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Introduction

• This paper discusses econometric methods that relate to a substantial section of
applied work, so it is a good choice for an Interactions workshop.

• It provides a practical framework for estimating distributional effects, asymptotic
properties for their method, and evidence of computational and empirical applicability.

• A tour de force around a simple theme, all accomplished with great skill.

• I will provide a summary of the paper and some general remarks.
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Summary

• Concerned with applications where the interest is in the effect of a group-level policy
on the group-level distribution of some individual characteristic.

• An example of their approach is a linear regression of a quantile qτ
g on a variable xg :

qτ
g = γ (τ) + β (τ) xg + εg (τ) g = 1, ...,G τ ∈ (0, 1)

where εg (τ) is an error term orthogonal to xg .

• In their setting xg is observed but qτ
g is not. So it is replaced by a sample quantile q̂

τ
g

obtained from individual-level data (of size Ng ).

• Since q̂τ
g is not an unbiased estimate of q

τ
g , consistency for β (τ) of a regression of q̂τ

g
on xg requires large G and large N1, ...,NG .

• In an IV version of the problem εg (τ) is correlated with xg but not with an
instrument wg that satisfies the rank and exclusion conditions.

• In a more general version q̂τ
g , instead of a sample quantile, is a sample QR coeffi cient

(intercept or slope) involving individual-level covariates.

• The paper provides an asymptotic normality result for
√
G
(

β̂ (.)− β (.)
)
as long as

Ng grows suffi ciently fast as G → ∞ (a mild requirement).

• It also provides an estimator of the asymptotic covariance function.

• These are all useful results.
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1. Group-level causality and individual-level causality

• A natural context for the current framework is group-level causality.

• A formulation for a population of groups is as follows. A potential outcome is a
random function (a cdf) rather than a r.v. and treatment takes place at group-level.

• Larsen (2014) and Autor, Dorn, and Hanson (2013)’s extension are nice examples.

• In Larsen a group is a state-year cell, treatment is a teacher certification law, and a
potential outcome is the cdf of teacher quality in a state-year under some licensing law

• Group-level issues are eg the exogeneity of licensing laws across states & years, or
possible spillover effects. But the group-level perspective is silent about what goes on
at the individual level.

• One could think of each group as a separate market for teacher quality, the
equilibrium outcome of which is a cdf of teacher quality that is affected by licensing
laws through supply and demand channels.
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Individual-level causality

• The same model can also be regarded as a model for an individual potential outcome:

yig = γ
(
uig
)
+ β

(
uig
)
xg + ε(uig , ηg )

where uig ∼ U (0, 1) indep. of (xg , ηg ) and εg (τ) = ε(τ, ηg ) for arbitrary dim(ηg ).

• yig is the individual outcome whose group quantile function is qτ
g (teacher’s i quality).

• There is a single individual unobservable uig and many group unobservables ηg .

• xg is always exogenous w.r.t. to uig but may or may not be exogenous w.r.t. ηg .

• As a model of individual potential outcomes, β
(
uig
)

∆x would measure the causal
effect of a change ∆x on individual’s i outcome.

• The model assumes comonotonicity (rank invariance) at individual and group levels.

• This is an unappealing model of individual response in applications such as those in
Larsen or ADH where occupational entry/exit is a relevant aspect of the response.
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Point-wise comparison of quantiles

• A point-wise comparison of quantiles gives the shape of individual treatment gains
under comonotonicity, but it is not an obvious metric in a group-level comparison of
distributions from different populations.

• The function β̂ (τ) is not necessarily an interpretable distributional treatment effect at
group level, so is not to be taken for granted as the focus of empirical reporting.

• It may be more natural to look at changes in distributional measures motivated in
substantive considerations, such as inequality indices, polarization, or probabilities of
exceeding a preestablished threshold.

• A situation where the interest is in comparing distributions of outcomes of different
populations, rather than in the distribution of individual changes in a fixed population.
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2. Reducing the dimensionality of group effects

• There is a trade-off between allowing for large or low dimensional unobservable
group-effects and the scope of nonparametric identification.

• Application of the present method is straightforward as it proceeds in a
quantile-by-quantile fashion allowing for a different error at each quantile.

