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Introduction

• Review recently developed bias-adjusted estimation methods for nonlinear panel data
models with fixed effects.

• For some models, like static linear and logit regressions, there exist fixed-T consistent
estimators as n→∞.

• Fixed T consistency is a desirable property because for many panels T is much smaller
than n.

• However, these type of estimators are not available in general, and when they are, their
properties do not normally extend to estimates of average marginal effects.

• Moreover, the common parameters of certain nonlinear fixed effectsmodels are uniden-
tified in a fixed T setting, so that fixed-T consistent point estimation is not possible.

• In other cases, fixed-T consistent estimation at the standard root-n rate is impossible.



• The number of periods available for many household, firm-level or country panels is
such that it is not less natural to talk of time-series finite sample bias than of fixed-T
inconsistency or underidentification.

• In this light, an alternative reaction to the fact that micro panels are short is to ask for
approximately unbiased estimators as opposed to estimators with no bias at all.

• That is, estimators with biases of order 1/T 2 as opposed to the standard magnitude of
1/T .

• This alternative approach has the potential of overcoming some of the fixed-T identi-
fication difficulties and the advantage of generality.
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Outline

1. Fixed effects estimation and the incidental parameters problem

2. Bias-correction of the estimator.
(a) Formulae for the order 1/T bias
(b) Estimators of the bias
(c) Infinitely iterated bias-correction

3. Bias-correction of the moment equation.

4. Bias-correction of the concentrated likelihood.

5. Other approaches leading to bias correction: Cox and Reid’s and Lancaster’s
approaches based on orthogonality, and their extensions.

6. Quasi maximum likelihood estimation for dynamic models.

7. Estimation of marginal effects.

8. Automatic methods based on simulation.
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1. Incidental Parameters Problem with Large T

• Let the data be zit = (yit, xit), (t = 1, ..., T ; i = 1, ..., n), where yit is the dependent
variable, and xit is a strictly exogenous variable. Let θ be a common parameter, αi an
individual effect, and YT

t=1
f (yit | xit, θ0,αi0)

a density of yi1, . . . , yiT conditional on xi1, . . . , xiT , assuming that yit are independent
across i and t.

• The fixed effects estimator is obtained by doing ML treating each αi as a parameter to
be estimated. Concentrating out the αi leads to:bθ ≡ argmax

θ

nX
i=1

TX
t=1

log f (yit | θ, bαi (θ)) , bαi (θ) ≡ argmax
α

TX
t=1

log f (yit | θ,α) .

• Let
L (θ) ≡ lim

n→∞
1

n

Xn

i=1
E

∙XT

t=1
log f (yit | θ, bαi (θ))¸ .

• It follows from the usual extremum estimator properties that as n→∞ with T fixed,bθ = θT + op (1), where θT ≡ argmaxθ L (θ). In general,
θT 6= θ0.

• This is the incidental parameters problem noted by Neyman and Scott (1948). The
source of this problem is the estimation error of bαi (θ).
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Example 1

• Consider a simple model where
yit

i.i.d.∼ N ¡
αi0,σ

2
0

¢
, (t = 1, ..., T ; i = 1, ..., n) ,

or

log f
¡
yit; σ

2,αi
¢
= C − 1

2
log σ2 − (yit − αi)

2

2σ2
.

• Here, we may write θ = σ2, and the MLE is such that

bαi = 1

T

TX
t=1

yit ≡ yi,

bθ = 1

nT

nX
i=1

TX
t=1

(yit − yi)2 .

• It is straightforward to show thatbθ = θ0 − 1
T
θ0 + op (1)

as n→∞ with T fixed.

• In this example, the bias is easy to fix by equating the denominator with the correct
degrees of freedom n (T − 1).
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• The bias should be small for large enough T , i.e.,
lim
T→∞

θT = θ0.

• Furthermore, for smooth likelihoods we usually have
θT = θ0 +

B

T
+ O

µ
1

T 2

¶
for some B.

• In Example 1, B = −θ0.
• We will also generally have, as n, T →∞,√

nT
³bθ − θT

´
d→ N (0,Ω)

for some Ω.

• Under these general conditions the fixed effects estimator is asymptotically biased
even if T grows at the same rate as n.

• For n/T → ρ, say,
√
nT
³bθ − θ0

´
=
√
nT
³bθ − θT

´
+
√
nT
B

T
+ O

µr
n

T 3

¶
d→ N (B

√
ρ,Ω) .

• Thus, even when T grows as fast as n, asymptotic confidence intervals based on the
fixed effects estimatorwill be incorrect, due to the limiting distribution of

√
nT
³bθ − θ0

´
not being centered.
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• Similar to the bias of the fixed effects estimand θT − θ0, we can also expand in orders
of magnitude of T :
– the bias in the expected fixed effects score at θ0

E

"
1

T

TX
t=1

∂

∂θ
log f (yit | θ0, bαi (θ0))# = 1

T
bi (θ0) + o

µ
1

T

¶
– and the bias in the expected concentrated likelihood at an arbitrary θ

E

"
1

T

TX
t=1

log f (yit | θ, bαi (θ))− 1
T

TX
t=1

log f (yit | θ,αi (θ))
#
=
1

T
βi (θ) + o

µ
1

T

¶
where αi (θ) maximizes

lim
T→∞

E

"
1

T

TX
t=1

log f (yit | θ,α)
#
.

