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Endogeneity and Instruments
in Nonparametric Models

A Discussion of the Papers by Jean-Pierre
Florens and by Richard Blundell and
James L. Powell

Manuel Arellano

The chapters by Jean-Pierre Florens and by Richard Blundell and James Powell
consider the extension of nonlinear models with endogenous regressors to semi-
parametric and nonparameteric contexts. In my comments, I focus on two as-
pects. First, I refer to nonlinear implicit structural equations. Second, I provide
some comments on the connections between the control variable and the in-
strumental variable approaches.

1. NONLINEAR IMPLICIT STRUCTURAL
EQUATIONS

The literature on parametric nonlinear structural models, beginning with
the work of Amemiya (1977), considered the implicit equation formu-
lation

f (y, x) ≡ f (w) = u, (1.1)

E(u|z) = 0, (1.2)

where w = (y, x ′) is a data point and u is an unobservable structural error that
is mean independent of a vector z of instrumental variables.

In a semiparametric structural context, this formulation may also provide a
useful setup. The model y = g(x) + u in which g(x) is treated as a nonparamet-
ric function is a special case of (1.1) with f (y, x) = y − g (x). Such a model
is reminiscent of nonparametric regression, but in structural applications other
specializations of (1.1) and (1.2) may be relevant.

An example is a time-series consumption Euler equation of the form

U ′(ct+1)rt+1 − U ′(ct ) = ut+1, (1.3)

whereU ′(·) denotes the marginal utility of consumption and rt+1 is the stochastic
return on a financial asset (Hansen and Singleton, 1982). Parameters of interest
here could be the coefficients of relative risk aversion for different values of
c estimated in a nonparametric way (semiparametric models of this type were
considered by Gallant and Tauchen, 1989).
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In this example there is no left-hand-side variable, but the model imposes a
particular structure in the implicit function, namely additivity and monotonicity
in U ′(·). Structural models often impose not only instrumental variable (IV)
conditions but also restrictions on the shape of functions, which may give rise
to alternative economically based types of regularization for specific models.

Another situation of interest is when the starting point is an invertible
response function,

y = H (x, u), (1.4)

which can be represented as f (y, x) = u, together with the assumption

E[c(u)|z] = 0

for some function c(·). Identification of f ∗(y, x) = c [ f (y, x)] up to scale af-
fords calculation of the following derivative effects:

m (y, x) = −
[
∂ f (y, x)

∂y

]−1
∂ f (y, x)

∂x
. (1.5)

The average structural function is given by

G (x) = Eu{m[H (x, u), x]}
and may or may not be identified, depending on the nature of the restrictions
imposed on f (y, x).

1.1. Discrete Case

If (w, z) is a discrete random vector with finite support, the analysis of the
implicit equation IV model is straightforward. The model specifies

J∑
j=1

f (ξ j ) Pr(w = ξ j |z = ζ�) = 0 (� = 1, . . . , L), (1.6)

where the supports of w and z are {ξ1, . . . , ξJ } and {ζ1, . . . , ζL}, respectively.
In matrix form we have

Pθ = 0, (1.7)

where P is an L × J matrix of conditional probabilities, and θ is the J × 1
vector with elements θ j = f (ξ j ). The order condition for identification of θ up
to scale is L ≥ J − 1, and the rank condition is rank(P) = J − 1.

This is a standard generalized method of moments (GMM) problem: Let
r j = 1(w = ξ j ) and m� = 1(z = ζ�). Then we can write

E[m� (θ1r1 + · · · + θJ rJ )] = 0 (� = 1, . . . , L), (1.8)

which is in the form of a system of L simultaneous equations with instruments
m� in equation �.
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The discreteness of endogenous and conditioning variables plays fundamen-
tally different roles in this context. As another example, in a model that includes
a subset of z in f so that f (w, z1) = u, if the endogenous variables w are dis-
crete with finite support but z = (z1, z2) are continuous, this is equivalent to
considering the following semiparametric conditional moment restriction:

E

[
J∑

j=1

θ j (z1)r j |z
]

= 0, (1.9)

where w ∈ {ξ1, . . . , ξJ }, θ j (z1) = f (ξ j , z1), and r j = 1(w = ξ j ).

