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A Generalized Method of Moments Estimation

Part A reviews the basic estimation theory of the generalized method of moments (GMM) and Part B

deals with optimal instrumental variables.1 For the most part, we restrict attention to iid observations.

A.1 Method of Moment Estimation Problems

Linear Regression Economists often use linear regression to quantify a relationship between

economic variables. A linear regression between y and x is a relationship of the form

y = x0β + ε (A.1)

where β and ε are chosen in such a way that ε is uncorrelated with x (which typically includes a

constant term). Thus, the parameter vector β satisfies

E
£
x
¡
y − x0β¢¤ = 0. (A.2)

If E (xx0) has full rank then (A.2) has a unique solution

β =
£
E
¡
xx0
¢¤−1

E (xy) . (A.3)

An important property of linear regression is that it is an optimal predictor of y given x in the

following sense:

β = argmin
b
E
h¡
y − x0b¢2i . (A.4)

That is, it minimizes the expected squared linear prediction error. This is why x0β is called a “best

linear predictor” or “linear projection”.

Moreover, if the conditional expectation of y given x is linear it turns out that it coincides with

the linear predictor. If on the other hand E (y | x) is nonlinear, the linear projection is an optimal
approximation to it in the sense that

β = argmin
b
E
n£
E (y | x)− x0b¤2o . (A.5)

1Published in Arellano (2003) as Appendix A and Appendix B, respectively.
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This is why sometimes the notation E∗ (y | x) = x0β is used, which emphasizes the proximity of the
linear projection and conditional expectation concepts (e.g. Goldberger, 1991).2

Therefore, β is a useful quantity if we are interested in a linear prediction of y given x, or if we are

interested in studying how the mean of y changes for different values of x, and we think that E (y | x)
is linear or approximately linear.

Linear regression may also be of interest as a structural or causal relationship between y and x if

we have a priori reasons to believe that the unobservable determinants of y are uncorrelated with x.

Instrumental Variables If we are interested in a structural relationship between y, x, and an

unobservable variable u

y = x0δ + u, (A.6)

such that u is correlated with at least some of the components of x, clearly δ 6= β in general.

In many situations of interest in econometrics, δ can be regarded as the solution to moment

equations of the form

E
£
z
¡
y − x0δ¢¤ = 0 (A.7)

where z is a vector of instrumental variables that a priori can be assumed to be uncorrelated with u.3

If E (zx0) has full rank, the system of equations (A.7) has a unique solution. Moreover, if z and x

are of the same dimension

δ =
£
E
¡
zx0
¢¤−1

E (zy) . (A.8)

Examples of (A.7) include an equation from the classical supply and demand simultaneous system,

and a regression model with measurement errors in the regressors.

Equations (A.2) and (A.7) can be described as “moment problems” because the parameters of

interest solve moment equations.

The Analogy Principle According to the analogy principle, given a representative sample

{yi, xi, zi}Ni=1, we choose as a candidate estimator for a population characteristic, the same charac-
teristic defined in the sample (Manski, 1988). In this way, the sample linear regression coefficients

solve

1

N

NX
i=1

xi

³
yi − x0ibβ´ = 0 (A.9)

2Nevertheless, whereas E (y | x) is a characteristic of the conditional distribution of y given x, E∗ (y | x) is a charac-
teristic of the joint distribution. That is, if we keep constant the distribution of y | x but change the marginal distribution
of x, E (y | x) remains constant while E∗ (y | x) changes unless E∗ (y | x) = E (y | x).

3The vectors x and z may have elements in common. For example, a constant term.
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giving rise to the standard OLS formula:

bβ = Ã NX
i=1

xix
0
i

!−1 NX
i=1

xiyi. (A.10)

Similarly, the simple instrumental variable estimator, with as many instruments as explanatory

variables, solves

1

N

NX
i=1

zi

³
yi − x0ibδ´ = 0, (A.11)

yielding

bδ = Ã NX
i=1

zix
0
i

!−1 NX
i=1

ziyi. (A.12)

Generalized Moment Problems Suppose now that the number of instruments in z exceeds

the number of explanatory variables in x. Let z and x be of orders r and k, respectively, and let

d = (y, x0)0. If we assume that r > k, the truth of (A.7) requires that the r × (k + 1) matrix E (zd0)
has reduced rank k. Otherwise it could not be the case that

E (zu) = E
¡
zd0
¢Ã 1

δ

!
= 0, (A.13)

and at least some of the moment conditions would not hold.

However, even if E (zd0) has reduced rank in the population, its sample counterpart

1

N

NX
i=1

zid
0
i

will not have reduced rank in general because of sample error. Therefore, there will be no single valuebδ that satisfies the r equations (A.11), and different estimates of δ will be obtained from the solution

to different subsets of k equations.

This situation modifies the nature of the estimation problem and makes assertion (A.7) empirically

refutable. Following Sargan (1958), we consider estimators that solve k linear combinations of the r

sample moment equations (A.11):

1

N
ΓN

NX
i=1

zi

³
yi − x0ibδ´ = 0 (A.14)

for an optimal choice of the k× r matrix of coefficients ΓN . Moreover, we can test the overidentifying
restrictions by testing whether the rank of the matrix N−1

PN
i=1 zid

0
i is significantly greater than k.

These issues are addressed in the following section in the context of a more general class of moment

problems.
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A.2 General Formulation

We consider parameters that are defined by a set of moment equations (or orthogonality conditions)

of the form

Eψ (w, θ) = 0 (A.15)

where:

w is a p× 1 random vector,

ψ is a r × 1 vector of functions,
θ is a k × 1 vector of parameters such that k ≤ r,
Θ is the parameter space (set of admissible values of θ).

We have a sample of N observations (w1, ..., wN ) and estimation of θ is based on the sample

counterpart of (A.15) given by

bN (c) =
1

N

NX
i=1

ψ (wi, c) . (A.16)

We choose as an estimator of θ the value of c that minimizes the quadratic distance of bN (c) from

zero:

bθ = argmin
c∈Θ

Ã
1

N

NX
i=1

ψ (wi, c)

!0
AN

Ã
1

N

NX
i=1

ψ (wi, c)

!
(A.17)

= argmin
c∈Θ

s (c)

where AN is an r × r, possibly random, non-negative definite weight matrix, whose rank is greater
than or equal to k. The statistic bθ is a GMM estimator of θ.

If the problem is just identified we have that r = k, the weight matrix is irrelevant, and bθ solves
bN

³bθ´ = 0. (A.18)

A.3 Examples: 2SLS and 3SLS

Two Stage Least-Squares (2SLS) Let us consider the single equation model

yi = x
0
iθ + ui (A.19)

together with the assumption

E (ziui) = 0 (A.20)

where zi is an r × 1 vector of instruments and r > k. Thus, in this example wi = (yi, x
0
i, z

0
i)
0,

ψ (wi, θ) = zi (yi − x0iθ), and the sample moment conditions are

bN (c) =
1

N

NX
i=1

zi
¡
yi − x0ic

¢
=
1

N
Z 0 (y −Xc) (A.21)
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where we are using the notation y = (y1, ..., yN )
0, X = (x1, ..., xN)

0, and Z = (z1, ..., zN )0. This is the

example that was used in the introductory section. Since r > k there is no solution to the system

bN (c) = 0.

The 2SLS estimator of θ minimizes the GMM objective function

bN (c)
0ANbN (c) = N−2 (y −Xc)0 ZANZ 0 (y −Xc) (A.22)

for AN = (Z 0Z/N)−1. This choice of weight matrix will be motivated later in the GMM context. Let

us note now that since the first-order conditions from (A.22) are

X 0ZANZ 0 (y −Xc) = 0, (A.23)

the form of the 2SLS estimator is

bθ2SLS = hX 0Z
¡
Z 0Z

¢−1
Z 0X

i−1
X 0Z

¡
Z 0Z

¢−1
Z 0y. (A.24)

Moreover, this equals

bθ2SLS = ³ bX 0 bX´−1 bX 0y (A.25)

where bX is the matrix of fitted values in a multivariate regression of X on Z:

bX = ZbΠ0 (A.26)

with bΠ = X 0Z (Z 0Z)−1.

