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Introduction

• Panel data models with fixed effects play an important role in applied econometrics.

• In the linear case several estimation methods are available (within groups, IV &
GMM, likelihood methods...).

• Applications of these methods are widespread.

• The purpose of these lectures is to provide an overview of the literature on panel data
methods.

• I begin with a review of some basic concepts on static linear panels.

• The focus is on microeconometrics: individuals, households, and firms, but also
cross-country growth and development studies.

• Business cycle and financial volatility studies that relate to time series panels and
factor models are out of scope here.
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Linear panels

• Basic motivation in microeconometrics: Identifying models that cannot be identified
on single outcome data. Two leading situations:

• Fixed effects endogeneity (e.g. productivity analysis, price effects in demand models,
wage effects in labor supply).

• Error components, variance decomposition (e.g. inequality, mobility studies,
quality-adjusted price indices).
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Fixed effects model

• The model is
yit = x

′
it β+ ηi + vit

• {(yi1, ..., yiT , xi1, ..., xiT , ηi ), i = 1, ...,N} is a random sample.

• We observe yit and xit but not ηi .

• A1 (strict exogeneity given the effects):

E (vi | xi , ηi ) = 0 (t = 1, ...,T ),

• A2 (classical errors):
Var (vi | xi , ηi ) = σ2IT .

• A1 implies that v at any period is uncorrelated with past, present, and future values of
x (or that x at any period is uncorrelated with past, present, and future values of v ).

• A2 is an auxiliary assumption under which classical least-squares results are optimal.
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Within-group estimation

• With T = 2 there is just one equation after differencing. Under A1 and A2, it is a
classical regression model and hence OLS in first-differences is optimal.

• If T ≥ 3 we have a system of T − 1 equations in first-differences:
∆yi2 = ∆x ′i2β+ ∆vi2

...

∆yiT = ∆x ′iT β+ ∆viT ,

• OLS estimates of β will be unbiased and consistent for large N . However, under A2
the errors in first-differences will be correlated for adjacent periods.

• Following regression theory, the optimal estimator in this case is given by GLS.

• GLS can be expressed as OLS in deviations from time means

β̂WG =

[
N

∑
i=1

T

∑
t=1

(xit − x i ) (xit − x i )′
]−1 N

∑
i=1

T

∑
t=1

(xit − x i ) (yit − y i ) .

• This is the most popular estimator in panel data analysis. It is known under a variety
of names, including within-groups and covariance estimator.
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Within-group estimation (continued)

• WG is numerically the same as the estimator of β that would be obtained in a OLS
regression of y on x and a set of N dummy variables, one for each unit.

• The estimated effects are

η̂i =
1
T

T

∑
t=1

(
yit − x ′it β̂WG

)
≡ y i − x ′i β̂WG (i = 1, ...,N).

• The fact that β̂WG is the GLS for the system of T − 1 equations in first-differences
tells us that it will be unbiased and optimal in finite samples.

• β̂WG is consistent as N → ∞ for fixed T and asymptotically normal under usual
regularity conditions.

• The η̂i are also unbiased estimates of the ηi , but their variance can only tend to zero
as T → ∞. Therefore, they cannot be consistent for fixed T and large N .

• WG is also consistent as T → ∞ regardless of whether N is fixed or not.
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Example: agricultural production (Mundlak 1961, Chamberlain 1984)

• Cobb-Douglas production function of an agricultural product. i denotes farms and t
time periods.

yit = Log output.
xit = Log of a variable input (labour).
ηi = An input that remains constant over time (soil quality).
vit = A stochastic input which is outside the farmer’s control (rainfall).

• Suppose ηi is known by the farmer but not by the econometrician. If farmers
maximize expected profits there will be correlation between labour and soil quality.

• For T = 2 suppose that rainfall in period 2 is unpredictable from rainfall in period 1,
so that rainfall is independent of a farm’s labour demand in the two periods.

• Thus, even in the absence of data on ηi the availability of panel data affords the
identification of the technological parameter β.

• A1 rules out the possibility that current values of x are influenced by past errors.

• If rainfall in period t is predictable from rainfall in period t − 1, labour demand in
period t will in general depend on vi (t−1).
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Error-components model

• Another major motivation for using panel data is the possibility of separating out
permanent from transitory components of variation.

• The starting point is the variance-components model

yit = µ+ ηi + vit

where µ is an intercept, ηi ∼ iid (0, σ2η), vit ∼ iid (0, σ2), and ηi ⊥ vit .
• The cross-sectional variance of yit in any given period is (σ2η + σ2).

• This model says that a fraction σ2η/(σ2η + σ2) of the total variance corresponds to
differences that remain constant over time.

• Given ηi , the y s are independent over time but with different means for different
units, so that

yi | ηi ∼ id
(
(µ+ ηi )ι, σ

2IT
)
.

