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1 Duration data

Duration data appear in a diversity of situations in economics, but I will often refer to unemployment

duration to provide a focus for the presentation of the material.

Suppose we select a random sample of N persons entering unemployment and wait until they find

jobs. Then we record the number of weeks each person has been unemployed: t1, t2, ..., tN . We have

observations on the duration of a spell of unemployment for each of the individuals in the sample.

In practice we are more likely to have censored duration data. That is, for some individuals we

do not observe ti, possibly because they have not found a job at the time of the interview, so that all

we know is that ti > t for some particular t, or they have found a job between selection and interview

and all we know is that ti lies within a certain interval t< ti < t.

There are enormous variations in the duration of spells of unemployment from one individual to

the next (from a few weeks to five years or more) and it is important to model the causes for these

differences. In particular it is important to know how the re-employment probability changes over the

period of the spell and what is the impact of the level of unemployment benefits on these probabilities.

More generally, duration data measure how long individuals remain in a certain state. Other

examples include: job turnover, marital instability, time to transactions in stock markets, or durations

to realignments of international currencies.

The analysis of duration data has a long tradition in biometrics and medical statistics (as well as in

industrial life testing and demography), from where most of the terminology and the statistical models

used by econometricians originate. This is also the reason for the intimidating names that are used in

this field: Failure time data, hazards, risks, survivor functions... A typical example in textbooks is of

the form: you have a number of rats, which you inject with a cancer producing substance, then time

to mortality is measured (e.g. Kalbfleisch and Prentice).

Remark on the notation: The standard notation for a cross-sectional explained variable in econometrics

is Yi. However, in duration analysis we often use Ti, which emphasizes the fact that the variable

measures time in a state. We may also have a time series of durations (e.g. time to transaction or

time to a price change), which naturally connects with the perspective of point processes.

The purpose of this note is to cover basic concepts in duration analysis. Multiple spell data,

treatment effects in duration models, and point processes are discussed in separate notes.

1



2 The hazard function

2.1 Hazard function for a discrete random variable

Let T be a discrete duration random variable taking on values {1, 2, 3, ...} with pmf :

p (t) = Pr (T = t) (t = 1, 2, ...)

and cdf :

F (t) = Pr (T ≤ t) = p (1) + p (2) + ...+ p (t) .

The hazard function or exit rate from the state is

h (t) = Pr (T = t | T ≥ t) = Pr (T = t)

Pr (T ≥ t) =
Pr (T = t)

1− Pr (T ≤ t− 1)
=

p (t)

1− p (1)− ...− p (t− 1) =
F (t)− F (t− 1)
1− F (t− 1) for t > 1

and h (1) = p (1) = F (1).

That is, the hazard gives probabilities of exit defined over the surviving population at each time.

Example: Suppose T is time to mortality (in years). Then

p100 = Pr (T = 100) ' 0
h100 = Pr (T = 100 | T ≥ 100) ' 1.

In this case the hazard may look as depicted in Figure 1.

Figure 1: Mortality hazard rate

The hazard h (t) provides an alternative way of characterizing the distribution of T . Let us see

how we can recover F (t) and p (t) from h (t). For shortness we use the notation pt = p (t), Ft = F (t),

and ht = h (t). For t > 1

Pr (T ≥ t+ 1 | T ≥ t) = 1− ht = 1− Ft
1− Ft−1 .
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Using this expression recursively we get

1− F1 = (1− h1)
1− F2 = (1− h1) (1− h2)

...

1− Ft =
tY
s=1

(1− hs) (1)

Therefore,

Ft = 1−
tY
s=1

(1− hs) (t = 1, 2, ...) , (2)

which shows how the cdf of T can be obtained from the hazards.

Similarly,

pt = (1− Ft−1)ht = ht
t−1Y
s=1

(1− hs) (3)

Note that (1) is an intuitive probability factorization. We have:

1− ht = Pr (T ≥ t+ 1 | T ≥ t)
1− Ft = Pr (T ≥ t+ 1)

so that

Pr (T ≥ t+ 1) = Pr (T ≥ t+ 1 | T ≥ t) Pr (T ≥ t) .

Repeatedly using this factorization we obtain (1):1

Pr (T ≥ t+ 1) = Pr (T ≥ t+ 1 | T ≥ t) Pr (T ≥ t | T ≥ t− 1) ...Pr (T ≥ 2)

2.2 Hazard function for a continuous random variable

We know that a continuous random variable T can be characterized by the pdf f (t) and by the cdf

F (t). An alternative way of characterizing the distribution of T is the hazard function defined as

h (t) =
f (t)

1− F (t) ,

which is particularly useful when T represents duration in a certain state.

