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1 Introduction

In Part I we considered linear and non-linear models with additive errors and endogenous explanatory

variables. A simple case was a linear relationship between Y and X and an error U , where U was

potentially correlated with X but not with an instrument Z:

Y = α+ βX + U, E (U) = 0, E (ZU) = 0. (1)

This setting was motivated in structural models.

Now we wish to make similar considerations for binary index models of the form

Y = 1 (α+ βX + U ≥ 0) .

There are two important differences that we need to examine:

1. In the new models effects are heterogeneous, so that there is a difference between effects at the

individual level and aggregate or average effects.

2. Instrumental variable techniques are no longer directly applicable because the model is not

invertible and we lack an expression for U . So we have to consider alternative ways of addressing

endogeneity concerns.

To discuss these issues it is useful first to go back to the linear setting and re-examine endogeneity

using an explicit notation for potential outcomes.

Potential outcomes notation When we are interested in (1) as a structural equation, we regard

it as a conjectural relationship that produces potential outcomes for every possible value x ∈ S of the
right-hand-side variable:

Y (x) = α+ βx+ U

So we imagine that each unit in the population has a value of U and hence a value of Y (x) for each

value of x. This is the way we think about structural models in economics, for example about a

demand schedule that gives the conjectural demand Y (x) for every possible price x.
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For each unit we only observe the actual value X that occurs in the distribution of the data, so

that Y = Y (X).1

If the assignment of values of X to units in the population is such that X and U are uncorrelated,

β coincides with the regression coefficient of Y on X. If the assignment of values of Z (a predictor of

X) to units in the population is such that Z and U are uncorrelated, β coincides with the IV coefficient

of Y on X using Z as instrument.

Consider two individuals in the population with errors U and U†. Their potential outcomes will

differ:

Y (x) = α+ βx+ U

Y (x)† = α+ βx+ U†

but the effect of a change from x to x0 will be the same for all individuals:

Y
¡
x0
¢− Y (x) = β

¡
x0 − x¢ .

In this sense we say that in models with additive errors the effects are homogeneous across units. We

now turn to consider the situation in binary models.

Heterogeneous individual effects and aggregate effects Potential outcomes in the binary

model are given by

Y (x) = 1 (α+ βx+ U ≥ 0) .

The effect of a change from x to x0 for an individual with error U is:

Y
¡
x0
¢− Y (x) = 1 ¡α+ βx0 + U ≥ 0¢− 1 (α+ βx+U ≥ 0) .

Suppose for the sake of the argument that β > 0 and x0 > x. The possibilities are

value of U Y (x) Y (x0) Y (x0)− Y (x)
−U ≤ α+ βx 1 1 0

−U > α+ βx0 0 0 0

α+ βx < −U ≤ α+ βx0 0 1 1

Depending on the value of U the effects can be zero or unity, therefore they are heterogeneous

across units.
1Given the form of the model all the Y (x) are observable when β is known:

Y (x) = α+ βx+ (Y − α− βX) = Y + β (x−X) .
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In these circumstances it is natural to consider an average effect:

EU
£
Y
¡
x0
¢− Y (x)¤ = EU

£
1
¡
α+ βx0 + U ≥ 0¢¤−EU [1 (α+ βx+U ≥ 0)]

= Pr
¡−U ≤ α+ βx0

¢− Pr (−U ≤ α+ βx) = Pr
¡
α+ βx < −U ≤ α+ βx0

¢
= F

¡
α+ βx0

¢− F (α+ βx)

where F is the cdf of U . The average effect is simply the fraction of units in the population whose

outcomes are affected by the change from x to x0 (those with α+ βx < −U ≤ α+ βx0).

Marginal effects If X is binary there is only one effect to consider. If X is continuous we can

consider average marginal effects:

∂EU [Y (x)]

∂x
=

∂F (α+ βx)

∂x
= βf (α+ βx) .

Marginal effects can be regarded as a random variable associated with X. In this sense it may be of

interest to obtain summary measures of its distribution, like the mean or the median. For example,

EX [βf (α+ βX)] .

