The conclusion is that
GMM is inconsistent in the endogenous explanatory variable situation. In the predetermined case it is consistent, but it can
be expected to exhibit a bias in the asymptotic distribution of order O m=N

� �
, similar to those reported in Alvarez and

Arellano (2003) for autoregressive models.
The intuition for these results is that in the predetermined case the endogeneity bias tends to disappear as T increases,

whereas in the endogenous case it does not. So having an increasing number of moment conditions results in a larger bias
when the explanatory variables are endogenous.

The previous analysis is informative about the bias term. Okui (2009) discussed a bias-variance trade-off in the number
of moment conditions used for GMM estimation of an autoregressive panel model. He proposed a method for selecting the
number of instruments that minimizes a Nagar approximation to the estimator's mean square error when N and T tend to
infinity. It would be interesting to extend these results to models with predetermined or endogenous explanatory variables.
4. Auxiliary VAR with individual effects

Let us consider a stable VAR(1) process for an m� 1 vector zit:

zit ¼ Aziðt�1Þ þðI�AÞμiþvit ðt ¼ 1;…; TÞ ð33Þ

E vit ∣zt�1
i ;μi

� �¼ 0 ð34Þ

where zt�1
i ¼ z0i0;…; z0iðt�1Þ

� 	0
, and Var vitð Þ ¼Ωt . For notational convenience we assume here that zi0 is also observed.

It is appropriate to conduct our discussion at the multivariate level because typically the conditioning variable will be a
vector rather than a scalar, even if we are dealing with a single-equation model. However, we restrict attention to a first-
order process for simplicity. Generalization to higher-order processes is cumbersome but straightforward.

If the process for individual i started in the infinite past:

zi0 ¼ μiþ
X1
j ¼ 0

Ajvið� jÞ: ð35Þ

Since we wish to allow for the possibility that the process started in any given period, and that different individuals
started at different times, we treat zi0;μi

� �
as realizations of some arbitrary cross-sectional joint distribution.

Let E μi

� �¼ μ, Var μi

� �¼Ωμ, and let the linear projection of zi0 on μi be

zi0 ¼ τ0þΥ1μiþv†i0 ð36Þ

where E v†i0
� 	

¼ 0 and Var v†i0
� 	

¼Γ0. In general, τ0, Υ1, and Γ0 are free parameters, but if the process is mean stationary
τ0 ¼ 0, and Υ 1 ¼ Im. If the process is also stationary in variance, Ωt ¼Ω for all t, and Γ0 ¼

P1
j ¼ 0 A

jΩAj0 . In any event, μi

denotes the mean of the steady state distribution of the process for individual i, and μ is the cross-sectional mean of μi.
VAR forecasts: For s40 we have

zi tþ sð Þ ¼ μiþAs zit�μi

� �þvi tþ sð Þ þAvi tþ s�1ð Þ þ⋯þAs�1vi tþ1ð Þ: ð37Þ

Therefore,

Et zi tþ sð Þ
� �¼ Et μi

� �þAs zit�Et μi

� �� 
 ð38Þ
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and

Et z�it
� �¼ ct zit�

1
T�t

XT� t

s ¼ 1

Et zi tþ sð Þ
� �" #

ð39Þ

so that

Et z�it
� �¼ ct I� 1

T�t

XT� t

s ¼ 1

As

 !
zit�Et μi

� �� 

: ð40Þ

Notice that Et z�it
� �

only depends on zit given Et μi

� �
. This is so because we are dealing with a first-order VAR. However, since

Et μi

� �
depends on all lags, so does Et z�it

� �
.

Similarly,

Et z�i t� jð Þ
� 	

¼ ct zi t� jð Þ �
1

T�t
zi t� jþ1ð Þ þ⋯þzitþEt zi tþ1ð Þ þ⋯þzi T� jð Þ

� �� 
� �
ð41Þ

where

Et zi tþ1ð Þ þ⋯þzi T� jð Þ
� �¼ T�t� jð ÞEt μi

� �þ XT� t� j

s ¼ 1

As

 !
zit�Et μi

� �� 

:

The same is true if conditional expectations Et :ð Þ are replaced by linear projections E�t :ð Þ. The form of E�t μi

� �
is given in the

following Theorem.

Theorem 2 (Sequential linear projections of the effects). For the VAR(1) model presented above, the linear projection of the
vector of individual effects μi on zi

t
is given by the following recursive updating formula for tZ0:

E�t μi

� �¼H�1
t δit ð42Þ

where

H0 ¼ IþΩμΥ
0
1Γ

�1
0 Υ 1 ð43Þ

δi0 ¼ μþΩμΥ
0
1Γ

�1
0 zi0�τ0ð Þ ð44Þ

and for tZ1:

Ht ¼Ht�1þΩμ I�Að Þ0Ω�1
t I�Að Þ ð45Þ

δit ¼ δi t�1ð Þ þΩμ I�Að Þ0Ω�1
t zit�Azi t�1ð Þ
� �

: ð46Þ

For the stationary case, by inserting τ0 ¼ 0, Υ 1 ¼ Im, and Ωt ¼Ω for all t in the result given in the Theorem, we get:

E�t μi

� �¼ IþΛ0þtΛ1ðI�AÞ� 
�1 μþΛ0zi0þΛ1

Xt
s ¼ 1

zis�Aziðs�1Þ
� �" #

: ð47Þ

where Λ0 ¼ΩμΓ
�1
0 and Λ1 ¼ΩμðI�AÞ0Ω�1 (further details on the stationary case are in the Appendix).

Note that the linear projection of the vector of individual effects in a VAR(1) model with mean stationarity and constantΩ but
no covariance stationarity is of the same form as the result in (47), but treating Γ0 as an unrestricted covariance matrix.

Another intermediate possibility is one in which Ωt ¼Ω for all t, but initial conditions are left fully unrestricted, so that
τ0, Υ1, and Γ0 are treated as free parameters. This is a case of special interest because E�t μi

� �
depends on a fixed number of

parameters which does not increase with t.
5. The form of the optimal instruments

An expression for the optimal instruments is given by6

Et x�it
� �¼ B0Et z�it

� �þB1Et z�i t�1ð Þ
� 	

þ⋯þBqEt z�i t�qð Þ
� 	

¼ B†Et z�it qð Þ
� 	

ð48Þ

where B† ¼ B0;…;Bq
� �

and zit qð Þ ¼ z0it ;…; z0i t�qð Þ
� 	0

.

6 Expression (48) is saying that

E x�it�B0z�it�B1z�i t�1ð Þ �⋯�Bqz�i t�qð Þ∣z
t
i

� 	
¼ 0
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If all x's are predetermined for some lead of ε, the form of Et x�it
� �

and B† is known given knowledge of the parameters of
the VAR for zit, so that estimation of β can be based on the sample momentsX

i

X
t

bEt x�it
� �

y�it�x�0itβ
� � ð49Þ

where bEt x�it
� �

is an estimate of Et x�it
� �

. Since the optimal instrument has the same dimension as β no further weighting of the
moments is required.

If on the other hand some of the x's are strictly endogenous, then q and some of the elements of B† are unknown. Thus,
we consider GMM estimates of β based on the momentsX

i

X
t

bEt z�it qð Þ
� 	

y�it�x�0itβ
� �

: ð50Þ

In this case the instruments may have a larger dimension than β so that weighting of the moments may be required.
Indeed, the choice of weight matrix here is equivalent to choosing an estimation method for B†. A suggested weighting is
discussed below.7 Next, we consider some examples.

Example 1: An equation from a VAR. We have

w1it ¼ a01wi t�1ð Þ þηiþεit ð51Þ

E εit ∣wt�1
i

� �¼ 0: ð52Þ
In this case zit ¼wi t�1ð Þ and xit ¼ zit , so that B0 ¼ I, and Bj ¼ 0 for j40.

