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CHAPTER 12

Understanding Bias in Nonlinear Panel

Models: Some Recent Developments∗

Manuel Arellano and Jinyong Hahn

1 INTRODUCTION

The purpose of this paper is to review recently developed bias-adjusted methods
of estimation of nonlinear panel data models with fixed effects. Standard esti-
mators such as maximum likelihood estimators are usually inconsistent if the
number of individuals n goes to infinity while the number of time periods T is
held fixed. For some models, like static linear and logit regressions, there exist
fixed-T consistent estimators as n →∞ (see, e.g., Andersen, 1970). Fixed T
consistency is a desirable property because for many panels T is much smaller
than n. However, these type of estimators are not available in general, and
when they are, their properties do not normally extend to estimates of average
marginal effects, which are often parameters of interest. Moreover, without aux-
iliary assumptions, the common parameters of certain nonlinear fixed effects
models are simply unidentified in a fixed T setting, so that fixed-T consistent
point estimation is not possible (see, e.g., Chamberlain, 1992). In other cases,
although identifiable, fixed-T consistent estimation at the standard root-n rate
is impossible (see, e.g., Honoré and Kyriazidou, 2000; Hahn, 2001).

The number of periods available for many household, firm-level or country
panels is such that it is not less natural to talk of time-series finite sample bias
than of fixed-T inconsistency or underidentification. In this light, an alterna-
tive reaction to the fact that micro panels are short is to ask for approximately
unbiased estimators as opposed to estimators with no bias at all. That is, esti-
mators with biases of order 1/T 2 as opposed to the standard magnitude of 1/T .
This alternative approach has the potential of overcoming some of the fixed-T
identification difficulties and the advantage of generality.

The paper is organized as follows. Section 2 describes fixed effects estima-
tors and the incidental parameters problem. Section 3 explains how to construct
analytical bias correction of estimators. Section 4 describes bias correction of
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the moment equation. Section 5 presents bias corrections for the concentrated
likelihood. Section 6 discusses other approaches leading to bias correction, in-
cluding Cox and Reid’s and Lancaster’s approaches based on orthogonality, and
their extensions. Section 7 describes quasi maximum likelihood estimation for
dynamic models. Section 8 considers the estimation of marginal effects. Sec-
tion 9 discusses automatic methods based on simulation. Section 10 concludes.

2 INCIDENTAL PARAMETERS PROBLEM
WITH LARGE T

We first describe fixed effects estimators. Let the data observations be denoted
by zit = (

yit , x ′
i t

)′
, (t = 1, . . . , T ; i = 1, . . . , n), where yit denotes the “de-

pendent” variable, and xit denotes the strictly exogenous “explanatory” vari-
able.1 Let θ denote a parameter that is common to all i , αi a scalar individual
effect,2 and f (yi1, . . . , yiT | θ0, αi0)

f (yi1, . . . , yiT | θ0, αi0) = f (yi1, . . . , yiT | xi1, . . . , xiT , θ0, αi0)

a density function of yi1, . . . , yiT conditional on the strictly exogenous ex-
planatory variables xi1, . . . , xiT . Assuming that yit are independent across i
and t , we obtain the log likelihood

n∑
i=1

T∑
t=1

log fi t (yit | θ, αi ) ,

where fi t (yit | θ, αi ) denotes the density of yit conditional on xi1, . . . , xiT . For
notational simplicity, we will write f for fi t below. The fixed effects estimator
is obtained by doing maximum likelihood treating each αi as a parameter to be
estimated. Concentrating out the αi leads to the characterization

θ̂T ≡ argmax
θ

n∑
i=1

T∑
t=1

log f (yit | θ, α̂i (θ )) ,

α̂i (θ ) ≡ argmax
α

T∑
t=1

log f (yit | θ, α) .

Here the α̂i (θ ) depends on the data only through the i th observation
zi1, . . . , ziT . Let

L (θ ) ≡ lim
n→∞ n−1

n∑
i=1

E

[
T∑

t=1

log f (yit | θ, α̂i (θ ))

]
.

It will follow from the usual extremum estimator properties (e.g., Amemiya,
1985) that as n →∞ with T fixed, θ̂ T = θT + op (1), where θT ≡ argmaxθ

1 Throughout most of the paper except in Section 7, we will assume away dynamics or feedback.
2 Our analysis extends easily, albeit with some notational complication, to the case where there

are multiple fixed effects, that is, where αi is a multidimensional vector.
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L (θ ). In general, θT �= θ0. This is the incidental parameters problem noted by
Neyman and Scott (1948). The source of this problem is the estimation error of
α̂i (θ ). Because only a finite number T of observations are available to estimate
each αi , the estimation error of α̂i (θ ) does not vanish as the sample size n
grows, and this error contaminates the estimates of parameters of interest.