• These expansions motivate alternative approaches to bias correction based on
– adjusting the estimator,
– the estimating equation, or
– the objective function.

• We next discuss these three approaches in turn.
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2. Bias-Correction of the Estimator

• An analytical bias correction is to plug into the formula forB estimators of its unknown
components to construct bB, and then form a bias corrected estimatorbθ1 ≡ bθ − bB

T
.

Formulae for the Order 1/T Bias

• In order to implement this idea, we need to have an explicit formula for B. For this
purpose, it is convenient to define

uit (θ,α) ≡ ∂

∂θ
log f (yit|θ,α) , vit (θ,α) ≡ ∂

∂αi
log f (yit|θ,α) ,

V2it (θ,α) = v2it (θ,α) + v
αi
it (θ,α) ,

Uit (θ,α) ≡ uit (θ,α)− vit (θ,α)E [vαiit ]−1E [uαiit ] , Ii ≡ −E
∙
∂Uit (θ0,αi0)

∂θ0

¸
.

Note that E [Uαi
it ] = 0, which means that Uit and vit are orthogonalized.

• We denote the derivative with respect to θ or αi by appropriate superscripts, and for
convenience we suppress the arguments when expressions are evaluated at true values.

• It can be shown that
B =

µ
lim
n→∞

1

n

Xn

i=1
Ii
¶−1

lim
n→∞

1

n

Xn

i=1
bi (θ0)

where bi (θ0) /T is the 1/T bias of the score function.
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• bi (θ0) is given by:
bi (θ0) = −E [vitU

αi
it ]

E [vαiit ]
+
E [Uαiαi

it ]E
£
v2it
¤

2 (E [vαiit ])
2 .

• To obtain this expression, we expand T−1PT
t=1 uit (θ0, bαi (θ0)) around αi0, combine

it with a stochastic expansion of the fixed effects estimation error at the truth

bαi (θ0)− αi0 = −T
−1PT

t=1 vit
E [vαiit ]

+
Bi
T
+ op

µ
1

T

¶
where

Bi = (E [vαiit ])−2
Ã
E [vαiit vit]−

E [vαiαiit ]E
£
v2it
¤

2E [vαiit ]

!
.

and assume that orders in probability correspond to orders in expectation.

• Finally, to obtain B we expand (nT )−1Pn
i=1

PT
t=1 uit

³bθ, bαi ³bθ´´ around θ0.
• This bias correction formula does not depend on the likelihood setting, and so would
be valid for any fixed effects m -estimator with independent observations.

• However, in the likelihood setting because of the information and Bartlett identities
we can alternatively write

bi (θ0) =
E [UitV2it]

2E [vαiit ]
.
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• In Example 1 with θ = σ2, we can see that

uit = − 1

2θ0
+
(yit − αi)

2

2θ20
, vit =

yit − αi0
θ0

, E [vαiit ] = −
1

θ0

E [uitvit] = 0, Uit = uit = − 1

2θ0
+
(yit − αi0)

2

2θ20
,

E [Ii] = 1

2θ20
, V2it =

(yit − αi0)
2

θ20
− 1

θ0
,

E [UitV2it] =
1

θ20
,
E [UitV2it]

E [vαiit ]
= − 1

θ0
,

B = −1
2

µ
1

2θ20

¶−1
1

θ0
= −θ0,

and we obtain bθ1 = bθ − bB
T
=
T + 1

T
bθ.

• Recall that bθ = θ0 − 1
T θ0 + op (1) as n→∞ with T fixed. It follows thatbθ1 = θ0 − 1

T 2
θ0 + op (1) ,

which shows that the bias of order T−1 is removed.

• In fact, bθ1 = eθ − 1
T 2
eθ where eθ = T

T−1
bθ is the unbiased estimator of θ0.
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Estimators of the Bias

• An estimator of the bias term can be formed using a sample counterpart of the previous
formulae. One possibility is

bB (θ) = Ã1
n

nX
i=1

bIi!−1 1
n

nX
i=1

bbi (θ)
where bIi = −³ bET £buθit¤− bET [buαiit ] bET [bvαiit ]−1 bET £buαi0it ¤´

bbi (θ) = bET [bvitbvαiit ] bET [buαiit ]³ bET [bvαiit ]´2 −
bET [bvitbuαiit ]bET [bvαiit ] −

bET £bv2it¤
2 bET [bvαiit ]

⎛⎜⎝ bET [bvαiαiit ] bET [buαiit ]³ bET [bvαiit ]´2 −
bET [buαiαiit ]bET [bvαiit ]