• The unconditional correlation between yit and yis for any two periods t 6= s is given by

Corr (yit , yis ) =
σ2η

σ2η + σ2
=

λ

1+ λ

with λ = σ2η/σ2.
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Estimating the variance-components model

• One possibility is to approach estimation conditionally given the ηi . That is, to
estimate the realizations of the permanent effects that occur in the sample and σ2.

• Natural unbiased estimates in this case would be

η̂i = y i − y (i = 1, ...,N)
and

σ̂2 =
1

N(T − 1)
N

∑
i=1

T

∑
t=1

(yit − y i )2 ,

where y i = T
−1 ∑Tt=1 yit and y = N

−1 ∑Ni=1 y i .

• However, typically both σ2η and σ2 will be parameters of interest. To obtain an

estimator of σ2η note that the variance of y i is given by

Var (y i ) ≡ σ2 = σ2η +
σ2

T
.

• Therefore, a large-N consistent estimator of σ2η can be obtained as the difference

between the estimated variance of y i and σ̂2/T :

σ̂2η =
1
N

N

∑
i=1
(y i − y )2 −

σ̂2

T
.
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Error-components regression model

• Often one is interested in error-components models given some conditioning variables.

• For example, an interest in separating out permanent and transitory components of
individual earnings by experience and education.

• This gives rise to a regression form of the model. In the standard version µ is a linear
function of xit , while the variances are constant.

• Similar to the WG model except that now ηi is uncorrelated with xit .

• In the error-components model β is identified in a single cross-section. The
parameters that require panel data for identification are σ2η and σ2.

• OLS in levels is consistent but ineffi cient for β. GLS is optimal but infeasible.

• Feasible GLS replaces σ2η and σ2 by consistent estimates.
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Testing for correlated unobserved heterogeneity

• Sometimes correlated unobserved heterogeneity is a basic property of the model of
interest.

• An example is when a regressor is a lagged dependent variable. In cases like this,
testing for lack of correlation between regressors and individual effects is not
warranted since we wish the model to have this property.

• On other occasions, correlation between regressors and individual effects can be
regarded as an empirical issue.

• In these cases testing for correlated unobserved heterogeneity can be a useful
specification test for regression models estimated in levels.

• Researchers may have a preference for models in levels because estimates in levels are
in general more precise than estimates in deviations.
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Specification tests

• Consider a Wald test of the null H0 : β = b in the testing regression model

y i = x
′
ib + εi

y ∗i = X
∗
i β+ u∗i ,

• Under the unobserved-heterogeneity model

E (y i | xi ) = x ′i β+ E (ηi | xi ),
so that the specification of alternative hypothesis in the testing model is

H1 : E (ηi | xi ) = x ′iλ
with b = β+ λ. H0 is, therefore, equivalent to λ = 0.

• The Wald test is given by

h =
(
b̂BG − β̂WG

)′
(V̂WG + V̂BG )

−1
(
b̂BG − β̂WG

)
.

• b̂BG is the between-group estimator, which is the OLS regression of y i on w i .

• Under H0, the statistic h has a large-N χ2 distribution with k degrees of freedom.

• Hausman motivated the testing of correlated effects as a WG-GLS comparison:

h =
(

β̂GLS − β̂WG

)′
(V̂WG − V̂GLS )−1

(
β̂GLS − β̂WG

)
• Since β̂GLS is effi cient, the variance of the difference is the difference of variances.
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Fixed effects vs random effects

• These specification tests are sometimes described as tests of random effects against
fixed effects.

• However, for typical econometric panels, we shall not be testing the nature of the
sampling process but the dependence between individual effects and regressors.

• Thus, individual effects may be regarded as random without loss of generality.

• Provided the interest is in partial regression coeffi cients holding effects constant, what
matters is whether the effects are independent of observed regressors or not.

• The Figure provides a simple illustration for the scatter diagram of a panel data set
with N = 4 and T = 5.

• In this example there is a marked difference between the positive slope of the
within-group lines and the negative one of the between-group regression.

• This situation is the result of the strong negative association between the individual
intercepts and the individual averages of the regressors.
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GMM perspective

• The generalized method of moments has proved very useful for linear panel models as
an organizing principle.

General idea:

• Start from a set of moment conditions suggested by the model.

• Use sample counterpart to get estimates of common parameters.
• Invoke a central limit theorem to approximate the distribution of standardized
estimates by a normal distribution.

• If more moments than parameters are available, form linear combinations.
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Leading example: within-groups

yit = x
′
it θ0 + αi + vit E (vit | xi1, ..., xiT , αi ) = 0.

• In this model xit may be correlated with αi but not with vis for all t, s . We say that xit
is endogenous wrt the fixed effect but strictly exogenous wrt the time-varying error.