Note that h (t) gives the conditional density of T given T > t:

h (t) = lim
∆t→0

Pr (t ≤ T < t+∆t | T > t)
∆t

1Note that Pr (T ≥ 2) = 1− h1 = Pr (T ≥ 2 | T ≥ 1) since we assume that Pr (T ≥ 1) = 1.
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where

Pr (t ≤ T < t+∆t | T > t) = Pr (t ≤ T < t+∆t)
Pr (T > t)

=
F (t+∆t)− F (t)

1− F (t) .

If T represents unemployment duration, h (t) dt is the probability of leaving unemployment during

(t, t+ dt) given that the individual has been unemployed for t periods.

Note that h (t) is the closest link to the predictions of a theory of job search. Suppose an individual

has a sequence of reservation wages over time w (t), that he faces a distribution of wage offers G (w),

and that job offers arrive randomly at a rate ψ (t) (i.e. the probability of a job offer in the interval

(t, t+ dt) is ψ (t) dt). Then the probability of exit during (t, t+ dt) is the probability of getting a job

offer times the probability of an offered wage greater than the reservation wage:

h (t) dt = [1−G (w (t))]ψ (t) dt

It is therefore natural to start by making economic assumptions about h (t) rather than other aspects

of the distribution of durations such as f (t), F (t), or E (T ).

Recovering F (t) and f (t) from the hazard rate First let us introduce the cumulative hazard

function (or integrated hazard), which is given by

H (t) =

Z t

−∞
h (u) du

(or
R t
0 h (u) du if T is non-negative as it would normally be).

Moreover,

H (t) =

Z t

−∞
f (u)

1− F (u)du) = [− ln (1− F (u))]
t
−∞ = − ln [1− F (t)]

so that

F (t) = 1− exp [−H (t)]

and similarly,

f (t) = h (t) exp [−H (t)] .

The comparison between survival probabilities for discrete and continuous durations is as follows.

In the discrete case we have

ln [1− F (t)] =
tX
s=1

ln [1− h (s)]

whereas in the continuous case we have

ln [1− F (t)] =
Z t

0
[−h (s)] ds.

Note that for small h (s) we have ln [1− h (s)] ' −h (s).
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3 The hazard function of some frequently used distributions

3.1 Constant hazard: The exponential distribution

A simple model of the hazard function is to assume that it is constant:

h (t) = λ.

In the context of our example, a constant hazard means that the probability of leaving unemployment

in a given time interval is the same regardless of how long the individual has been unemployed.

The constant hazard assumption defines a family of probability distributions indexed by one pa-

rameter (λ).

If the duration variable is continuous we obtain the class of exponential distributions. The inte-

grated hazard is

H (t) =

Z t

0
λdu = λt

so that the log survivor function is a straight line through the origin: ln [1− F (t)] = −λt. Therefore,
the cdf and pdf are given by

F (t) = 1− e−λt λ > 0

f (t) = λe−λt.

The fact that an exponential random variable has a constant hazard is called the memoryless property

of the exponential distribution. The hazard function is also the inverse of the expected value: E (T ) =

1/λ.

If the duration variable is discrete we obtain the class of geometric distributions. The cdf and the

pmf are given by

F (t) = 1− (1− λ)t

p (t) = λ (1− λ)t−1 .

These expressions result from setting ht = λ in (2) and (3). The expected value is also 1/λ.

3.2 The Weibull distribution

This is a two-parameter generalization of the exponential distribution, which allows for a hazard

increasing or falling monotonically:

F (t) = 1− e−(λt)α λ > 0,α > 0

f (t) = λααtα−1e−(λt)
α

.
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The hazard is given by

h (t) = αλαtα−1.

If α > 1 h (t) is monotone increasing; if α < 1 h (t) is monotone decreasing; if α = 1 h (t) is constant

and reduces to the exponential case.

4 Conditional models and the proportional hazard specification

In econometric applications we are usually concerned with the relationship between duration time and

explanatory variables, and therefore we look at the conditional distribution of durations given a set of

exogenous variables x, F (t | x), so that

h (t, x) =
f (t | x)

1− F (t | x) .

That is, we expect the hazard rate to differ between members of the population.

4.1 The proportional hazard model

The proportional hazard (PH) model (Cox, JRSS, 1972) specifies that

h (t, x) = λ (t) exp
¡
x0β
¢
.

That is, h (t, x) factors into a function of t and a function of x, so that two different individuals have

re-employment probabilities that are proportional for all t. The model is widely used because of its

simplicity and straightforward interpretation.

λ (t) is called the base-line hazard function. Common specifications for λ (t) are the ones considered

earlier: λ (t) constant as in the exponential case (in fact, λ (t) = 1 if the constant is subsumed in the

x0β index), or

λ (t) = αtα−1

as in the Weibull case.