Thus, following the classic interpretation of 2SLS that justifies its name, in the first stage X is

regressed on Z to obtain bX, whereas in the second stage we obtain bθ2SLS as a regression of y on bX.
Note also that we have

bθ2SLS = ³ bX 0X
´−1 bX 0y. (A.27)

That is, the 2SLS estimator can also be interpreted as the simple IV estimator that uses bX as instru-

ment. Specifically, it solves the k moment equations:

NX
i=1

bxi ³yi − x0ibθ2SLS´ = 0 (A.28)

where bxi = bΠzi. So, 2SLS uses as instruments the linear combinations of the zi that best predict xi.
Three Stage Least-Squares (3SLS) We turn to consider a system of g equations

y1i = x01iθ1 + u1i (A.29)
...

ygi = x0giθg + ugi
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whose errors are orthogonal to a common r0× 1 vector of instruments zi. Thus, in this example there
are r = gr0 moment conditions given by

E (ziu1i) = 0 (A.30)
...

E (ziugi) = 0.

Convenient compact notations for these moments are:

E (ui ⊗ zi) ≡ E
¡
Z 0iui

¢ ≡ E £Z 0i (yi −Xiθ)¤ = 0 (A.31)

where ui = (u1i, ..., ugi)
0, Zi = Ig ⊗ z0i, yi = (y1i, ..., ygi)0, θ =

¡
θ01, ..., θ

0
g

¢0, and
Xi =

⎛⎜⎜⎝
x01i 0

. . .

0 x0gi

⎞⎟⎟⎠ .
Accordingly, the sample orthogonality conditions are

bN (c) =
1

N

NX
i=1

Z 0i (yi −Xic) =
1

N

NX
i=1

⎛⎜⎜⎜⎝
zi (y1i − x01ic1)

...

zi

³
ygi − x0gicg

´
⎞⎟⎟⎟⎠

=
1

N

⎛⎜⎜⎝
Z 0 (y1 −X1c1)

...

Z 0 (yg −Xgcg)

⎞⎟⎟⎠ =
1

N

¡
Ig ⊗ Z 0

¢
(y −Xc) (A.32)

where Z = (z1, ..., zN )
0 is anN×r0 matrix similar to that used in the 2SLS example, and we analogously

define y1, ..., yg and X1, ...,Xg. Moreover, y =
¡
y01, ..., y0g

¢0 and X is a block diagonal matrix with blocks

X1, ...,Xg.

The 3SLS estimator of θ minimizes the GMM criterion

bN (c)
0ANbN (c)

with weight matrix given by

AN =

Ã
1

N

NX
i=1

Z 0ibΩZi
!−1

=

Ã
1

N

NX
i=1

bΩ⊗ ziz0i
!−1

= N
³bΩ⊗ Z 0Z´−1 (A.33)

where bΩ is the 2SLS residual covariance matrix:
bΩ = 1

N

NX
i=1

buibu0i (A.34)
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and bui = yi −Xibθ2SLS .
Therefore:

bθ3SLS = "ÃX
i

X 0
iZi

!
AN

ÃX
i

Z 0iXi

!#−1ÃX
i

X 0
iZi

!
AN

ÃX
i

Z 0iyi

!
(A.35)

or

bθ3SLS = hX 0
³bΩ−1 ⊗ Z ¡Z 0Z¢−1 Z 0´Xi−1X 0

³bΩ−1 ⊗ Z ¡Z 0Z¢−1 Z 0´ y. (A.36)

Moreover, in parallel with the earlier development for 2SLS, the 3SLS formula can be written as

bθ3SLS = ÃX
i

bX 0
i
bΩ−1 bXi!−1X

i

bX 0
i
bΩ−1yi (A.37)

where bXi is a block diagonal matrix with blocks bx01i, ..., bx0gi and
bxji = bΠjzi (j = 1, ..., g) (A.38)

with bΠj =Pi xjiz
0
i (
P
i ziz

0
i)
−1.

Expression (A.37) corresponds to the interpretation of 3SLS on which its name is based. Namely,

the first two stages coincide with those of 2SLS for each of the g equations, whereas in the third stage

we obtain bθ3SLS as GLS of yi on bXi weighted by the inverse of bΩ. Note that replacing bΩ by an identity
matrix in (A.37) we obtain a compact expression for the 2SLS estimators of all the θ.

Finally, we also have

bθ3SLS = ÃX
i

bX 0
i
bΩ−1Xi!−1X

i

bX 0
i
bΩ−1yi, (A.39)

so that bθ3SLS can also be interpreted as a simple IV estimator of the full system that uses bΩ−1 bXi as
instrument and solves the moment conditions

NX
i=1

bX 0
i
bΩ−1 ³yi −Xibθ3SLS´ = 0. (A.40)

A.4 Consistency of GMM Estimators

A general method for establishing consistency in the case of estimators that minimize a continuous

function is provided by the following theorem of Amemiya (1985). Precursors of this type of theorem

were employed by Sargan (1959) in his analysis of the asymptotic properties of nonlinear in parameters

IV estimators, and by Jennrich (1969) and Malinvaud (1970) in their proofs of the consistency of

nonlinear least-squares. A comprehensive discussion can be found in Newey and McFadden (1994).
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Consistency Theorem Let us assume the following:

(a) The parameter space Θ is a compact subset of Rk such that θ ∈ Θ.

(b) The estimation criterion sN (w1, ..., wN , c) = sN (c) is a continuous function in c ∈ Θ for all

(w1, ..., wN).

(c) sN (c) converges uniformly in probability to a nonstochastic function s∞ (c), which has a unique

minimum at c = θ, i.e.:

sup
Θ
|sN (c)− s∞ (c)| p→ 0 as N →∞. (A.41)

Let us define an estimator bθN as the value that minimizes sN (c):
bθN = argmin

Θ
sN (c) . (A.42)

Then plimN→∞ bθN = θ. (Proof: See Amemiya, 1985, p. 107.)

Application to GMM Estimators In this case we have

sN (c) = bN (c)
0ANbN (c) (A.43)

with bN (c) = N−1
PN
i=1 ψ (wi, c).

The previous theorem can be applied under the following assumptions:

1. Θ is compact, and ψ (w, c) is continuous in c ∈ Θ for each w.

2. AN
p→ A0 and A0 is positive semi-definite.

3. E [ψ (w, c)] exists for all c ∈ Θ and A0E [ψ (w, c)] = 0 only if c = θ (identification condition).

4. bN (c) converges in probability uniformly in c to E [ψ (w, c)].

Note that with these assumptions

s∞ (c) = E [ψ (w, c)]0A0E [ψ (w, c)] ≥ 0, (A.44)

which has a unique minimum of zero at c = θ.

Condition 4 states that bN (c) satisfies a uniform law of large numbers, and it ensures that the

uniform convergence assumption of the theorem is satisfied. More primitive conditions for stationary

or iid data are discussed by Hansen (1982), and Newey and McFadden (1994).
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A.5 Asymptotic Normality

One way to establish the asymptotic normality of GMM estimators is to proceed as in the analysis

of consistency. That is, to treat GMM as a special case within the class of estimators that minimize

some objective function (extremum estimators). A general theorem for extremum estimators adapted

from Amemiya (1985) is as follows.

Asymptotic Normality Theorem for Extremum Estimators Let us make the assumptions:

(a) We have bθN = argminΘ sN (c) such that plimN→∞ bθN = θ, where sN (c) has first and second

derivatives in a neighbourhood of θ, and θ is an interior point of Θ.

(b) Asymptotic normality of the gradient:4

√
N
∂sN (θ)

∂c
d→ N (0,W) (A.45)

(c) Convergence of the Hessian: for any eθN such that eθN p→ θ

∂2sN

³eθN´
∂c∂c0

p→ H (A.46)

where H is a non-singular non-stochastic matrix.

Then

√
N
³bθN − θ

´
d→ N ¡

0,H−1WH−1¢ . (A.47)

Proof. We can proceed as if bθN were an interior point of Θ since consistency of bθN for θ and the
assumption that θ is interior to Θ implies that the probability that bθN is not interior goes to zero as

N →∞.
Using the mean value theorem (and writing bθ for shortness):
0 =

∂sN

³bθ´
∂cj

=
∂sN (θ)

∂cj
+

kX
=1

∂2sN

³eθ[j]´
∂cj∂c

³bθ − θ
´
(j = 1, ..., k) (A.48)

where bθ is the -th element of bθ, and eθ[j] denotes a k×1 random vector such that °°°eθ[j] − θ
°°° ≤ °°°bθ − θ

°°°.
The expansion has to be made element by element since eθ[j] may be different for each j.