Identification and estimation In models with additive errors, moment conditions of the form

E (ZU) = 0 are often sufficient for identification, and GMM estimates can be easily constructed from

their sample counterparts. In non-invertible models, GMM estimators are not directly available. In

fact, the availability of instruments (a variable Z that is independent of U) by itself does not guarantee

point identification in general.

Next, we consider two specific models that fully specify the joint distribution of Y and X given Z.

One is for a normally distributed X. It would have application to situations where X is a continuous

variable. The other is for a binary X and leads to a multivariate probit model.
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2 The normal endogenous explanatory variable probit model

The model is

Y = 1 (α+ βX + U ≥ 0)
X = π0Z + σvVÃ
U

V

!
| Z ∼ N

"
0,

Ã
1 ρ

ρ 1

!#
.

In this model X is an endogenous explanatory variable as long as ρ 6= 0. X is exogenous if ρ = 0.

Joint normality of U and V implies that the conditional distribution of U given V is also normal

as follows:

U | V,Z ∼ N ¡ρV, 1− ρ2
¢

or

Pr (U ≤ r | V,Z) = Φ
Ã
r− ρVp
1− ρ2

!
.

Therefore,

Pr (Y = 1 | X,Z) = Pr (α+ βX + U ≥ 0 | V,Z) = Φ
Ã
α+ βX + ρVp

1− ρ2

!
.

Moreover, the density of X | Z is just the normal linear regression density.
Thus, the joint probability distribution of Y and X given Z = z is

f (y, x | z) = f (y | x, z) f (x | z)

or

ln f (y, x | z) ∝ y lnΦ
Ã
α+ βx+ ρvp

1− ρ2

!
+ (1− y) ln

"
1−Φ

Ã
α+ βx+ ρvp

1− ρ2

!#
− 1
2
lnσ2v −

1

2
v2

where v = (x− π0z) /σv.

Therefore, the log likelihood of a random sample of N observations conditioned on the z variables

is:

L
¡
α,β, ρ,π,σ2v

¢
=

NX
i=1

(
yi lnΦ

Ã
α+ βxi + ρvip

1− ρ2

!
+ (1− yi) ln

"
1−Φ

Ã
α+ βxi + ρvip

1− ρ2

!#)

+
NX
i=1

µ
−1
2
lnσ2v −

1

2
v2i

¶
.

Note that under exogeneity (ρ = 0) this log likelihood function boils down to the sum of the

ordinary probit and normal OLS log-likelihood functions:

L
¡
α,β, 0,π,σ2v

¢
= Lprobit (α,β) + LOLS

¡
π,σ2v

¢
.
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3 The control function approach

3.1 Two-step estimation of the normal model

We can consider a two-step method:

• Step 1: Obtain OLS estimates (bπ, bσv) of the first stage equation and form the standardized

residuals bvi = ¡xi − bπ0zi¢ /bσv, i = 1, ..., N .
• Step 2: Do an ordinary probit of y on constant, x, and bv to obtain consistent estimates of¡

α†,β†, ρ†
¢
where³

α†,β†, ρ†
´
=
¡
1− ρ2

¢−1/2
(α,β, ρ) .

Since there is a one-to-one mapping between the two, the original parameters can be recovered

undoing the reparameterization. However, the fitted probabilities Φ
³bα† + bβ†xi + bρ†bvi´ are in fact

directly useful to get average derivative effects (see below).

In general, two-step estimators are asymptotically inefficient relative to maximum likelihood esti-

mation, but they may be computationally convenient.

Ordinary probit standard errors calculated from the second step are inconsistent because estimated

residuals are treated as if they were observations of the true first-stage errors. To get consistent

standard errors, we need to take into account the additional uncertainty that results from using

(bπ, bσv) as opposed to the truth (see the appendix).
Comparison with probit using fitted values Note that

Y = 1 (α+ βX + U ≥ 0) = 1 ¡α+ β
¡
π0Z

¢
+ ε ≥ 0¢

where ε = U + βσvV is ε | Z ∼ N
¡
0,σ2ε

¢
with σ2ε = 1+ β2σ2v + 2βσvρ.

