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1. Introduction
e So far we considered linear and non-linear models with additive errors and endogenous

explanatory variables.
e A simple case was a linear relationship between Y and X and an error U, where U
was potentially correlated with X but not with an instrument Z:

Y=a+BX+U,  E(U)=0E(ZU)=0. (1)

This setting was motivated in structural models.
e Now we wish to make similar considerations for binary index models of the form

Y=1(a+BX+U>0).

e There are two important differences that we need to examine:

@ In the new models effects are heterogeneous, so that there is a difference between
effects at the individual level and aggregate or average effects.

® Instrumental variable techniques are no longer directly applicable because the model
is not invertible and we lack an expression for U. So we have to consider alternative
ways of addressing endogeneity concerns.

e To discuss these issues it is useful first to go back to the linear setting and re-examine

endogeneity using an explicit notation for potential outcomes.
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Potential outcomes notation

e When we are interested in (1) as a structural equation, we regard it as a conjectural

relationship that produces potential outcomes for every possible value x € S:
Y(x)=a+px+U

¢ So we imagine that each unit has a value of U and hence a value of Y (x) for each x.

e This is the way we think about structural models in economics, for example about a
demand schedule that gives the conjectural demand Y (x) for every possible price x.

o For each unit we only observe the actual value X that occurs in the distribution of the
data, so that Y = Y (X).

o If the assignment of values of X to units in the population is such that X and U are
uncorrelated, B coincides with the regression coefficient of ¥ on X.

o If the assignment of values of Z to units in the population is such that Z and U are
uncorrelated, B coincides with the IV coefficient of Y on X using Z as instrument.

e Consider two individuals with errors U and U*. Their potential outcomes differ:

Y(x) = a+px+U
Yx)' = at+px+ Ut
but the effect of a change from x to x’ will be the same for all individuals:
Y (X)=Y(x)=B(x—x).
e In this sense we say that in models with additive errors the effects are homogeneous
across units. We now turn to consider the situation in binary models.
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Heterogeneous individual effects and aggregate effects
o Potential outcomes in the binary model are given by

Y(x)=1(a+px+U>0).
e The effect of a change from x to x’ for an individual with error U is:
Y(X)=Y(x)=1(a+px' +U>0)—1(ax+px+U>0).
e Suppose for the sake of the argument that § > 0 and x’ > x. The possibilities are

value of U Y(x) YY) YKX)-Y(x)
—U<atpx 1 1 0
—U>a+px 0 0 0
a+px < —U < a4+ px 0 1 1

e Depending on the value of U the effects can be zero or unity, therefore they are
heterogeneous across units.
o In these circumstances it is natural to consider an average effect:
Ey[Y(X)=Y(x)] = Ey[l(a+px'+U>0)]—Ey[l(a+px+U>0)]
Pr(—U<a+px")—Pr(—U<a+pBx)
= F(a+Bx)—F(a+px)
where F is the cdf of U.
e The average effect is simply the fraction of units in the population whose outcomes
are affected by the change from x to x’ (those with a + Bx < —U < a + Bx').
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Marginal effects

o |f X is binary there is only one effect to consider. If X is continuous we can consider
average marginal effects:

e Marginal effects can be regarded as a random variable associated with X.

o In this sense it may be of interest to obtain summary measures of its distribution, like
the mean or the median. For example,

Ex [Bf (a+ BX)].



Identification and estimation

In models with additive errors, moment conditions of the form E (ZU) = 0 are often
sufficient for identification, and GMM estimates can be easily constructed from their
sample counterparts.

In non-invertible models, GMM estimators are not directly available. In fact, the
availability of instruments (a variable Z that is independent of U) by itself does not
guarantee point identification in general.

Next, we consider two specific models that fully specify the joint distribution of Y
and X given Z.

One is for a normally distributed X. It would have application to situations where X
is a continuous variable.

The other is for a binary X and leads to a multivariate probit model.