4We use the notation ∂sN (θ) /∂c as an abbreviation of

∂sN (c)

∂c |c=θ
.
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Note that bθ p→ θ implies eθ[j] p→ θ. In view of assumption (c) this implies

∂2sN

³eθN´
∂cj∂c0

p→ (j, ) element of H. (A.49)

Hence,

0 =
√
N
∂sN (θ)

∂c
+ [H + op (1)]

√
N
³bθ − θ

´
(A.50)

and

−H−1 [H + op (1)]
√
N
³bθ − θ

´
= H−1

√
N
∂sN (θ)

∂c
. (A.51)

Finally, using assumption (b) and Cramer’s theorem the result follows.

Note that this theorem requires twice differentiability of the objective function. However, asymp-

totic normality for GMM can be easily proved when bN (c) only has first derivatives if we directly use

the first-order conditions. An alternative specific result for GMM along these lines is as follows.

Asymptotic Normality Theorem for GMM We make the following assumptions in addition

to those used for consistency:

5. θ is in the interior of Θ, and ψ (w, c) is (once) continuously differentiable in Θ.

6. The quantity DN (c) = ∂bN (c) /∂c
0 converges in probability uniformly in c to a non-stochastic

matrix D (c), and D (c) is continuous at c = θ.

7.
√
NbN (θ) satisfies a central limit theorem:

√
NbN (θ) =

1√
N

NX
i=1

ψ (wi, θ)
d→ N (0, V0) . (A.52)

8. For D0 = D (θ), D00A0D0 is non-singular.

Then

√
N
³bθ − θ

´
d→ N (0,W0) (A.53)

where W0 is given by the sandwich formula

W0 =
¡
D00A0D0

¢−1
D00A0V0A0D0

¡
D00A0D0

¢−1
. (A.54)

Proof. The GMM estimator satisfies the first-order conditions

D0N
³bθ´ANbN ³bθ´ = 0. (A.55)
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Moreover, in view of condition 6 and the consistency of bθ:
D00A0

√
NbN

³bθ´ = op (1) . (A.56)

Next, using a first-order expansion, we have

D00A0
h√
NbN (θ) +DN (θ)

√
N
³bθ − θ

´i
= op (1) . (A.57)

Hence¡
D00A0D0

¢√
N
³bθ − θ

´
= −D00A0

√
NbN (θ) + op (1) (A.58)

and

√
N
³bθ − θ

´
= − ¡D00A0D0¢−1D00A0√NbN (θ) + op (1) . (A.59)

Finally, from the central limit theorem for
√
NbN (θ) the result follows.

Note that the conditions of this result imply the first two conditions of the asymptotic normality

theorem for extremum estimators but not the third one, which requires twice differentiability of bN (c).

From a different angle, the theorem for extremum estimators can be regarded as a special case of a

result based on GMM-like first-order conditions with estimating equation given by ∂sN

³bθ´ /∂c = 0
(cf. Hansen, 1982; Newey and McFadden, 1994).

As long as the relevant moments exist, V0 is given by

V0 = lim
N→∞

V ar

Ã
1√
N

NX
i=1

ψ (wi, θ)

!

= lim
N→∞

1

N

NX
i=1

NX
j=1

E
£
ψ (wi, θ)ψ (wj , θ)

0¤ . (A.60)

With independent observations, V0 reduces to

V0 = lim
N→∞

1

N

NX
i=1

E
£
ψ (wi, θ)ψ (wi, θ)

0¤ , (A.61)

and with iid observations

V0 = E
£
ψ (wi, θ)ψ (wi, θ)

0¤ . (A.62)

Given our focus on iid observations, in the sequel we assume that V0 is given by (A.62).5 Similarly,

we take the r × k matrix D0 to be given by

D0 = E

µ
∂ψ (wi, θ)

∂c0

¶
. (A.63)

5Depending on the context we may suppress the i subscript for convenience and simply write E ψ (w, θ)ψ (w, θ)0 .
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A.6 Estimating the Asymptotic Variance

To obtain a consistent estimate of W0 we just replace A0, D0, and V0 in (A.54) by their sample

counterparts AN , bD, and bV , where the last two are given by
bD =

1

N

NX
i=1

∂ψ
³
wi,bθ´
∂c0

(A.64)

bV =
1

N

NX
i=1

ψ
³
wi,bθ´ψ ³wi,bθ´0 . (A.65)

In this way we obtain

cWN =
³ bD0AN bD´−1 bD0AN bV AN bD ³ bD0AN bD´−1 . (A.66)

Thus, the concluding result from the discussion so far is³cWN/N
´−1/2 ³bθN − θ

´
d→ N (0, I) , (A.67)

which justifies the approximation of the joint distribution of the random vector
³cWN/N

´−1/2 ³bθN − θ
´

by a N (0, I) when N is large.

The squared root of the diagonal elements of cWN/N are the asymptotic standard errors of the

components of bθN , and cWN/N itself is sometimes referred to as the estimated asymptotic variance

matrix of bθN .
Example: 2SLS with iid observations In this case we have

ψ (wi, θ) = zi
¡
yi − x0iθ

¢
= ziui. (A.68)

The expressions for A0, D0, and V0 are given by

A0 =
£
E
¡
ziz

0
i

¢¤−1 (A.69)

D0 = E
¡
zix

0
i

¢
(A.70)

V0 = E
¡
u2i ziz

0
i

¢
, (A.71)

and their sample counterparts are

AN =

Ã
1

N

NX
i=1

ziz
0
i

!−1
= N

¡
Z 0Z

¢−1 (A.72)

bD =
1

N

NX
i=1

zix
0
i =

1

N
Z 0X (A.73)

bV =
1

N

NX
i=1

bu2i ziz0i = 1

N

NX
i=1

³
yi − x0ibθ2SLS´2 ziz0i. (A.74)
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Hence, the estimated asymptotic variance matrix of 2SLS is

cWN/N =
³ bX 0 bX´−1 ¡X 0Z

¢ ¡
Z 0Z

¢−1Ã NX
i=1

bu2i ziz0i
!¡
Z 0Z

¢−1 ¡
Z 0X

¢ ³ bX 0 bX´−1
=

³ bX 0 bX´−1Ã NX
i=1

bu2i bxibx0i
!³ bX 0 bX´−1 (A.75)

where as before bX = Z (Z 0Z)−1 (Z 0X) = ZbΠ0 with rows bxi = bΠzi.
Homoskedastic Case Under conditional homoskedasticity u2i is mean independent of zi:

E
¡
u2i | zi

¢
= σ2, (A.76)

in which case the variance matrix of the 2SLS moment conditions particularizes to:

V0 ≡ E
£
E
¡
u2i | zi

¢
ziz

0
i

¤
= σ2E

¡
ziz

0
i

¢
. (A.77)

Hence, in this case

W0 = σ2
n
E
¡
xiz

0
i

¢ £
E
¡
ziz

0
i

¢¤−1
E
¡
zix

0
i

¢o−1
= σ2

£
E
¡
Πziz

0
iΠ
0¢¤−1 (A.78)

where Π = E (xiz0i) [E (ziz
0
i)]
−1.

Therefore, letting the 2SLS residual variance be

bσ2 = 1

N

NX
i=1

bu2i , (A.79)

an alternative consistent estimate of W0 under homoskedasticity is

fWN/N = bσ2 hX 0Z
¡
Z 0Z

¢−1
Z 0X

i−1
= bσ2 ³ bX 0 bX´−1 , (A.80)

which is the standard formula for the 2SLS estimated asymptotic variance matrix.

Standard errors and tests of hypothesis calculated from (A.75) are robust to heteroskedasticity,

whereas those calculated from (A.80) are not. However, cWN depends on fourth-order moments of

the data whereas fWN only depends on second-order moments. This fact may imply that under

homoskedasticity, for given N , the quality of the asymptotic approximation is poorer for the robust

statistics. So in practice there may be a finite-sample trade-off in the choice between (A.75) and

(A.80).

A.7 Optimal Weight Matrix

So far we have not considered the problem of choosing the matrix AN , but clearly given the form of

the asymptotic variance of bθ, different choices of A0 will give rise to GMM estimators with different

precision (at least in large samples).
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It is a matter of deciding which linear combinations of a given set of orthogonality conditions are

optimal for the estimation of θ. This is a different question from the problem of constructing optimal

orthogonality conditions from conditional moments, which will be considered in Appendix B. The

following optimality result takes the specification of orthogonality conditions as given.