If we run a probit of y on constant and bx = bπ0z we get consistent estimates of α = α/σε and

β = β/σε. Note that from estimates of α, β, and σv we cannot back up estimates of α and β due

to not knowing ρ. We cannot get average derivative effects either. So estimation of parameters of

interest from this method (other than relative effects) is problematic.

3.2 The linear case: 2SLS as a control function estimator

The 2SLS estimator for the linear IV model is bθ =
³ bX0 bX´−1 bX0y where bX = ZbΠ0 and bΠ =

X0Z (Z0Z)−1. The matrix of first-stage residuals is bV = X − ZbΠ0. Typically, X and Z will have

some columns in common. For those variables, the columns of bV will be identically zero. Let us callbV1 the subset of non-zero columns of bV (those corresponding to endogenous explanatory variables).
5



It can be shown that 2SLS coincides with the estimated θ in the OLS regression y = Xθ+ bV1γ+ ξ

(see appendix). Therefore, linear 2SLS can be regarded as a control function method.

In the binary situation we obtained a similar estimator from a probit regression of y on X and

first-stage residuals. An important difference between the two settings is that 2SLS is robust to

misspecification of the first stage model whereas two-step probit is not. Examples of misspecifications

occur if E (X | Z) is nonlinear, if V ar (X | Z) is non-constant (heteroskedastic), or if X | Z is non-

normal.

Another difference is that in the linear case the control-function approach and the fitted-value

approach lead to the same estimator (2SLS) whereas this is not true for probit.

3.3 A semiparametric generalization

Consider the model

Y = 1 (α+ βX + U ≥ 0)
X = π0Z + σvV

and assume that

U | X,V ∼ U | V.

In the previous parametric model we additionally assumed that U | V was N ¡ρV, 1− ρ2
¢
and V

was N (0, 1). The semiparametric generalization consists in leaving the distributions of U | V and V

unspecified.

In this way

Pr (Y = 1 | X,V ) = Pr (−U ≤ α+ βX | X,V ) = Pr (−U ≤ α+ βX | V )

Thus

E (Y | X,V ) = F (α+ βX,V )

where F (., V ) is the conditional cdf of −U given V . The function F (., V ) can be estimated non-

parametrically using estimated first-stage residuals. This is a bivariate-index generalization of the

semiparametric approaches to estimating single-index models with exogenous variables (cf. Blundell

and Powell, 2003).

6



3.3.1 Constructing policy parameters

To construct a policy parameter we need p (x) = Pr (−U ≤ α+ βx). Note that

Pr (−U ≤ α+ βx) =

Z
Pr (−U ≤ α+ βx | v) dFv ≡ EV [F (α+ βx, V )] .

In the normal model

Pr (−U ≤ α+ βx) = Φ (α+ βx)

But this means that

Φ (α+ βx) = EV

"
Φ

Ã
α+ βx+ ρVp

1− ρ2

!#
≡ EV

h
Φ
³
α† + β†x+ ρ†V

´i
. (2)

A simple consistent estimate of Φ (α+ βx) is Φ
³bα+ bβx´, where bα and bβ are consistent estimates.

For example, using that 1− ρ2 = 1/
¡
1 + ρ†2

¢
, we may use³bα, bβ´ = ³1 + bρ†2´−1/2 ³bα†, bβ†´

where
³bα†, bβ†,bρ†´ are two-step control function estimates.

Alternatively, using expression (2) a consistent estimate of Φ (α+ βx) in the normal model can be

obtained as

bp (x) = 1

N

NX
i=1

Φ
³bα† + bβ†x+ bρ†bvi´ .

In the semiparametric model this result generalizes to

ep (x) = 1

N

NX
i=1

bF ³eα+ eβx,bvi´
where

³eα, eβ´ are semiparametric control function estimates and bF (., .) is a non-parametric estimate
of the conditional cdf of −U given V .
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4 The endogenous dummy explanatory variable probit model

The model is

Y = 1 (α+ βX + U ≥ 0)
X = 1

¡
π0Z + V ≥ 0¢Ã

U

V

!
| Z ∼ N

"
0,

Ã
1 ρ

ρ 1

!#
.

In this model X is an endogenous explanatory variable as long as ρ 6= 0. X is exogenous if ρ = 0.

