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1. Introduction
� So far we considered linear and non-linear models with additive errors and endogenous
explanatory variables.

� A simple case was a linear relationship between Y and X and an error U , where U
was potentially correlated with X but not with an instrument Z :

Y = α+ βX + U , E (U) = 0,E (ZU) = 0. (1)

This setting was motivated in structural models.
� Now we wish to make similar considerations for binary index models of the form

Y = 1 (α+ βX + U � 0) .
� There are two important di¤erences that we need to examine:
1 In the new models e¤ects are heterogeneous, so that there is a di¤erence between
e¤ects at the individual level and aggregate or average e¤ects.

2 Instrumental variable techniques are no longer directly applicable because the model
is not invertible and we lack an expression for U . So we have to consider alternative
ways of addressing endogeneity concerns.

� To discuss these issues it is useful �rst to go back to the linear setting and re-examine
endogeneity using an explicit notation for potential outcomes.
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Potential outcomes notation
� When we are interested in (1) as a structural equation, we regard it as a conjectural
relationship that produces potential outcomes for every possible value x 2 S :

Y (x) = α+ βx + U

� So we imagine that each unit has a value of U and hence a value of Y (x) for each x .
� This is the way we think about structural models in economics, for example about a
demand schedule that gives the conjectural demand Y (x) for every possible price x .

� For each unit we only observe the actual value X that occurs in the distribution of the
data, so that Y = Y (X ).

� If the assignment of values of X to units in the population is such that X and U are
uncorrelated, β coincides with the regression coe¢ cient of Y on X .

� If the assignment of values of Z to units in the population is such that Z and U are
uncorrelated, β coincides with the IV coe¢ cient of Y on X using Z as instrument.

� Consider two individuals with errors U and U†. Their potential outcomes di¤er:

Y (x) = α+ βx + U

Y (x)† = α+ βx + U†

but the e¤ect of a change from x to x 0 will be the same for all individuals:

Y
�
x 0
�
� Y (x) = β

�
x 0 � x

�
.

� In this sense we say that in models with additive errors the e¤ects are homogeneous
across units. We now turn to consider the situation in binary models.
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Heterogeneous individual e¤ects and aggregate e¤ects
� Potential outcomes in the binary model are given by

Y (x) = 1 (α+ βx + U � 0) .
� The e¤ect of a change from x to x 0 for an individual with error U is:

Y
�
x 0
�
� Y (x) = 1

�
α+ βx 0 + U � 0

�
� 1 (α+ βx + U � 0) .

� Suppose for the sake of the argument that β > 0 and x 0 > x . The possibilities are

value of U Y (x) Y (x 0) Y (x 0)� Y (x)
�U � α+ βx 1 1 0
�U > α+ βx 0 0 0 0

α+ βx < �U � α+ βx 0 0 1 1

� Depending on the value of U the e¤ects can be zero or unity, therefore they are
heterogeneous across units.

� In these circumstances it is natural to consider an average e¤ect:

EU
�
Y
�
x 0
�
� Y (x)

�
= EU

�
1
�
α+ βx 0 + U � 0

��
� EU [1 (α+ βx + U � 0)]

= Pr
�
�U � α+ βx 0

�
� Pr (�U � α+ βx)

= F
�
α+ βx 0

�
� F (α+ βx)

where F is the cdf of U .
� The average e¤ect is simply the fraction of units in the population whose outcomes
are a¤ected by the change from x to x 0 (those with α+ βx < �U � α+ βx 0).
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Marginal e¤ects

� If X is binary there is only one e¤ect to consider. If X is continuous we can consider
average marginal e¤ects:

∂EU [Y (x)]
∂x

=
∂F (α+ βx)

∂x
= βf (α+ βx) .

� Marginal e¤ects can be regarded as a random variable associated with X .

� In this sense it may be of interest to obtain summary measures of its distribution, like
the mean or the median. For example,

EX [βf (α+ βX )] .
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Identi�cation and estimation

� In models with additive errors, moment conditions of the form E (ZU) = 0 are often
su¢ cient for identi�cation, and GMM estimates can be easily constructed from their
sample counterparts.

