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This paper provides an impressive, yet compact and easily accessible review of the econometric

literature on panel data analysis. Professor Cheng Hsiao has succeeded in surveying, in a coherent

manner, classic results as well as more challenging recent developments on nonlinear models, cross-

sectional dependence, and long time-series panels. The coverage of topics in the article reflects the

breadth of Professor Hsiao’s important contributions to panel data econometrics over many years.

In my comments I will focus on two aspects of recent work on nonlinear models. Firstly, I will

discuss state dependence and dynamics from a treatment effect perspective. Secondly, I will consider

the issue of choice of population framework and its implications for identifiability. Both comments are

closely interconnected.

1. State dependence and treatment effects

Take a random sample of binary sequences (yi1, ..., yiT ). Unit i chooses 1 or 0 in period t. This

choice may depend on the choice in t− 1. The purpose is to measure this dependence.
The problem can be cast into the framework of potential outcomes:

yit =

(
yit (1) if yit−1 = 1

yit (0) if yit−1 = 0.

The “treatment” is yit−1, and the potential outcomes are yit (1) , yit (0). The causal effect for person

i is yit (1)− yit (0). A measure of population state dependence is provided by the average treatment
effect E [yit (1)− yit (0)]. We may also consider a conditional average given some exogenous variables
or covariates. A discussion on identified bounds in this setting is in Manski (2006).

Because (yi1, ..., yiT ) is a sequence of outcomes, it is difficult to imagine a conceptual experiment

that would justify a nonstructural treatment-effects formulation. One could assign initial conditions

randomly and regard the rest of the time series as a vector of outcomes, but this is not typically the

intention when seeking to measure the extent of state dependence. Thus, it is natural to regard the

potential outcome representation as describing a structural decision rule.

1.1 Exclusion restrictions

I wish to discuss an aspect of the identifying content of time-varying covariates, which is standard

in the context of linear models but has not received attention from a potential outcome perspective.

I consider a nonparametric partial adjustment structural model that exploits exclusion restrictions in

a time-varying strictly exogenous covariate xTi = (xi1, ...., xiT ).
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The idea is that Pr [yit (s)] (s = 0, 1) is conditional on xTi , but we would expect Pr [yit (s)] to be

more sensitive to xit than to x0s from other periods. A drastic but convenient implementation of this

notion is:

Pr [yit (s) | xi1, ...., xiT ] = Pr [yit (s) | xit] .

So, using xit−1, we have the instrumental-variable (IV) assumption

{yit (0) , yit (1)} ⊥ xit−1 | xit.

As an example, think of yit as smoking status and suppose that cigarette prices xit−1 and xit are

set exogenously. The IV assumption says that, given current prices, (past smoking-induced) potential

smoking outcomes are independent of past prices. This is the type of situation discussed in the local

average treatment effect (LATE) literature (c.f. Imbens and Angrist, 1994).

Using a potential outcome formulation for yit−1 and a binary xit−1:

yit−1 =

(
y
[1]
it−1 if xit−1 = 1

y
[0]
it−1 if xit−1 = 0,

we can distinguish between compliers (those induced to quit smoking by changing xit−1 from 0 to 1:

y
[0]
it−1 − y[1]it−1 = 1), stayers, and defiers (those with y[0]it−1 − y[1]it−1 = −1). If we rule out defiers, the
distributions of yit (0) and yit (1) for compliers are point identified:

Pr
³
yit (s) | y[0]it−1 − y[1]it−1 = 1, xit

´
(s = 0, 1) .

Given this, we can get measures of state dependence (addiction) and price effects on smoking. Note

that we have defined two different sequences of potential outcomes, y[s]it and yit (s).

1.2 Exogeneity

An alternative conditional exogeneity assumption is

{yit (0) , yit (1)} ⊥ yit−1 | xit.

This is a strong assumption because yit−1 is not randomly assigned. A linear version of this is the

standard partial adjustment model without serial correlation.

1.3 Fixed effects

The previous discussion can be thought of as being conditional on time-invariant observable co-

variates. The panel literature has emphasized parametric situations where the results hold conditional

on a time-invariant unobserved effect αi:

{yit (0) , yit (1)} ⊥ yit−1 | xit,αi (1)
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or

{yit (0) , yit (1)} ⊥ xit−1 | xit,αi,

thus allowing for “fixed-effects endogeneity” of yit−1 or xit−1.