⎞⎟⎠
where bET (.) =PT

t=1 (.) /T , buθit = uθit (θ, bαi (θ)), etc.
• The bias corrected estimator can then be formed with bB = bB ³bθT´.
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• The other possibility exploits the likelihood setting to replace some derivatives by
outer product terms:

eB (θ) = Ã1
n

nX
i=1

eIi!−1 1
n

nX
i=1

ebi (θ)
whereeIi = − bET ³bUitbU 0it´ , bUit = uit (θ, bαi (θ))− bET [buitbvit]bET [bv2it] vit (θ, bαi (θ)) ,
and ebi (θ) = PT

t=1
bUitV2it (θ, bαi (θ))

2
PT

t=1 v
αi
it (θ, bαi (θ)) ,

so that an alternative bias correction can be formed with eB = eB ³bθT´.
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Infinitely Iterated Bias-Correction

• If bθ is heavily biased and it is used in the construction of bB, it may adversely affect
the properties of bθ1.

• One way to deal with this problem is to use bθ1 in the construction of another bB, and
then form a new bias corrected estimator.

• This procedure could be iterated: Let eB (θ) denote an estimator of B depending on θ,
and suppose that bB = eB ³bθ´. Then bθ1 = bθ − eB ³bθ´ /T . Iterating givesbθk = bθ − eB ³bθk−1´ /T, (k = 2, 3, ...).

• If this estimator were iterated to convergence, it would give bθ∞ solvingbθ∞ = bθ − eB ³bθ∞´ /T.
• In general this estimator will not have improved asymptotic properties, but may have
lower bias for small T .

• In Example 1 with θ0 = σ20, we can see thatbθk = Tk + Tk−1 + . . . + 1
Tk

bθ = Tk+1 − 1
Tk (T − 1)

bθ → T

T − 1
bθ = bθ∞

as k →∞, and the limit bθ∞ has zero bias.
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3. Bias-Correction of the Moment Equation

• Another approach to bias correction for fixed effects is to construct the estimator as
the solution to a bias corrected version of the first-order conditions.

• Let us consider bui (θ) = PT
t=1 uit (θ, bαi (θ)) /T , so that the fixed effects estimator

solves
Pn

i=1 bui ³bθ´ = 0. The incidental parameters bias arises because E [bui (θ0)] 6=
0. In fact,

E

∙bui (θ0)− 1
T
bi (θ0)

¸
= o

µ
1

T

¶
.

• A score-corrected estimator is obtained by solving the modified moment equation
nX
i=1

∙bui (θ)− 1
T
bbi (θ)¸ = 0

wherebbi (θ) /T denotes an estimator of the 1/T bias of the expected score, as discussed
above. Such an estimator will be expected to be less biased than the MLE bθ.

• Alternatively, the bias can be estimated using the estimator of the bias ebi (θ) that ex-
ploits Bartlett identities, leading to the moment equationXn

i=1

∙bui (θ)− 1
T
ebi (θ)¸ = 0.

• The first expression would be valid for any fixed effects m-estimator, whereas the
second is appropriate in a likelihood setting (Hahn and Newey, 2004).
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• In a likelihood setting it is also possible to form an estimate of bi (θ) that uses expected
rather than observed quantities, giving rise to alternative score-corrected estimators,
such as those considered by Carro (2004) and Fernández-Val (2005) for binary choice.

• To see a connection between bias-correction of the moment equation and iterated bias-
correction of the estimator, note that bθ∞ solves the equationbθ − θ =

1

T
eB (θ)

or
nX
i=1

∙eIi (θ)³bθ − θ
´
− 1
T
ebi (θ)¸ = 0

where eB (θ) is as in our previous formulae.
• This equation can be regarded as an approximation to a corrected moment equation
as long as eIi (θ) is an estimator of ∂E [bui (θ)] /∂θ and ebi (θ) /T is an estimator of the
1/T score bias.

• Thus, the bias-correction of the moment equation can be loosely understood to be an
infinitely iterated bias-correction of the estimator.
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4. Bias-Correction of the Concentrated Likelihood

• Due to the noise of estimating bαi (θ), the expectation of the concentrated likelihood is
not maximized at the true value of the parameter.

• Let `i (θ,α) =
PT

t=1 `it (θ,α) /T where `it (θ,α) = log f (yit | θ,α), and let αi (θ) =
argmaxα plimT→∞ `i (θ,α), so that αi (θ0) = αi0.

• Following Severini (2000) and Pace and Salvan (2004), the concentrated likelihood
for unit i b̀

i (θ) = `i (θ, bαi (θ))
can be regarded as an estimate of the unfeasible concentrated likelihood:

`i (θ) = `i (θ,αi (θ)) .

• The function `i (θ) is a proper log likelihoodwhich assigns data a density of occurrence
according to values of θ and values of the effects along the curve αi (θ).

• It is a ‘‘least-favorable target log likelihood’’ in the sense that the expected information
for θ calculated from `i (θ) coincides with the partial expected information for θ.