When the model of interest is a VAR, the auxiliary and substantive models coincide, except for the fact that the auxiliary
model is based on stronger assumptions than the substantive model. In contrast, in conditional models the auxiliary
assumptions give a parametric form to the feedback processes, which in the substantive model will typically remain
unspecified.8

Example 2: Partial adjustment regression. We have

yit ¼ αyi t�1ð Þ þβ0witþβ1wi t�1ð Þ þηiþεit ð53Þ

E εit ∣yt�1
i ;wt

i

� �¼ 0: ð54Þ
In this case zit ¼ yi t�1ð Þ;wit

� 	0
, xit ¼ yi t�1ð Þ;wit ;wi t�1ð Þ

� 	0
,

xit ¼
yi t�1ð Þ
wit

wi t�1ð Þ

0B@
1CA¼

1 0
0 1
0 0

0B@
1CAzitþ

0 0
0 0
0 1

0B@
1CAzi t�1ð Þ � B0zitþB1zi t�1ð Þ: ð55Þ

Example 3: Cross-country growth: The next example is an augmented Solow model of the determinants of growth as in
Caselli et al. (1996). The equation is

yit ¼ αyi t�1ð Þ þsi t�1ð Þγþ f 0i t�1ð Þδþηiþεit ð56Þ

E εit ∣yt�1
i ; st�1

i ; f t�2
i

� 	
¼ 0: ð57Þ

The time interval is 5 years, yit is log per-capita GDP, f i t�1ð Þ is a vector of flow variables containing the rates of investment
and population growth, and si t�1ð Þ is a stock variable measuring the secondary school enrollment rate.

In this case zit ¼ yi t�1ð Þ; si t�1ð Þ; f
0
i t�2ð Þ

� 	0
, and

yi t�1ð Þ
si t�1ð Þ
f i t�1ð Þ

0B@
1CA¼

1 0 0
0 1 0
A31 A32 A33

0B@
1CA yi t�1ð Þ

si t�1ð Þ
f i t�2ð Þ

0B@
1CAþ

0
0

ufi t�1ð Þ

0B@
1CA ð58Þ

where the last equation coincides with the equation for f i t�2ð Þ in the VAR model of zit. Thus,

Et x�it
� �¼ B0Et z�it

� �
: ð59Þ

Since B0 is in general a squared, nonsingular matrix, it is irrelevant in the construction of optimal instruments, and the
(footnote continued)
or that the time-series individual-specific projection of xit on zti only depends on the first q lags of zit and satisfies
E xit�B0zit�B1zi t�1ð Þ �⋯�Bqzi t�qð Þ �ξi∣zti
� �¼ 0.

7 Note that estimation of an extended VAR for x0it ; z
0
it

� �
subject to exclusion restrictions (of lagged x's) is not warranted. The reason is that the B† are

meant to be the coefficients of a linear projection of xit on zi
t
and individual effects, and there is no reason why the errors in this projection should be

serially uncorrelated.
8 Optimal instruments for scalar autoregressive models are discussed in Appendix C.



M. Arellano / Research in Economics 70 (2016) 238–261 247
optimal instrument in the growth example can be simply taken to be E z�it ∣z
t
i

� �
. So in both the VAR and growth examples we

have B0 ¼ I and Bj ¼ 0 for j40.
Example 4: Euler equation for household consumption: The last example is an Euler equation of the type considered by

Zeldes (1989) and others:

ln 1þritð Þ ¼ αΔln citþβ0witþηiþεit ð60Þ
where wit is a vector of changes in family size variables, rit is the rate of return on a riskless asset, and cit is consumption; ηi
captures heterogeneity in discount rates, and εit unobservable changes in tastes and expectation errors.

The vector of instruments zit contains wit, lagged income, and marginal taxes, so that both returns and consumption
growth are treated as strictly endogenous variables.

In this case, letting zit ¼ w0
it ; z

0
2it

� �0, we have

Δln cit ¼
Xq
j ¼ 0

π0
jzi t� jð Þ þζiþξit ð61Þ

wit ¼ I;0ð Þzit ð62Þ
or

Et
Δln cit
� ��

w�
it

 !
¼

π0
0

I;0

 !
Et z�it
� �þ⋯þ π0

q

0

� �
Et z�i t� Jð Þ
� 	

: ð63Þ

Thus, there is a nontrivial specification of the B0…Bq
� �

due to the presence of strictly endogenous variables and external
instruments.
6. PML estimation of the VAR model

To obtain feasible estimators, the coefficients parameterizing the optimal instruments must be replaced by sample
estimates. The suggested estimates are Gaussian pseudo-maximum likelihood statistics of the VAR auxiliary model. The
estimates are obtained under the assumptions that the data are normally distributed and the error variance matrices are
homoskedastic, but the multivariate linear projection of the initial observations on the effects is left unrestricted. Estimates
of this type were considered by Blundell and Smith (1991), and Alvarez and Arellano (2003) for a scalar autoregressive
model.9 Alvarez and Arellano obtained a useful concentrated likelihood that only depended on the autoregressive para-
meter, and found that the maximizer of this criterion behaved very well in simulations.10 This section reports a multivariate
generalization of the PML results of Alvarez and Arellano, which will be required in practice for obtaining feasible optimal
instruments.11

As shown in the Appendix, the log-likelihood given zi0 (under homoskedasticity and a joint normal distribution for μi and
zi0 with unrestricted mean and covariance matrix) can be written as:

ln f zi1;…; ziT ∣zi0ð Þ ¼ �ðT�1Þ
2

ln detΩ�1
2

XT�1

t ¼ 1

u�0
itΩ

�1u�
it�

1
2
ln detΘ0�

1
2

ui�ϕ0�Φ1zi0
� �0Θ�1

0 ui�ϕ0�Φ1zi0
� �

: ð64Þ

where u�
it ¼ z�it�Az�iðt�1Þ, ui ¼ zi�Azið�1Þ and

ui∣zi0 �N ϕ0þΦ1zi0;Θ0
� � ð65Þ

Concentrating ϕ0, Φ1, Θ0 and Ω, the PMLE of A solves

~A ¼ arg min ln det Z�0 �AZ�0
�1

� 	
Z��Z�

�1A
0� �þ 1

T�1
ln det Z

0 �AZ
0
�1

� 	
S0 Z�Z �1A

0� �� �
ð66Þ

where S0 ¼ I�F F 0F
� ��1F 0 and F is the N � ðmþ1Þ matrix of constants and initial observations f i0 ¼ 1; z0i0

� �0.
PML estimates of the remaining parameters: Given ~A, they are given by

~Ω ¼ 1
NðT�1Þ

XN
i ¼ 1

XT�1

t ¼ 1

z�it� ~Az�iðt�1Þ
� 	

z�it� ~Az�iðt�1Þ
� 	0

ð67Þ
9 Blundell and Smith (1991) considered a generalized least squares estimator of the same model, which has been further discussed by Blundell and
Bond (1998).

10 This is the PML estimate that does not restrict the individual effect variance to be non-negative. Alvarez and Arellano also discussed an alternative
PML that enforced non-negativity, but in such a case a boundary solution may occur.

11 One problem with this method as an estimator of substantive VAR parameters is that it is not robust to lack of time series homoskedasticity. PML
estimation of panel AR(p) models with time series heteroskedasticity is developed in Alvarez and Arellano (2004).
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~Φ ¼ ~ϕ0;
~Φ1

� 	
¼ Z

0 � ~AZ
0
�1

� 	
F F 0F
� ��1 ð68Þ

and letting ~ui ¼ zi� ~Azið�1Þ:

~Θ0 ¼
1
N

XN
i ¼ 1

~ui � ~ϕ0� ~Φ1zi0Þ ~ui � ~ϕ0� ~Φ1zi0Þ
0
:

��
ð69Þ

The estimated mean and the variance matrix of ηi ¼ ðI�AÞμi can be obtained as:

~Ωη ¼ ~Θ0þ ~Φ1
~Σ0

~Φ
0
1� ~Ω=T ð70Þ

~η ¼ ~ϕ0þ ~Φ1z0 ð71Þ
where w0 and ~Σ 0 are the sample mean and the variance of wi0.