Example 1 Consider a simple model where yit
i.i.d.∼ N (αi0, σ

2
0), (t =

1, . . . , T ; i = 1, . . . , n), or

log f
(
yit ; σ

2, αi
) = C − 1

2
log σ 2 − (yit − αi )2

2σ 2
.

This is a simpler version of the model considered by Chamberlain (1980). Here,
we may write θ = σ 2, and the MLE is such that

α̂i = 1

T

T∑
t=1

yit ≡ yi , θ̂ = 1

nT

n∑
i=1

T∑
t=1

(
yit − yi

)2
.

It is straightforward to show that θ̂ = θ0 − 1
T θ0 + op (1) as n → ∞ with T

fixed. In this example, the bias is easy to fix by equating the denominator with
the correct degrees of freedom n (T − 1).

Note that the bias should be small for large enough T , that is, limT →∞ θT =
θ0. Furthermore, for smooth likelihoods we usually have

θT = θ0 + B
T

+ O
(

1

T 2

)
(1)

for some B. In Example 1, B = −θ0. The fixed effects estimator θ̂ will in gene-
ral be asymptotically normal, although it will be centered at θ T : as n, T → ∞,√

nT ( θ̂ − θT )
d→ N (0, �) for some �. Under these general conditions the

fixed effects estimator is asymptotically biased even if T grows at the same rate
as n. For n/T → ρ, say,

√
nT

(
θ̂ − θ0

) =
√

nT
(
θ̂ − θT

) +
√

nT
B
T

+ O
(√

n
T 3

)
d→ N

(
B

√
ρ, �

)
.

Thus, even when T grows as fast as n, asymptotic confidence intervals based
on the fixed effects estimator will be incorrect, due to the limiting distribution
of

√
nT ( θ̂ − θ0) not being centered at 0.

Similar to the bias of the fixed effects estimand θT − θ0, the bias in the
expected fixed effects score at θ0 and the bias in the expected concentrated

Cambridge Collections Online © Cambridge University Press, 2007



P1: JZP/

0521871549c12 CUNY812/Blundell 0 521 87154 9 April 9, 2007 14:48 Char Count= 0

384 Advances in Economics and Econometrics

likelihood at an arbitrary θ can also be expanded in orders of magnitude
of T :

E

[
1

T

T∑
t=1

∂

∂θ
log f (yit | θ0, α̂i (θ0))

]
= 1

T
bi (θ0) + o

(
1

T

)
(2)

and

E

[
1

T

T∑
t=1

log f (yit | θ, α̂i (θ )) − 1

T

T∑
t=1

log f (yit | θ, αi (θ ))

]

= 1

T
β i (θ ) + o

(
1

T

)
(3)

where αi (θ ) maximizes limT →∞ E[T −1 ∑T
t=1 log f (yit | θ, α)]. These expan-

sions motivate alternative approaches to bias correction based on adjusting the
estimator, the estimating equation, or the objective function. We next discuss
these three approaches in turn. We shall refer to B/T , bi/T , and β i/T as the
order 1/T biases of the fixed effects estimand, expected score, and expected
concentrated likelihood, respectively.

3 BIAS CORRECTION OF THE ESTIMATOR

An analytical bias correction is to plug into the formula for B estimators of its
unknown components to construct B̂, and then form a bias-corrected estimator

θ̂
1 ≡ θ̂ − B̂

T
. (4)

3.1 Formulae for the Order 1/T Bias

To implement this idea, we need to have an explicit formula for B. For this
purpose, it is convenient to define

uit (θ, α) ≡ ∂

∂θ
log f (yit |θ, α) , vi t (θ, α) ≡ ∂

∂αi
log f (yit |θ, α) ,

V2i t (θ, α) ≡ v2
i t (θ, α) + ∂vi t (θ, α)

∂αi
,

Uit (θ, α) ≡ uit (θ, α) − vi t (θ, α) E
[
v

αi
i t

]−1 E
[
uαi

i t

]
,

Ii ≡ −E
[
∂Uit (θ0, αi0)

∂θ ′

]
.