Let us introduce a notation for standard normal bivariate probabilities: Φ2 (r, s; ρ) = Pr (U ≤ r, V ≤ s).
The joint probability distribution of Y and X given Z consists of four terms:

p00 = Pr (Y = 0, X = 0) = Pr (α+ βX + U < 0, X = 0) = Pr
¡
α+ U < 0,π0Z + V < 0

¢
= Φ2

¡−α,−π0Z; ρ¢
p01 = Pr (Y = 0,X = 1) = Pr (α+ β + U < 0, X = 1) = Pr (X = 1 | α+ β + U < 0)Pr (α+ β + U < 0)

= [1− Pr (X = 0 | α+ β + U < 0)]Pr (α+ β + U < 0)

= Pr (α+ β + U < 0)− Pr (α+ β + U < 0,X = 0) = Φ (−α− β)−Φ2
¡−α− β,−π0Z; ρ¢

p10 = Pr (Y = 1,X = 0) = Pr (α+U ≥ 0, X = 0) = Pr (α+ U ≥ 0 | X = 0)Pr (X = 0)

= [1− Pr (α+ U < 0 | X = 0)] Pr (X = 0) = Pr (X = 0)− Pr (α+ U < 0, X = 0) = Φ
¡−π0Z¢− p00

p11 = 1− p00 − p01 − p10.
Therefore, the log-likelihood is given by

L =
NX
i=1

{(1− yi) (1− xi) ln p00i + (1− yi)xi ln p01i + yi (1− xi) ln p10i + yixi lnp11i} .

In this model there are only two potential outcomes:

Y (1) = 1 (α+ β + U ≥ 0)
Y (0) = 1 (α+ U ≥ 0)

The average probability effect of interest is given by

θ = E [Y (1)− Y (0)] = Φ (α+ β)−Φ (α) .

In less parametric specifications E [Y (1)− Y (0)] may not be point identified, but we may still be
able to estimate average effects for certain sub-populations of interest (cf. Imbens and Angrist, 1994;

Vytlacil, 2002).

A straightforward extension of this model is an ordered probit with dummy endogenous explanatory

variable (see Appendix C, which also discusses pseudo ML estimation of ordered probit models with

or without endogeneity using binary probit methods).
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Local average treatment effects (LATE) Consider the case where

X = 1 (π0 + π1Z + V ≥ 0)

and Z is a scalar 0—1 instrument, so that there are only two potential values of X:

X (1) = 1 (π0 + π1 + V ≥ 0)
X (0) = 1 (π0 + V ≥ 0) .

Suppose without lack of generality that π1 ≥ 0. Then we can distinguish three subpopulations

depending on an individual’s value of V :

• Never-takers: Units with V < −π0 − π1. They have X (1) = 0 and X (0) = 0. Their mass is

Φ (−π0 − π1) = 1−Φ (π0 + π1).

• Compliers: Units with V ≥ −π0 − π1 but V < −π0. They have X (1) = 1 and X (0) = 0. Their
mass is Φ (−π0)−Φ (−π0 − π1) = Φ (π0 + π1)−Φ (π0).

• Always-takers: Units with V ≥ −π00. They have X (1) = 1 and X (0) = 1. Their mass is

1−Φ (−π0) = Φ (π0).

Let us obtain the average treatment effect for the subpopulation of compliers:

θLATE = E [Y (1)− Y (0) | X (1)−X (0) = 1] ≡ E [Y (1)− Y (0) | −π0 − π1 ≤ V < −π0] .

We have

E [Y (1) | −π0 − π1 ≤ V < −π0] = Pr (α+ β +U ≥ 0 | −π0 − π1 ≤ V < −π0)
= 1− Pr (U ≤ −α− β | −π0 − π1 ≤ V < −π0)
= 1− Pr (−π0 − π1 ≤ V < −π0 | U ≤ −α− β) Pr (U ≤ −α− β)

Pr (−π0 − π1 ≤ V < −π0)
= 1− Pr (U ≤ −α− β, V ≤ −π0)− Pr (U ≤ −α− β, V ≤ −π0 − π1)