1.2. Testing for Overidentification and Underidentification

Models (1.1) and (1.2) can be regarded as a restriction on the distribution of w
given z, ∫

f (w)d F(w |z) = 0.

Sometimes the focus is in testing the restrictions on F(w |z) rather than in the
estimation of f (w) or other average effects. From this point of view, f (w)
becomes a nuisance parameter function.

Clearly, in the discrete case, an invariant chi-square test statistic of the
overidentifying restrictions (with L − J + 1 degrees of freedom) is readily
available – but of no use in the continuous case. This is given by

min
θ

n p̂′(I ⊗ θ )[(I ⊗ θ ′)V̂ (I ⊗ θ )]−1(I ⊗ θ ′) p̂, (1.10)

where p̂ = vec(P̂) denotes a vector of sample frequencies, and V̂ is the esti-
mated sampling variance of p̂.

Testing for underidentification in the discrete case is also straightforward.
One would test the null hypothesis of underidentification, rank(P) < J − 1,
against the alternative of identification, rank(P) = J − 1. A test statistic of this
kind provides a natural diagnostic of the extent to which structural parameter
estimates are well identified.

2. CONTROL FUNCTIONS AND INSTRUMENTAL
VARIABLES

2.1. Additive Errors

Newey, Powell, and Vella (1999) considered a nonparametric structural equa-
tion together with an explicit reduced form for the endogenous explanatory
variables:

y = g(x) + u, (2.1)

x = π (z) + v, (2.2)
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and the assumptions

E(u|z, v) = E(u|v) , (2.3)

E(v|z) = 0. (2.4)

These assumptions were chosen for convenience. In effect, they imply

E(y|x, v) = g(x) + E(u|x, v)

= g(x) + E(u|z, v) = g(x) + E(u|v) = g(x) + h(v).

(2.5)

In this way, the problem of nonparametric estimation of g(x) is assimilated
to the problem of estimating the regression function E(y|x, v) subject to an
additive structure.

Assumptions (2.3) and (2.4) do not imply that E(u|z) = 0. The situation is
that

E(u|z) = E[E(u|z, v) |z] = E[E(u|v) |z] = E[h(v)|z] .

A sufficient condition for E[h(v)|z] = 0 is that v is independent of z. The mean
independence condition does not guarantee that E[h(v)|z] = 0 unless h(v) is
linear in v .

Alternatively, suppose we begin with the assumptions E(u|z) = 0 and
E(v|z) = 0. Then, in general, (2.3) or (2.5) is not satisfied.

Expression (2.5) makes it clear that the control function assumption can
be very useful in applied work, but one should insist that the IV condition
E(u|z) = 0 also holds. Having a structural equation in which the instruments
are correlated with the errors because of a simplifying assumption will, in
general, jeopardize the interpretability of the structural parameters.

From the point of view of econometric practice, it is better to regard the
control function assumption as a specialization of the IV assumption than to
pretend that one is no more or no less general than the other. I regard the control
function approach as one in which estimation of the structural function g(x) is
helped by an explicit semiparametric modeling of the reduced form for x . In
practice this will typically require aiming for a reduced form with errors that
are statistically independent of instruments.

For example, suppose that for a scalar x , v is heteroskedastic (and hence not
independent of z) with σ 2(z) = E(v2|z), but v† = σ−1(z)v is independent of z.
In such case, the assumption

E(u|z, v†) = E(u|v†) (2.6)

will be compatible with E(u|z) = 0, but (2.3) will imply, in general, correlation
between u and z.