The result is that an optimal choice of AN is such that A0 is equal to V −10 up to an arbitrary

positive multiplicative constant k:

A0 = kV
−1
0 . (A.81)

For a GMM estimator with such A0, the asymptotic covariance matrix is given by¡
D00V

−1
0 D0

¢−1
. (A.82)

We can prove that this is an optimal choice showing that for any other A0:6¡
D00A0D0

¢−1
D00A0V0A0D0

¡
D00A0D0

¢−1 − ¡D00V −10 D0
¢−1 ≥ 0. (A.83)

To see this, note that this difference is equivalent to

D
h
I −H ¡H 0H

¢−1
H 0
i
D
0

(A.84)

where

D =
¡
D00A0D0

¢−1
D00A0V

1/2
0 (A.85)

H = V
−1/2
0 D0. (A.86)

Moreover, (A.84) is a positive semi-definite matrix since
h
I −H (H 0H)−1H 0

i
is idempotent.

Therefore, in order to obtain an optimal estimator we need a consistent estimate of V0 up to scale.

In general, this will require us to obtain a preliminary suboptimal GMM estimator, which is then used

in the calculation of an estimate like (A.65).

Example: 2SLS Under conditional homoskedasticity, V0 = σ2E (ziz
0
i), in which case the 2SLS

limiting weight matrix (A.69) is a multiple of V −10 , and therefore 2SLS is optimal. Moreover, a

consistent estimate of the 2SLS asymptotic variance is given by (A.80).

However, if the conditional variance of ui given zi depends on zi, then 2SLS is suboptimal in the

GMM class, and fWN is not a consistent estimate of the asymptotic variance of 2SLS.

Under heteroskedasticity, we can still do valid asymptotic inference with 2SLS since cWN in (A.75)

remains a consistent estimate of W0.

A two-step optimal GMM estimator is given by

eθ =
⎡⎣X 0Z

Ã
NX
i=1

bu2i ziz0i
!−1

Z 0X

⎤⎦−1X 0Z

Ã
NX
i=1

bu2i ziz0i
!−1

Z 0y. (A.87)

6The weak inequality notation B ≥ 0 applied to a matrix here denotes that B is positive semi-definite.
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This estimator is of the same form as 2SLS but it replaces the 2SLS weight matrix (Z 0Z)−1 by the

robust choice
³PN

i=1 bu2i ziz0i´−1 based on 2SLS residuals (cf. White, 1982).
Semi-parametric Asymptotic Efficiency We obtained (A.82) as the best asymptotic vari-

ance that can be achieved by an estimator within the GMM class. An interesting theoretical question

is whether a different type of estimator based on the same information could be more efficient as-

ymptotically than optimal GMM. The answer is that no additional efficiency gains are possible since,

as shown by Chamberlain (1987), (A.82) is a semi-parametric information bound. That is, (A.82) is

the best one can do if all that is known about the distribution of w is that it satisfies the moment

restrictions in (A.15).

Chamberlain’s argument proceeds as follows. Suppose that the wi are iid observations with a

multinomial distribution with known finite support given by
©
ξ1, ..., ξq

ª
and corresponding probabilities

π1, ...,πq. Suppose all that is known about these probabilities is that they add up to one

qX
j=1

πj = 1 (A.88)

and that they satisfy the moment restrictions (A.15):

qX
j=1

ψ
¡
ξj , θ

¢
πj = 0. (A.89)

Since this is a parametric likelihood problem, we can obtain the asymptotic Cramer-Rao informa-

tion bound for θ. Chamberlain (1987) showed that this bound corresponds to (A.82). Thus the optimal

GMM variance is the lower bound on asymptotic variance that can be achieved in the multinomial

case, regardless of knowledge of the support of the distribution of w.

Next, Chamberlain argued that any distribution can be approximated arbitrarily well by a multino-

mial. He used a formal approximation argument to show that the restriction to finite support is not

essential, thus characterizing (A.82) as a semi-parametric information bound.

A.8 Testing the Overidentifying Restrictions

When r > k there are testable restrictions implied by the econometric model. Estimation of θ sets

to zero k linear combinations of the r sample orthogonality conditions bN (c). So, when the model is

right, there are r−k linearly independent combinations of bN
³bθ´ that should be close to zero but are

not exactly equal to zero.

The main result here is that a minimized optimal GMM criterion scaled by N has an asymptotic

chi-square distribution with r − k degrees of freedom:

Ns
³bθ´ = NbN ³bθ´0 bV −1bN ³bθ´ d→ χ2r−k (A.90)
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where bθ is an optimal estimator and bV is a consistent estimate of V0.

A statistic of this form is called a Sargan test statistic in the instrumental-variable context, and

more generally a J or a Hansen test statistic (cf. Sargan, 1958, 1959; and Hansen, 1982).

As a sketch of the argument, note that factoring bV −1 = bC bC 0, in view of (A.52)
√
N bC 0bN (θ) d→ N (0, Ir) . (A.91)

Moreover, letting bG = bC 0 bD we have

√
N
³bθ − θ

´
= −

³ bD0 bV −1 bD´−1 bD0 bV −1√NbN (θ) + op (1)
= −

³ bG0 bG´−1 bG0√N bC 0bN (θ) + op (1) . (A.92)

Now, using a first-order expansion for bN
³bθ´ and combining the result with (A.92):

h ≡
√
N bC 0bN ³bθ´ = √N bC 0bN (θ) + bC 0 bD√N ³bθ − θ

´
+ op (1)

=

∙
Ir − bG³ bG0 bG´−1 bG0¸√N bC 0bN (θ) + op (1) . (A.93)

Since the limit of
∙
Ir − bG³ bG0 bG´−1 bG0¸ is idempotent and has rank r−k, h0h d→ χ2r−k, from which

(A.90) follows.

Incremental Sargan Tests Let us consider a partition

ψ (w, θ) =

Ã
ψ1 (w, θ)

ψ2 (w, θ)

!
(A.94)

where ψ1 (w, θ) and ψ2 (w, θ) are of orders r1 and r2, respectively.

Suppose that r1 > k and that we wish to test the restrictions

Eψ2 (w, θ) = 0 (A.95)

taking Eψ1 (w, θ) = 0 as a maintained hypothesis.

From the earlier result we know that

Ns1

³bθ[1]´ = Nb1N ³bθ[1]´0 bV −11 b1N

³bθ[1]´ d→ χ2r1−k (A.96)

where b1N (c) = N−1
PN
i=1 ψ1 (wi, c), bV1 is a consistent estimate of the covariance matrixE £ψ1 (w, θ)ψ1 (w, θ)0¤,

and bθ[1] is the minimizer of s1 (c).
Then it can be shown that

Sd = Ns
³bθ´−Ns1 ³bθ[1]´ d→ χ2r2 (A.97)
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and that Sd is asymptotically independent of Ns1
³bθ[1]´.

Therefore, the incremental statistic Sd can be used to test (A.95), having previously tested the

validity of Eψ1 (w, θ) = 0 or maintaining their validity a priori.

To prove (A.97), note that in view of (A.93) we have:

h ≡
√
N bC 0bN ³bθ´ = hIr −G ¡G0G¢−1G0i√NC 0bN (θ) + op (1) (A.98)

h1 ≡
√
N bC 01b1N ³bθ[1]´ = hIr1 −G1 ¡G01G1¢−1G01i√NC 01b1N (θ) + op (1)

where G and C denote the probability limits of bG and bC, respectively, and we are using similar
definitions of G1, C1, bG1, and bC1 applied to the first r1 moments. Thus, we have G = C 0D0 and

G1 = C
0
1D10, with D0 = (D

0
10,D

0
20)

0.