• Letting x̃it = xit − x i , the WG model implies the moment conditions

E

[
T

∑
t=1

x̃it
(
ỹit − x̃ ′it θ0

)]
= 0.

• The WG estimator θ̂WG solves the sample moments

N

∑
i=1

T

∑
t=1

x̃it
(
ỹit − x̃ ′it θ̂WG

)
= 0.
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Leading example: within-groups (continued)

• Inference can be based on the large N , fixed T approximation:

V̂ −1/2
(

θ̂WG − θ0

)
≈ N (0, I )

where

V̂ = H−1
(
N

∑
i=1

T

∑
t=1

T

∑
s=1

v̂it v̂is x̃it x̃
′
is

)
H−1,

v̂it = ỹit − x̃ ′it θ̂WG , and H = ∑Ni=1 ∑Tt=1 x̃it x̃
′
it .

• The resulting "cluster-robust" standard errors are robust to heteroskedasticity and
serial correlation but rely on cross-sectional independence.
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Cluster-robust bootstrap standard errors

• A bootstrap approach is as follows. Let Wi =
(
yi1, x ′i1, ..., yiT , x

′
iT

)′ and regard
W1, ...,WN as a multivariate random sample of size N according to some cdf F .

• The WG estimator is a function of the data θ̂WG = h (W1, ...,WN ) whose distribution
we want to estimate

Pr
(

θ̂WG ≤ r
)
= PrF [h (W1, ...,WN ) ≤ r ] .

• A simple candidate is the plug-in estimator. It replaces F by the empirical cdf F̂N :

F̂N (s) =
1
N

N

∑
i=1

1 (Wi ≤ s) ,

which assigns probability 1/N to each of the observed values w1, ...,wN of W1, ...,WN
• Letting W ∗1 , ...,W

∗
N denote a random sample from F̂N , the resulting estimator is then

PrF̂N [h (W
∗
1 , ...,W

∗
N ) ≤ r ] , (1)

which is conceptually simple but prohibitive to calculate.
• The bootrstap method evaluates (1) by simulation. M of samples W ∗1 , ...,W

∗
N (the

bootstrap samples) are drawn from F̂N , and the frequency with which

h (W ∗1 , ...,W
∗
N ) ≤ r

provides the desired approximation to the estimator (1).
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Cluster-robust bootstrap standard errors (continued)

• As a result of resampling we have available M estimates from the artificial samples:

θ̂
(1)
WG , ..., θ̂

(M )
WG .

• A bootstrap standard error is then obtained as[
1

M − 1
M

∑
m=1

(
θ̂
(m)
WG − θ̂WG

)2]1/2

where θ̂WG = ∑Mm=1 θ̂
(m)
WG /M .

• The bootstrap method is very flexible and applicable to many different situations such
as the bias and variance of an estimator, the calculation of confidence intervals, etc.

• Under general regularity conditions, using the bootstrap standard error to construct
test statistics has the same asymptotic justification as conventional asymptotic
procedures.

• Sometimes a data producer will provide users with replicate weights, which enable the
estimation of the sampling distribution of estimators from complex sample designs
without disclosing confidential information.
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Generalizations

Improved GMM under heteroskedasticity and autocorrelation of unknown form

• Improved GMM based on the larger set of moments E [xi (ỹit − x̃ ′it θ0)] = 0,
(t = 1, ...,T ) or

E
[
xi
(
∆yit − ∆x ′it θ0

)]
= 0, (t = 2, ...,T )

where xi stacks xi1, ..., xiT .

Instrumental variable fixed effects models

• IV versions where the starting assumption is

E (vit | zi1, ..., ziT , αi ) = 0

for some strictly exogenous instrument z (e.g. tax component of price variation).

• The moments become
E
[
zi
(
ỹit − x̃ ′it θ0

)]
= 0.

• In this case x is treated as a strictly endogenous variable.
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Generalizations (continued)

Testing for correlated effects

• If x is uncorrelated with α, valid moments are E [xi (yit − x ′it θ0)] = 0, (t = 1, ...,T ),
which include E [xi (∆yit − ∆x ′it θ0)] = 0, (t = 2, ...,T ) as a subset.

• Thus, an incremental Sargan test can be used for testing the null of fixed-effects
exogeneity (Hausman type testing).

Models with both time-invariant and time-varying variables

• A model with a FE-exogenous time-invariant regressor w satisfies the moments:

E
[
xi
(
ỹit − x̃ ′it θ0

)]
= 0

E
[
wi
(
y i − x ′i θ0 − wi δ0

)]
= 0.

• In an IV version the second moment would specify the orthogonality between the
average error and an external time-invariant instrument.
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Error in variables
• In a measurement error version of the WG model where x is measured with an iid
error, valid moments are

E
[(
xi1, ..., xi (t−2), xi (t+1), ..., xiT

) (
∆yit − ∆x ′it θ0

)]
= 0 (t = 2, ...,T ) .