• However, if the number of individual observations per group is small the incidental
parameter problem is a challenge.

• Moreover, while being agnostic about the group-factor dimension is attractive, often
substantive knowledge suggests that only a small no. of underlying factors play a role.

• Whether one uses a model with a different group effect at each quantile or one with a
small number of group effects may have implications for fixed-Ng identification.

• For example, Rosen (2010) shows that a fixed-effects panel model for a single quantile
is not point identified.
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Group-level analysis when the number of observations per group is small

• Arellano & Bonhomme (2013) show that a QR model with a scalar group effect is
nonparametrically identified in panel data with Ng = 3 under completeness conditions.

• They consider the fixed-Ng identification and estimation of functions Qyi and Qα:

yig = Qyi
(
zig , αg , uig

)
αg = Qα (zg , vg )

where αg is a group-effect, zg =
{
zig
}Ng
i=1, and uig | (zg , αg ) and vg | zg are U (0, 1).

• A centered measure of location on the pdf of yig | zig , αg for some i is imposed.

• If zig includes an i -invariant xg , the result may hold for a reparameterization that
subsumes xg .

• Exploring conditions (such as within variability in Qyi ) under which derivative effects
of Qyi w.r.t. xg can be disentangled is an interesting question.
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Group-level analysis when Ng is small (continued)

• If the interest is in individual-level effects, Qyi is the main response function and Qα is
a nuisance function.

• If the interest is in group-level effects, Qyi is an aggregator that produces the factors
αg and Qα is a group-level response function.

• In the IV situation, a similar reinterpretation of the micro setup conditionally on
(xg ,wg ) leads to identification of the joint density of (αg , xg ,wg ).

• The question here is how to control the small-Ng noise in a nonparametric way so
that one can still say something about the effect of xg on the group-level cdf of yig .
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3. Standard errors

• Chamberlain (1994) considered a version of the estimator in this paper motivated in
the distributional analysis of censored earnings data.

• He analyzed the properties of β̂ (τ) when G is fixed, Ng is large, and there are no
group-level unobservables (except for model misspecification).

• Chamberlain’s standard errors are the mirror image of those considered here.

• In his case all sampling error comes from the discrepancy between q̂τ
g and q

τ
g whereas

this is ignored in the asymptotics here leading to standard errors driven by εg (τ).

• Chamberlain’s situation is similar to DiD case-studies where G and/or the number of
treated groups are small.

• A reinterpretation of β̂ (τ) in those cases is as an estimate of the infeasible fixed-G
sample statistic that uses group-level population quantiles.

• Desirable to report standard errors that are robust to alternative asymptotic plans.

• For example, standard errors for fixed-Ng pseudo-true values that retain double
asymptotic validity.

• Ignoring the first stage may come at a cost in finite samples.
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4. Hausman-Taylor internal instruments

• The setting for the Hausman-Taylor estimator is a model of the form

yig = γzig + βxg + ηg + vig

where zig is uncorrelated with ηg but xg is not, and both are vig -exogenous.

• The idea is to use zig as an instrument for itself and zg as an instrument for xg .

• The method works as long as zg is correlated with the observed component of the
group-effect (xg ) but not with the unobserved one (ηg ).

• In panel data there are not many applications of this idea due to diffi culty in finding
time-varying covariates that can be thought a priori as being fixed-effect exogenous.

• A related common practice is to look at predictive effects on group-level
unobservables, be intercepts or slopes.

• This paper emphasizes the benefits from being able to use internal instruments, but I
was under the impression that they did not feature prominently in their examples.

• Perhaps they have in mind exploiting the micro-data to construct aggregate
instruments more generally, but it would be nice to see more examples where internal
instruments determine the empirical force of the results.
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Concluding remarks

• In group-level comparisons of potential cdf-outcomes is not obvious that we want to
focus on point-wise comparisons of quantiles, which are reminiscent of comonotonic
individual-level effects.

• There is a trade-off between double asymptotic approaches with high dimensional
group-level unobservables and approaches with fewer group-level unobservables that
deliver nonparametric identification when the number of units per group is small.

• Standard errors that exhibit robustness to alternative asymptotic plans are attractive
in applications that combine group-level data and micro data.
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