2. Binary outcome and continuous treatment

The normal endogenous explanatory variable probit model
e The model is
Y = 1(a+BX+U>0)
X = 7dZ+o0,V

(v )iz=vlo(y 1))

e In this model X is an endogenous explanatory variable as long as p # 0.

e X is exogenous if p = 0.

e Joint normality of U and V implies that the conditional distribution of U given V is
also normal as follows:

UIV.Z~N (pV.1-p?)

or
Y
PrU<r|V,Z)=a| L.
1—p2
Therefore,

Pr(Y=1|X,Z)=Pr(a+pX+U>0| v,z):<1><"“FﬁX+PV>_

1—p?
e Moreover, the density of X | Z is just the normal linear regression density.
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The normal endogenous explanatory variable probit model (continued)
e The joint probability distribution of Y and X given Z =z is
fFly.xlz)=Ff(ylxz)f(x]z)
or
Inf(y,x|z) o yind (”‘ﬂf\/ifv) +(1—y)hn
—-p
1 1,

*iln‘TE*EV

_ & + Bx + pv
: q’( Vi-@ )

where v = (x — 'z) /oy
e Therefore, the log likelihood of a random sample of N observations conditioned on
the z variables is L («, B, p, 71,02) = L:

C o B (R e e ()|
£ (u-20).

e Note that under exogeneity (p = 0) this log likelihood function boils down to the sum
of the ordinary probit and normal OLS log-likelihood functions:

L (tx,ﬁ, 0, m, 0’3) = Lprobit (&, 8) + Lois <7‘[,03) )
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The control function approach

Two-step estimation of the normal model

e We can consider a two-step method:

e Step 1: Obtain OLS estimates (7,0, ) of the first stage equation and form the
standardized residuals v; = (x; — 'z;) /Ty, i =1,..., N.

e Step 2: Do an ordinary probit of y on constant, x, and V to obtain consistent
estimates of (Dc*,/%"t,p*) where

-1/2
togt ot 2
(w B.p ) = (1*0 ) (a,.p) .
e Since there is a one-to-one mapping between the two, the original parameters can be
recovered undoing the reparameterization.

PR ~t PN . .
e However, the fitted probabilities ® <zx+ + B x; +p+v,-) are in fact directly useful to

get average derivative effects (more below).

e In general, two-step estimators are asymptotically inefficient relative to maximum
likelihood estimation, but they may be computationally convenient.

e Ordinary probit standard errors calculated from the second step are inconsistent
because estimated residuals are treated as if they were observations of the true
first-stage errors.

e To get consistent standard errors, we need to take into account the additional
uncertainty that results from using (7,0, ) as opposed to the truth.



Comparison with probit using fitted values
¢ Note that
Y=1(a+pX+U>0)=1(a+p(7'Z)+e>0)
where e = U + o,V is € | Z ~ N (0,02) with 0?2 = 1+ B202 + 2Bop.
e If we run a probit of y on constant and X = 7'z we get consistent estimates of
X=uwn/0c and B = B/0e.

e Note that from estimates of @, B, and ¢, we cannot back up estimates of a and j
due to not knowing p.

e We cannot get average derivative effects either. So estimation of parameters of
interest from this method (other than relative effects) is problematic.



The linear case: 2SLS as a control function estimator

The 2SLS estimator for the linear IV model is § = ()A(’)A() ' X'y where X = ZIT/
and 1=X'Z(2'2)*.

The matrix of first-stage residuals is V=Xx-2ZzII. Typically, X and Z will have
some columns in common. For those variables, the columns of V will be identically
zero. Let us call V; the subset of non-zero columns of V (those corresponding to
endogenous explanatory variables).

It can be shown that 2SLS coincides with the estimated 6 in the OLS regression

y=X0+Viy+¢

Therefore, linear 2SLS can be regarded as a control function method.

In the binary situation we obtained a similar estimator from a probit regression of y
on X and first-stage residuals.

An important difference between the two settings is that 2SLS is robust to
misspecification of the first stage model whereas two-step probit is not.

Examples of misspecifications occur if E (X | Z) is nonlinear, if Var (X | Z) is
non-constant (heteroskedastic), or if X | Z is non-normal.

Another difference is that in the linear case the control-function approach and the
fitted-value approach lead to the same estimator (2SLS) whereas this is not true for
probit.
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A semiparametric generalization
o Consider the model
Y = 1(a+pX+U>0)
X = n7dzZ+o,V
and assume that
Uix,v~ujV.
e In the previous parametric model we additionally assumed that U | V was
N (pV,1—p?) and V was N (0,1).
e The semiparametric generalization consists in leaving the distributions of U | V' and
V' unspecified.
o In this way
Pr(Y=1|X,V)=Pr(-U<a+BX|X,V)=Pr(-U<a+BX|V)
Thus
E(Y|X,V)=F(a+pX,V)
where F (., V) is the conditional cdf of —U given V.
e The function F (., V) can be estimated nonparametrically using estimated first-stage
residuals.