• Instruments are relevant as long as there is persistence in latent x’s.
• If ignored first differencing may exacerbate measurement error bias as illustrated next.

• In a linear regression y = βx∗ + u with classical measurement error x = x∗ + ε where
u, x∗, ε are mutually independent, the OLS parameter satisfies

Cov (y , x)
Var (x)

=
Cov (y , x∗)

Var (x∗) + Var (ε)
=

β

1+ λ

where λ = Var (ε) /Var (x∗).
• Similarly, letting λ∆ = Var (∆ε) /Var (∆x∗), the OLS parameter of the regression in
differences satisfies

Cov (∆y ,∆x)
Var (∆x)

=
β

1+ λ∆
.

• If Cov (εt , εt−1) = 0 but Cov
(
x∗t , x

∗
t−1
)
> 0 then λ∆ > λ. Under these conditions,

which are relevant in applications, differencing magnifies measurement error bias.
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Illustration: measuring economies of scale in firm money demand

• Bover and Watson (2005) estimate firm-level money demand equations of the form

logmit = c(t) log sit + b(t) + ηi + vit .

where m is demand for cash and s denotes output (or sales).

• The economies of scale coeffi cient c(t) is specified as a polynomial in t to allow for
changes over the sample period.

• The year dummies b(t) capture changes in relative interest rates together with other
aggregate effects.

• The individual effect is meant to represent permanent differences across firms in the
production of transaction services (so that η varies inversely with the firm’s financial
sophistication), and v contains measurement errors in cash holdings and sales.

• We would expect Cov (log s , η) ≤ 0 and a downward unobserved heterogeneity bias in
economies of scale.

• We also expect measurement error to account for a larger share of variation in sales
growth than in the level of sales.
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Firm money demand estimates
Sample period 1986—1996

OLS OLS OLS GMM GMM GMM
Levels WG 1st-diff. 1st-diff. 1st-diff. Levels

m. error m. error
Log sales .72 .56 .45 .49 .99 .75

(30.) (16.) (12.) (16.) (7.5) (35.)

Log sales −.02 −.03 −.03 −.03 −.03 −.03
×trend (3.2) (9.7) (4.9) (5.3) (5.0) (4.0)

Log sales .001 .002 .001 .001 .001 .001
×trend2 (1.2) (6.6) (1.9) (2.0) (2.3) (1.4)

Sargan .12 .39 .00
(p-value)
All estimates include year dummies, and those in levels also include industry
dummies. t-ratios in brackets robust to heteroskedasticity & serial correlation.
N=5649. Source: Bover and Watson (2005).

All estimates in the table are obtained from an unbalanced panel of 5649 Spanish firms
with at least four consecutive annual observations during the period 1986−1996.
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• The comparison between OLS-levels and WG (cols 1 & 2) is consistent with a
positive fixed-effects bias (counter to expectation), but the smaller OLS-diff sales
effect (col 3) suggests that measurement error bias may be important.

• Col 4 shows GMM estimates based on the moments E (log sit∆vis ) = 0 for all t, s .
Absent measurement error, we would expect them to be similar to WG and OLS-diff.

• Col 5 shows GMM estimates based on

E (log sit∆vis ) = 0 (t = 1, ..., s − 2, s + 1, ..,T ; s = 1, ...,T ),
thus allowing for both correlated firm effects and measurement error in sales.

• Interestingly, now the leading sales coeffi cient is much higher and close to unity, and
the Sargan test has a p-value close to 40 per cent.

• Finally, col 6 shows GMM estimates based on

E (log sitvis ) = 0 (t = 1, ..., s − 1, s + 1, ..,T ; s = 1, ...,T ),
which allow for measurement error in sales but not for correlated effects. The leading
sales effect in this case is close to OLS in levels, suggesting that in levels the
measurement error bias is not as important as in differences.

Conclusion
• What is interesting about this example is that a comparison between estimates in
levels and deviations without consideration of measurement error (e.g. restricted to
compare cols 1 & 2, or 1 & 3, as in Hausman-type testing), would lead to the
conclusion of correlated effects, but with biases going in entirely the wrong direction.
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Predeterminedness and dynamics
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Predeterminedness and dynamics

Time patterns
• The previous examples include fixed effects but do not allow for time patterns in the
dependence between x and time-varying errors.

• However, the time dimension makes it possible to go beyond the cross-sectional
notions of strict exogeneity and strict endogeneity, whereby the time series of a
regressor is either fully independent or fully dependent of the time series of errors.

• Thus, x may depend on past v’s but not on future v’s (predeterminedness), or on v’s
that are close in time but not on v’s from distant periods.