� In non-invertible models, GMM estimators are not directly available. In fact, the
availability of instruments (a variable Z that is independent of U) by itself does not
guarantee point identi�cation in general.

� Next, we consider two speci�c models that fully specify the joint distribution of Y
and X given Z .

� One is for a normally distributed X . It would have application to situations where X
is a continuous variable.

� The other is for a binary X and leads to a multivariate probit model.
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2. Binary outcome and continuous treatment

The normal endogenous explanatory variable probit model
� The model is

Y = 1 (α+ βX + U � 0)
X = π0Z + σvV�
U
V

�
j Z � N

�
0,
�
1 ρ
ρ 1

��
.

� In this model X is an endogenous explanatory variable as long as ρ 6= 0.
� X is exogenous if ρ = 0.
� Joint normality of U and V implies that the conditional distribution of U given V is
also normal as follows:

U j V ,Z � N
�

ρV , 1� ρ2
�

or

Pr (U � r j V ,Z ) = Φ

 
r � ρVp
1� ρ2

!
.

Therefore,

Pr (Y = 1 j X ,Z ) = Pr (α+ βX + U � 0 j V ,Z ) = Φ

 
α+ βX + ρVp

1� ρ2

!
.

� Moreover, the density of X j Z is just the normal linear regression density.
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The normal endogenous explanatory variable probit model (continued)
� The joint probability distribution of Y and X given Z = z is

f (y , x j z) = f (y j x , z) f (x j z)
or

ln f (y , x j z) _ y lnΦ

 
α+ βx + ρvp

1� ρ2

!
+ (1� y ) ln

"
1�Φ

 
α+ βx + ρvp

1� ρ2

!#

�1
2
ln σ2v �

1
2
v 2

where v = (x � π0z) /σv .
� Therefore, the log likelihood of a random sample of N observations conditioned on
the z variables is L

�
α, β, ρ,π, σ2v

�
= L:

L =
N

∑
i=1

(
yi lnΦ

 
α+ βxi + ρvip

1� ρ2

!
+ (1� yi ) ln

"
1�Φ

 
α+ βxi + ρvip

1� ρ2

!#)

+
N

∑
i=1

�
�1
2
ln σ2v �

1
2
v 2i

�
.

� Note that under exogeneity (ρ = 0) this log likelihood function boils down to the sum
of the ordinary probit and normal OLS log-likelihood functions:

L
�

α, β, 0,π, σ2v
�
= Lprobit (α, β) + LOLS

�
π, σ2v

�
.
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The control function approach
Two-step estimation of the normal model
� We can consider a two-step method:
� Step 1: Obtain OLS estimates (bπ, bσv ) of the �rst stage equation and form the
standardized residuals bvi = �xi � bπ0zi � /bσv , i = 1, ...,N .

� Step 2: Do an ordinary probit of y on constant, x , and bv to obtain consistent
estimates of

�
α†, β†, ρ†

�
where�

α†, β†, ρ†
�
=
�
1� ρ2

��1/2
(α, β, ρ) .

� Since there is a one-to-one mapping between the two, the original parameters can be
recovered undoing the reparameterization.

� However, the �tted probabilities Φ
�bα† + bβ†

xi + bρ†bvi� are in fact directly useful to
get average derivative e¤ects (more below).

� In general, two-step estimators are asymptotically ine¢ cient relative to maximum
likelihood estimation, but they may be computationally convenient.

� Ordinary probit standard errors calculated from the second step are inconsistent
because estimated residuals are treated as if they were observations of the true
�rst-stage errors.

� To get consistent standard errors, we need to take into account the additional
uncertainty that results from using (bπ, bσv ) as opposed to the truth.
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Comparison with probit using �tted values

� Note that
Y = 1 (α+ βX + U � 0) = 1

�
α+ β

�
π0Z

�
+ ε � 0

�
where ε = U + βσvV is ε j Z � N

�
0, σ2ε

�
with σ2ε = 1+ β2σ2v + 2βσv ρ.

� If we run a probit of y on constant and bx = bπ0z we get consistent estimates of
α = α/σε and β = β/σε.

� Note that from estimates of α, β, and σv we cannot back up estimates of α and β
due to not knowing ρ.