Pr (V ≤ −π0)− Pr (V ≤ −π0 − π1)

and similarly

E [Y (0) | −π0 − π1 ≤ V < −π0] = Pr (α+U ≥ 0 | −π0 − π1 ≤ V < −π0)
= 1− Pr (U ≤ −α, V ≤ −π0)− Pr (U ≤ −α, V ≤ −π0 − π1)

Pr (V ≤ −π0)− Pr (V ≤ −π0 − π1)
,

so that

θLATE =
Φ2 (−α,−π0; ρ)−Φ2 (−α,−π0 − π1; ρ)−Φ2 (−α− β,−π0; ρ) +Φ2 (−α− β,−π0 − π1; ρ)

Φ (−π0)−Φ (−π0 − π1)
.

This provides a formal connection with the IV estimand since we know that

θLATE =
E (Y | Z = 1)−E (Y | Z = 0)
E (D | Z = 1)−E (D | Z = 0) .
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The nice thing about θLATE is that it is identified from the Wald formula in the absence of joint

normality. In fact, it does not even require the index model assumption for Y (1) and Y (0). So we do

not need monotonicity in the relationship between Y and X. The relevance of θLATE partly depends

on how large the probability of compliers is, and partly on its policy relevance.

We have

θATE = θLATE Pr (compliers) +E [Y (1)− Y (0) | never-takers] Pr (never-takers)
+E [Y (1)− Y (0) | always-takers] Pr (always-takers) .

There is a connection with fixed-effects identification in binary-choice panel data models.

Two related references are J. Angrist (2001, JBES, 19, 2—16) on LDV models, and Ed Vytlacil on

the identification content of enforcing the index model assumption on Y (1) and Y (0).
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A 2SLS as a control function estimator

The 2SLS estimator for the single equation model

yi = x
0
iθ + ui E (ziui) = 0

is given by

bθ = ¡X 0MX
¢−1

X0My =
³ bX0 bX´−1 bX0y

where X is N × k, Z is N × r, y is N × 1, and M = Z (Z0Z)−1Z 0. Moreover, the fitted values arebX = ZbΠ0 where bΠ = X 0Z (Z 0Z)−1, and the corresponding N × k matrix of first-stage residuals:

bV = X − ZbΠ0 = (IN −M)X ≡ QX.
Typically, X and Z will have some columns in common (e.g. a constant term). For those variables,

the corresponding columns of bV will be identically zero. That is, letting X = (X1,X2) and Z =

(Z1,X2),

bV = Q (X1,X2) = ³bV1, 0´
where bV1 = QX1 is the subset of non-zero columns of bV (those corresponding to endogenous explana-
tory variables).

Now consider the coefficients of X in the OLS regression of y on X and bV1. Using the formulae
for partitioned regression, these are given by

eθ = µX0
∙
IN − bV1 ³bV 01 bV1´−1 bV 01¸X¶−1X0

∙
IN − bV1 ³bV 01 bV1´−1 bV 01¸ y.

Clearly, eθ = bθ since
eθ =

³
X0
h
IN −QX1

¡
X 0
1QX1

¢−1
X0
1Q
i
X
´−1

X0
h
IN −QX1

¡
X 0
1QX1

¢−1
X0
1Q
i
y

=
¡
X0X −X 0QX

¢−1 ¡
X 0y −X0Qy

¢
=
¡
X0MX

¢−1
X 0My.

Note that, due to QX2 = 0, we have

X 0QX1
¡
X 0
1QX1

¢−1
X0
1QX =

Ã
X0
1QX1 0

0 0

!
= X 0QX.

The conclusion is that 2SLS estimates can be obtained from the OLS regression of y on X and bV1.
Therefore, linear 2SLS can be regarded as a control function method.
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B Consistent standard errors for two-step estimators

Consider an estimator bθ that maximizes an objective function that depends on estimated parameters:
bθ = argmax

θ

NX
i=1

`i (θ,bγ) .
The estimated parameters themselves are obtained by solving

bγ = argmax
γ

NX
i=1

ζi (γ) .