• A linear model with general predetermined variables replaces the strict exogeneity
assumption E (vit | xi1, ..., xiT , αi ) = 0 with the sequential conditioning assumption

E (vit | xi1, ..., xit , αi ) = 0.
Letting x ti = (xi1, ..., xit ), such model implies the moments:

E
[
x t−1i

(
∆yit − ∆x ′it θ0

)]
= 0.

• This notion can be generalized to external instruments and to alternative patterns of
leads or lags.

• An example is the relationship between the presence of small children at home and
female labor supply. Treating children as strictly exogenous in this context is a much
more restrictive assumption than treating them as predetermined.
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First-stage and second-stage regressions in panel GMM
• In Arellano-Bond GMM estimation there is a sequence of period-by-period first-stage
regressions and a pooled second-stage regression.

• Letting for simplicity T = 3 and a single predetermined regressor, the period-by-
period first-stage fitted values are

∆̂xi2 = π̂21xi1
∆̂xi3 = π̂31xi1 + π̂32xi2

where π̂21 is the cross-sectional OLS coeffi cient of ∆xi2 on xi1, etc. (in practice,
orthogonal deviations are preferred to first-differences but the idea is the same).

• The second-stage is a pooled IV regression of (∆yi2,∆yi3) on (∆xi2,∆xi3) using(
∆̂xi2, ∆̂xi3

)
as instruments.

• The latter is very different to the time-series perspective where instruments would
come from a pooled first-stage regression:(

∆̃xi2
∆̃xi3

)
= π̃

(
xi1
xi2

)
where π̃ is the pooled OLS coeffi cient of (∆xi2,∆xi3) on (xi1, xi2). The 2nd-stage
would be pooled IV of (∆yi2,∆yi3) on (∆xi2,∆xi3) using

(
∆̃xi2, ∆̃xi3

)
as instruments.

• In a pooled first-stage regression one cannot easily project on different x’s at different
periods as one does using period-by-period first stage regressions.
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Dynamic models

• Time patterns of dependence arise naturally in the context of dynamic models. These
are models that consider the effects of lagged outcomes and/or lagged and current
independent explanatory variables on current outcomes.

• The simplest example is an autoregressive model, which is a special case of the above
with xit = yi (t−1).

• The basic moments are:

E
[
y t−2i

(
∆yit − ∆yi (t−1)θ0

)]
= 0,

• Under mean stationarity, the following moments for the errors in levels are also
available:

E
[
∆yi (t−1)

(
yit − yi (t−1)θ0

)]
= 0.

• Autoregressive models are the workhorse in the analysis of individual earnings and
household income dynamics.
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Permanent-transitory income models

• Permanent-transitory models are common in the literature that looks at the
relationship between household income and consumption from a life-cycle perspective.

• Examples include Hall & Mishkin (1982) (HM), Blundell, Pistaferri & Preston (2008),
and Kaplan & Violante (2010).

• HM used food consumption and labour income from a PSID sample of N = 2309 US
households over T = 7 years to test the predictions of a permanent income model.

• We use HM as an illustration of permanent-transitory covariance structures.

• HM specified means of income and consumption changes as regressions on age,
age^2, time, and changes in the number of children and adults in the household.

• They implicitly allowed for unobserved intercept heterogeneity in the levels of the
variables, but only for observed heterogeneity in their changes.

• Deviations from the individual means of income and consumption, denoted y it and c it
respectively, were specified as follows.
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Income process

• HM assumed that income errors y it were the result of two different types of shocks,
permanent and transitory:

y it = y
L
it + y

S
it .

• They also assumed that agents were able to distinguish one type of shock from the
other and respond to them accordingly.

• The permanent component yLit was specified as a random walk

yLit = y
L
i (t−1) + εit ,

and the transitory component ySit as a moving average process

ySit = ηit + ρ1ηi (t−1) + ρ2ηi (t−2).

• A limitation was lack of measurement error in observed income (a component to
which consumption does not respond). This is important since measurement error in
PSID income is large, but identification requires cross-validation information.
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Consumption process

• Mean deviations in consumption changes were specified to respond one-to-one to
permanent income shocks and by a fraction β to transitory shocks.

• The magnitude of β depends on the persistence in transitory shocks (ρ1 and ρ2) and
real interest rates. Dependence on age is ignored for simplicity.

• This model can be formally derived from an optimization problem with quadratic
utility, and constant interest rates that are equal to the subjective discount factor.

• Since only food consumption is observed, an adjustment was made by assuming a
constant marginal propensity to consume food α.

• With these assumptions we have

∆c it = αεit + αβηit .