Finally, estimates of Υ1 and τ0 are given by

~Υ 1 ¼ ~Σ0
~Φ
0
1
~Ω

�1
η I� ~A
� 	

ð72Þ

~τ0 ¼ z0� ~Σ 0
~Φ
0
1
~Ω

�1
η ~η: ð73Þ
7. Inference with feasible SIV estimators

An unfeasible estimator for a parameterization of the instruments takes the form

bβUF ¼
XN
i ¼ 1

XT�1

t ¼ 1

htðzti ; γÞx�0it
 !�1 XN

i ¼ 1

XT�1

t ¼ 1

htðzti ; γÞy�it
 !

; ð74Þ

where γ is a pseudo true value that in practice will be defined by the probability limit of some sample statistic.
Under standard regularity conditions, for fixed T and large N,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N T�1ð Þ
p

ðbβUF�βÞ-d N 0;VUFð Þ ð75Þ
with asymptotic variance matrix given by

VUF ¼ T�1ð Þ E H0
iX

�
i

� �� 
�1E H0
iε

�
i ε

�0
i Hi

� �
E X�0

i Hi
� �� 
�1 ð76Þ

where Hi ¼ hi1;…;hiðT�1Þ
� �0, hit ¼ htðzti ; γÞ, X�

i ¼ x�i1;…; x�iðT�1Þ
� 	0

, and ε�i ¼ ε�i1;…; ε�iðT�1Þ
� 	0

.
Provided Etðε2itÞ ¼ σ2 and Etþ jðεitεiðtþ jÞÞ ¼ 0 for j40 it will be the case that

VUF ¼ σ2 T�1ð Þ E H0
iX

�
i

� �� 
�1E H0
iHi

� �
E X�0

i Hi
� �� 
�1

: ð77Þ

If in addition Etðx�itÞ ¼ htðzti ; γÞ then VUF coincides with the variance bound.
A feasible estimator bβF is of the same form as bβUF but γ is replaced by an estimate bγ . Provided, plimN-1bγ ¼ γ andffiffiffiffi

N
p

ðbγ�γÞ is bounded in probability, the feasible and unfeasible estimators are asymptotically equivalent.
To see this first note that

ffiffiffiffi
N

p bβF�β
� 	

¼ 1
N

XN
i ¼ 1

XT�1

t ¼ 1

ht zti ; γ
� �

x�0it

 !�1
1ffiffiffiffi
N

p
XN
i ¼ 1

XT�1

t ¼ 1

ht zti ; bγ� �
v�itþop 1ð Þ:

Moreover, using the mean value theorem

1ffiffiffiffi
N

p
XN
i ¼ 1

XT�1

t ¼ 1

ht zti ; bγ� �
v�it ¼

1ffiffiffiffi
N

p
XN
i ¼ 1

XT�1

t ¼ 1

ht zti ; γ
� �

v�itþ
1
N

XN
i ¼ 1

XT�1

t ¼ 1

∂htðzti ; γÞ
∂γ0

v�it

 ! ffiffiffiffi
N

p bγ�γ
� �þop 1ð Þ:

Since E v�it ∣z
t
i

� �¼ 0, we have that plimN-1N�1PN
i ¼ 1

PT�1
t ¼ 1 v

�
it∂htðzti ; γÞ=∂γ0 ¼ 0. Therefore, the second term on the rhs of the

previous expression is opð1Þ. From this it follows that
ffiffiffiffi
N

p
ðbβF�βÞ -d N 0;VUFð Þ. Similar arguments can be used for the cases

where T or both N and T tend to infinity.
Consistent estimation of the asymptotic variance matrix: A natural estimate of the “Hessian” component of VUF is

bΨ NT ¼
1

N T�1ð Þ
XN
i ¼ 1

XT�1

t ¼ 1

bhitx�0it ; ð78Þ
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where bhit ¼ htðzti ; bγ Þ. bΨ NT is an N-consistent estimator of T�1ð Þ�1E H0
iX

�
i

� �
, but also an N and T consistent estimator of

plimT-1;N-1 bΨ NT .
The conventional robust fixed-T estimate of the “outer-product” component of VUF is

~Υ NT ¼
1

N T�1ð Þ
XN
i ¼ 1

bH 0
ibε�i bε�0

i
bHi ð79Þ

where bε�it ¼ y�it�x�0it
bβF and bHi contains the estimated instruments bhit .

It can be shown that

~Υ NT ¼ bΩ0þ
XT�2

ℓ ¼ 1

1� ℓ
T�1

� � bΩℓþ bΩ 0
ℓ

� 	
ð80Þ

where

bΩℓ ¼ 1
N T�1�ℓð Þ

XN
i ¼ 1

XT�1

t ¼ ℓþ1

bε�itbε�i t�ℓð Þ
bhit
bh 0
i t�ℓð Þ ð81Þ

for ℓ¼ 0;1;…; T�2.12

From a non-fixed T perspective, we consider the following estimator of the outer-product component:

bΥ NT ¼ bΩ0þ
Xr
ℓ ¼ 1

1� ℓ
rþ1

� � bΩℓþ bΩ 0
ℓ

� 	
; ð82Þ

where rrT�2.
For r¼ T�2, bΥ NT particularizes to the standard robust fixed-T formula (Arellano, 1987). In a fixed T context, it is natural

to use ~Υ NT , since the number ofΩℓ terms is fixed, and large N ensures consistent estimation of all of them, includingΩ T�2ð Þ,
which is a time series average with a single observation. However, from a non-fixed T perspective, the bound r on the
number of autocovariances used to form bΥ NT should be chosen as a suitable function of T to ensure consistent estimation for
a given asymptotic arrangement in N and T.

Formula (82) is a panel data version of the estimator proposed in Newey and West (1987) for time series data. It has the
attractive feature of providing a positive semidefinite estimator for any value of r.13

In the time series context, the term 1�ℓ= rþ1ð Þ� 

appearing in (82) is motivated as a damping factor for reducing the

sampling error induced by higher-order sample covariances in the truncated estimate (called modified Bartlett weights in
Anderson, 1971, pp. 511–513). It is interesting that these weights appear naturally as a feature of the sample covariance
formula (80) from a cross-sectional perspective.

In the fixed-T panel data context, formula (79) is often used with instrument matrices whose number of columns is of
order T or T2, so that the dimension of ~Υ NT itself increases with T . Here, however, we are considering optimal instruments hit
with a fixed dimension for any value of T.

The proposal is, therefore, to base inference on the following estimate of the asymptotic covariance matrix offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N T�1ð Þ

p
ðbβF�βÞ for a chosen value of r:

bV †

UF ¼ bΨ �1

NT
bΩ0þ

Xr
ℓ ¼ 1

1� ℓ
rþ1

� � bΩℓþ bΩ 0
ℓ

� 	" # bΨ 0�1

NT : ð83Þ

Optimal instruments with strictly endogenous explanatory variables: a two-step GMM method: Now we can pursue the
discussion on estimation when part of the x's are strictly endogenous and the instruments have a larger dimension than β.
We suggest using the inverse of bΥ NT as the weight matrix. Thus, we consider estimators of the form

~β ¼
X
i

X
t

x�it
bh 0
it

 !bΥ �1

NT

X
i

X
t

bhitx
�0
it

 !" #�1

X
i

X
t

x�it
bh 0
it

 !bΥ �1

NT

X
i

X
t

bhity�it

 !
ð84Þ

where bhit is an estimate of Et z�it qð Þ
� 	

as introduced in (50).
12 Note that

bH 0
ibε�

i bε�0
i
bHi ¼

XT�1

t ¼ 1

XT�1

s ¼ 1

bε�
itbε�0

is
bhit
bh 0
is ¼ T�1ð ÞΩi0þ

XT�2

ℓ ¼ 1

T�1�ℓð Þ ΩiℓþΩ0
iℓ

� �
where Ωiℓ ¼ T�1�ℓð Þ�1PT�1

t ¼ ℓþ1 bε�
itbε�

i t�ℓð Þ
bhit
bh 0
i t�ℓð Þ and

bΩℓ ¼N�1PN
i ¼ 1 Ωiℓ for ℓ¼ 0;1;…; T�2.