In situations of this kind, we only have fixed-T point identification for particular objects in certain

models. An example of (1) is the binary autoregressive formulation

yit (s) = 1 (γs+ αi + vit ≥ 0) (s = 0, 1) (2)

where vit are iid across i and t, independent of αi, with logit or probit cdf F .

The average treatment effect in this case is

φ ≡ E [yit (1)− yit (0)] = Eαi [F (γ + αi)− F (αi)] .

There is point identification of γ for logit if T ≥ 4, but not for probit, although the identified set
for γ seems to be small (Honoré and Tamer, 2006). There is set identification for φ for both logit and

probit.

1.4 Unobserved heterogeneity and identification

Take just one individual time series and think of it as the realization of a well defined, suitably

stable, but individual-specific, stochastic process. A descriptive measure of unit’s i persistence is the

first-order autocorrelation:

ρi = Pi (yit = 1 | yit−1 = 1)− Pi (yit = 1 | yit−1 = 0)

= plim
T→∞

⎛⎝ 1

T1

X
yit−1=1

yit − 1

T0

X
yit−1=0

yit

⎞⎠
where T1 =

PT
t=2 yit−1 and T0 =

PT
t=2 (1− yit−1). On the other hand, a time-series average of causal

effects is:

ri = plim
T→∞

1

T

TX
t=1

[yit (1)− yit (0)] .

In general, ρi and ri are different concepts. Note that

yit = [yit (1)− yit (0)] yit−1 + yit (0) ,

so that we have ri = ρi if [yit (0) , yit (1)] are independent of yit−1 over time. For example, this is true

for the binary fixed-effect autoregressive model (2).

A cross-sectional measure of persistence in a two-period panel is

πt = Pr (yit = 1 | yit−1 = 1)− Pr (yit = 1 | yit−1 = 0)

= plim
N→∞

⎛⎝ 1

N1

X
yit−1=1

yit − 1

N0

X
yit−1=0

yit

⎞⎠
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where N1 =
PN
i=1 yit−1 and N0 =

PN
i=1 (1− yit−1). If ρi and πt are constant for all i and t, they will

coincide, but not otherwise.

The microeconometric literature on “genuine versus spurious” state dependence has been concerned

with approximating summary measures of ρi from short panels. This may still be a descriptive pursuit,

although E (ρi) is arguably more informative than πt because it distinguishes between cross-sectional

unobserved heterogeneity and unit-specific time-series persistence.

Even for some of these descriptive objects, we lack point identification under fixed T . However,

the fact that ρi or cross-sectional functionals of it are not point identified from a fixed-T perspective,

reflects a limitation of this perspective when T is statistically informative. I now turn to discuss this

problem.

2. Population framework and identification

Fixed T identification may be problematic because it rules out statistical learning from individual

time series data. For micro panels of moderate time dimension, approximate solutions to the inciden-

tal parameter problem from a time-series perspective (reviewed in Arellano and Hahn, 2007) are a

promising avenue for progress.

In this literature three different approaches can be distinguished. One approach is to construct and

analytical or numerical bias correction of a fixed effects estimator. A second approach is to consider

estimators from bias corrected moment equations. The third one is to consider estimation from a bias

corrected objective function relative to some target criterion. The latter is particularly attractive for

its simplicity, specially in models with multiple fixed effects.

By way of illustration, suppose a likelihood model for independent data with common parameter

θ and a potentially vector-valued individual effect αi, where the log likelihood for individual i isPT
t=1 `it (θ,αi). A modified concentrated likelihood that produces estimates of the common parameters

with bias of order 1/T 2 or less is given by

LM (θ) =
NX
i=1

"
TX
t=1

`it (θ, bαi (θ)) + 1
2
ln detHi (θ)− 1

2
lndetΥi (θ)

#

where bαi (θ) is the maximum likelihood estimate of αi for given θ,Hi (θ) = −PT
t=1 ∂

2`it (θ, bαi (θ)) /∂αi∂α0i,
and Υi (θ) =

PT
t=1 qit (θ) qit (θ)

0, where qit (θ) = ∂`it (θ, bαi (θ)) /∂αi. Thus, as discussed in Arellano
and Hahn (2007), the adjustment depends exclusively on the sample Hessian Hi (θ) and the sample

outer product of score term Υi (θ).

3. Final remarks

In panel data analysis, there is a choice of population framework, which may lead to conflicting

identification arrangements. In situations of this kind, there is much to be learned from research on

both partial identification and estimability issues.
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