• `i (θ) has the usual log likelihood properties: it has zero mean expected score, it satis-
fies the information matrix identity, and is maximized at θ0.
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• Expanding `i (θ, bαi (θ)) around αi (θ) for fixed θ, using a stochastic expansion forbαi (θ)− αi (θ), and taking expectations, we obtain

E [`i (θ, bαi (θ))− `i (θ,αi (θ))] ≈ 1
2
Hi (θ)V ar [bαi (θ)] ≈ βi (θ)

T
where

βi (θ) =
1

2
Hi (θ)V ar

³√
T [bαi (θ)− αi (θ)]

´
=
1

2
H−1i (θ)Υi (θ)

and

Hi (θ) = −E
∙
∂vit (θ,αi (θ))

∂α

¸
, Υi (θ) = E

n
[vit (θ,αi (θ))]

2
o
.

• Thus, we expect that
nX
i=1

TX
t=1

`it (θ, bαi (θ))− nX
i=1

βi (θ)

is a closer approximation to the target log likelihood than
Pn

i=1

PT
t=1 `it (θ, bαi (θ)).

• Letting bβi (θ) be an estimated bias, we then expect an estimator eθ that solveseθ = argmax
θ

nX
i=1

"
TX
t=1

`it (θ, bαi (θ))− bβi (θ)
#

to be less biased than the MLE bθ.
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• We can consistently estimate βi (θ) by
bβi (θ) = 12

Ã
− 1
T

TX
t=1

∂vit (θ, bαi (θ))
∂α

!−1
1

T

TX
t=1

[vit (θ, bαi (θ))]2 .
• Using this form of bβi (θ), eθ solves the first-order conditionsXn

i=1

XT

t=1
uit (θ, bαi (θ))− nX

i=1

∂bβi (θ)
∂θ

= 0.

• It can be seen that
∂bβi (θ)
∂θ

= bbi (θ) .
Therefore, the first-order conditions for eθ and the corresponding bias corrected mo-
ment are identical.

• In the likelihood context, we can also consider a local version of the estimated bias
constructed as an expansion of bβi (θ) at θ0 using that at the truthH−1i (θ0)Υi (θ0) = 1:bβi (θ) = eβi (θ) +Oµ 1T

¶
whereeβi (θ) = −12 log

Ã
− 1
T

TX
t=1

∂vit (θ, bαi (θ))
∂α

!
+
1

2
log

(
1

T

TX
t=1

[vit (θ, bαi (θ))]2) .
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• This form of the estimated bias leads to the modified concentrated likelihood
`i (θ, bαi (θ)) + 1

2
log

(
− 1
T

TX
t=1

∙
∂vit (θ, bαi (θ))

∂α

¸)
− 1
2
log

(
1

T

TX
t=1

[vit (θ, bαi (θ))]2) .
(cf. DiCiccio and Stern, 1993; Pace and Salvan, 2004).

• This function is maximized at 1
n(T−1)

Pn
i=1

PT
t=1 (yit − yi)2 in Example 1.

• It can be easily shown that
∂eβi (θ)
∂θ

=
bET [bvαiit ]³
− bET [bv2it]´bbi (θ) .

Therefore, the DiCiccio–Stern first-order condition is using a valid estimate of the
concentrated score 1/T bias as long as the information identity holds.

• In the likelihood setting it is also possible to form estimates of Hi (θ) and Υi (θ) that
use expected rather than observed quantities (Severini, 2000).
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5. Other Approaches Leading to Bias Correction

• The incidental parameters problem in panel data models can be broadly viewed as a
problem of inference in the presence of many nuisance parameters.

• The leading statistical approach under this circumstance has been to search for suitable
modification of conditional or marginal likelihoods.

• The modified profile likelihood of Barndorff-Nielsen (1983) and the approximate con-
ditional likelihood of Cox and Reid (1987) belong to this category.

• However, the Barndorff-Nielsen formula is not generally operational, and the one in
Cox and Reid requires the availability of an orthogonal effect.
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5.1 Approaches Based on Orthogonality
Cox and Reid’s Adjusted Profile Likelihood Approach

• Cox–Reid (1987) considered the general problem of inference for a parameter of in-
terest in the presence of nuisance parameters. They proposed an adjustment to the
concentrated likelihood to take account of the estimation of the nuisance parameters.

• Their formulation required information orthogonality between the two types of para-
meters (i.e. that the information matrix be block diagonal).

• In general, the information matrix for (θ,αi) will not be block-diagonal, although it
may be possible to reparameterize αi as a function of θ and some ηi such that the
information matrix for (θ, ηi) is block-diagonal.

• In the panel context, the Cox-Reid (1987) approach maximizesXn

i=1

XT

t=1
`it (yit; θ, bαi (θ))− 1

2

Xn

i=1
log

µ
−
XT

t=1

∂2`it (yit; θ, bαi (θ))
∂α2i

¶
.

which was derived as an approximation to the likelihood conditioned on bαi (θ).
• This wasmotivated by the fact that in an exponential familymodel, it is optimal to con-
dition on sufficient statistics for the nuisance parameters αi, and these can be regarded
as the MLE of αi chosen to be orthogonal to θ.