Linear representation of the proportional hazard model The cdf associated with the PH

model satisfies

1− F (t | x) = exp
∙
−
Z t

0
h (u, x) du

¸
= exp

∙
−ex0β

Z t

0
λ (u) du

¸
= exp

h
−ex0βΛ (t)

i
where Λ (t) is the integrated baseline hazard

Λ (t) =

Z t

0
λ (u) du.
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Therefore, we also have

ln {− ln [1− F (t | x)]} = x0β + lnΛ (t) .
Now, if the random variable T | x has cdf F (t | x), U ≡ F (T | x) is uniformly distributed inde-

pendently of x. Moreover, the variable

V = ln [− ln (1− U)] ≡ ln {− ln [1− F (T | x)]}
is an extreme value variate, independent of x, with cdf F (r) = 1− exp (−er).

Thus, the PH model can be written as a linear regression model for a transformation of the duration

variable:

lnΛ (Ti) = −x0iβ + Vi
where the error term is extreme value distributed independently of x (see Fourgeaud, Gourieroux, and

Pradel, 1988).

In particular, if λ (t) = 1, Λ (t) = t and the PH model reduces to the exponential regression

lnTi = −x0iβ + Vi.
On the other hand, if λ (t) = αtα−1, Λ (t) = tα and we obtain

α lnTi = −x0iβ + Vi
or

lnTi = −x0i
β

α
+
1

α
Vi.

5 Likelihood functions for censored and non-censored duration data

This section is based on Tony Lancaster’s 1979 paper “Econometric Models for the Duration of Un-

employment”. Let Ti | xi be a duration variable of interest with density f (ti | xi). Ideally, we would
like to observe a random sample of completed durations from entrants. This is the first case.

Case I: Completed durations (inflow sample) We observe {t1, t2, ..., tN}. The likelihood
function of the sample is

L =
NY
i=1

f (ti | xi)

where

f (ti | xi) = h (ti, xi) exp
∙
−
Z ti

0
h (u, xi) du

¸
.

For example, if h (ti, xi) is PH with λ (t) = 1, then

f (ti | xi) = ex0iβ exp
³
−tiex0iβ

´
.
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Case II: Censored durations (inflow sample) We have a random sample of entrants inter-

viewed t periods later. We observe ti if ti ≤ t, otherwise we just observe that ti > t:

L =
Y
ti≤t

f (ti | xi)
Y
ti>t

£
1− F ¡t | xi¢¤

Case III: Censored stock sample We have a sample from the stock of unemployed individuals

at a certain period and interview them h periods later. Let {d1, d2, ..., dN} be the number of weeks
they have been unemployed at the time of selection. We observe ti if ti ≤ di + h. Otherwise we just
observe that ti > di + h. The likelihood is:

L =
Y

di<ti≤di+h

f (ti | xi)
1− F (di | xi)

Y
ti>di+h

1− F (di + h | xi)
1− F (di | xi) .

In a stock sample individuals with a small di are less likely to be sampled. Thus, contributions to

the likelihood are conditioned on Ti > di. For example, the likelihood contribution of a censored of

observation is Pr (Ti > di + h | Ti > di).

Case IV: Interval stock sample Same as in Case III but now we never observe ti. We only

observe whether di < ti ≤ di + h or ti > di + h:

L =
Y

di<ti≤di+h

F (di + h | xi)− F (di | xi)
1− F (di | xi)

Y
ti>di+h

1− F (di + h | xi)
1− F (di | xi) .

In this case, the likelihood contribution of the individuals who found a job between selection and

interview is Pr (di < Ti ≤ di + h | Ti > di).
Clearly, the previous list of cases is not exhaustive. It is just intended to illustrate how the

construction of the likelihood makes the connection between the sample design and the underlying

model of interest.

6 Unobserved heterogeneity

6.1 Introduction: Unobserved heterogeneity in a simple case

Consider a discrete duration variable T and a (0, 1) covariate X. The conditional hazard rates are

assumed constant for all t:

h1 (t) = Pr (T = t | T ≥ t,X = 1) = h1

h0 (t) = Pr (T = t | T ≥ t,X = 0) = h0.

Suppose that h1 > h0 and let p = Pr (X = 1). Now consider the marginal (or aggregate) hazard:

h (t) = h1 Pr (X = 1 | T ≥ t) + h0 Pr (X = 0 | T ≥ t)
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For t = 1,

h (1) = h1p+ h0 (1− p) ,

but for t = 2 the probability of X = 1 in the surviving population with T ≥ 2 is

Pr (X = 1 | T ≥ 2) =
Pr (T ≥ 2 | X = 1) p

Pr (T ≥ 2) =
Pr (T ≥ 2 | X = 1) p

Pr (T ≥ 2 | X = 1) p+Pr (T ≥ 2 | X = 0) (1− p)
=

(1− h1) p
(1− h1) p+ (1− h0) (1− p) =

p

1 +
³
h1−h0
1−h1

´
(1− p)

< p.

Therefore, we observe “spurious state dependence":

h (2) < h (1) .