• HM also introduced a measurement error in the level of consumption (or transitory
consumption that is independent of income shocks) with an MA(2) specification:

cSit = vit + λ1vi (t−1) + λ2vi (t−2).
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Bivariate covariance structure

• The model that is taken to the data consists of a joint specification for mean
deviations in consumption and income changes as follows:

∆c it = αεit + αβηit + vit − (1− λ1) vi (t−1) − (λ1 − λ2) vi (t−2) − λ2vi (t−3)

∆y it = εit + ηit − (1− ρ1) ηi (t−1) − (ρ1 − ρ2) ηi (t−2) − ρ2ηi (t−3).

• The three innovations are mutually independent with variances σ2ε , σ2η and σ2v . Thus,
the model contains 9 coeffi cients:

θ =
(

α β λ1 λ2 ρ1 ρ2 σ2ε σ2η σ2v

)′
.

• The model specifies a covariance structure for the 12× 1 vector

wi =
(

∆c i2 ∆c i3 · · · ∆c i7 ∆y i2 ∆y i3 · · · ∆y i7
)′

E
(
wiw

′
i
)
= Ω(θ).
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Bivariate covariance structure (continued)

• Let us look at the form of some elements of Ω(θ).

Var (∆y it ) = σ2ε + 2
(
1− ρ1 − ρ1ρ2 + ρ21 + ρ22

)
σ2η (t = 2, ..., 7)

Cov (∆y it ,∆y i (t−1)) = − [(1− ρ1)− (1− ρ1 + ρ2) (ρ1 − ρ2)] σ
2
η

and also
Cov (∆c it ,∆y it ) = ασ2ε + αβσ2η (t = 2, ..., 7) (2)

Cov (∆c it ,∆y i (t−1)) = 0 (3)

Cov (∆c i (t−1),∆y it ) = −αβ (1− ρ1) σ2η . (4)

• A fundamental restriction of the model is lack of correlation between current
consumption changes and lagged income changes, as captured by (3).

• The model, nevertheless, predicts correlation between current consumption changes
and current and future income changes, as seen from (2) and (4).
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Empirical results

• HM estimated their model by Gaussian PML. They estimated β̂ = 0.3, which given
their estimates of ρ1 and ρ2 (ρ̂1 = 0.3, ρ̂2 = 0.1) turned out to be consistent with the
model only for unrealistic values of real interest rates (above 30 percent).

• Moreover, they estimated the marginal propensity to consume food as α̂ = 0.1, and
the moving average parameters for transitory consumption as λ̂1 = 0.2 and λ̂2 = 0.1.

• The variance of the permanent income shocks was twice as large as that of the
transitory shocks: σ̂2ε = 3.4 and σ̂2η = 1.5.

• They tested the covariance structure focusing on the fundamental restriction of lack
of correlation between current changes in consumption and lagged changes in income.
They found a negative covariance which was significantly different from zero.

• As a result of this finding they considered an extended version of the model in which
a fraction of consumers spent their current income.
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GMM estimation of covariance structures
• The previous model specifies a structure on a data covariance matrix. Abstracting
from mean components, suppose the covariance matrix of a p × 1 time series yi is a
function of a k × 1 parameter vector θ given by

E (yi y
′
i ) = Ω(θ).

• If yi is a scalar time series its dimension will be T , but in the HM context p = 2T .
• Vectorizing the expression and eliminating redundant elements (due to symmetry) we
obtain a vector of moments of order r = (p + 1)p/2:

vechE
[
yi y
′
i −Ω(θ)

]
= E [si −ω(θ)] ,

where the vech operator stacks by rows the lower triangle of a square matrix.
• If r > k and H(θ) = ∂ω(θ)/∂θ′ has full column rank, the model is overidentified. In
that case a standard optimal GMM estimator solves:

θ̂ = arg min
c
[s −ω(c)]′ V̂ −1 [s −ω(c)]

where s is the sample mean vector of si :

s =
1
N ∑N

i=1 si

and V̂ is some consistent estimator of V = Var (si ). A natural choice is the sample
covariance matrix of si :

V̂ =
1
N ∑N

i=1 si s
′
i − ss ′.
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GMM estimation of covariance structures (continued)

• The first-order conditions from the optimization problem are

−H(c)′V̂ −1 [s −ω(c)] = 0.

• The two standard results for large sample inference are, firstly, asymptotic normality
of the scaled estimation error[

1
N
H(θ̂)′V̂ −1H(θ̂)

]−1/2 (
θ̂ − θ

)
d→ N (0, I )

and, secondly, the asymptotic chi-square distribution of the minimized estimation
criterion (test statistic of overidentifying restrictions)

S = N
[
s −ω(θ̂)

]′
V̂ −1

[
s −ω(θ̂)

]
d→ χ2r−k .
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Random coeffi cients
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Random coeffi cients

• Fixed effects methods are a standard way of controlling for endogeneity or unobserved
heterogeneity in the estimation of common parameters.

• But sometimes we wish to treat a parameter as a heterogeneous quantity and
therefore its mean and other characteristics of its distribution become central objects
of interest.