• For other problems the idea was to derive a concentrated likelihood for θ conditioned
on bαi (θ), having ensured via orthogonality that bαi (θ) changes slowly with θ.
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Relation to Bias-Correction of the Moment Equation

• The first order condition corresponding to the adjusted profile likelihood is equal to
nX
i=1

"
TX
t=1

uit (θ, bαi (θ))−ebCRi (θ)

#
= 0

where ebCRi (θ) =
1

2

bET [buαiαi]bET [bvαiit ] − 12
bET [bvαiαiit ] bET [buαiit ]³ bET [bvαiit ]´2 .

• Ferguson, Reid, and Cox (1991) showed that under orthogonality the expectedmoment
equation has a bias of a smaller order of magnitude than the expected ML score.

• Under information orthogonalityE [uαiit ] = 0 andE [vituαiit ] = −E [uαiαiit ]. Using these
facts and the information identity, the score bias formula becomes

bi (θ0) =
1

2

E [uαiαiit ]

E [vαiit ]
.

• Comparison with the Cox–Reid moment adjustmentebCRi (θ) reveals that the latter has
an extra term whose population counterpart is equal to zero under orthogonality.
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Relation to Bias-Correction of the Concentrated Likelihood

• To see the connection between the Cox–Reid’s adjustment, which requires orthogonal-
ity, and the one derived from the bias-reduction perspective, which does not, note that
the latter can be written as

`i (θ, bαi (θ))− 1
2
log

(
− 1
T

TX
t=1

∙
∂vit (θ, bαi (θ))

∂α

¸)
− 1
2
log cVar³√T (bαi (θ)− αi (θ))

´
where cVar³√T (bαi (θ)− αi (θ))

´
=
T
PT

t=1 [vit (θ, bαi (θ))]2³PT
t=1 [v

αi
it (θ, bαi (θ))]´2.

• Thus, such a criterion can be regarded as a generalized Cox–Reid adjusted likelihood
with an extra term given by an estimate of the variance of

√
T (bαi (θ)− αi (θ)), which

accounts for nonorthogonality (Pace and Salvan, 2004).

• Under orthogonality the extra term is irrelevant because the variance of bαi (θ) does not
change much with θ.
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Other Features of the Adjusted Likelihood Approach

• The Cox and Reid’s (1987) proposal and other methods in the same literature were not
developed to explicitly address the incidental parameter problem in panel data context.
Rather, they were concerned with inference in models with many nuisance parameters.

• Neither were developed for the sole purpose of correcting estimation bias, but with the
ambitious goal of making the adjusted concentrated likelihood behave like a proper
likelihood.

• We can see that the Cox–Reid approach achieves some of these other goals in the
context of Example 1, where it can be shown that the unbiased estimator

bθ = 1

n (T − 1)
nX
i=1

TX
t=1

(yit − yi)2

maximizes the Cox–Reid criterion, and its second derivative delivers 2θ2

n(T−1) as the
estimated variance of bθ.

• It is not clear whether such success is specific to the particular example, or not. More
complete analysis of other aspects of inference such as variance estimation is beyond
the scope of this paper.
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Lancaster’s (2002) Bayesian Inference

• Lancaster proposed a method of Bayesian inference that is robust to the incidental
parameters problem, which like Cox–Reid hinges on the availability of orthogonality.

• In a Bayesian setting, fixed effects are integrated out of the likelihood with respect to
a prior distribution conditional on the common parameters (and covariates) π (α | θ).
In this way, we get an integrated (or random effects) log likelihood of the form

`Ii (θ) = log

Z
eT`i(θ,α)π (α | θ) dα.

• The problem with inferences from `Ii (θ) is that they depend on the choice of prior for
the effects, and are not in general consistent with T fixed.

• In general, the maximizer of Pi `
I
i (θ) has a bias of order O (1/T ) regardless of

π (α | θ). However, if α and θ are information orthogonal, the bias can be reduced
to O

¡
1/T 2

¢
.

• Lancaster (2002) proposes to integrate out the fixed effects by using a noninformative
prior, and use the posterior mode as an estimate of θ.

• The idea is to rely on prior independence between fixed effects and θ, having cho-
sen an orthogonal reparameterization, say αi = α (θ, ηi), that separates the common
parameter θ from the fixed effects ηi in the information matrix sense.
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• His estimator bθL takes the formbθL = argmax
θ

Z
· · ·
Z nY

i=1

TY
t=1

f (yit| θ,α (θ, ηi)) dη1 · · · dηn.

• In Example 1 with θ = σ2, we have E [uitvit] = 0 so the reparameterization is unnec-
essary. Lancaster’s estimator would therefore maximizeZ

· · ·
Z nY

i=1

TY
t=1

1√
θ
exp

Ã
−(yit − αi)

2

2θ

!
dα1 · · · dαn

∝ 1³√
θ
´T−1 exp

Ã
−
Pn

i=1

PT
t=1 (yit − yi)2
2θ

!
,

leading to bθL = 1

n (T − 1)
nX
i=1

TX
t=1

(yit − yi)2 ,
which has no bias.