Denote true values as (θ0, γ0), and consider the following notation for score and Hessian terms:

`θi (θ, γ) =
∂`i (θ, γ)

∂θ
, ζγi (γ) =

∂ζi (γ)

∂γ

Hθθ = − plim
N→∞

1

N

NX
i=1

∂2`i (θ0, γ0)

∂θ∂θ0
, Hθγ = − plim

N→∞
1

N

NX
i=1

∂2`i (θ0, γ0)

∂θ∂γ0
, Hγγ = − plim

N→∞
1

N

NX
i=1

∂2ζi (γ0)

∂γ∂γ0
.

Moreover, assume that the sample scores are asymptotically normal:

1√
N

NX
i=1

Ã
`θi (θ0, γ0)

ζγi (γ0)

!
d→ N

"
0,

Ã
Υθθ Υθγ

Υγθ Υγγ

!#
.

Under standard regularity conditions, an expansion of the first-order conditions for bθ gives
0 =

1√
N

NX
i=1

`θi

³bθ,bγ´ = 1√
N

NX
i=1

`θi (θ0, γ0)−Hθθ

√
N
³bθ − θ0

´
−Hθγ

√
N (bγ − γ0) + op (1) . (3)

A similar expansion of the first-order conditions for bγ gives
0 =

1√
N

NX
i=1

ζγi (bγ) = 1√
N

NX
i=1

ζγi (γ0)−Hγγ

√
N (bγ − γ0) + op (1)

or equivalently

√
N (bγ − γ0) = H

−1
γγ

1√
N

NX
i=1

ζγi (γ0) + op (1) . (4)

Substituting (4) into (3) we get

Hθθ

√
N
³bθ − θ0

´
=

1√
N

NX
i=1

`θi (θ0, γ0)−HθγH
−1
γγ

1√
N

NX
i=1

ζγi (γ0) + op (1)

and

√
N
³bθ − θ0

´
= H−1θθ

¡
I,−HθγH

−1
γγ

¢ 1√
N

NX
i=1

Ã
`θi (θ0, γ0)

ζγi (γ0)

!
+ op (1) .
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Thus,

√
N
³bθ − θ0

´
d→ N (0, V )

where

V = H−1θθ

¡
I,−HθγH

−1
γγ

¢Ã Υθθ Υθγ

Υγθ Υγγ

!Ã
I

−H−1γγ Hγθ

!
H−1θθ

= H−1θθ

£
Υθθ +Hθγ

¡
H−1γγ ΥγγH

−1
γγ

¢
Hγθ −HθγH

−1
γγ Υγθ −ΥθγH

−1
γγ Hγθ

¤
H−1θθ .

A consistent estimator of V is:

bV = bH−1θθ

³
I,− bHθγ

bH−1γγ

´Ã bΥθθ
bΥθγbΥγθ
bΥγγ

!Ã
I

− bH−1γγ
bHγθ

! bH−1θθ

where

bHθθ = − 1
N

NX
i=1

∂2`i
³bθ,bγ´

∂θ∂θ0
, bHθγ = − 1

N

NX
i=1

∂2`i
³bθ, bγ´

∂θ∂γ0
, Hγγ = − 1

N

NX
i=1

∂2ζi (bγ)
∂γ∂γ0

.

bΥθθ =
1

N

NX
i=1

`θi

³bθ,bγ´ `θi ³bθ,bγ´0 , bΥθγ =
1

N

NX
i=1

`θi

³bθ,bγ´ ζγi (bγ)0 , bΥγγ =
1

N

NX
i=1

ζγi (bγ) ζγi (bγ)0 .
Note that H−1θθ ΥθθH

−1
θθ is the asymptotic variance of the infeasible estimator that maximizesPN

i=1 `i (θ, γ0), and that H
−1
γγ ΥγγH

−1
γγ is the asymptotic variance of

√
N (bγ − γ0).