e This is a bivariate-index generalization of the semiparametric approaches to
estimating single-index models with exogenous variables.
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Constructing policy parameters

¢ To construct a policy parameter we need p (x) = Pr(—U < a + Bx). Note that
Pr(—U<atpx)= /Pr(—U < a+Bx|v)dF, = Ey [F (a+pBx, V).

e In the normal model
Pr(—U <a+Bx) = (a+ px)

e But this means that

(D(OL-’-[‘;X):E\/

@ x+pBx+pV
V1—p2

¢ A simple consistent estimate of ® (a 4 Bx) is ® <&+ BX) where @ and B are

=Ev @ (at+ ' +p'V)] (@)

consistent estimates. For example, using that 1 —p? =1/ (1 +p+2), we may use

() - () 7 (0 F)

~t+ 5t . .
where <tx+,[$ ,p+) are two-step control function estimates.
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Constructing policy parameters (continued)

e Alternatively, using expression (2) a consistent estimate of ® (& + Bx) in the normal
model can be obtained as

o)
x
Il
==
=

(&' +Bx+7%).

i=1

o In the semiparametric model this result generalizes to
1N -
plx) = L F (a+px7)
p0) = L F (3 +Pes

where (ﬁ, E) are semiparametric control function estimates and F (.,.)is a
non-parametric estimate of the conditional cdf of —U given V.
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3. Binary outcome and binary treatment

The endogenous dummy explanatory variable probit model

e The model is

Y = 1(a+pX+U>0)
X = 1(nfz2+V=>0)

(v)iz=vle (e 1))

e In this model X is an endogenous explanatory variable as long as p # 0. X is
exogenous if p = 0.
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The likelihood
e Let us introduce a notation for standard normal bivariate probabilities:

Dy (r,s;p) =Pr(U<r,V<s).
e The joint probability distribution of Y and X given Z consists of four terms:
po = Pr(Y=0X=0)=Pr(a+pX+U<0X=0)
Pra+U<0,7Z+V <0)==P (—a,—71'Z;p)

poi = Pr(Y=0X=1)=Pr(at+p+U<0X=1)
Pr(X=1]|a+B+U<O0)Pr(a+pB+U<0)
[1—Pr(X=0|a+pB+U<0)]Pr(a+p+U<0)
= ®(—a—p)—Dy (—a—B,—7'Z;p)

pio = Pr(Y=1,X=0)=Pr(Y=1|X=0)Pr(X=0)
= [1=Pr(Y=0|X=0)]Pr(X=0)=®(-n'Z) — ppo
pi1 = 1—poo— po1 — p10-

Therefore, the log-likelihood is given by

N
L=Y {(1—y)(1=x)Inpooi + (L —yi) xiInpo1i +yi (L = x;) In pro; + yix; In p1y;} -
i
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Average treatment effect

e In this model there are only two potential outcomes:

Y(1) = 1(a+pB+U>0)
Y(0) = 1(x+U>0)

e The average causal effect is given by
O=E[Y(1)-Y(0)]=P(a+p)—P(a).

e In less parametric specifications § may not be point identified, but we may still be
able to estimate average effects for certain sub-populations (more to follow).
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Nonparametric binary model with binary endogenous regressor and instrument

o Consider the following model for (0, 1) binary observables (Y, X, Z):

Y = 1(Ux <px)

X = 1(V<aqz)
where U;, Uy and V are uniformly distributed variates, independent of Z, such that
(U1, V) and (Ug, V) have copulas C; (u,v) and Gy (u, v), respectively.

e Y is the dependent variable, X is the endogenous explanatory variable, and Z is the
instrumental variable.

e Under exogeneity C; (u,v) = Co (u,v) = uv.
e A special case is the "switching" probit model
Y = 1(a+pX—-Ux >0)
X = 1(7I0+7T12—V*20)
where px = ® (a + X)), Ux =@ (U)’?) gz =Y (o +mZ), V=>&(V*), and
C1 (u,v) and Cy (u, v) are Gaussian copulas.

o A further specialization is the standard bivariate probit with endogeneity subject to
the “monotonicity” constraint U; = Up.
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Nonparametric binary model (continued)

The data provides direct information about Pr(Y =/, X =k | Z = {) for
j. k,£=0,1. Thus, given adding up constraints, there are 6 reduced form parameters.

The structural parameters are py, p1, qo, g1, C1 (u,v) and Gy (u, v).