• The asymptotic properties of bθL are not yet fully worked out. It is in general expectedbθL removes bias only up to O ¡T−1¢, although we can find examples where bθL elimi-
nates bias of even higher order.
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5.2 Overcoming Infeasibility of Orthogonalization

• The Cox–Reid and Lancaster approaches are successful only when the parameter of
interest can be orthogonalized with respect to the nuisance parameters.

• In general, such reparameterization requires solving some partial differential equa-
tions, and the solution may not exist. Because parameter orthogonalization is not fea-
sible in general, such approach cannot be implemented for arbitrary models.

• This problem can be overcome by adjusting the moment equation instead of the con-
centrated likelihood. We discuss two approaches in this regard, one introduced in
Woutersen (2002) and the other in Arellano (2003).

• We will note that these two approaches result in identical estimators.
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Woutersen’s (2002) Approximation

• Woutersen (2002) provided an insight on the role of Lancaster’s posterior calculation
in reducing the bias of the fixed effects.

• Assume for simplicity that the common parameter θ is orthogonal to αi in the informa-
tion sense, and no reparameterization is necessary to implement Lancaster’s proposal.

• Given the posterior
nY
i=1

ÃZ TY
t=1

f (yit| θ,αi) dαi
!
,

the first order condition that characterize the posterior mode can be written as

0 =
nX
i=1

Z ³PT
t=1 uit (θ,αi)

´YT

t=1
f (yit| θ,αi) dαiZ YT

t=1
f (yit| θ,αi) dαi

.

• Woutersen pointed out that the ith summand on the right can be approximated by
TX
t=1

buit − 1
2

PT
t=1 buαiαiitPT
t=1 bvαiit +

1

2

³PT
t=1 bvαiαiit

´³PT
t=1 buαiit´³PT

t=1 bvαiit ´2 .
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• Therefore, his estimator under parameter orthogonality is the solution to

0 =

nX
i=1

⎡⎢⎣ TX
t=1

uit (θ, bαi (θ))− 1
2

bET [buαiαi]bET [bvαiit ] + 12
bET [bvαiαiit ] bET [buαiit ]³ bET [bvαiit ]´2

⎤⎥⎦ , (1)

which coincides with the Cox–Reid moment equation.

• Woutersen pointed out that the moment function
uit (θ,α) ≡ uit (θ,α)− ρi (θ,α) vit (θ,α)

where
ρi (θ,α) ≡

R
uαi (y; θ,α) fi (y; θ,α) dyR
vαi (y; θ,α) fi (y; θ,α) dy

would satisfy the orthogonality requirement in the sense that at true values
E [uαit (θ0,αi0)] = 0.

• Note that uit (θ,αi) can be regarded as a feasible version of Uit (θ,αi).
• Woutersen’s moment equation when parameter orthogonality is unavailable is there-
fore obtained by replacing uit (θ, bαi (θ)) in (1) by uit (θ, bαi (θ)).
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Arellano’s (2003) Proposal

• Arellano (2003) assumes that parameter orthogonalization is feasible under certain
reparameterization, and that the Cox–Reid moment equation is written for such a repa-
rameterized model.

• He then proposes to rewrite the moment equation in terms of the original parameteri-
zation, and obtains

0 =
nX
i=1

"
TX
t=1

uit (θ, bαi (θ))−ebCRi (θ) +
∂ρi (θ,α)

∂α
|α=bαi(θ)

#
,

after suppressing a transformation specific term that is irrelevant for bias reduction.

• This moment equation turns out to be identical to Woutersen’s (2002) equation.
• Arellano’s derivation was based on the implicit assumption that parameter orthogo-
nalization is feasible. Our discussion suggests that this is not necessary. After all, his
procedure is identical to Woutersen’s, which does not require orthogonality.

• Indeed, Carro (2004) has shown that such moment equation reduces the order of the
score bias regardless of the existence of an information orthogonal reparameterization.
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Relation to Bias-Correction of the Moment Equation

• The moment equation used by Woutersen, Arellano, and Carro can be written asXn

i=1

∙XT

t=1
uit (θ, bαi (θ))−ebWi (θ)¸ = 0

where ebWi (θ) = ebCRi (θ)− ∂ρi (θ,α)

∂α
|α=bαi(θ) .

• Comparing the resulting expression with the theoretical bias, we note that this moment
condition is using a valid estimate of the 1/T score bias as long as the information
identity holds, so that in general it will be appropriate in likelihood settings.

• The estimated bias ebWi (θ) uses a combination of observed and expected terms, and
contrary to the situation under orthogonality, there is no redundant term.

• The term ∂ρi (θ, bαi (θ)) /∂α can be interpreted as a measure of howmuch the variance
of bαi (θ) changes with θ.