• Examples are random trend earnings models, heterogeneous production functions, and
heterogeneous treatment effects.

• The T equations of the random coeffi cients model in compact form can be written as

yi = Zi δ0 + Xiγi + vi E (vi | Zi ,Xi ,γi ) = 0.

• The WG model is a special case in which the only random coeffi cient is the intercept.
• We assume that T > dim (γi ) = q and only consider the subpopulation with
det (X ′i Xi ) 6= 0.

• The parameters of interest are δ0 and characteristics of the distribution of γi , such as
γ0 = E (γi ) and Σ0 = Var (γi ).

• Now instead of considering LS in deviations from means we consider LS of the
residuals in individual-specific regressions of y and z on x (x̃it is the residual of a
regression of the i -th time series of x on an intercept).
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Estimating common parameters and average effects

• The generalized WG operator Qi = I − Xi (X ′i Xi )
−1 Xi leads to the transformed

equation
Qi yi = QiZi δ0 +Qi vi

and the moments
E
[
Z ′i (Qi yi −QiZi δ0)

]
= 0.

• The WG estimator is

δ̂ =

(
N

∑
i=1

Z ′i QiZi

)−1 N

∑
i=1

Z ′i Qi yi

• Pre-multiplying the model by the LS operator Hi = (X ′i Xi )
−1 X ′i we get

Hi (yi − Zi δ0) = γi +Hi vi

so that γ0 satisfies the moment

γ0 = E [Hi (yi − Zi δ0)]
and a large-N consistent estimator is

γ̂ =
1
N

N

∑
i=1

(
X ′i Xi

)−1 X ′i (yi − Zi δ̂) ≡ 1
N

N

∑
i=1

γ̂i .
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Is γ̂i informative about γi? An illustration

• Consider the random trend model:

yit = αi + βi t + vit

where αi and βi are bivariate normal (or bimodal normal mixture), vit is normal
AR(1) with autoregressive coeffi cient ρ.

• Roughly calibrate the parameters to match Guvenen (2008): ρ = .8, Var(αi ) = .02,
Var(βi ) = .0004 (corr. = −.2), σ2v = .03.

• Question: compare the density of β̂i (resp. α̂i ) to that of βi (αi ).

41



Densities: true βi (solid) and fixed-effects estimates β̂i (dashed)

T = 5 T = 10

T = 20 T = 50



Densities: true βi (solid) and fixed-effects estimates β̂i (dashed)

T = 5 T = 10

T = 20 T = 50

⇒ Must correct the densities of fixed-effects estimates for the sample

noise (for fixed T).



Estimating variances of effects and distributions

• Without further restrictions Σ0 is not identified. To see this let Ωi = E (vi v ′i | Xi ) and
note that only the variance of Qi vi is identified, which is of reduced rank. In general

Σ0 = Var [Hi (yi − Zi δ0)]− E
(
HiΩiH

′
i
)
.

• If Ωi = σ2IT then Σ0 can be estimated as

Σ̂ =
1
N

N

∑
i=1
(γ̂i − γ̂) (γ̂i − γ̂)′ − σ̂2

1
N

N

∑
i=1

(
X ′i Xi

)−1
where

σ̂2 =
1

N (T − q)
N

∑
i=1

(
yi − Zi δ̂

)′
Qi
(
yi − Zi δ̂

)
.

• Note that E (Qi vi v ′i Qi ) = σ2E (Qi ) and E (v ′i Qi vi ) = σ2 (T − q).
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Estimating variances of effects and distributions (continued)

• The previous situation can be generalized to less restrictive covariance patterns in Ωi .
• In general

E [(yi − Zi δ0)⊗ (yi − Zi δ0) | Zi ,Xi ] = (Xi ⊗ Xi )E (γi ⊗ γi | Zi ,Xi ) + vec (Ωi ) .

• A WG operator Mi = I −Gi (G ′i Gi )
−1 G ′i for the cross-products Gi = Xi ⊗Xi leads to

MiE [(yi − Zi δ0)⊗ (yi − Zi δ0) | Zi ,Xi ] = Mi vec (Ωi )

but since Mi is singular, (moving-average) restrictions on Ωi are needed:

vec (Ωi ) = S2ωi

where S2 is a known selection matrix and ωi is a vector of unrestricted parameters.
• The rank condition for identification of Ωi is

rank (MiS2) = dim (ωi ) .

• The variance of γi is identified if Ωi is known.

• Moreover, replacing mean independence by full independence assumptions a similar
argument can be developed for distributions using second derivatives of log
characteristic functions (Arellano and Bonhomme 2012).
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Distributions
• Assume that γi and vi are independent given Wi = (Zi ,Xi ).
• Statistical independence leads to functional restrictions on the second derivatives of
log characteristic functions, which are formally analogous to the covariance
restrictions.