� We cannot get average derivative e¤ects either. So estimation of parameters of
interest from this method (other than relative e¤ects) is problematic.

9



The linear case: 2SLS as a control function estimator

� The 2SLS estimator for the linear IV model is bθ = �bX 0 bX��1 bX 0y where bX = Z bΠ0

and bΠ = X 0Z (Z 0Z )�1.
� The matrix of �rst-stage residuals is bV = X � Z bΠ0. Typically, X and Z will have
some columns in common. For those variables, the columns of bV will be identically
zero. Let us call bV1 the subset of non-zero columns of bV (those corresponding to
endogenous explanatory variables).

� It can be shown that 2SLS coincides with the estimated θ in the OLS regression

y = X θ + bV1γ+ ξ.

� Therefore, linear 2SLS can be regarded as a control function method.
� In the binary situation we obtained a similar estimator from a probit regression of y
on X and �rst-stage residuals.

� An important di¤erence between the two settings is that 2SLS is robust to
misspeci�cation of the �rst stage model whereas two-step probit is not.

� Examples of misspeci�cations occur if E (X j Z ) is nonlinear, if Var (X j Z ) is
non-constant (heteroskedastic), or if X j Z is non-normal.

� Another di¤erence is that in the linear case the control-function approach and the
�tted-value approach lead to the same estimator (2SLS) whereas this is not true for
probit.
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A semiparametric generalization
� Consider the model

Y = 1 (α+ βX + U � 0)
X = π0Z + σvV

and assume that
U j X ,V � U j V .

� In the previous parametric model we additionally assumed that U j V was
N
�
ρV , 1� ρ2

�
and V was N (0, 1).

� The semiparametric generalization consists in leaving the distributions of U j V and
V unspeci�ed.

� In this way

Pr (Y = 1 j X ,V ) = Pr (�U � α+ βX j X ,V ) = Pr (�U � α+ βX j V )
Thus

E (Y j X ,V ) = F (α+ βX ,V )
where F (.,V ) is the conditional cdf of �U given V .

� The function F (.,V ) can be estimated nonparametrically using estimated �rst-stage
residuals.

� This is a bivariate-index generalization of the semiparametric approaches to
estimating single-index models with exogenous variables.
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Constructing policy parameters

� To construct a policy parameter we need p (x) = Pr (�U � α+ βx). Note that

Pr (�U � α+ βx) =
Z
Pr (�U � α+ βx j v ) dFv � EV [F (α+ βx ,V )] .

� In the normal model
Pr (�U � α+ βx) = Φ (α+ βx)

� But this means that

Φ (α+ βx) = EV

"
Φ

 
α+ βx + ρVp

1� ρ2

!#
� EV

h
Φ
�

α† + β†x + ρ†V
�i
. (2)

� A simple consistent estimate of Φ (α+ βx) is Φ
�bα+ bβx�, where bα and bβ are

consistent estimates. For example, using that 1� ρ2 = 1/
�
1+ ρ†2�, we may use�bα, bβ� = �1+ bρ†2

��1/2 �bα†, bβ†�
where

�bα†, bβ†
,bρ†
�
are two-step control function estimates.
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Constructing policy parameters (continued)

� Alternatively, using expression (2) a consistent estimate of Φ (α+ βx) in the normal
model can be obtained as

bp (x) = 1
N

N

∑
i=1

Φ
�bα† + bβ†

x + bρ†bvi� .
� In the semiparametric model this result generalizes to

ep (x) = 1
N

N

∑
i=1

bF �eα+ eβx , bvi�
where

�eα, eβ� are semiparametric control function estimates and bF (., .) is a
non-parametric estimate of the conditional cdf of �U given V .
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3. Binary outcome and binary treatment

The endogenous dummy explanatory variable probit model

� The model is

Y = 1 (α+ βX + U � 0)
X = 1

�
π0Z + V � 0

�
�
U
V

�
j Z � N

�
0,
�
1 ρ
ρ 1

��
.