13 The estimator in (82) relies on cross-sectional independence. A related formula for large T, fixed N within-group standard errors that allow for
arbitrary cross-sectional dependence is proposed in Arellano (2003).
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Note that ~β can be regarded as the SIV estimator that uses the following moments that have the same dimension of β:X
i

X
t

bx†it y�it�x�0it
~β

� 	
¼ 0 ð85Þ

where bx†it ¼ P
i
P

tx
�
it
bh 0
it

� 	bΥ �1

NT
bhit .
8. Empirical illustrations

8.1. VAR for firm panel data

We estimate autoregressive employment and wage equations from firm panel data. We first consider the dataset used by
Alonso-Borrego and Arellano (1999). This is a balanced panel of 738 Spanish manufacturing companies, for which there are
available annual observations for 1983–1990. Secondly we consider a longer panel of 385 firms from the same source (Bank
of Spain, Central de Balances) on which 14 years of data are available, also starting in 1983. The average size of the firms in
the second panel is more than twice as large as that of those in the first one.

We estimate a first-order VAR model for the logs of employment and wages, denoted nit and wit respectively. Individual
and time effects are included in both equations. Time effects are removed prior to estimation by taking data in deviations
from period-specific cross-sectional means.

Within-groups (WG), GMM, PML, and projection-restricted simple IV (SIV) estimates are reported. In this illustration
PML appears in two different roles. First, it is an input in calculating feasible optimal instruments for SIV estimation. Second,
since the auxiliary and substantive models coincide in this illustration, PML can be also regarded as an estimator of the
parameters of interest that imposes time-series homoskedasticity.14

Table 1 shows the results. Focusing on the leading coefficient in the employment equation, first notice the larger size of
the within-group estimates from the longer panel, which is to be expected since WG is known to have a small-T downward
bias (Nickell, 1981). Next, the discrepancy between GMM and PML estimates is as noticeable as that between WG and GMM.
Finally, SIV estimates are in between GMM and PML. The difference between GMM and PML may be due to finite-sample
bias in GMM, heteroskedasticity bias in PML, or a combination of both. SIV estimates are as robust as GMM under a fixed-T
asymptotics, but less prone to bias in a double asymptotics. In particular, SIV is robust to time-series heteroskedasticity in
short panels whereas PML is not. Reported SIV estimates are half way between GMM and PML.

8.2. Monte Carlo simulations

Next we performed a simulation exercise loosely calibrated to the previous firm panel dataset. The design was chosen
from the partial adjustment representation as follows:

yit ¼ 1þ0:8yiðt�1Þ �0:5xitþ0:3xiðt�1Þ þηiþvit ð86Þ

xit ¼ 0:5þ0:3xiðt�1Þ þξiþεit ; ð87Þ
where all unobservables are iid normally distributed (over both i and t) with zero mean and σ2

v ¼ σ2
ε ¼ 0:01, Corr vit ; εitð Þ ¼ 0,

σ2
η ¼ σ2

ξ ¼ 0:09, and Corr ηi;ξi
� �¼ 0:6. Therefore, the variance of the fixed effects is 9 times that of the random errors. There is

no feedback from lagged y into x, and the long run effect of x on y is unity. Initial observations are generated from the
stationary distribution of the process. The corresponding VAR is

yit
xit

 !
¼ 0:75

0:5

� �
þ 0:8 0:15

0 0:3

� � yiðt�1Þ
xiðt�1Þ

 !
þ

ciþeit
ξiþεit

 !
ð88Þ

where eit ¼ vit�0:5εit , ci ¼ ηi�0:5ξi,

Var
eit
εit

 !
¼Ω¼ 0:0125 �0:005

�0:005 0:01

� �
ð89Þ

and

Var
ci
ξi

 !
¼Ωη ¼

0:0585 0:009
0:009 0:09

� �
: ð90Þ

The implied correlations are Corr eit ; εitð Þ ¼ �0:447 and Corr ci; ξi
� �¼ 0:124.

In Table 2 we report medians and median absolute errors of the WG, GMM, PML, and SIV estimators for {N¼738, T¼8}
and {N¼385, T¼14}.
14 The PML estimates that we report use unrestricted initial conditions. According to estimates of Υ1 for the two panels (reported in Table 1) there is
some evidence of nonstationary initial conditions.



Table 1
Employment and wage VAR model: panel data of Spanish firms.

Variables WG GMM PML SIV

N ¼ 738; T ¼ 8
Employment equation
niðt�1Þ 0.71 0.86 1.00 0.93

0:03ð Þ 0:06ð Þ 0:07ð Þ
wiðt�1Þ 0.08 0.12 0.08 0.14

0:03ð Þ 0:07ð Þ 0:08ð Þ

Wage equation
niðt�1Þ 0.06 �0.03 0.01 �0.02

0:02ð Þ 0:08ð Þ 0:08ð Þ
wiðt�1Þ 0.44 0.29 0.68 0.32

0:03ð Þ 0:10ð Þ 0:10ð Þ

N ¼ 385; T ¼ 14
Employment equation
niðt�1Þ 0.86 0.83 0.995 0.90

0:05ð Þ 0:05ð Þ 0:05ð Þ
wiðt�1Þ 0.26 0.29 0.28 0.30

0:09ð Þ 0:13ð Þ 0:15ð Þ

Wage equation
niðt�1Þ 0.01 �0.09 0.03 �0.15

0:02ð Þ 0:04ð Þ 0:05ð Þ
wiðt�1Þ 0.45 0.34 0.62 0.32

0:07ð Þ 0:10ð Þ 0:12ð Þ

All data in deviations from period-specific cross-sectional means.
Estimates of Υ1 using SIV estimates of A:
ðN¼ 738; T ¼ 8Þ sample:

bΥ 1ð738Þ ¼
0:863 0:155
0:008 0:849

� �

ðN¼ 385; T ¼ 14Þ sample:

bΥ 1ð385Þ ¼
0:983 0:441
�0:004 0:905

� �
:
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In another experiment with N¼738, T¼8 we generated data with trending variances. The specification in this case was

σ2
vt ¼ σ2

εt ¼ 0:01þ0:001t; ð91Þ
with t¼0 selected in such a way that the resulting sequence of variances ranged from 0.005 to 0.012. This is also given in
Table 2. Finally, in Table 3 we report further simulations for {N¼200, T¼8}, {N¼100, T¼6}, and {N¼50, T¼15}. For all cases
we conducted 1000 replications.

Focusing again on the leading coefficient in the first equation (a11 with true value of 0.8), Table 2 shows that GMM is
downward biased but PML and SIV are virtually median unbiased. The robustness of SIV comes at the cost of a larger median
absolute error than PML. The third panel of Table 2 for the experiment with trending variance shows that PML is upward
biased, which goes in the direction of the empirical findings. Table 3 reports results for other sample sizes. Those in the first
two experiments are similar to the Arellano–Bond firm-level data, and the cross-country panels used in growth studies,
respectively. The last one illustrates the situation in a smaller panel that would be difficult to classify as either long T or large
N, small T. In all cases SIV is unbiased and has reasonable median absolute errors, which is in contrast to some spectacular
GMM biases.