• To derive the identification results, it is convenient to work with characteristic
functions.

Properties of characteristic functions

• The conditional characteristic function of Y (of dimension L) given X = x is defined
as:

ΨY |X (t |x) = E
[
exp(jt ′Y )|x

]
, t ∈ RL

where j =
√
−1.

• Inverse Fourier transform

fY |X (y |x) =
1

(2π)L

∫
exp

(
−jt ′y

)
ΨY |X (t |x)dt.

• If Y1 and Y2 are independent given X then

ΨY1+Y2 |X (t |x) = ΨY1 |X (t |x)ΨY2 |X (t |x).
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Distributions (continued)

• Independence implies that for all t we have:

Ψyi−Zi δ0 |W i
(t |Wi ) = Ψγi |W i

(X ′i t |Wi )Ψvi |W i
(t |Wi ).

• Assuming that the characteristic functions Ψγi |W i
and Ψvi |W i

are nonvanishing we can
take logs:

logΨyi−Zi δ0 |W i
(t |Wi ) = logΨγi |W i

(X ′i t |Wi ) + logΨvi |W i
(t |Wi ).

• If Ψvi |W i
is identified, Ψγi |W i

is also identified.

• Taking second derivatives:

∂2 logΨyi−Zi δ0 |W i
(t |Wi )

∂t∂t ′
= Xi

(
∂2 logΨγi |W i

(X ′i t |Wi )

∂t∂t ′

)
X ′i +

∂2 logΨvi |W i
(t |Wi )

∂t∂t ′
.

• Evaluating this expression at t = 0 we are back at the variance case.
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Distributions (continued)

• An independent moving-average model implies the following restrictions:

vec

(
∂2 logΨvi |W i

(t |Wi )

∂t∂t ′

)
= S2ωi (t) , t ∈ RT .

• So, if Mi (Xi ⊗ Xi ) = 0 then

Mi vec

(
∂2 logΨyi−Zi δ0 |W i

(t |Wi )

∂t∂t ′

)
= MiS2ωi (t) .

• The rank and order conditions for identification are the same as for variances.
• ωi (t) identified for all t implies that Ψvi |W i

is identified, because the first derivative
of logΨvi |W i

at t = 0 vanishes due to mean independence.
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Illustration: the effect of smoking on children outcomes

• Arellano and Bonhomme (2012) apply this methodology to a matched panel dataset
of mothers and births constructed in Abrevaya (2006).

• They find that the mean smoking effect on birthweight is significantly negative (−160
grams). Moreover, the effect shows substantial heterogeneity across mothers, the
effect being very negative (−400 g) below the 20th percentile.

• The model is
yij = z′ijδ+ αi + βi sij + vij j = 1, 2, 3

i=mother, j=child. yij= weight at birth, sij = 1 if mother smoked during pregnancy
of child j .

• vij are assumed i.i.d.
• Production function interpretation. The effect of smoking is mother-specific.
• Abrevaya (2006) estimates a restricted version, where βi is homogeneous.

• The focus is on mothers with at least 3 children to be able to allow for two
heterogeneous quantities.

• Also need xij to vary for every mother. So only 1445 mothers who changed smoking
status between the three births are considered.

• Under predeterminedness of smoking behavior the moments of βi are unidentified.
However, several interesting average effects can still be identified and estimated when
there are no time-varying regressors.
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Estimates of common parameters δ

Generalized within-groups

Variable Estimate Standard error

Male 130 22.8
Age 39.0 32.0
Age-sq -.638 .577
Kessner=2 -82.0 52.7
Kessner=3 -159 81.9
No visit -18.0 124
Visit=2 83.2 53.9
Visit=3 136 99.2
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Regressions of αi and βi on mother-specific characteristics

Variable Estimate Standard error
αi

High-school 15.1 42.7
Some college 38.5 55.3
College graduate 58.7 72.1
Married 3.51 34.6
Black -364 54.0
Mean smoking -161 83.9
Constant 2879 419

corrected R2= .113 (instead of .055, uncorrected)
βi

High-school -15.9 42.8
Some college -15.9 42.8
College graduate 64.5 63.8
Married 31.9 41.8
Black 132 60.6
Mean smoking -49.8 101
Constant -172 67.1

R2= .021 (instead of .005)
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Moments of αi and βi

Moment Estimate Standard error

Mean αi 2782 435
St. Dev. αi 357 21.2
Skewness αi -1.67 .43
Kurtosis αi 7.12 2.28

Mean βi -161 17.0
St. Dev. βi 313 34.6
Skewness βi -1.29 .91
Kurtosis βi -.34 7.84

Correlation (αi , βi ) -.47 .07

• Mean effect of smoking is −161 grams, close to Abrevaya’s FE estimate of −144 g.
• Density of βi and β̂i .

• Quantile function of βi and β̂i .
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