The control v can be generalized further, for example to include some kind
of Box–Cox transformation of x . The general idea is that the approach works
well when there is a reduced-form equation for x or some transformation of x
with errors that are independent of z.
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The IV assumption in the model with additive errors constrains only the
marginal distributions of y and x given z, whereas the control variable assump-
tion places restrictions on their joint distribution. Suppose we have two inde-
pendent samples on (y, z) and (x, z), respectively, but the joint distribution of y
and x is not observed (as in Angrist and Krueger, 1992, or Arellano and Meghir,
1992). It is interesting to compare the IV and control function assumptions in
the two-sample estimation context to highlight the different data requirements
in the two approaches. In the IV approach, only the marginal distributions of y
and x given z are needed for identification, at least conceptually. Thus y|z can
be obtained from one sample and x |z from the other. In the control function
approach, however, (y, x, z) have to be observed in the same sample to ensure
the identification of the nonparametric regression of y on x and v .

2.2. Discrete Choice

Blundell and Powell (1999) (BP) show how the control function approach can be
particularly helpful in models with nonadditive errors. They consider a discrete
choice model of the form

y = 1(xβ + u > 0), (2.7)

x = π (z) + v, (2.8)

E(v|z) = 0, (2.9)

together with the assumption

u|x, v ∼ u|v . (2.10)

In this way,

Pr(y = 1|x, v) = Pr(−u ≤ xβ|x, v) = Pr(−u ≤ xβ|v).

Thus

E(y|x, v) = F (xβ, v) ,

where F(·, v) is the conditional cumulative distribution function (CDF) of −u
given v .

As in the additive-error case of Newey, Powell, and Vella (NPV), the problem
of estimating a structural equation is assimilated to the problem of estimating the
regression function E(y|x, v) subject to restrictions. In the case of NPV, it was
sufficient to assume that u was mean independent of x given v , and E(y|x, v)
had an additive structure. In the discrete choice case, full independence of x
given v is required, and E(y|x, v) has a multiple index structure. The differ-
ence between the two models exists because (2.7) is not additive or invertible
in u.

An interesting feature of the BP method is that the marginal CDF of u
evaluated at xβ can be obtained by averaging F(xβ, v) over v whose CDF is
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identified:

Pr(−u ≤ xβ) ≡ G(xβ) =
∫

F(xβ, v) d Fv . (2.11)

This is useful because the function G(xβ) is arguably a parameter of interest
for policy evaluation in this context.

Turning to a discussion of the assumptions, if (u, v) are independent of
z, then

u|z, v ∼ u|v . (2.12)

Moreover, in view of (2.8), u|x, v ∼ u|z, v ∼ u|v . However, (2.9), (2.10), and
(2.12) by themselves do not imply independence or even lack of correlation
between u and the instruments z. Note that if the BP assumption (2.12) holds,
in general u will not be independent of z unless v is independent of z:

F(u|z) =
∫

F(u|z, v)d Fv (v|z) =
∫

F(u|v)d Fv (v|z)

�=
∫

F(u|v)d Fv (v) = F(u).

So, the same remarks as for NPV apply in this context. If xβ + u repre-
sents a latent structural equation, one would expect to select instruments on a
priori grounds that suggest some form of independence with the unobservable
structural disturbance u.

In particular, in the BP empirical data, the conditional variance of the log
other income variable may vary with the education of the spouse. If so, it would
be nice to obtain a (possibly nonparametric) estimate of var(y2|z) ≡ σ 2(z). Then
consider v† = v/σ (z) as an alternative control function. In this way we could
assess the impact of the correction for heteroskedasticity in the β coefficients
and the estimated average structural function.

The conclusion is that the control function approach is best regarded not as
a competing identification strategy to IV assumptions but as a complementary
modeling strategy for the reduced form of the model. This strategy is specially
useful in discrete choice and related models, for which IV assumptions by
themselves do not appear to be sufficient to identify parameters of interest.
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