Next, consider an orthogonal transformation of the two blocks of moments:

ψ∗i =

Ã
ψ1i

ψ∗2i

!
=

Ã
I 0

−H21 I

!Ã
ψ1i

ψ2i

!
= Hψi (A.99)

where for shortness we are writing ψi = ψ (wi, θ), etc., and

H21 = E
¡
ψ2iψ

0
1i

¢ £
E
¡
ψ1iψ

0
1i

¢¤−1
. (A.100)

Also, let us denote b∗N (θ) = HbN (θ), D
∗
0 = HD0, and C

∗0 = C 0H−1. With these notations, we can

rewrite (A.98) as:

h =
h
Ir −G

¡
G0G

¢−1
G0
i√
NC∗0b∗N (θ) + op (1) . (A.101)

Clearly, G is unaffected by the transformation since G = C 0D0 = C∗0D∗0. Moreover, because of block-

orthogonality, C∗0 is block diagonal with elements C 01 and C∗02 , say. Hence, G1 contains the top r1
rows of G:

G = C∗0D∗0 =

Ã
C 01 0

0 C∗02

!Ã
D10

D∗20

!
=

Ã
G1

G∗2

!
. (A.102)

Therefore, letting M = Ir −G (G0G)−1G0 and

M1 =

⎛⎝ h
Ir1 −G1 (G01G1)−1G01

i
0

0 0

⎞⎠ ,
we can writeÃ

h1

0

!
=M1

√
NC∗0b∗N (θ) + op (1) (A.103)

and

h0h− h01h1 = Nb∗N (θ)0C∗ (M −M1)C
∗0b∗N (θ) + op (1) . (A.104)
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Finally, notice that (M −M1) is symmetric and idempotent with rank r − r1, and also

(M −M1)M1 = 0, (A.105)

from which (A.97) and the asymptotic independence between Sd and Ns1
³bθ[1]´ follow.

Example: 2SLS We may consider a test of the validity of a subset of instruments for the model

y = Xθ + u, (A.106)

where the N × r data matrix of instruments is partitioned as Z =
µ
Z1
...Z2

¶
, Z1 is N × r1 and Z2 is

N × r2.
Thus,

NX
i=1

ψ (wi, θ) =

Ã
Z 01u

Z 02u

!
. (A.107)

In this example Sd performs a test of the validity of the additional instruments Z2 given the validity

of Z1.

If k = 1 and r = 2, xi, z1i, and z2i are scalar variables, and the single parameter θ satisfies the two

moment conditions

E [z1i (yi − θxi)] = 0

E [z2i (yi − θxi)] = 0. (A.108)

So the Sargan test is testing just one overidentifying restriction, which can be written as the equality

of two simple IV estimating coefficients:

E (z1iyi)

E (z1ixi)
=
E (z2iyi)

E (z2ixi)
. (A.109)

Irrelevance of Unrestricted Moments Let us suppose that the sample moment vector consists

of two components

bN (θ) =

Ã
b1N (θ1)

b2N (θ)

!
r1 × 1
r2 × 1

(A.110)

corresponding to a partition θ =
¡
θ01, θ

0
2

¢0 ∈ Θ1 × Θ2 of dimensions k1 and k2, respectively. The
first component of bN (θ) depends only on θ1 whereas the second depends on both θ1 and θ2. We

assume that r1 ≥ k1, but r2 = k2. Moreover, ∂b2N (c) /∂c02 is non-singular for all c, so that b2N (θ) are
effectively unrestricted moments.
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Suppose that we are primarily interested in the estimation of θ1. We wish to compare two different

GMM estimators of θ1. The first one is a joint estimator of θ1 and θ2 using all the moments:

bθ = Ã bθ1bθ2
!
= argmin

c
bN (c)

0 V −1bN (c) = argmin
c
sN (c) . (A.111)

The other is a separate estimator of θ1 based on the first r1 moments:

eθ1 = argmin
c1
b1N (c1)

0 V −111 b1N (c1) = argminc s∗N (c1) (A.112)

where V11 consists of the first r1 rows and columns of V .

The result is that as long as b2N (θ) are unrestricted moments:7

bθ1 = eθ1. (A.113)

Moreover, since sN
³bθ´ = s∗N ³eθ1´, provided V is an optimal weight matrix, the Sargan test statistics

of bN (θ) and b1N (θ1) coincide.

To see this, we need to show that s∗N (c1) coincides with sN (c) concentrated with respect to c2.

Let us write

sN (c) = b1N (c1)
0 V 11b1N (c1) + 2b1N (c1)0 V 12b2N (c) + b2N (c)0 V 22b2N (c) (A.114)

where

V −1 =

Ã
V 11 V 12

V 21 V 22

!
,

and let bθ2 (c1) be the minimizer of sN (c) with respect to c2 for given c1.
In general, bθ2 (c1) satisfies the first-order conditions
∂sN (c)

∂c2
= 2

µ
∂b2N (c)

∂c02

¶0 £
V 22b2N (c) + V

21b1N (c1)
¤
= 0, (A.115)

but if b2N (c) are unrestricted, bθ2 (c1) satisfies
b2N

³
c1,bθ2 (c1)´ = − ¡V 22¢−1 V 21b1N (c1) . (A.116)

Therefore, the concentrated criterion is given by

sN

³
c1,bθ2 (c1)´ = b1N (c1)

0
h
V 11 − V 12 ¡V 22¢−1 V 21i b1N (c1) (A.117)

= b1N (c1)
0 V −111 b1N (c1) ,

which coincides with s∗N (c1) in view of the formulae for partitioned inverses.
7A similar result for minimum distance is in Chamberlain (1982, Proposition 9b).
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B Optimal Instruments in Conditional Models

B.1 Introduction

So far the starting point of our discussion has been an r × 1 vector of orthogonality conditions of the
form

Eψ (w, θ) = 0. (B.1)

Given these moment restrictions we obtained asymptotically efficient GMM estimators of θ.

However, we are often interested in models that imply an infinite number of orthogonality con-

ditions. In particular, this is the case with models defined by conditional moment restrictions. For

example, the linear regression model

E (y | x) = x0θ (B.2)

implies that

E
£
h (x)

¡
y − x0θ¢¤ = 0 (B.3)

for any function h such that the expectation exists, and therefore in general an infinite set of uncon-

ditional moment restrictions.

Note, however, that the number of restrictions is finite if x is discrete and only takes a finite number

of different values. For example, suppose that x is a single 0− 1 binary variable. Let h0 (x) and h1 (x)
be the indicator functions of the events x = 0 and x = 1, respectively, so that h0 (x) = 1 − x and
h1 (x) = x. Clearly, any other function of x will be a linear combination of these two. Therefore, in

this case (B.2) only implies two moment restrictions:

E [h0 (x) (y − xθ)] = 0

E [h1 (x) (y − xθ)] = 0. (B.4)

Similarly, if x is discrete with q points of support
¡
ξ1, ..., ξq

¢
, the conditional moment restriction (B.2)

implies q unconditional moments:

E [hj (x) (y − xθ)] = 0 (j = 1, ..., q) (B.5)

where hj (x) = 1
¡
x = ξj

¢
(cf. Chamberlain, 1987).8

The question that we address here is whether it is possible to find a finite set of optimal orthogonal-

ity conditions that give rise to asymptotically efficient estimators, in the sense that their asymptotic

variance cannot be reduced by using additional orthogonality conditions.

8We use 1 (A) to denote the indicator function of event A, such that 1 (A) = 1 if A is true and 1 (A) = 0 otherwise.
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We begin by solving the problem for the linear regression model which is the most familiar context,

and next we use the same procedure for increasingly more complex models. The most general case

that we consider, a set of nonlinear simultaneous implicit equations, nests all the others as special

cases.

In all cases we assume the identification of the parameters that we wish to estimate. Moreover,

except in a cursory way, we do not consider explicitly specific feasible estimators. Instead, the focus

of our discussion is in finding the optimal instruments for each type of model.

We only consider optimal instruments for iid observations. The analysis of optimal instruments

for dependent observations is more complicated. Moreover, the iid assumption is sufficiently general

to cover panel data models in a fixed T , large N setting.

Amemiya (1977) obtained the optimal instruments for a nonlinear simultaneous equation model

with homoskedastic and serially uncorrelated errors. The form of the optimal instruments for a

conditional mean model with dependent observations was derived by Hansen (1985). Chamberlain

(1987) found that the optimal IV estimator attains the semi-parametric efficiency bound for conditional

moment restrictions. Newey (1993) provides a survey of the literature and discussion of nonparametric

estimation of the optimal instruments in the iid case.