Because of the exogeneity of Z we have gy = Pr(X =1| Z = {), so that qp and q1
are reduced form quantities that are directly identified.

The challenge is the identification of pg and p; or other probabilities associated with
the potential outcomes.

In the switching probit, the Gaussian copulas add just two extra structural parameters
(the correlation parameters for the pairs (U, V') and (Up, V)), so that the order
condition for identification is satisfied with equality.

In this model there are two potential outcomes:

Yi = 1(Ui<p)
Yo = 1(Up < po)

The potential treatment indicators are:

X1 = 1(V<aq)
Xo = 1(V<q).
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Identification
e The average treatment effect (ATE) is
6 =E(Y1—Yo) = p1— po.

e The mapping between reduced form and structural parameters is as follows. We
observe qg, g1 and:

E(YX|Z=1) = G (p1.q1) (3)
E(YX|Z=0) = Ci(p1,q) (4)
ElYQ-X)[Z=1 = po—Co(po q1) (5)
E[lY(1-X)[Z=0 = po— Co(po,qo) (6)

o If C1 (u,v) and Gy (u, v) are Gaussian copulas with correlation coefficients r; and ry,
it turns out that p; and r; are just identified from (3)-(4), whereas pg and ry are just
identified from (5)-(6). Thus, the switching probit model is just identified.

e So normality is not testable in this model, it is just an identifying assumption.
However, if U; = Uy bivariate probit places one over-identifying restriction.

o Alternative parametric copulas will produce different values of pg and p;. So in
general pg and p; are only set identified.
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Identification (continued)

e To verify results (3)-(4) and (5)-(6) simply note that
E(YX|Z=1)=Pr(Y=1,X=1|Z=1)=Pr(U1 <p1,V<q1)=Ci(p1.q1)
E(YX|Z=0)=Pr(Y=1,X=1|Z=0)=Pr(Us <p1V <qo)=Ci(p1 q0)

E(Q-X|Z=1)~E(1-X|Z=0)=q—au.

E[Y(1-X)|Z=1] = Pr(Y=1X=0]Z=1)
= Pr(Uo <po)—Pr(Up<po,V<q1)=po— Co(po gr)

E[Y(1-X)|Z=0] = Pr(Y=1,X=0|Z=0)
= Pr(Up < po)—Pr(Us < po, V< qo) =po— Col(po.go)
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LATE
e Suppose without lack of generality that o < g;1. There are three subpopulations
depending on an individual's value of V:
o Always-takers: Units with V < qo. They have X; =1 and Xo = 1. Their mass is qp.

e Compliers: Units with go < V < g1. Have X; =1 and Xy = 0. Their mass is g1 — qo.
o Never-takers: Units with V > g;. Have X; =0 and Xo = 0. Their massis 1 —qj.

e Membership of these subpopulations is unobservable, but we observe their mass.
e The local ATE (LATE) is the ATE for the compliers:
Oate=E(Y1 =Yoo <V <q1).
e We have
EMlg<V<q)=Pr(li<p|qp<V<aq)
_Pr(Ui<p,V<q1)-Pr(Ui <p1,V<q) GC(pra1)— G (p1.90)
B 91— qo B 91— qo

and similarly

G , — G ,
EMo|go<V<q)=Pr(Ug<po|qo<V<aq)= 0 (Po q;i_q;)(PO qo).

e Thus, LATE satisfies the difference in differences expression

(G (p1.g1) — G (P1,90)] — [Co (Po, 1) — Co (Po. qo)]
q1— qo

OraTE =
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Link with instrumental variables

e Under monotonicity between X and Z (which the model assumes), 8, 47F coincides
with the IV parameter (Imbens and Angrist 1994):
0 _EWY|Z=1)-E(Y|Z=0)
MATE = E(X|Z=1)—E(X|Z=0)

e To see this, first note that using the previous results E (Y1 | go < V < q1) and
E (Yo | qo <V < q1) are identified as:

E(Y1IQO<V§¢71):Eé?ﬁ:?ii;:gg;\éi ))
_EY(-X)[Z=1-E[Y(1-X)[Z=0]
E(Volgp<V<aq)= E(1-X|Z=1_-E(1-X|Z=0)

e Next use the identities
E(Y|Z=1)=E(YX|Z=1)4+E[Y(1-X)|Z=1]
E(Y|Z=0)=E(YX|Z=0)+E[Y(1-X)|Z=0]

EX|Z=1)=E(X1)=q, EX|Z=0)=E(X)=
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