� In this model X is an endogenous explanatory variable as long as ρ 6= 0. X is
exogenous if ρ = 0.
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The likelihood
� Let us introduce a notation for standard normal bivariate probabilities:

Φ2 (r , s ; ρ) = Pr (U � r ,V � s) .
� The joint probability distribution of Y and X given Z consists of four terms:

p00 = Pr (Y = 0,X = 0) = Pr (α+ βX + U < 0,X = 0)

= Pr
�
α+ U < 0,π0Z + V < 0

�
= Φ2

�
�α,�π0Z ; ρ

�
p01 = Pr (Y = 0,X = 1) = Pr (α+ β+ U < 0,X = 1)

= Pr (X = 1 j α+ β+ U < 0)Pr (α+ β+ U < 0)

= [1� Pr (X = 0 j α+ β+ U < 0)]Pr (α+ β+ U < 0)

= Φ (�α� β)�Φ2
�
�α� β,�π0Z ; ρ

�
p10 = Pr (Y = 1,X = 0) = Pr (Y = 1 j X = 0)Pr (X = 0)

= [1� Pr (Y = 0 j X = 0)]Pr (X = 0) = Φ
�
�π0Z

�
� p00

p11 = 1� p00 � p01 � p10.
Therefore, the log-likelihood is given by

L =
N

∑
i=1
f(1� yi ) (1� xi ) ln p00i + (1� yi ) xi ln p01i + yi (1� xi ) ln p10i + yi xi ln p11ig .
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Average treatment e¤ect

� In this model there are only two potential outcomes:

Y (1) = 1 (α+ β+ U � 0)
Y (0) = 1 (α+ U � 0)

� The average causal e¤ect is given by

θ = E [Y (1)� Y (0)] = Φ (α+ β)�Φ (α) .

� In less parametric speci�cations θ may not be point identi�ed, but we may still be
able to estimate average e¤ects for certain sub-populations (more to follow).
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Nonparametric binary model with binary endogenous regressor and instrument

� Consider the following model for (0, 1) binary observables (Y ,X ,Z ):

Y = 1 (UX � pX )
X = 1 (V � qZ )

where U1, U0 and V are uniformly distributed variates, independent of Z , such that
(U1,V ) and (U0,V ) have copulas C1 (u, v ) and C0 (u, v ), respectively.

� Y is the dependent variable, X is the endogenous explanatory variable, and Z is the
instrumental variable.

� Under exogeneity C1 (u, v ) = C0 (u, v ) = uv .
� A special case is the "switching" probit model

Y = 1 (α+ βX � U�X � 0)
X = 1 (π0 + π1Z � V � � 0)

where pX = Φ (α+ βX ), UX = Φ
�
U�X
�
, qZ = Φ (π0 + π1Z ), V = Φ (V �), and

C1 (u, v ) and C0 (u, v ) are Gaussian copulas.

� A further specialization is the standard bivariate probit with endogeneity subject to
the �monotonicity� constraint U1 � U0.
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Nonparametric binary model (continued)

� The data provides direct information about Pr (Y = j ,X = k j Z = `) for
j , k , ` = 0, 1. Thus, given adding up constraints, there are 6 reduced form parameters.

� The structural parameters are p0, p1, q0, q1, C1 (u, v ) and C0 (u, v ).
� Because of the exogeneity of Z we have q` = Pr (X = 1 j Z = `), so that q0 and q1
are reduced form quantities that are directly identi�ed.

� The challenge is the identi�cation of p0 and p1 or other probabilities associated with
the potential outcomes.

� In the switching probit, the Gaussian copulas add just two extra structural parameters
(the correlation parameters for the pairs (U1,V ) and (U0,V )), so that the order
condition for identi�cation is satis�ed with equality.

� In this model there are two potential outcomes:

Y1 = 1 (U1 � p1)
Y0 = 1 (U0 � p0)

� The potential treatment indicators are:

X1 = 1 (V � q1)
X0 = 1 (V � q0) .
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Identi�cation

� The average treatment e¤ect (ATE) is

θ = E (Y1 � Y0) = p1 � p0.