• In this respect, we note the equivalence between the derivative of the log variance ofbαi (θ) and a sample counterpart of ∂ρi (θ0,αi0) /∂α.
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6. QMLE for Dynamic Models

• The starting point of our discussion so far has been the assumption that the fixed effects
estimator actually maximizes the likelihood. When we defined bθ to be a maximizer of

nX
i=1

TX
t=1

log f (yit | xit, θ, bαi (θ)) ,
we assumed that
– (i) xs are strictly exogenous,
– (ii) ys are independent over t given xs, and
– (iii) f is the correct (conditional) density of y given x.

• We noted that some of the bias-correction methods did not depend on the likelihood
setting, while others, that relied on the information or Bartlett identities, did. However,
in all cases assumptions (i) and (ii) were maintained.

• For example, if the binary response model
yit = 1 (x

0
itθ + αi + eit > 0)

where the marginal distribution of eit is N (0, 1), is such that eit is independent over
t, and if it is estimated by nonlinear least squares, our first bias formula is valid.
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• In the likelihood setting, assumption (ii) can be relaxed choosing estimates of bias
corrections that use expected rather than observed quantities.
– This is possible because the likelihood fully specifies the dynamics.
– It is simple if the required expected quantities have closed form expressions, as in
the dynamic probit models in Carro (2004) and Fernández-Val (2005).

• In a nonlikelihood setting, our analysis can be generalized to the case when the fixed
effects estimator maximizes

nX
i=1

TX
t=1

ψ (zit; θ, bαi (θ))
for an arbitrary ψ under some regularity conditions, thereby relaxing assumptions (i)
and (ii).

• For example, the binary response model can still be analyzed by considering the fixed
effects probit MLE even when eit has an arbitrary unknown serial correlation.

• The analysis for this more general model gets to be more complicated because esti-
mates of the expectations of products of average derivatives should incorporate arbi-
trary forms of serial correlation, which was a non-issue in the simpler context.

• Hahn and Kuersteiner (2004) provide an analysis that incorporate such complication.
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7. Estimation of Marginal Effects

• It is sometimes of interest to estimate quantities such as
µ = plim

1

nT

nX
i=1

TX
t=1

m (zit; θ,αi) .

• For example, it may be of interest to estimate the mean marginal effects
1

nT

nX
i=1

TX
t=1

φ (x0itθ + αi) θ

for the binary response model, where φ denotes theN (0, 1) density.

• It would be sensible to estimate such quantities by
1

nT

nX
i=1

TX
t=1

m
³
zit;eθ, bαi ³eθ´´

where eθ denotes a bias-corrected version of bθ.
• In order to obtain a bias-corrected estimator of µ, it is useful to think about this type
of quantity as a solution to the (infeasible) moment equation

nX
i=1

TX
t=1

(m (zit; bαi (θ0))− bµ) = 0, TX
t=1

v (zit; bαi (θ0)) = 0
where for simplicity we suppressed the dependence ofm on θ.
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• Let
M (zit;αi) = m (zit;αi)− v (zit;αi) E [m

αi (zit;αi)]

E [vαi (zit;αi)]
and note that bµ solves

nX
i=1

TX
t=1

[M (zit; bαi (θ0))− bµ] = 0.
• We can bias-correct this moment equation using the same intuition as before.
• We then obtain a bias corrected version of the moment equation

nX
i=1

⎛⎜⎝ TX
t=1

h
M (zit; bαi (θ0))− bbµi + bET (vitMαi

it )bET (vαiit ) −
bET ¡v2it¢ bET (Mαiαi

it )

2
h bET (vαiit )i2

⎞⎟⎠ = 0.

• ReplacingM (zit; θ0, bαi (θ0)) in this moment equation by the feasible version:
m
³
zit;eθ, bαi ³eθ´´− v ³zit;eθ, bαi ³eθ´´ bET

h
mαi

³
zit;eθ, bαi ³eθ´´ibET hvαi ³zit;eθ, bαi ³eθ´´i ,

we obtain a bias corrected estimator, similar to those discussed in Hahn and Newey
(2004), and Fernández-Val (2005).
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8. Automatic methods

• We have so far discussed analytic methods of bias correction, but wemay be able to by-
pass such analysis, and rely on numerical methods. We discuss two such procedures.

Panel Jackknife

• Let bθ(t) be the fixed effects estimator based on the subsample excluding the observa-
tions of the tth period. The jackknife estimator iseθ ≡ Tbθ − (T − 1)XT

t=1
bθ(t)/T

or eθ ≡ bθ − eB
T
,

eB
T
= (T − 1)

µ
1

T

XT

t=1
bθ(t) − bθ¶ .

• To explain the bias correction from this estimator, consider a further expansion
θT = θ0 +

B

T
+
D

T 2
+O

µ
1

T 3

¶
.