8.3. Estimating country growth convergence rates

Using panel GMM, Caselli et al. (1996) found a surprisingly large estimate of the convergence rate of about 10 percent.
This was in sharp contrast with earlier cross-sectional estimates of Barro and Sala-i-Martin, who found convergence rates of
2–3%.15 Caselli et al. claimed that earlier estimates were biased due to lack of proper control of country effects and
predeterminedness.

The worry is that their estimates have finite sample downward biases in the GDP autoregressive coefficient that translate
into upward biases in estimated convergence rates, as noted by Bond et al. (2001).
15 See Barro and Sala-i-Martin (1995) for details and further references.



Table 2
Monte Carlo simulations for the VAR model.

Variables WG GMM PML SIV

Median mae Median mae Median mae Median mae

N¼ 738; T ¼ 8
a11 0.48 0.32 0.72 0.08 0.80 0.02 0.80 0.05
a12 0.09 0.06 0.13 0.03 0.15 0.02 0.15 0.03
a21 0.03 0.03 0.01 0.04 0.00 0.01 �0.01 0.05
a22 0.12 0.18 0.29 0.03 0.30 0.01 0.30 0.03

N¼ 385; T¼ 14
a11 0.63 0.17 0.74 0.06 0.80 0.01 0.80 0.03
a12 0.12 0.03 0.13 0.02 0.15 0.01 0.15 0.02
a21 0.02 0.02 0.01 0.02 �0.00 0.01 �0.00 0.02
a22 0.21 0.09 0.29 0.02 0.30 0.01 0.30 0.02

N¼ 738; T ¼ 8
Data with trend in variance
a11 0.50 0.30 0.70 0.11 0.86 0.06 0.81 0.07
a12 0.11 0.04 0.12 0.04 0.17 0.02 0.16 0.04
a21 0.03 0.03 0.01 0.05 �0.01 0.01 �0.01 0.06
a22 0.11 0.19 0.29 0.03 0.31 0.02 0.30 0.03

a11 ¼ 0:8; a12 ¼ 0:15; a21 ¼ 0; a22 ¼ 0:3.
1000 replications. mae is the median absolute error.

Table 3
Monte Carlo simulations for the VAR model.

Variables WG GMM PML SIV

Median mae Median mae Median mae Median mae

N¼ 200; T ¼ 8
a11 0.48 0.32 0.59 0.21 0.80 0.05 0.80 0.09
a12 0.09 0.06 0.08 0.07 0.15 0.03 0.16 0.06
a21 0.03 0.03 0.03 0.07 �0.00 0.02 0.00 0.09
a22 0.12 0.18 0.27 0.05 0.30 0.02 0.30 0.05

N¼ 100; T ¼ 6
a11 0.35 0.45 0.40 0.40 0.80 0.10 0.80 0.22
a12 0.08 0.07 0.04 0.13 0.15 0.06 0.15 0.12
a21 0.04 0.05 0.04 0.14 �0.00 0.05 �0.01 0.19
a22 0.04 0.26 0.22 0.10 0.30 0.05 0.29 0.11

N¼ 50; T ¼ 15
a11 0.64 0.16 0.62 0.18 0.80 0.04 0.80 0.06
a12 0.12 0.04 0.10 0.06 0.15 0.04 0.15 0.05
a21 0.02 0.03 0.02 0.04 0.00 0.02 0.00 0.06
a22 0.22 0.09 0.24 0.06 0.30 0.03 0.30 0.04

a11 ¼ 0:8; a12 ¼ 0:15; a21 ¼ 0; a22 ¼ 0:3.
1000 replications. mae is the median absolute error.
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We obtained the Caselli et al. data and re-estimated an augmented Solow model of the form given in (56) with the new
projection-restricted IV estimator. We have found a smaller convergence rate of about 4%, but imprecisely estimated
(Table 4).16 From a substantive point of view, however, explaining the uncovered heterogeneity in steady state income levels
seems at least as crucial as finding good estimates of the convergence coefficient.

The standard errors reported in Table 4 were calculated from formula (83) with r¼ T�2. Using smaller values of r made
very little difference. Further exploration of the effects on the estimates and standard errors of using optimal instruments
based on higher-order VAR models would be of some interest.
16 We use similar data as Caselli et al. and Bond et al. Our sample is the same as the one in Table 2 of Bond et al., except for the exclusion of 9 countries
and 17 observations in order to have a balanced panel.



Table 4
Augmented Solow model N¼ 92; T ¼ 5.

Variables OLS WG GMM SIV

1þβð Þ 0.947 0.680 0.698 0.808
(s.e.) 0:017ð Þ 0:057ð Þ 0:107ð Þ 0:248ð Þ

ln enrtð Þ 0.035 �0.049 �0.140 �0.114
(s.e) 0:014ð Þ 0:029ð Þ 0:066ð Þ 0:229ð Þ

ln stð Þ 0.081 0.138 0.144 0.090
(s.e) 0:017ð Þ 0:039ð Þ 0:055ð Þ 0:075ð Þ
ln ntþgþdð Þ �0.094 �0.033 0.230 0.227
(s.e) 0:053ð Þ 0:152ð Þ 0:339ð Þ 1:384ð Þ

Implied λ 0.011 0.077 0.072 0.043
(s.e) 0:004ð Þ 0:017ð Þ 0:031ð Þ 0:062ð Þ

All data in deviations from period-specific cross-sectional means. Data for 5-year intervals 1960–1985. s.e. robust to heterosk. & autocorrelation, m¼ T�2.
n¼population growth rate; g¼rate of technical change; d¼rate of depreciation of physical capital (gþd¼0.05); s¼saving rate; enr¼secondary-school
enrollment rate.
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9. Concluding remarks

We developed a new methodology for instrumental variable estimation of panel data models with general pre-
determined or endogenous explanatory variables. The suggested instruments are linear forecasts of the explanatory vari-
ables constructed under the assumption that the vector of conditioning variables follows a panel VAR process. These are
linear combinations of all available lags as in ordinary GMM, but with the crucial difference that the number of first-stage
coefficients is kept constant regardless of the value of T. We show analytically and through Monte Carlo simulations that this
fundamentally alters the properties of the estimators in double asymptotics and finite samples. The new estimators elim-
inate double-asymptotic biases while retaining similar robustness and optimality properties as GMM in fixed T
environments.

Specific discussions on unbalanced panels and higher-order auxiliary models are clearly of practical importance, but they
are left for future work. GMM is not well suited to cope with the complications derived from typical patterns of unba-
lancedness or rotation in firm and household panels, which magnify the number of first stage coefficients. In the GMM
context this has been avoided at the expense of introducing ad-hoc restrictions in the form of the cross-sectional projections
across sub-panels—see Arellano and Bond (1991) for discussion. In contrast, projection-restricted IV estimators offer the
possibility of a coherent specification of optimal instruments across sub-panels based on a small number of common
coefficients.
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Appendix A. Double-asymptotic results
Proof of Theorem 1. We shall use the following implication of Assumption 1. For all r; sZ0 we have

Et xi tþ rð Þεi tþ sð Þ
� �¼ E xi tþ rð Þεi tþ sð Þ

� �
: ð92Þ

To see this note that

E wi tþ rð Þw0
i tþ sð Þ∣w

t
i ;μi

� 	
¼ μiμ

0
iþ
X1
j ¼ 0

X1
k ¼ 0

Ψ jE ζi tþ r� jð Þζ
0
i tþ s�kð Þ∣ζ

t
i ;μi

� 	
Ψ 0

k ¼ μiμ
0
iþ
X1
j ¼ 0

X1
k ¼ 0

Ψ jE ζi tþ r� jð Þζ
0
i tþ s�kð Þ

� 	
Ψ 0

k:

ð93Þ
By the law of iterated expectations

E wi tþ rð Þw0
i tþ sð Þ∣z

t
i

� 	
¼ E E wi tþ rð Þw0

i tþ sð Þ∣w
t
i ;μi

� 	
∣zti

h i
¼ E wi tþ rð Þw0

i tþ sð Þ
� 	

þEt μiμ
0
i

� ��E μiμ
0
i

� �
: ð94Þ

Eq. (92) holds because εit does not have an individual effect (i.e the first component of μi is zero).
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Let us examine the form of E X�0Mε�
� 	