6.2 The PH model with unobserved heterogeneity

Lancaster (1979) argued that in the specification of the hazard there may be omitted explanatory

variables, e.g. because some determinants of the hazard cannot be observed. He addressed the

problem by introducing a multiplicative random effect in the PH specification:

h (t, x, v) = λ (t) exp
¡
x0β
¢
v

where v is assumed independent of x with E (v) = 1 and pdf g (v). h (t, x, v) is now the hazard function

conditional on x and v.

The cdf of unemployment duration given x and v is

F (t | x, v) = 1− exp
∙
−
Z t

0
h (u, x, v) du

¸
,

while the cdf given x only is

F (t | x) =
Z ∞

0
F (t | x, v) g (v) dv.

Lancaster assumed a Gamma distribution for g (v).

6.3 Identification of λ (t) and g (v) in the PH model

If λ (t) ≡ 1 there is no time dependence whereas if v ≡ 1 there is no unobserved heterogeneity.
In principle, one could think that the two effects are interchangeable and the only reason why we

can separate them is because we impose particular functional forms for λ (t) and g (v).

The intuitive argument is as follows: Suppose λ (t) ≡ 1 and g (v) is non-degenerate, so that each
individual has a constant probability of leaving unemployment, but these probabilities vary between

them. Individuals with high probabilities leave early, and by this selection process long durations are
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recorded for individuals with low probabilities of finding a job. This result is apparently the same as

when probabilities are the same for everybody but declining with the time already elapsed: λ0 (t) < 0

and v ≡ 1.
This suggests that it is not possible to distinguish between time dependence and unobserved

heterogeneity. In fact when there are no exogenous covariates this is exactly the case. For example,

it can be shown (c.f. Lancaster and Nickell, JRSS, 1980; Elbers and Ridder, RES, 1982) that the cdf

given by

F (t) = 1− 1

1 + at

can be obtained from the following two observationally equivalent specifications:

• Specification 1 :

H1 (t) = ln (1 + at)

G1 (t) =

(
1 v ≥ 1
0 v < 1.

Note that

F (t) = 1− exp [−H1 (t)] = 1− exp [− ln (1 + at)] = 1− 1

1 + at
.

• Specification 2 :

H2 (t) = t

G2 (t) =

Z v

0

1

a
e−u/adu.

In this case v has an exponential distribution. Note that

F (t | v) = 1− exp [−vH2 (t)] = 1− exp (−vt)

F (t) = Ev [1− exp (−vt)] = 1−Ev
¡
e−vt

¢
= 1− 1

1 + at

where we are using the expression for the mgf of the exponential distribution.

Elbers and Ridder (1982) prove that this is not the case when there are regressors. Specifically,

they prove that there are no two combinations of heterogeneity distributions and time dependence

functions given the same duration distribution. This result is stronger than the more traditional

results on identification in parametric models and pioneered semiparametric identification results in

econometrics.

Why this is so can be seen intuitively in the previous example assuming that we can observe the

duration distributions for two different known values of exp (x0β), say 1 and φ. For exp (x0β) = 1 the

10



two cdf ’s are identical. The question now is whether for exp (x0β) = φ the two specifications also lead

to the same cdf for durations. It can be seen that this requires that

(1 + at)φ = (aφt+ 1) for t ≥ 0

but this only holds if φ = 1. So introducing systematic variation in the hazard has as a consequence

that specifications 1 and 2 are distinguishable.

This identification result suggests that it may be possible to devise semiparametric estimators of

PH models with heterogeneity that do not require a specific distribution for v. Heckman and Singer

(1984) proposed a method along these lines.

7 Estimating discrete duration models

The usual approach has been to model discrete (or grouped) durations using density function terms

in a likelihood as if the spells were observed continuously.

Suppose Ti is a discrete random variable. The conditional hazard given covariates xi is given by

h (t, xi) = Pr (Ti = t | Ti ≥ t, xi) (t = 1, 2, 3, ...) .

Since this is now a probability it is natural to use discrete choice models in order to specify the exit

rate:

Pr (Ti = t | Ti ≥ t, xi) = F
¡
γt + x

0
iβt
¢

where F is a cdf (e.g. normal or logistic). If γt and βt were constant for all t, then h (t, xi) would be

constant for a given value of x and there would be no state dependence.

A possible way of introducing state dependence is to specify γt and βt as polynomials in t. For

example,

γt = γ0 + γ1 (ln t) + γ2 (ln t)
2 .

More generally, γt and βt could be treated as unrestricted duration-specific parameters:

γt =
T ∗X
j=1

γj1 (Ti = j)

where T ∗ is near to the maximum spell observed in the data. Such a model amounts to a sequence of

T ∗ binary choice models for the surviving populations at each t.