• The limit of eθ for fixed T and its change with T shows the effect of the correction:
TθT − (T − 1) θT−1 = θ0 +

µ
1

T
− 1

T − 1
¶
D +O

µ
1

T 2

¶
= θ0 +O

µ
1

T 2

¶
or

(T − 1) (θT−1 − θT ) =
B

T
+O

µ
1

T 2

¶
.

• Thus, we see that the asymptotic bias of the jackknife estimator is of order 1/T 2.
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• Hahn and Newey (2004) established that √nT
³eθ − θ0

´
has the same asymptotic

variance as
√
nT
³bθ − θ0

´
when n/T → ρ. This implies that the bias reduction

is achieved without any increase in the asymptotic variance.

• In Example 1, it is straightforward to show that
eθ = 1

n (T − 1)
nX
i=1

TX
t=1

(yit − yi)2 ,
so that the jackknife bias correction completely removed bias in this example.

• Another possibility is to use bθ(T ) as the sample analog of θT−1, where bθ(T ) is the MLE
based on the first T − 1 observations. It turns out that such procedure will be accom-
panied by some large increase in variance.

• The panel jackknife is easiest to understand when yit is independent over time. When
it is serially correlated, it is not yet clear how it should be modified.
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Bootstrap Adjusted Concentrated Likelihood

• Simulation methods can also be used for bias correction of moment equations and
objective functions. Pace and Salvan (2004) have suggested a bootstrap approach to
adjust the concentrated likelihood.

• Consider generating parametric bootstrap samples {yi1 (r) , ..., yiT (r)}ni=1 (r = 1, ..., R)
from the models

nQT
t=1 f

³
yt | bθ, bαi´on

i=1
to obtain bα[r]i (θ) as the solution tobα[r]i (θ) = argmax

α

XT

t=1
log f (yit (r) | θ,α) (r = 1, ..., R) .

• A simulation adjusted log-likelihood for the i-th unit is
`
S
i (θ) =

1

R

RX
r=1

TX
t=1

`it

³
θ, bα[r]i (θ)´ .

• Alternatively, Pace and Salvan consider the generalized Cox–Reid form, using a boot-
strap estimate of Vi [bαi (θ)] given byeVi [bαi (θ)] = 1

R

RX
r=1

hbα[r]i (θ)− bαi (θ)i2 ,
which leads to

`
SA

i (θ) =
TX
t=1

`it (θ, bαi (θ))− 1
2

Ã
− 1
T

TX
t=1

∂vit (θ, bαi (θ))
∂α

! eVi [bαi (θ)] .
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Numerical Illustrations

• Let us consider the probit model yit = 1 (θ0xit + αi0 + vit ≥ 0) in which T = 2 and
xit is a time dummy such that xi1 = 0 and xi2 = 1.

• Figure 1, taken from Arellano (2003), shows the probability limits of ML and MML
forN ¡

0,σ2α
¢
individual effects with σ2α = 0.1, 1, and 10, as well as for Cauchy effects.

• Thus we are assessing the value of a large-T adjustment when T = 2.
• The impact of changing the distribution of the effects is small for both ML and MML.
The adjustment for probit produces a good improvement given that T is only two.
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Figure 1: Probability limits for a probit model with T = 2
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Table 1
Simulations for a dynamic Logit model

taken from J. Carro (2004)
T = 4 T = 8 T = 16

θ0 = 0.5

MLE Bias
MAE

−2.55
2.55

−0.76
0.76

−0.31
0.31

MMLE Bias
MAE

−0.55
0.55

−0.11
0.13

−0.02
0.07

HK Bias
MAE

−0.004
0.40

−0.05
0.13

−0.05
0.07

θ0 = 2

MLE Bias
MAE

−0.65
0.65

−0.30
0.30

MMLE Bias
MAE

−0.23
0.23

−0.04
0.08

HK Bias
MAE

−0.20
0.23

−0.20
0.20

yit = 1 (θ0yit−1 + xit + αi0 + vit ≥ 0) , αi0 = xi,
xit ∼ N

¡
0, π2/3

¢
, vit ∼logistic; 1000 replications;

n = 250; HK is the Honoré–Kyriazidou estimator.
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Concluding Remarks

• We discussed a variety of methods of estimation of nonlinear fixed effects panel data
models with reduced bias properties.
– Alternative approaches to bias correction based on adjusting the estimator, the mo-
ment equation, and the criterion function have been considered.

– We have also discussed approaches relying on orthogonalization and automaticmeth-
ods, as well as the connections among the various approaches.

• Next in the agenda, it is important to find out how well each of these methods work
for specific models and data sets of interest in applied econometrics.
– In this regard, the Monte Carlo results and empirical estimates obtained by Carro
(2004) and Fernández-Val (2005) for binary choice models are very encouraging.

• We have focused on bias reduction, but other theoretical properties should play a role
in narrowing the choice of bias-reducing estimation methods.
– In the likelihood context it is natural to seek an adjusted concentrated likelihood that
behaves like a proper likelihood.

– In this respect, information bias reduction and invariance to reparameterization are
relevant properties in establishing the relative merits of different bias-reducing esti-
mators.
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