. We have

E X�0Mε�
� 	

¼
XT�1

t ¼ 1

E X�0
t Mtε�t

� �¼m
XT�1

t ¼ 1

tE x�itε
�
it

� �
: ð95Þ

To see this note that

E X�0
t Mtε�t

� �¼ E x�0ℓtMtε�t
� �
 �¼ Etr MtEt ε�t x

�0
ℓt

� �� 

 �¼mtE ε�itx
�
it

� �
: ð96Þ

The last equality comes from (92), tr Mtð Þ ¼mt, and the fact that due to cross-sectional independence:

Et ε�t x
�0
ℓt

� �¼ Et ε�1tx
�
ℓ1t

� �
… Et ε�1tx

�
ℓNt

� �
⋮ ⋱ ⋮

Et ε�Ntx
�
ℓ1t

� �
… Et ε�Ntx

�
ℓNt

� �
0B@

1CA¼
Et ε�1tx

�
ℓ1t

� �
… Et ε�1t

� �
Et x�ℓNt
� �

⋮ ⋱ ⋮
Et ε�Nt
� �

Et x�ℓ1t
� �

… Et ε�Ntx
�
ℓNt

� �
0B@

1CA¼ Et ε�itx
�
ℓit

� �
IN : ð97Þ

Next, consider

E x�itε
�
it

� �¼ T�t
T�tþ1

� �
E εitxitð Þ� 1

T�tð ÞE εit xi tþ1ð Þ þ⋯þxiT
� �� 
� 1

T�tð ÞE εi tþ1ð Þ þ⋯þεiT
� �

xit
� 
�

þ 1

T�tð Þ2
E εi tþ1ð � þ⋯þεiT
� �

xi tþ1ð Þ þ⋯þxiT
� �� �)

: ð98Þ

Collecting terms we obtain

E x�itε
�
it

� �¼ γ0�
1

T�tð Þ T�tþ1ð Þ � T�tð Þγ� T� tð Þ þ⋯þγ�1þγ1þ⋯þ T�tð Þγ T� tð Þ
n o

ð99Þ

Thus

E X�0Mε�
� 	

¼m
XT�1

t ¼ 1

tE x�itε
�
it

� �¼m γ0
XT�1

t ¼ 1

t�
XT�1

t ¼ 1

t
T�tð Þ T�tþ1ð ÞB T� tð Þ

 !
ð100Þ

where

B T� tð Þ ¼ T�tð Þγ� T� tð Þ þ⋯þγ�1þγ1þ⋯þ T�tð Þγ T� tð Þ: ð101Þ

We now use the following facts:

XT�1

t ¼ 1

t ¼ 1
2
T�1ð ÞT ð102Þ

XT�1

t ¼ 1

t
T�tð Þ T�tþ1ð Þ ¼ T�

XT
t ¼ 1

1
t

ð103Þ

B T� tð Þ
�� ��o B1j j ð104Þ

Hence, when xit is endogenous (γ0a0) we have E X�0Mε�
� 	

¼O mT2
� 	

or

E
X�0Mε�

NT

 !
¼O

mT
N

� �
: ð105Þ

In contrast, when xit is predetermined we have E X�0Mε�
� 	

¼O mTð Þ or

E
X�0Mε�

NT

 !
¼O

m
N

� 	
:□ ð106Þ
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Appendix B. Auxiliary VAR with individual effects

B.1. Sequential linear projections of the effects
Proof of Theorem 2. I show that for the VAR(1) model presented in the main text, the linear projection of the vector of
individual effects μi on zti ¼ z0i0;…; z0it

� �0 is given by

E� μi∣z
t
i

� �¼ Ω�1
μ þΥ 0

1Γ
�1
0 Υ 1þðI�AÞ0

Xt
s ¼ 1

Ω�1
s

 !
ðI�AÞ

" #�1

� Ω�1
μ μ�Υ 0

1Γ
�1
0 τ0

� 	
þðI�AÞ0

Xt
s ¼ 1

Ω�1
s zis�Aziðs�1Þ
� �þΥ 0

1Γ
�1
0 zi0

" #

¼ IþΛ0Υ 1þ
Xt
s ¼ 1

Λ1 s I�Að Þ
" #�1

μþΛ0 zi0�τ0ð Þþ
Xt
s ¼ 1

Λ1 s zis�Aziðs�1Þ
� �" #

ð107Þ

for tZ1, and for t¼0:

E� μi∣z
t
i

� �¼ Ω�1
μ þΥ 0

1Γ
�1
0 Υ 1

h i�1
Ω�1

μ μþΥ 0
1Γ

�1
0 zi0�τ0ð Þ

h i
¼ IþΛ0Υ 1
� 
�1 μþΛ0 zi0�τ0ð Þ� 
 ð108Þ

where Λ0 ¼ΩμΥ
0
1Γ

�1
0 and Λ1 s ¼ΩμðI�AÞ0Ω�1

s .
The VAR model implies that

zit ¼ ðI�AtÞμiþ vitþAviðt�1Þ þ⋯þAt�1vi1
� 	

þAtzi0: ð109Þ

Substituting (36) in (109) we obtain

zit ¼ IþAt Υ 1� I
� �h i

μiþAtτ0þz�it ð110Þ

where

z�it ¼ vitþAviðt�1Þ þ⋯þAt�1vi1þAtv†i0: ð111Þ

Let G denote the tþ1ð Þm�m matrix G¼ Im;A
0;A20

;…;At0
� 	0

. Then

zti ¼ FμiþGτ0þz�ti ð112Þ
where

F ¼ ι � Ið ÞþG Υ 1� I
� �

; ð113Þ
ι is a tþ1ð Þ � 1 vector of ones, and z�ti ¼ z�0i0;…; z�0it

� �0. Therefore,
E zti
� �¼ FμþGτ0 ð114Þ

Var zti
� �¼ FΩμF

0 þV ð115Þ
where V ¼ Var z�ti

� �
. Moreover, note that

Cov zti ;μi

� �¼ FΩμ: ð116Þ

The linear projection is given by

E� μi∣z
t
i

� �¼ψ tþΠ 0
tz

t
i ð117Þ

where

ψ t ¼ μ�Π 0
tE zti
� � ð118Þ

and

Πt ¼ Var zti
� �� 
�1Cov zti ;μi

� �
: ð119Þ

Letting Ωμ ¼ PP0 and M¼FP, and using the matrix inversion lemma

Var zti
� �� 
�1 ¼ MM0 þV

� ��1 ¼ V �1�V �1M IþM0V �1M
� 	�1

M0V �1:
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Moreover, letting V �1 ¼ B0B where B is a block-lower triangular matrix

Π 0
tz

t
i ¼ΩμF

0 V �1�V �1M IþM0V �1M
� 	�1

M0V �1
� �
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h i
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¼ P I� M0B0� �
BMð Þ IþM0B0BM

� ��1
h i

M0B0� �
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� �¼ P Iþ M0B0� �
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�1 M0B0� �
Bzti
� �

: ð120Þ

Since V ¼ Var z�ti
� �

, the matrix B has to be such that Var Bz�ti
� �¼ I. Therefore, since B must satisfy
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it is given by

B¼

Γ�1=2
0 0 0 … 0 0

�Ω�1=2
1 A Ω�1=2

1 0 0 0

0 �Ω�1=2
2 A Ω�1=2

2 0 0
⋮ ⋱ ⋮
0 0 0 Ω�1=2

t�1 0

0 0 0 … �Ω�1=2
t A Ω�1=2

t

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð122Þ

Direct multiplication gives

BM¼ B ι � Ið ÞþG Υ 1� I
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Hence
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Inserting these terms in the expression given above
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Finally, to obtain the vector of intercepts, note that since E zi0ð Þ ¼ τ0þΥ 1μ and
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we have