If the information identities hold (H−1θθ = Υθθ and H−1γγ = Υγγ), given consistent estimates of

H−1θθ and H−1γγ , all we need to construct a consistent estimate of V are consistent estimates of the

cross-terms Hθγ and Υθγ .
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C Estimating an ordered probit model as binary probit

M. Arellano, November 17, 2007

Ordered Probit with Exogeneity. Consider three alternatives:

Pr (y1 = 1) = Pr
¡
x0β + u ≤ c1

¢
= Φ

¡
c1 − x0β

¢
Pr (y2 = 1) = Pr

¡
c1 < x

0β + u ≤ c2
¢
= Φ

¡
c2 − x0β

¢−Φ ¡c1 − x0β¢
Pr (y3 = 1) = Pr

¡
x0β + u > c2

¢
= 1−Φ ¡c2 − x0β¢

Note that binary probit of (y2 + y3) on x and a constant provides consistent estimates of β and

−c1. Also, binary probit of y3 on x and a constant provides consistent estimates of β and −c2. The
trouble with this is that we are not enforcing the restriction that the β coefficients in the two cases

are the same. To do so we form a duplicated dataset as follows:

Unit w b1 b2 X

1 1 1 0 X1

Full-time
...

...
...

...
...

NF 1 1 0 XNF

NF + 1 1 1 0 XNF+1

Part-time
...

...
...

...
...

NF +NP 1 1 0 XNF+NP

NF +NP + 1 0 1 0 XNF+NP+1

No-work NF +NP + 2 0 1 0 XNF+NP+2
...

...
...

...
...

NF +NP +NO 0 1 0 XN

1 1 0 1 X1

Full-time
...

...
...

...
...

NF 1 0 1 XNF

NF + 1 0 0 1 XNF+1

Part-time
...

...
...

...
...

NF +NP 0 0 1 XNF+NP

NF +NP + 1 0 0 1 XNF+NP+1

No-work NF +NP + 2 0 0 1 XNF+NP+2
...

...
...

...
...

NF +NP +NO 0 0 1 XN

NF is the number of units working full-time, NP the number of units working part-time, and NO

the number of non-working units, so that N = NF +NP +NO is the total number of observations.
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The proposed method is to form the artificial sample of size 2N shown in the Table and run a binary

probit of w on b1,b2, and X to obtain estimates of −c1,−c2, and β. These estimates are consistent

and asymptotically normal but not as efficient as ordered probit ML, because they are maximizing a

pseudo-likelihood as opposed to the full-likelihood. The advantage is that they can be obtained from

a binary probit routine, while enforcing the constraint on β across groups.

Note that since one of the equations is redundant the model can be written as

E (y2 | x) = Φ
¡
c2 − x0β

¢− ¡c1 − x0β¢
E (y3 | x) = 1−Φ ¡c2 − x0β¢

or equivalently

E (y2 + y3 | x) = Φ
¡−c1 + x0β¢

E (y3 | x) = Φ
¡−c2 + x0β¢ ,

which is a system of two probit equations. Optimal GMM in this system is asymptotically equivalent

to ordered probit ML. GMM without taking into account the dependence between the two equation

moments is asymptotically equivalent to the method suggested above.

Ordered Probit with Endogeneity

Another advantage is that it is possible to use the same trick to estimate the ordered probit model

with dummy endogenous explanatory variable using the bivariate probit routine.2 The model is

y2 = 1
¡
c1 < xα+ z

0
1γ + u ≤ c2

¢
(5)

y3 = 1
¡
xα+ z01γ + u > c2

¢
(6)

x = 1
¡
z0π + v > 0

¢
(7)Ã

u

v

!
| z ∼ N

Ã
0,

Ã
1 ρ

ρ 1

!!
(8)

with z = (z01, z02)
0 where z1 and are exogenous controls and z2 are excluded instruments.

The first equation can be replaced by

y2 + y3 = 1
¡
xα+ z01γ + u > c1

¢
. (9)

Equations (9),(7), and (8) describe a standard bivariate probit with log-likelihood L23 (α, γ, c1, ρ,π).

Equations (6),(7), and (8) describe another standard bivariate probit with log-likelihood L3 (α, γ, c2, ρ,π).

The following estimator of (α, γ, c1, c2, ρ) is consistent and can be obtained as ordinary bivariate probit

in the duplicated sample, having fixed the first-stage coefficients at its probit estimates bπ:
(bα,bγ,bc1,bc2,bρ) = argmax {L23 (α, γ, c1, ρ, bπ) + L3 (α, γ, c2, ρ, bπ)} .

2The same is true for estimating an ordered logit model with fixed effects from panel data.
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