� The mapping between reduced form and structural parameters is as follows. We
observe q0, q1 and:

E (YX j Z = 1) = C1 (p1, q1) (3)

E (YX j Z = 0) = C1 (p1, q0) (4)

E [Y (1� X ) j Z = 1] = p0 � C0 (p0, q1) (5)

E [Y (1� X ) j Z = 0] = p0 � C0 (p0, q0) (6)

� If C1 (u, v ) and C0 (u, v ) are Gaussian copulas with correlation coe¢ cients r1 and r0,
it turns out that p1 and r1 are just identi�ed from (3)-(4), whereas p0 and r0 are just
identi�ed from (5)-(6). Thus, the switching probit model is just identi�ed.

� So normality is not testable in this model, it is just an identifying assumption.
However, if U1 � U0 bivariate probit places one over-identifying restriction.

� Alternative parametric copulas will produce di¤erent values of p0 and p1. So in
general p0 and p1 are only set identi�ed.
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Identi�cation (continued)

� To verify results (3)-(4) and (5)-(6) simply note that

E (YX j Z = 1) = Pr (Y = 1,X = 1 j Z = 1) = Pr (U1 � p1,V � q1) = C1 (p1, q1)

E (YX j Z = 0) = Pr (Y = 1,X = 1 j Z = 0) = Pr (U1 � p1,V � q0) = C1 (p1, q0)
E (1� X j Z = 1)� E (1� X j Z = 0) = q0 � q1,

E [Y (1� X ) j Z = 1] = Pr (Y = 1,X = 0 j Z = 1)
= Pr (U0 � p0)� Pr (U0 � p0,V � q1) = p0 � C0 (p0, q1)

E [Y (1� X ) j Z = 0] = Pr (Y = 1,X = 0 j Z = 0)
= Pr (U0 � p0)� Pr (U0 � p0,V � q0) = p0 � C0 (p0, q0)
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LATE
� Suppose without lack of generality that q0 � q1. There are three subpopulations
depending on an individual�s value of V :
� Always-takers: Units with V � q0 . They have X1 = 1 and X0 = 1. Their mass is q0 .
� Compliers: Units with q0 < V � q1 . Have X1 = 1 and X0 = 0. Their mass is q1 � q0 .
� Never-takers: Units with V > q1 . Have X1 = 0 and X0 = 0. Their mass is 1� q1 .

� Membership of these subpopulations is unobservable, but we observe their mass.
� The local ATE (LATE) is the ATE for the compliers:

θLATE = E (Y1 � Y0 j q0 < V � q1) .
� We have

E (Y1 j q0 < V � q1) = Pr (U1 � p1 j q0 < V � q1)

=
Pr (U1 � p1,V � q1)� Pr (U1 � p1,V � q0)

q1 � q0
=
C1 (p1, q1)� C1 (p1, q0)

q1 � q0
and similarly

E (Y0 j q0 < V � q1) = Pr (U0 � p0 j q0 < V � q1) =
C0 (p0, q1)� C0 (p0, q0)

q1 � q0
.

� Thus, LATE satis�es the di¤erence in di¤erences expression

θLATE =
[C1 (p1, q1)� C1 (p1, q0)]� [C0 (p0, q1)� C0 (p0, q0)]

q1 � q0
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Link with instrumental variables

� Under monotonicity between X and Z (which the model assumes), θLATE coincides
with the IV parameter (Imbens and Angrist 1994):

θLATE =
E (Y j Z = 1)� E (Y j Z = 0)
E (X j Z = 1)� E (X j Z = 0)

� To see this, �rst note that using the previous results E (Y1 j q0 < V � q1) and
E (Y0 j q0 < V � q1) are identi�ed as:

E (Y1 j q0 < V � q1) =
E (YX j Z = 1)� E (YX j Z = 0)
E (X j Z = 1)� E (X j Z = 0)

E (Y0 j q0 < V � q1) =
E [Y (1� X ) j Z = 1]� E [Y (1� X ) j Z = 0]

E (1� X j Z = 1)� E (1� X j Z = 0)
� Next use the identities

E (Y j Z = 1) = E (YX j Z = 1) + E [Y (1� X ) j Z = 1]

E (Y j Z = 0) = E (YX j Z = 0) + E [Y (1� X ) j Z = 0]
E (X j Z = 1) = E (X1) = q1, E (X j Z = 0) = E (X0) = q0
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