Π 0
tE zti
� �¼ Ω�1

μ þΥ 0
1Γ

�1
0 Υ 1þ I�Að Þ0

Xt
s ¼ 1

Ω�1
s

 !
I�Að Þ

" #�1

Υ 0
1Γ

�1
0 τ0þΥ 0

1Γ
�1
0 Υ 1μþ I�Að Þ0

Xt
s ¼ 1

Ω�1
s

 !
I�Að Þμ

" #
ð129Þ

Collecting terms we obtain

ψ t ¼ μ�Π 0
tE zti
� �¼ Ω�1

μ þΥ 0
1Γ

�1
0 Υ1þ I�Að Þ0

Xt
s ¼ 1

Ω�1
s

 !
I�Að Þ

" #�1

Ω�1
μ μ�Υ 0

1Γ
�1
0 τ0

h i
ð130Þ

from which the result follows.
Stationary VAR(1) process: The stationary case is obtained as a specialization of the initial VAR model to τ0 ¼ 0, Υ 1 ¼ Im,

Ωt ¼Ω for all t, and Γ0 ¼
P1

j ¼ 0 A
jΩAj0 , so that Γ0 satisfies Γ0 ¼ AΓ0A

0 þΩ. In such case we have

E wt
i

� �¼ ι � μ ð131Þ

Var wt
i

� �¼ ιι0 � Ωμ
� �þV ð132Þ

Cov wt
i ;μi

� �¼ ι � Ωμ: ð133Þ
Moreover, V is given by

V ¼

Γ0 Γ0
1 … Γ0

t

Γ1 Γ0 Γ0
t�1

⋮ ⋱
Γt Γt�1 … Γ0

0BBBB@
1CCCCA: ð134Þ

where Γj ¼ AjΓ0. Nevertheless, the matrix B in the decomposition of the inverse of V is of the same form as in the general
case but with constant Ω.
There are two special cases of equation (47) that are of some interest:

1. Uncorrelated multivariate error components (A¼0): In this case Γ0 ¼Ω and Λ1 ¼Λ0, so that

Et z�it
� �¼ ct zit�Et μi

� �� 
 ð135Þ
and

Et μi

� �¼ Iþ 1þtð ÞΛ0
� 
�1 μþΛ0

Xt
s ¼ 0

zis

" #
: ð136Þ

2. Homogeneous VAR(1) process (Ωμ ¼ 0): In this case δit ¼ δi0 ¼ μ and Ht ¼H0 ¼ I, so that Et μi

� �¼ μ and

Et z�it
� �¼ ct I� 1

T�t

Xt
s ¼ 1

As

 !
zit�μ
� �

:□ ð137Þ

B.2. VAR log-likelihood given initial observations

The VAR model can be written as

I 0 … 0 0
�A I 0 0
⋮ ⋱ ⋮
0 0 I 0
0 0 … �A I

0BBBBBB@

1CCCCCCA

zi1
zi2
⋮

ziðT�1Þ
ziT

0BBBBBB@

1CCCCCCA¼

Im
0
⋮
0
0

0BBBBBB@

1CCCCCCAAzi0þ

ui1

ui2

⋮
uiðT�1Þ
uiT

0BBBBBB@

1CCCCCCA; ð138Þ

or using a compact notation

Bzi ¼DAzi0þui ð139Þ

ui ¼ ι � ηi
� �þvi ð140Þ

where uit ¼ ηiþvit , ηi ¼ ðI�AÞμi, ι is a vector of ones of order T and vi ¼ v0i1;…; v0iT
� �0. Thus, under time series homo-

skedasticity

E uið Þ ¼ ι � η ð141Þ
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and

Var uið Þ ¼ ιι0 � Ωη
� �þ IT � Ωð Þ ð142Þ

where η¼ ðI�AÞμ and Ωη ¼ ðI�AÞΩμðI�AÞ0.
The conditional density of zi given zi0 is related to that of ui by

f zi∣zi0ð Þ ¼ f ui∣zi0ð Þdet Bð Þ ð143Þ
but det Bð Þ ¼ 1 because B is a triangular matrix. Moreover

f ui∣zi0ð Þ ¼ f ui;u�
i ∣zi0

� �
det H � Imð Þ
�� �� ð144Þ

where H¼ ι=T ;A0� �0 is a T � T transformation matrix, and A is the ðT�1Þ � T forward orthogonal deviations operator, that
produces H � Imð Þui ¼ u 0

i;u
�0
i

� �0. The determinant of the transformation satisfies det H � Imð Þ
�� ��¼ T �m=2, which is an irrelevant

constant.
Note that

E H � Imð Þui½ � ¼Hι � η¼ η
0

� �
ð145Þ

Var H � Imð Þui½ � ¼ H � Imð Þ ιι0 � Ωη
� �þ IT � Ωð Þ� 


H0 � Im
� �¼ Hιι0H0 � Ωη

� �þ H0H � Ω
� �¼ ΩηþT �1Ω 0

0 IT�1 � Ω

 !
:

ð146Þ
In order to obtain the mean and variance matrix of f H � Imð Þui∣zi0g it is convenient to introduce some additional notation.

Let Σ0 ¼ Var zi0ð Þ ¼Υ 1ΩμΥ
0
1þΓ0 and let the linear projection of ηi on zi0 be

E� ηi∣zi0
� �¼ϕ0þΦ1zi0 ¼ ϕ0;Φ1

� � 1
zi0

 !
�Φf i0 ð147Þ

so that Φ1 ¼ ðI�AÞΩμΥ
0
1Σ

�1
0 .17 Thus under joint normality of ηi; zi0; zi1;…; ziT :

E H � Imð Þui∣zi0½ � ¼ ϕ0þΦ1zi0
0

 !
ð148Þ

and

Var H � Imð Þui∣zi0½ � ¼ Var H � Imð Þui½ ��Var
ϕ0þΦ1zi0

0

 !
¼

Θ0 0
0 IT�1 � Ω

 !
ð149Þ

where Θ0 ¼ Ωη�Φ1Σ0Φ
0
1

� �þT �1Ω.18

Then, under normality

ln f zi1;…; ziT ∣zi0ð Þ ¼ �ðT�1Þ
2

ln detΩ�1
2
u�0
i IT�1 � Ω�1
� 	

u�
i �

1
2
ln detΘ0�

1
2

ui�ϕ0�Φ1zi0
� �0Θ�1

0 ui�ϕ0�Φ1zi0
� �

:

ð150Þ

Appendix C. Estimating scalar autoregressive models

Let us consider first a scalar AR(1) model with individual effects of the form

yit ¼ αyiðt�1Þ þ 1�αð Þμiþvit ∣α∣o1 ð151Þ

Eðvit ∣yi0; yi1;…; yiðt�1ÞÞ ¼ 0 ð152Þ

so that in the notation of (1) and (2) xit and zit are both scalar variables and xit ¼ zit ¼ yiðt�1Þ. For convenience we assume that
yi0 is observed. In this case

1
ct
E x�it ∣y

t�1
i

� �¼ yiðt�1Þ �
1

T�t
E yit ∣y

t�1
i

� �þ⋯þE yiðT�1Þ∣y
t�1
i

� 	h i
: ð153Þ
17 Note that

Φ1 ¼ Covðηi;wi0ÞΣ�1
0 ¼ ðI�AÞCovðμi;wi0ÞΣ�1

0

¼ ðI�AÞΩμΩ
�1
μ Covðμi;wi0ÞΣ�1

0 ¼ ðI�AÞΩμΥ
0
1Σ

�1
0 :