B.2 Linear Regression

The model is

y = x0θ + u (B.6)

E (u | x) = 0, (B.7)

where y is a scalar variable, and x and θ are k × 1.
Let z = z (x) denote a p× 1 vector of functions of x such that p ≥ k. Then z is a vector of valid

instruments since

E
£
z
¡
y − x0θ¢¤ = 0. (B.8)

The optimal GMM estimator based on a given set of orthogonality conditions Eψ (w, θ) = 0 and

iid observations has asymptotic variance¡
D00V

−1
0 D0

¢−1
(B.9)

where D0 = E [∂ψ (w, θ) /∂c0] and V0 = E
£
ψ (w, θ)ψ (w, θ)0

¤
(see Section A.7). In our case ψ (w, θ) =

z (y − x0θ), and therefore

D0 = −E ¡zx0¢ (B.10)

V0 = E
¡
u2zz0

¢
= E

£
σ2 (x) zz0

¤
(B.11)
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where

E
¡
u2 | x¢ = σ2 (x) . (B.12)

Hence, the expression for (B.9) isn
E
¡
xz0
¢
E
£
σ2 (x) zz0

¤−1
E
¡
zx0
¢o−1

(B.13)

The optimal instruments in this case are

z∗ (x) =
x

σ2 (x)
. (B.14)

Setting z = z∗ (x) the asymptotic variance (B.13) for the optimal instruments takes the form9∙
E

µ
xx0

σ2 (x)

¶¸−1
. (B.15)

To show that z∗ (x) are the optimal instruments we prove that for any other z:

E

µ
xx0

σ2 (x)

¶
−E ¡xz0¢E £σ2 (x) zz0¤−1E ¡zx0¢ ≥ 0. (B.16)

Letting x† = x/σ (x), z† = σ (x) z, and w =
¡
x†0, z†0

¢0
, the lhs of (B.16) can be rewritten as

E
³
x†x†0

´
−E

³
x†z†0

´ h
E
³
z†z†0

´i−1
E
³
z†x†0

´
= H 0E

¡
ww0

¢
H (B.17)

where

H 0 =
µ
I
...−E

³
x†z†0

´h
E
³
z†z†0

´i−1¶
. (B.18)

Clearly, E (ww0) ≥ 0 since for any a of the same dimension as w, we have a0E (ww0) a = E ¡ζ2¢ ≥ 0
with ζ = a0w. Therefore, H 0E (ww0)H ≥ 0 also, which shows that (B.15) is a lower bound for variances
of the form (B.13).

Thus, for example, if we consider an optimal GMM estimator that uses an augmented instrument

set

z =

Ã
z∗ (x)

h (x)

!

for some h (x), there is no improvement in the asymptotic variance which remains equal to (B.15).

The direct implication of this result is that the estimator eθ that solves
NX
i=1

z∗ (xi)
³
yi − x0ieθ´ = 0 (B.19)

9The optimal choice of instruments is up to a multiplicative constant, since any b (x) c for constant c 6= 0 does not

change the asymptotic variance.
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is optimal. Note that the optimal instrument has the same dimension as θ, so that no further weighting

of the moments is required.

Of course, we have just reviewed the Gauss—Markov result and eθ is nothing more than the unfeasible
GLS estimator of θ:

eθ = Ã NX
i=1

xix
0
i

σ2 (xi)

!−1 NX
i=1

xiyi
σ2 (xi)

. (B.20)

This estimator is unfeasible because the form of σ2 (.) is unknown.

Homoskedasticity Under homoskedasticity σ2 (x) = σ2 for all x and the optimal variance (B.15)

becomes

σ2
£
E
¡
xx0
¢¤−1

. (B.21)

The optimal instruments are the x themselves since σ becomes an irrelevant constant, so that OLS is

optimal.

Note that all we are saying is that OLS attains the asymptotic variance bound when σ2 (x) happens

to be constant, but this constancy is not taken into account in the calculation of the bound. If we

incorporate the homoskedasticity assumption in estimation the bound for θ may be lowered as we

show later in Section B.6.

Feasible GLS The efficiency result suggests to consider feasible GLS estimators that use esti-

mated optimal instruments bz∗ (xi) = xi/bσ2 (xi) where bσ2 (xi) is an estimate of σ2 (xi). If there is a
known (or presumed) functional form of the heteroskedasticity σ2 (xi, γ), we can set bσ2 (xi) = σ2 (xi, bγ)
using a consistent estimator bγ of γ. For example, we can use squared OLS residuals bui to obtain a
regression estimate of γ of the form

bγ = argmin
b

NX
i=1

£bu2i − σ2 (xi, b)
¤2
. (B.22)

Under correct specification and appropriate regularity conditions, it is well known that feasible and

unfeasible GLS have the same asymptotic distribution. Alternatively, bσ2 (xi) could be a nonparametric
estimator of the conditional variance. A nearest neighbour estimate that lead to an asymptotically

efficient feasible GLS was discussed by Robinson (1987).

B.3 Nonlinear Regression

The model is

y = f (x, θ) + u (B.23)
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E (u | x) = 0 (B.24)

where y is a scalar variable, θ is k×1, and f (x, θ) is some differentiable nonlinear function of x and θ.
As before, we consider an arbitrary vector of instruments z = z (x) and the moments

E [z (y − f (x, θ))] = 0. (B.25)

The only difference with the linear case is that now

D0 = −E
¡
zf 01
¢

(B.26)

where

f1 ≡ f1 (x, θ) = ∂f (x, θ)

∂c
. (B.27)

Therefore, the expression for the asymptotic variance (B.9) isn
E
¡
f1z

0¢E £σ2 (x) zz0¤−1E ¡zf 01¢o−1 . (B.28)

Following the steps of the linear case, the optimal instruments are

z∗ (x) =
f1 (x, θ)

σ2 (x)
(B.29)

and the corresponding variance∙
E

µ
f1 (x, θ) f1 (x, θ)

0

σ2 (x)

¶¸−1
. (B.30)

This variance is achieved by the unfeasible IV estimator eθ that solves the nonlinear sample moment
equations:

qN (c) =
NX
i=1

f1 (xi, θ)

σ2 (xi)
[yi − f (xi, c)] = 0. (B.31)

This estimator is unfeasible on two accounts. In common with the linear case, eθ depends on the
conditional variance σ2 (xi), which is an unknown function of xi. But it also depends on the vector

of partial derivatives f1 (xi, θ) evaluated at θ, which are known functions of xi and the unknown true

values of the parameters. It can be shown that substituting θ in (B.31) by a consistent estimator we

still get an asymptotically efficient estimator. Alternatively, instead of keeping the optimal instrument

fixed we can update it in the estimation. This is precisely what nonlinear least-squares does, which

we discuss next.
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Nonlinear Least-Squares The generalized nonlinear least-squares estimator minimizes

min
c

X [yi − f (xi, c)]2
σ2 (xi)

(B.32)

and its first-order conditions are

NX
i=1

f1 (xi, c)

σ2 (xi)
[yi − f (xi, c)] = 0, (B.33)

which are similar to (B.31) except for the replacement of θ by c in the optimal instruments. It can

be easily shown that the estimator that solves (B.33) is asymptotically equivalent to eθ. Of course, to
obtain a feasible estimator one still has to replace σ2 (xi) by an estimate as in the linear case.

Finally, note that in the homoskedastic case, the variance term becomes irrelevant and we obtain

the ordinary nonlinear least-squares formulae.

B.4 Nonlinear Structural Equation

The model is

ρ (y, x, θ) = u (B.34)

E (u | x) = 0 (B.35)

where now y is a vector of endogenous variables and ρ (., ., .) is a scalar function that usually will only

depend on a subset of the conditioning variables x.

Again, considering an arbitrary instrument vector z = z (x) with moments E [zρ (y, x, θ)] = 0 we

obtain an expression for V0 equal to (B.11) and

D0 = E
£
zρ1 (y, x, θ)

0¤ (B.36)

where

ρ1 (y, x, θ) =
∂ρ (y, x, θ)

∂c
. (B.37)

Note that ρ1 (y, x, θ) may depend on y and hence it is not a valid instrument in general. So we

consider instead its conditional expectation given x

b (x) = E [ρ1 (y, x, θ) | x] . (B.38)

Moreover, by the law of iterated expectations

D0 = E
£
zb (x)0

¤
. (B.39)

Now we can argue as in the case of the regression models, so that the optimal instruments are

z∗ (x) =
b (x)

σ2 (x)
= E

µ
∂ρ (y, x, θ)

∂c
| x
¶
σ−2 (x) , (B.40)
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and the optimal variance∙
E

µ
b (x) b (x)0

σ2 (x)

¶¸−1
. (B.41)

This variance is achieved by the unfeasible IV estimator eθ that satisfies the sample moment equations:
NX
i=1

b (xi)

σ2 (xi)
ρ
³
yi, xi,eθ´ = 0. (B.42)

The difference with nonlinear regression is that now both b (xi) and σ2 (xi) are unknown functions

of xi. A parametric approach to feasible estimation is to specify functional forms for b (xi) and

σ2 (xi), and substitute suitable estimates in (B.42). 2SLS can be regarded as an example of this

approach and this is discussed below. On the other hand, there are two nonparametric approaches

to feasible estimation. One is the “plug-in” method that replaces b (xi) and σ2 (xi) in (B.42) by

nonparametric regression estimates. Another is to consider a GMM estimator based on an expanding

set of instruments as N tends to infinity for a pre-specified class of functions (cf. Newey, 1990, 1993,

for discussion and references).