More specifically, for t = 1:

Pr (Ti = 1 | Ti ≥ 1, xi) = Pr (y1i = 1 | w1i = 1, xi) = F
¡
γ1 + x

0
iβ1
¢
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where y1i = 1 (Ti = 1) and w1i = 1 (Ti ≥ 1) (note that w1i = 1 with probability one).
Now for t = 2:

Pr (Ti = 2 | Ti ≥ 2, xi) = Pr (y2i = 1 | w2i = 1, xi) = F
¡
γ2 + x

0
iβ2
¢

where y2i = 1 (Ti = 2) and w2i = 1 (Ti ≥ 2), etc.
Hence, the log likelihood function for a sample of entrants can be written as:

L =
NX
i=1

T ∗X
t=1

wti
©
yti lnF

¡
γt + x

0
iβt
¢
+ (1− yti) ln

£
1− F ¡γt + x0iβt¢¤ª .

There are two types of individual contributions to the likelihood:

• A completed spell Ti = t contributes a term Pr (Ti = t | xi):

lnPr (Ti = t | xi) = ln

"
hti

t−1Y
s=1

(1− hsi)
#
= lnhti +

t−1X
s=1

ln (1− hsi)

= lnF
¡
γt + x

0
iβt
¢
+
t−1X
s=1

ln
£
1− F ¡γs + x0iβs¢¤ .

• A censored spell at t contributes a term Pr (Ti ≥ t+ 1 | xi):

lnPr (Ti ≥ t+ 1 | xi) = ln [1− Pr (Ti ≤ t | xi)] = ln
"

tY
s=1

(1− hsi)
#

=
tX
s=1

ln
£
1− F ¡γs + x0iβs¢¤ .

The amount of generality in the specification of γt and βt will be partly dictated by the frequency

at which durations are reported but also by the shape of empirical hazards.

Thus, discrete duration models can be regarded as a sequence of binary models. This is convenient

because standard logit software can be used to estimate discrete duration models (Jenkins, 1995).

Time-varying characteristics We often have explanatory variables whose values change during

the course of the spell for a given individual. For example, changing levels of unemployment insurance

benefits over time, or aggregate economic variables.

In such cases, the interpretation of the hazard rate changes. h (t, xi (t)) can be regarded as:

Pr (Ti = t | Ti ≥ t, xi (1) , ..., xi (∞)) = F (γt + xi (t)βt) .

That is, the hazard for the distribution of Ti conditioned on the entire {xi (t)} process. This is

a case where x is taken as a “strictly exogenous” variable in duration time. Duration models with

“predetermined” variables are also possible (see Bover, Arellano, and Bentolila, 2002, for a discussion).
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Continuous-time duration models with time-varying x’s pose difficult problems because the x’s are

not continuously observed. However, in discrete duration models they just involve a trivial extension

of the basic models.

Unobserved heterogeneity Let ui be an unobserved covariate distributed independently of xi

with cdf G. Then

Pr (Ti = t | xi) =
Z
Pr (Ti = t | xi, u) dG (u) =

Z
hti (u)

t−1Y
s=1

[1− hsi (u)] dG (u)

where for example

hti (u) = F
¡
γt + x

0
iβt + u

¢
.

A common specification for G is a “mass point” distribution: u is assumed to take on {ξ1, ..., ξm}
different values with probabilities {p1, ..., pm}. Thus,

Pr (Ti = t | xi) =
mX
j=1

hti
¡
ξj
¢ t−1Y
s=1

£
1− hsi

¡
ξj
¢¤
pj .

Both the ξj and the pj are treated as additional parameters to be estimated.

8 Grouped duration data: linking discrete and continuous models

In a continuous model {T = t} was interpreted as an observation from a continuous process, hence

contributing a density function term to the likelihood. In a discrete model, {T = t} is interpreted as
an observation of a discrete process. Alternatively, it can be regarded as a grouped (or time-aggregate)

observation from a continuous process. That is, it may be interpreted as the observation of the event

{t ≤ T < t+ 1}, where T is an underlying continuous duration random variable.

In such case, the contribution to the likelihood of a spell completed between t and t+ 1 would be

Pr (t ≤ T < t+ 1) = F (t+ 1)− F (t)

and the contribution of a spell censored at c:

Pr (T > c) = 1− F (c)

where F is now the continuous cdf of T .

In this context, the discrete hazard rate of the previous section would be reinterpreted as a “grouped

hazard”:

Pr (t ≤ T < t+ 1 | T ≥ t) = 1− Pr (T ≥ t+ 1 | T ≥ t) = 1− Pr (T ≥ t+ 1)
Pr (T ≥ t) = 1−

µ
1− F (t+ 1)
1− F (t)

¶

= 1−
exp

h
− R t+1−∞ h (u) du

i
exp

h
− R t−∞ h (u) dui = 1− exp

∙
−
Z t+1

t
h (u) du

¸
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where h (u) is the continuous hazard function of T .

Proportional hazards from grouped durations Suppose that h (u, x) is specified as:

h (u, x) = λ (u) exp
¡
x0β
¢
.