18 Note that Var ηi∣wi0
� �¼ Ωη�Φ1Σ0Φ

0
1

� �
.
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Note that since

E yiðtþ sÞ∣y
t�1
i

� 	
¼ αsþ1yiðt�1Þ þð1þαþ⋯þαsÞE 1�αð Þμi∣y

t�1
i

� �¼ E μi∣y
t�1
i

� �þαsþ1 yiðt�1Þ �E μi∣y
t�1
i

� �h i
s¼ 0;…; T�1�tð Þ

the instrument E x�it ∣y
t�1
i

� �
is just a function of yiðt�1Þ and E μi∣yt�1

i

� �
given by

E x�it ∣y
t�1
i

� �¼ ct 1� 1
T�t

XT� t

s ¼ 1

αs

 !
yiðt�1Þ �E μi∣y

t�1
i

� �h i
: ð154Þ

In general E μi∣yT�1
i

� �
can be a nonlinear function of yT�1

i , but in the auxiliary models we shall assume that it coincides
with the linear projection

E� μi∣y
T�1
i

� �¼ψ T�1þπ0
T�1y

t�1
i : ð155Þ

In view of the results of the previous section, it turns out that the coefficients of this projection are unrestricted when the
unconditional variances E vitð Þ ¼ σ2

t are allowed to change with t in an unspecified way. But even in this case note that due to
the law of iterated projections

E� μi∣y
t�1
i

� �¼ E� E� μi∣y
t
i

� �
∣yt�1

i

� 

;

all the instruments E x�it ∣y
t�1
i

� �
can be written as functions of α, ψ T�1, and γT�1. This substantially reduces the number of

parameters relative to the unrestricted linear projections for E x�it ∣y
t�1
i

� �
used implicitly by standard GMM, despite being

based on the same auxiliary model. Nevertheless, the number of coefficients still increases with T.
A strictly stationary auxiliary model: As an auxiliary model we may consider a strictly stationary AR(1) process, in which

case, using the results from Appendix B, we obtain

E� μi∣y
t�1
i

� �¼mt�1 yt�1
i ;θ

� �� μþϕ 1�αð ÞPt�1
s ¼ 1 uisþ 1�α2

� �
yi0

h i
1þϕ ðt�1Þ 1�αð Þ2þ1�α2

h i ð156Þ

where ϕ¼ σ2
μ=σ

2, θ¼ ðα;ϕ;μÞ0, and uis ¼ yis�αyiðs�1Þ.
Letting λ¼ σ2

η=σ
2 ¼ ð1�αÞ2ϕ, an equivalent expression is given by

E� μi∣y
t�1
i

� �¼ μ

1þλ t�1þ 1þα
1�αð Þ

� 	þ λ

1þλ t�1þ 1þα
1�αð Þ

� 	 Xt�1

s ¼ 0

yisþ
α

1�α
yi0þyiðt�1Þ
� 	" #

ð157Þ

Note that as t-1 E� μi∣yt�1
i

� �
converges to the limit of t�1Pt�1

s ¼ 0 yis (which is given by μi), but for small values of t the

approximation of E� μi∣yt�1
i

� �
by E� μi∣

Pt�1
s ¼ 0 yis

� 	
may be poor, even if yit is a strictly stationary process (it would only be

appropriate if α¼ 0).19

Using as the auxiliary model the assumptions of strict stationarity together with the linearity of E μi∣yt�1
i

� �
, the

instrument E x�it ∣y
t�1
i

� �
becomes a linear function of

Pt�1
s ¼ 0 uis and yi0 with coefficients that depend exclusively on α, ϕ and μ.

Since these assumptions need not be true, the previous coefficients should be understood as pseudo true values for which
we use the notation c¼ ða; f ;mÞ0. Thus our parameterization of the instrument is given by

ht yt�1
i ; c

� �¼ ct 1� a
1�a

1�aT� t

T�t

� �� �
yiðt�1Þ �mt�1 yt�1

i ; c
� �h i

: ð158Þ

An auxiliary model with unrestricted initial conditions: An alternative, more general auxiliary model that retains a fixed
number of parameters is one in which the assumption of stationarity of initial observations is removed. This adds three extra
parameters to the instrument function.

The previous auxiliary model assumed that the linear projection of yi0 on μi

yi0 ¼ τ0þτ1μiþvi0 ð159Þ
was such that τ0 ¼ 0, τ1 ¼ 1 and Varðvi0Þ ¼ γ20 ¼ σ2=ð1�α2Þ. In the alternative model τ0, τ1 and γ20 are free parameters. Using
again the results from Appendix B we obtain

E� μi∣y
t�1
i

� �¼m†
t�1 yt�1

i ;θ
� �� μ�r0τ1τ0

� �þϕ 1�αð ÞPt�1
s ¼ 1 uisþr0τ1yi0

1þϕðt�1Þ 1�αð Þ2þr0τ21
ð160Þ

where r0 ¼ σ2
μ=γ

2
0 and θ¼ α;ϕ;μ; τ0; τ1; r0

� �0. Note that under stationarity r0 ¼ϕð1�α2Þ.
19 With T¼2, we only need to consider t¼1, and there is just one instrument given by

E x�i1∣yi0
� �¼ 2�1=2 1�αð Þ2

1�αð Þþλð1þαÞ yi0�μ
� �

:
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For large t the difference between (156) and (160) will be small regardless of the values of τ0, τ1 and γ20, but in short
panels the difference may be important if the steady state distribution of the process is not a good approximation to the
distribution of initial observations. In such a case a better choice of instrument will be

h†t yt�1
i ; c

� �¼ ct 1� a
1�a

1�aT� t

T�t

� �� �
yiðt�1Þ �m†

t�1 yt�1
i ; c

� �h i
: ð161Þ

AR(p) processes: The previous discussion can be extended to a stable autoregressive process of order p:

yit ¼ α1yiðt�1Þ þ⋯þαpyiðt�pÞ þηiþvit ð162Þ

Eðvit ∣yi0; yi1;…; yiðt�1ÞÞ ¼ 0; ð163Þ
so that in terms of the notation of model (1) and (2), we have xit ¼ ðyiðt�1Þ;…; yiðt�pÞÞ0 and zit ¼ yiðt�1Þ. For convenience we
assume that yi0; yið�1Þ;…; yið�pþ1Þ are observed (i.e. the time series dimension of the panel is Tþp), and write the model in
companion form

xiðtþ1Þ ¼Πxitþd1 ηiþvit
� � ð164Þ

where d1 ¼ ð1;0;…;0Þ0 of order p, and Π is the p� p matrix

Π ¼
α1 … αp

Ip�1 ⋮ 0

 !
: ð165Þ

Therefore,

1
ct

E x�it ∣y
t�1
i

� �¼ xit�
1

T�t
E xiðtþ1Þ∣yt�1

i

� �þ⋯þE xiT ∣yt�1
i

� �� 

: ð166Þ

Moreover, since

E xiðtþ sÞ∣yt�1
i

� �¼Πsxitþ IpþΠþ⋯þΠs�1
� 	

d1E ηi∣y
t�1
i

� �ðs¼ 1;…; T�tÞ; ð167Þ

the vector of instruments E x�it ∣y
t�1
i

� �
is a function of xit and E ηi∣yt�1

i

� �
given by

E x�it ∣y
t�1
i

� �¼ ct I� 1
T�t

Π I�ΠT� t
� 	

I�Πð Þ�1
� �

xit�ιpE μi∣y
t�1
i

� �� 
 ð168Þ

where ηi ¼ ð1�α1�⋯�αpÞμi.
20

Under the strictly stationary auxiliary model, the linear projection E� μi∣yt�1
i

� �
is still of the form

E� μi∣y
t�1
i

� �¼ μþϕι0 ϕιι0 þV
� ��1 yt�1

i �μι
� �¼ μ

1þϕ ι0V �1ι
� 	þ ϕ

1þϕ ι0V �1ι
� 	ι0V �1yt�1

i ; ð169Þ

but now V ¼ Vðα1;…;αpÞ corresponds to the autoregressive covariance matrix of order p.
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