Linear Structural Equation Letting y = (y1, y02)
0, x = (x01, x02)

0, and w = (y02, x01)
0, we have

ρ (y, x, θ) = y1 − w0θ (B.43)

where y1 is the (first) element of y, and w contains the remaining components of y and the conditioning

variables that are included in the equation.

In this case

b (x) = −E (w | x) = −
Ã
E (y2 | x)

x1

!
, (B.44)

so that the unfeasible optimal IV estimator is

eθ = Ã NX
i=1

b (xi)

σ2 (xi)
w0i

!−1 NX
i=1

b (xi)

σ2 (xi)
y1i. (B.45)

If E (w | x) is linear and σ2 (x) is constant:

E (w | x) = Πx

σ2 (x) = σ2

where Π = E (wx0) [E (xx0)]−1, the asymptotic variance (B.41) becomes

σ2
£
ΠE

¡
xx0
¢
Π0
¤−1

= σ2
n
E
¡
wx0

¢ £
E
¡
xx0
¢¤−1

E
¡
xw0

¢o−1
, (B.46)
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which is the 2SLS asymptotic variance under homoskedasticity.10

In effect, 2SLS is the IV estimator that uses the sample linear projection bΠx as an estimate of the
optimal instrument. It achieves the variance bound when E (w | x) is linear and σ2 (x) is constant,

but this information is not used in the specification of the estimation problem.

We saw in Section A.7 that if there is heteroskedasticity the two-step GMM estimator (A.87) is

asymptotically more efficient than 2SLS. In the current notation two-step GMM solves

NX
i=1

bΓxi ³y1i − w0ibθGMM2´ = 0 (B.47)

where

bΓ = NX
i=1

wix
0
i

Ã
NX
i=1

bu2ixix0i
!−1

. (B.48)

Thus, both GMM2 and 2SLS are using linear combinations of x as instruments.11 Under het-

eroskedasticity, GMM2 is combining optimally a non-optimal set of orthogonality conditions. So, it

is more efficient than 2SLS but inefficient relative to the IV estimator that uses E (w | x) /σ2 (x) as
instruments.

B.5 Multivariate Nonlinear Regression

We now consider a multivariate nonlinear regression

y1 = f[1] (x, θ) + u1
...

yg = f[g] (x, θ) + ug (B.49)

with E (uj | x) = 0 (j = 1, ..., g), or in compact notation

y = f (x, θ) + u (B.50)

E (u | x) = 0 (B.51)

where θ is k × 1, and y, f (x, θ), and u are g × 1 vectors.
This is a nonlinear system of “seemingly unrelated regression equations” (SURE) that places no

restrictions on the second moments of the errors. There may be correlation among the errors of

10Note that replacing Π by Π has no effect on the asymptotic distribution.
11Γ is a consistent estimate of the coefficients of a linear projection of E (w | x) /σ (x) on σ (x)x:

Γ = E E (w | x)x0 E σ2 (x)xx0
−1
= E wx0 E u2xx0

−1
.
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different equations, and their conditional variances and covariances may be heteroskedastic. Let the

conditional variance matrix of u given x be

E
¡
uu0 | x¢ = Ω (x) , (B.52)

which we assume to be nonsingular with probability one.

Let Z = Z (x) denote a g × p matrix of functions of x such that p ≥ k. Then we can form the

moment conditions

E
©
Z 0 [y − f (x, θ)]ª = 0. (B.53)

Proceeding as in the previous cases we have

D0 = −E
¡
Z 0F1

¢
(B.54)

where F1 is the g × k matrix of partial derivatives

F1 ≡ F1 (x, θ) = ∂f (x, θ)

∂c0
. (B.55)

Moreover,

V0 = E
¡
Z 0uu0Z

¢
= E

¡
Z 0Ω (x)Z

¢
. (B.56)

Therefore, the optimal GMM variance based on (B.53) isn
E
¡
F 01Z

¢ £
E
¡
Z 0Ω (x)Z

¢¤−1
E
¡
Z 0F1

¢o−1
. (B.57)

The optimal instruments are

Z∗ (x) = Ω−1 (x)F1 (B.58)

in which case the asymptotic variance is£
E
¡
F 01Ω

−1 (x)F1
¢¤−1

. (B.59)

To show that Z∗ (x) are the optimal instruments we just use a multivariate version of the argument

employed in Section B.2. We need to prove that for any other Z:

E
¡
F 01Ω

−1 (x)F1
¢−E ¡F 01Z¢ £E ¡Z 0Ω (x)Z¢¤−1E ¡Z 0F1¢ ≥ 0. (B.60)

Letting F †1 = Ω
−1/2 (x)F1, Z† = Ω1/2 (x)Z, andW =

µ
F †1
...Z†
¶
, the lhs of (B.60) can be rewritten

as

E
³
F †01 F

†
1

´
−E

³
F †01 Z

†
´ h
E
³
Z†0Z†

´i−1
E
³
Z†0F †1

´
= H 0E

¡
W 0W

¢
H (B.61)
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where

H 0 =
µ
I
...−E

³
F †01 Z

†
´ h
E
³
Z†0Z†

´i−1¶
. (B.62)

Since H 0E (W 0W )H ≥ 0, (B.59) is a variance bound.12
The unfeasible optimal IV estimator solves

NX
i=1

F 01 (xi, θ)Ω
−1 (xi) [yi − f (xi, c)] = 0. (B.63)

Under homoskedasticity Ω (x) = Ω, but in the multivariate case the error variance still plays a role

in the construction of the optimal instruments.

Multivariate Nonlinear Least-Squares This estimator minimizes

NX
i=1

[yi − f (xi, c)]0Ω−1 (xi) [yi − f (xi, c)] (B.64)

with first-order conditions given by

NX
i=1

F 01 (xi, c)Ω
−1 (xi) [yi − f (xi, c)] = 0. (B.65)

The same remarks we made for the single-equation case apply here. The estimators that solve

(B.63) and (B.65) can be shown to be asymptotically equivalent. Moreover, a feasible estimator

replaces Ω (xi) by an estimated variance matrix. Under homoskedasticity this is simply given by

bΩ = 1

N

NX
i=1

buibu0i
where the bui are preliminary consistent residuals.
B.6 Nonlinear Simultaneous Equation System

Finally, we consider a system of implicit nonlinear simultaneous equations

ρ[1] (y, x, θ) = u1

...

ρ[g] (y, x, θ) = ug (B.66)

12Note that Ω−1 (x)F1 (x, θ)C, where C is any k × k non-singular matrix of constants, are also optimal instruments,
and that the variance bound does not depend on C.
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with E (uj | x) = 0 (j = 1, ..., g). The structural model (B.34) can be regarded as a single equation

from this system, so that the notation in both cases is similar, i.e. y and x are vectors of endogenous

and conditioning variables, respectively. In a compact notation we have

ρ (y, x, θ) = u (B.67)

E (u | x) = 0 (B.68)

where ρ (y, x, θ) and u are g × 1 vectors.
As in the multivariate regression case, we take an arbitrary g × p instrument matrix Z = Z (x)

and form the moments

E
£
Z 0ρ (y, x, θ)

¤
= 0. (B.69)

In this case the expression for V0 is the same as (B.56) and D0 is given by

D0 = E
£
Z 0P1 (y, x, θ)

¤
= E

©
Z 0E [P1 (y, x, θ) | x]

ª
= E

£
Z 0B (x)

¤
(B.70)

where P1 (y, x, θ) is the g × k matrix of partial derivatives

P1 (y, x, θ) =
∂ρ (y, x, θ)

∂c0
, (B.71)

and B (x) denotes their conditional expectations given x:

B (x) = E [P1 (y, x, θ) | x] . (B.72)

The components of P1 (y, x, θ) are not valid instruments in general because of their dependence on y.