Then

Pr (t ≤ T < t+ 1 | T ≥ t, x) = 1−exp
∙
−ex0β

Z t+1

t
λ (u) du

¸
= 1−exp

³
−eγt+x0β

´
= F ∗

¡
γt + x

0β
¢

where

γt = ln

Z t+1

t
λ (u) du

and F ∗ is the extreme value cdf F ∗ (r) = 1− exp (−er).
Thus, the discrete-time hazard takes the form of an extreme value distribution. Note that this

follows directly from the PH specification without any further distributional assumptions.

The more traditional approach was to use a Weibull specification for λ (u), which implies a par-

ticular parametric function for γt (that in this case would depend on a single parameter). Bruce

Meyer (Econometrica, 1990) propose to censor any ongoing observations at some large spell length

T ∗ and then treat
¡
γ0, γ1, ..., γT ∗−1

¢
as a vector of T ∗ additional parameters to be estimated. From

this perspective, a parametric assumption about λ (u) can be regarded as putting restrictions on the

elements of γ.

We can use LR tests to test parametric specifications of λ (u) against the unrestricted model.

Meyer does so and rejects the parametric models; however, there is no strong evidence of biases in the

estimates of β due to the Weibull assumption (Meyer, 1990, p. 776).

“Proportional hazards” with time-varying covariates Consider the specification

h (u, x) = λ (u) exp
£
x (u)0 β

¤
.

In such case, assuming that x (u) is constant for t ≤ u < t+1, i.e. that the changes in the time-varying
covariates occur at integer points, the discrete time hazard can also be written as the extreme value

model:

Pr (t ≤ T < t+ 1 | T ≥ t, x) = 1−exp
∙
−ex(t)0β

Z t+1

t
λ (u) du

¸
= 1−exp

³
−eγt+x0tβ

´
= F ∗

¡
γt + x

0
tβ
¢
.

Note though, that the result requires that β does not change with t.

This is a convenient device for handling time-varying covariates in continuous time models, since

the x’s are only observed at given intervals.

14



The straightforward interpretation of the discrete hazard model with the extreme value specification

as a grouped hazard for the continuous PH specification is an attractive feature of the extreme value

model. However, in some applications probit and logit have been seen to outperform the extreme

value probability (c.f. Narendranathan and Stewart, J. of Applied Econometrics, 1993).

Estimating a continuous time model has the advantage that the parameters are free from the

level of aggregation or grouping in the data, hence making the comparison with estimates from other

data sets feasible. Nevertheless, economic duration data is often more suited to discrete or grouped

specifications than to continuous ones, given the nature of the data where the spells take on only a

small number of different vales (as in weekly or monthly unemployment durations).

General mapping between discrete and continuous duration models Consider a generic

continuous-time hazard model h (u, x). Generalizing the previous argument we have

Pr (t ≤ T < t+ 1 | T ≥ t, x) = F ∗ [H (t, x)] = 1− exp
³
−eH(t,x)

´
where

eH(t,x) =

Z t+1

t
h (u, x) du.

To explore the connection with the logistic discrete duration model, define the function

ϕ (t, x) = ln

µ
F ∗ [H (t, x)]

1− F ∗ [H (t, x)]
¶
= ln

Ã
1− exp ¡−eH(t,x)¢
exp

¡−eH(t,x)¢
!
,

so thatZ t+1

t
h (u, x) du = ln

³
1 + eϕ(t,x)

´
.

We have,

Pr (t ≤ T < t+ 1 | T ≥ t, x) = Λ [ϕ (t, x)]

where Λ (r) is the logistic cdf. Thus, when we estimate a logistic model of the form Λ [x0β (t)], the

index x0β (t) can be regarded as an approximating model for ϕ (t, x). This is of interest because, having

established the connection, we can use the logistic estimates to calculate approximate derivative effects

for the underlying continuous-time model.

A derivative effect for the continuous-time hazard integrated between t and t+ 1 is

D (t, x) =

Z t+1

t

∂h (u, x)

∂x
du.

Therefore,

∂

∂x

Z t+1

t
h (u, x) du =

eϕ(t,x)¡
1 + eϕ(t,x)

¢ ∂ϕ (t, x)
∂x

= Λ [ϕ (t, x)]
∂ϕ (t, x)

∂x
.
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So, if we have estimated the model Λ [x0β (t)], the following holds as an approximation:

D (t, x) ' Λ £x0β (t)¤β (t) .
More generally, for an arbitrary cdf G and ϕ (t, x) = G−1 [H (t, x))] we haveZ t+1

t
h (u, x) du = − ln [1− Pr (t ≤ T < t+ 1 | T ≥ t, x)] = − ln {1−G [ϕ (t, x)]} ,

so that

∂

∂x

Z t+1

t
h (u, x) du =

g [ϕ (t, x)]

1−G [ϕ (t, x)]
∂ϕ (t, x)

∂x
= hg [ϕ (t, x)]

∂ϕ (t, x)

∂x

where hg is the hazard associated with G. The conclusion is that if we have estimated the model

G [x0β (t)], the following holds as an approximation:

D (t, x) ' hg
£
x0β (t)

¤
β (t) .

9 Multiple-exit discrete duration models

Consider now a model in which there is more than one possible exit from unemployment. This section

follows closely the presentation in Bover and Gomez (2004), and as in their paper we distinguish

between exits to a permanent job and exits to a temporary job.

If we have a discrete duration variable T and two alternatives represented by the indicators D1

and D2, we can define the following intensities of transition to each of the states:

φ1 (t) = Pr (T = t,D1 = 1 | T ≥ t)
φ2 (t) = Pr (T = t,D2 = 1 | T ≥ t)

such that the hazard rate from unemployment is given by:

φH (t) = φ1 (t) + φ2 (t) .

Likewise, in order to see the discrete duration models as discrete choice models, it is useful to introduce

sequences of exit indicators at t to a given alternative:

Y1t = 1 (T = t,D1 = 1) , Y2t = 1 (T = t,D2 = 1) for t = 1, 2, 3...

According to this notation, φ1 (t) = Pr (Y1t = 1 | T ≥ t) and φ2 (t) = Pr (Y2t = 1 | T ≥ t).
Alternatively, we can define exit rates to each of the states conditional upon not exiting to the

alternative state:

h1 (t) = Pr (Y1t = 1 | T ≥ t, Y2t = 0)
h2 (t) = Pr (Y2t = 1 | T ≥ t, Y1t = 0) .
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The relationship with the previous transition intensities is given by:

h1 (t) =
Pr (Y1t = 1 | T ≥ t)
Pr (Y2t = 0 | T ≥ t) =

φ1 (t)

1− φ2 (t)

and similarly

h2 (t) =
φ2 (t)

1− φ1 (t)
.

Thus, unlike the continuous case, in the context of discrete duration variables and multiple alternatives,

we can choose between modeling the intensities φj (t) or the conditional hazard rates hj (t). For

example, if T represents the duration of unemployment and exits 1 and 2 are permanent employment

and temporary employment, respectively, φ1 (t) is the probability of exiting to permanent employment

at T = t among those who remain unemployed for at least T ≥ t periods. For its part, h1 (t) is the
probability of exiting to permanent employment at T = t among those who remain unemployed for at

least T ≥ t and do not exit to temporary employment at T = t.
A specification commonly used in multiple choice problems is the multinomial logit model. In such

case, the dependence of φ1 (t) and φ2 (t) on the explanatory variables x is specified by

φ1 (t) =
ex

0β1

1 + ex
0β1 + ex

0β2

φ2 (t) =
ex

0β2

1 + ex
0β1 + ex

0β2
.

Note that, in accordance with the relationships given above, this specification for φ1 (t) and φ2 (t)

implies that

h1 (t) =
ex

0β1

1 + ex
0β1

h2 (t) =
ex

0β2

1 + ex0β2
.

That is, if the transition intensities are multinomial logit, the conditional exit rates are binary logit

with the same parameters. As a result, the use of the logistic specification leads to the same model in

both cases.

Nevertheless, having obtained estimates of the parameters β1,β2, we can obtain two different

measurements of the effect of the explanatory variables on the probabilities of exit to a specific alter-

native depending on whether changes in the φj (t) or changes in the hj (t) are used. Specifically, for a

continuous variable and for the exit to alternative 1 we can use

εφ1tk =
∂φ1 (t)

∂xk
.
xk

φ1 (t)

or else

εh1tk =
∂h1 (t)

∂xk
.
xk
h1 (t)

.

17



It can be easily shown that the relationship between the two elasticities is given by

εh1tk = εφ1tk +
φ2 (t)

1− φ2 (t)
εφ2tk

εh2tk = εφ2tk +
φ1 (t)

1− φ1 (t)
εφ1tk.

In addition, in the logistic case:

εh1tk = β1k [1− h1 (t)]xk

where β1k denotes the k-th coefficient of the vector β1.

The differences between the two types of elasticity may be greater when the temporal aggregation

of the durations is large. An alternative way of constructing derivative effects is to regard discrete

durations as grouped observations from a continuous process, and relate the grouped transitions to the

underlying continuous transition intensities, along the lines of the discussion in the previous section.

Competing risk models The models for the conditional probabilities h1 (t), h2 (t) are usually

called competing risk models. This name derives from the fact that if we consider the existence of

two latent duration variables T ∗1 and T ∗2 , such that the observed duration is T = min (T ∗1 , T ∗2 ) and

T ∗1 , T ∗2 are independent, then the conditional exit rates can be interpreted as exit rates for the latent

durations:

h1 (t) = Pr (T ∗1 = t | T ∗1 ≥ t)
h2 (t) = Pr (T ∗2 = t | T ∗2 ≥ t) .

That is, to analyze exits to alternative 1 we take the exits to alternative 2 as censored observations,

and vice versa.