So we consider instead B (x), which are optimal predictors of P1 (y, x, θ) given x.

The optimal instruments are

Z∗ (x) = Ω−1 (x)B (x) (B.73)

and the corresponding variance bound is©
E
£
B (x)0Ω−1 (x)B (x)

¤ª−1
. (B.74)

This variance is achieved by the unfeasible IV estimator eθ that satisfies the sample moment equa-
tions:

NX
i=1

B (xi)
0Ω−1 (xi) ρ

³
yi, xi,eθ´ = 0. (B.75)

The optimal IV estimator can also be expressed as the minimizer of a quadratic objective function.

Since the number of moments equals the number of parameters, the choice of weight matrix is statis-

tically irrelevant, but a computationally useful objective function isÃ
NX
i=1

ρ (yi, xi, c)
0 Z∗i

!Ã
NX
i=1

Z∗0i Z
∗
i

!−1Ã NX
i=1

Z∗0i ρ (yi, xi, c)

!
(B.76)
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where Z∗i = Ω
−1 (xi)B (xi).

The same comments we made for the single structural equation case regarding strategies to feasible

estimation apply also here, so we shall not elaborate further.

Linear Simultaneous Equation System The 3SLS estimator considered in Section A.3 is an

example of a feasible IV estimator that adopts a parametric specification of the optimal instruments.

In the 3SLS context, ρ (yi, xi, c) is a linear system, B (xi) contains sample linear projections, and Ω (xi)

is replaced by the unconditional covariance matrix of 2SLS residuals.

Specifically, we have

ρ (y, x, θ) = y1 −Wθ (B.77)

where y1 is a g × 1 (sub) vector of the endogenous variables y whose coefficients are normalized to
one, θ =

¡
θ01...θ

0
g

¢0 and W is a g×k block diagonal matrix containing both endogenous and exogenous
explanatory variables:13

W =

⎛⎜⎜⎝
w01 0

. . .

0 w0g

⎞⎟⎟⎠ (B.78)

In this case

B (x) = −E (W | x) = −

⎛⎜⎜⎝
E (w01 | x) 0

. . .

0 E
¡
w0g | x

¢
⎞⎟⎟⎠ (B.79)

so that the unfeasible optimal IV estimator solves

θ =

Ã
NX
i=1

B (xi)
0Ω−1 (xi)Wi

!−1 NX
i=1

B (xi)
0Ω−1 (xi) y1i. (B.80)

If E (W | x) is linear and Ω (x) is constant:

E (W | x) = XΠ†

Ω (x) = Ω

where X = (Ig ⊗ x0) and Π† = [E (X 0X)]−1E (X 0W ), the variance bound (B.74) coincides with the

asymptotic variance of 3SLS:h
Π†0E

¡
X 0Ω−1X

¢
Π†
i−1

. (B.81)

13 If y1−Wθ represents the errors of a complete system then y1 = y, but distinguishing between y and y1 our notation

also accommodates incomplete linear systems.
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Indeed, the 3SLS estimator solves

NX
i=1

bΠ†0X 0
i
bΩ−1 ³y1i −Wi

bθ3SLS´ = 0 (B.82)

where bΠ† = (PiX
0
iXi)

−1P
iX

0
iWi and bΩ is the sample covariance matrix of 2SLS residuals.

Homoskedastic Linear Regression Nonlinear simultaneous equations are a useful motivation

for (B.66), hence the title of this section. However, the conditional moment restrictions framework

has broader applicability. Here we consider a linear regression model subject to homoskedasticity as

an example of (B.66).

The model is

y = x0β + u (B.83)

E (u | x) = 0 (B.84)

E
¡
u2 | x¢ = σ2. (B.85)

Thus, we have θ =
¡
β0,σ2

¢0 and
ρ (y, x, θ) =

Ã
y − x0β

(y − x0β)2 − σ2

!
. (B.86)

Moreover,

P1 (y, x, θ) =
∂ρ (y, x, θ)

∂c0
= −

Ã
x0 0

2ux0 1

!
(B.87)

B (x) = E

µ
∂ρ (y, x, θ)

∂c0
| x
¶
= −

Ã
x0 0

0 1

!
. (B.88)

Also,

Ω (x) =

Ã
σ2 E

¡
u3 | x¢

E
¡
u3 | x¢ E

¡
u4 | x¢− σ4

!
. (B.89)

If E
¡
u3 | x¢ = 0, the variance bound becomes

©
E
£
B (x)0Ω−1 (x)B (x)

¤ª−1
=

Ã
σ−2E (xx0) 0

0 E
£
1/V ar

¡
u2 | x¢¤

!−1
. (B.90)

Thus, there is no efficiency gain from incorporating the homoskedasticity assumption in estimation

since we obtain the same bound that we got using (B.84) only. However, if E
¡
u3 | x¢ 6= 0 there is a

lower variance bound for β than the one given in (B.21) (cf. MaCurdy, 1982).
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Simultaneous System with Heteroskedasticity of Known Form Extending the argument

in the previous example, let us consider now a nonlinear simultaneous system with a heteroskedastic

conditional covariance matrix of known parametric form.14 The model is

ρ† (y, x,β) = u (B.91)

E (u | x) = 0 (B.92)

E
¡
uu0 | x¢ = Ω† (x, γ) . (B.93)

Thus, we have θ =
¡
β0, γ0

¢0, c = (b0, g0)0, and15
ρ (y, x,β) =

Ã
ρ† (y, x,β)

vech
£
ρ† (y, x,β) ρ† (y, x,β)0 −Ω† (x, γ)¤

!
. (B.94)

In this case we have16

P1 (y, x, θ) =

⎛⎝ P †1 (y, x, θ) 0

LK
h
u⊗ P †1 (y, x, θ)

i
−G1 (x, γ)

⎞⎠ , (B.95)

where

P †1 (y, x, θ) =
∂ρ† (y, x,β)

∂b0

G1 (x, γ) =
∂vechΩ† (x, γ)

∂g0
,

and L and K are matrices of constants such that vech (uu0) = Lvec (uu0), and
³
u⊗ P †1

´
+
³
P †1 ⊗ u

´
=

K
³
u⊗ P †1

´
, respectively. Also,

B (x) = E [P1 (y, x, θ) | x] =
⎛⎝ E

h
P †1 (y, x, θ) | x

i
0

LKE
h
u⊗ P †1 (y, x, θ) | x

i
−G1 (x, γ)

⎞⎠ . (B.96)

Note that now in general E
h
u⊗ P †1 (y, x, θ) | x

i
6= 0, since P †1 (y, x, θ) depends on y, and therefore

its elements may be correlated with those of u. This is in contrast with the regression case, where

ρ† (y, x,β) = y − f (x,β), so that P †1 does not depend on y.
14Note that in our context, homoskedasticity (with or without covariance restrictions) is just a special case of het-

eroskedasticity of known parametric form.
15The vech operator stacks by rows the lower triangle of a square matrix. It is used to avoid redundant elements, given

the symmetry of the covariance matrix.
16We are using

∂vec (uu0)
∂b0

=
∂u

∂b0
⊗ u + u⊗ ∂u

∂b0
.
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Moreover, using the fact that vech (uu0) = L (u⊗ u),

Ω (x) =

Ã
Ω† (x, γ) E (uu0 ⊗ u0 | x)L0

LE (uu0 ⊗ u | x) LE (uu0 ⊗ uu0 | x)L0

!
. (B.97)

This matrix is block diagonal if the conditional third-order moments of the us are zero. However, even

if E (uu0 ⊗ u | x) = 0, the variance bound is not block diagonal between β and γ because B (x) is not

block diagonal. Therefore, there is an efficiency gain from incorporating the conditional covariance

restrictions in the estimation of β. There is, of course, a trade-off between robustness and efficiency,

since estimates of β that exploit the covariance restrictions may be inconsistent if these restrictions

turn out to be false.

Finally, note that if the covariance matrix depends on both β and γ, so that

E
¡
uu0 | x¢ = Ω† (x,β, γ) , (B.98)

the off-diagonal term ofB (x) has an additional non-zero term which is given by−∂vechΩ† (x,β, γ) /∂b0.
In such case there is an obvious efficiency gain from incorporating the covariance structure in the es-

timation of β, even if P †1 does not depend on endogenous variables.
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