Note that irrespective of whether T ∗1 , T ∗2 correspond to well defined concepts (and in the case of

exits to permanent or temporary contracts it is difficult to imagine that they do), h1 (t), h2 (t) generally

represent useful descriptive characteristics for the durations and exits observed.

Estimation of the parameters (β1,β2) of the logistic model We can consider two different

methods for estimating the model. The first consists in the joint estimation of β1 and β2 by maximum

likelihood, while the second consists in separate estimation of β1 and β2 by conditional maximum

likelihood. Both methods provide consistent and asymptotically normal estimates of the parameters,

although the first estimator is in general asymptotically more efficient than the second. The advan-

tage of the second is basically that its computation is faster. Moreover, separate estimators of the

parameters corresponding to one of the alternatives are robust to specification errors in the regression

index for the other alternative.
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Consider a sample that includes both entrants into unemployment and the stock of the unemployed

workers at the time of interview. Let ci be an indicator that takes the value 1 if the end of the period

of unemployment is observed, and 0 if not; T 0i denotes the observed duration, and qi is the number of

months in unemployment at the time of the first interview (for an entrant qi = 1).

The joint log-likelihood function is given by:

L (β1,β2) =
NX
i=1

⎧⎨⎩(1− ci)
T 0iX
t=qi

ln [1− φ1i (t)− φ2i (t)]

+ci

⎛⎝T0i −1X
t=qi

ln [1− φ1i (t)− φ2i (t)] +D1i lnφ1i
¡
T 0i
¢
+D2i lnφ2i

¡
T 0i
¢⎞⎠⎫⎬⎭ .

Likewise, using the sequences of indicators defined above we can express L (β1,β2) as

L (β1,β2) =

max(T 0i )X
t=1

Lt

where

Lt =
NX
i=1

1
¡
T 0i ≥ t ≥ qi

¢ {ciY1ti lnφ1i (t) + ciY2ti lnφ2i (t)
+ (1− ciY1ti − ciY2ti) ln [1− φ1i (t)− φ2i (t)]} ,

which shows that L (β1,β2) can be regarded as the log-likelihood of a multinomial logit model defined

on the basis of the concatenation of the samples surviving at each duration. The joint maximum

likelihood estimators
³bβ1, bβ2´ are defined as the values that maximize L (β1,β2).

In addition, the conditional log-likelihood function for exit 1 is given by:

Lc1 (β1) =
NX
i=1

⎧⎨⎩ci
⎛⎝D1i lnh1i ¡T 0i ¢+D1i T

0
i −1X
t=qi

ln [1− h1i (t)]
⎞⎠

+[D2i + (1− ci)]
T 0iX
t=qi

ln [1− h1i (t)]
⎫⎬⎭

with a similar expression for the likelihood corresponding to exit 2, Lc2 (β2). Note that in Lc1 (β1)

the exits to alternative 2 are treated as censored observations, so that formally it is a function with

exactly the same form as the likelihood with a single exit of the previous section. The implication is

that the conditional maximum likelihood estimators,
³eβ1, eβ2´ defined as the maximizers of Lc1 (β1)

and Lc2 (β2), respectively, can be obtained as separate maximum-likelihood estimates of two binary

logit models.

19



References

[1] Bover, O., M. Arellano, and S. Bentolila (2002): “Unemployment Duration, Benefit Duration,

and the Business Cycle”, The Economic Journal, 112, 223-265.

[2] Bover, O. and R. Gómez (2004): “Another Look at Unemployment Duration: Exit to a Permanent

vs. a Temporary Job”, Investigaciones Económicas, 28, 285-314.

[3] Elbers, C. and G. Ridder (1982): “True and Spurious Duration Dependence: The Identifiability

of the Proportional Hazard Model”, Review of Economic Studies, 49, 403-409.

[4] Heckman, J. and B. Singer (1984): “A Method for Minimizing the Impact of Distributional

Assumptions in Econometric Models for Duration Data”, Econometrica, 52, 271-320.

[5] Jenkins, S. (1995): “Easy Estimation Methods for Discrete-time Duration Models”, Oxford Bul-

letin of Economics and Statistics, 57, 120-138.

[6] Lancaster, T. (1979): “Econometric Models for the Duration of Unemployment”, Econometrica,

47, 939-956.

[7] Lancaster, T. (1990): The Econometric Analysis of Transition Data, Cambridge.

[8] Meyer, B. (1990): “Unemployment Insurance and Unemployment Spells”, Econometrica, 58, 757-

782.

[9] Narendranathan, W. and M. Stewart (1993): “How does the benefit effect vary as unemployment

spells lengthen?”, Journal of Applied Econometrics, 8, 361—81.

[10] Van den Berg, G. (2001): “Duration Models: Specification, Identification and Multiple Dura-

tions”, in Heckman and Leamer (eds.), Handbook of Econometrics, Vol. 5, Ch. 55.

20