Note that E
[
Uαi

i t

] = 0, which in the MLE case implies that Uit and vi t are
orthogonalized. We will denote the derivative with respect to θ or αi by appro-
priate superscripts, for example, Uαi

i t (θ, α) ≡ ∂Uit (θ, α) /∂αi , Uαi αi
i t (θ, α) ≡

∂2Uit (θ, α) /∂α2
i . For notational convenience we suppress the arguments when
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expressions are evaluated at the true values θ0 and αi0, for example v
αi
i t =

∂vi t (θ0, αi0) /∂αi .
It can be shown that

B =
(

lim
n→∞

1

n

n∑
i=1

Ii

)−1

lim
n→∞

1

n

n∑
i=1

bi (θ0) (5)

where bi (θ0) /T is the 1/T bias of the score function. It can also be shown that

bi (θ0) = −
(

E
[
vi tU

αi
i t

]
E

[
v

αi
i t

] − E
[
Uαi αi

i t

]
E

[
v2

i t

]
2

(
E

[
v

αi
i t

])2

)
. (6)

or

bi (θ0) =
(

−E
[
v2

i t

]
E

[
v

αi
i t

] ) [
− 1(−E

[
v2

i t

]) (
E

[
vi t u

αi
i t

] − E
[
vi tv

αi
i t

] E
[
uαi

i t

]
E

[
v

αi
i t

])

− 1

2E
[
v

αi
i t

] (
E

[
uαi αi

i t

] − E
[
v

αi αi
i t

] E
[
uαi

i t

]
E

[
v

αi
i t

])]
. (7)

Intuition on the derivation of the bias of the score function is provided in Sec-
tion 4. See also Hahn and Newey (2004), for example. The bias correction
formula (5) does not depend on the likelihood setting, and so would be valid
for any fixed effects m-estimator.

However, in the likelihood setting because of the information identity
E[v2

i t ] = −E[vαi
i t ] and the Bartlett equality

E
[
vi tU

αi
i t

] + 1

2
E

[
Uαi αi

i t

] = −1

2
E [V2i tUit ] , (8)

we can alternatively write

B = 1

2

(
lim

n→∞
1

n

n∑
i=1

Ii

)−1

lim
n→∞

1

n

n∑
i=1

E [Uit V2i t ]

E
[
v

αi
i t

] . (9)

In Example 1 with θ = σ 2, we can see that

uit = − 1

2θ0
+ (yit − αi )2

2θ2
0

, vi t = yit − αi0

θ0
, E

[
v

αi
i t

] = − 1

θ0

E [uitvi t ] = 0, Uit = uit = − 1

2θ0
+ (yit − αi0)2

2θ2
0

,

E [Ii ] = 1

2θ2
0

, V2i t = (yit − αi0)2

θ2
0

− 1

θ0
,

E [Uit V2i t ] = 1

θ2
0

,
E [Uit V2i t ]

E
[
v

αi
i t

] = − 1

θ0
,

B = −1

2

(
1

2θ2
0

)−1 1

θ0
= −θ0,
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and we obtain

θ̂
1 = θ̂ − B̂

T
= T + 1

T
θ̂ .

Recall that θ̂ = θ0 − 1
T θ0 + op (1) as n → ∞ with T fixed. It follows that

θ̂
1 = θ0 − 1

T 2
θ0 + op (1) ,

which shows that the bias of order T −1 is removed.

3.2 Estimators of the Bias

An estimator of the bias term can be formed using a sample counterpart of the
previous formulae. One possibility is

B̂ (θ ) =
(

1

n

n∑
i=1

Îi

)−1
1

n

n∑
i=1

b̂i (θ ) (10)

where

Îi = −
(

ÊT
[̂
u θ

i t

] − ÊT
[̂
u αi

i t

]
ÊT

[̂
v

αi
i t

]−1 ÊT
[̂
u αi ′

i t

])
(11)

b̂i (θ ) =
(

−ÊT
[̂
v2

i t

]
ÊT

[̂
v

αi
i t

] )[
− 1(−ÊT

[̂
v2

i t

])(
ÊT

[̂
vi t û

αi
i t

]− ÊT
[̂
vi t v̂

αi
i t

] ÊT
[̂
u αi

i t

]
ÊT

[̂
v

αi
i t

])

− 1

2ÊT
[̂
v

αi
i t

] (
ÊT

[̂
uαi αi

i t

] − ÊT
[̂
v

αi αi
i t

] ÊT
[̂
uαi

i t

]
ÊT

[̂
v

αi
i t

])]
(12)

where ÊT (.) = ∑T
t=1 (.) /T , û θ

i t = u θ
i t (θ, α̂i (θ )), û αi

i t = uαi
i t (θ, α̂i (θ )), etc.

The bias corrected estimator can then be formed with B̂ = B̂
(
θ̂T

)
.

The other possibility exploits the likelihood setting to replace some deriva-
tives by outer product terms:

B̃ (θ ) =
(

1

n

n∑
i=1

Ĩi

)−1
1

n

n∑
i=1

b̃i (θ ) (13)

where

Ĩi = −
(

ÊT
[̂
uit û ′

i t

] − ÊT [̂uit v̂i t ] ÊT
[̂
v2

i t

]−1
ÊT

[̂
vi t û ′

i t

])
= −ÊT

(
Ûit Û ′

i t

)
, (14)

b̃i (θ ) =
∑T

t=1 Ûit (θ, α̂i (θ )) V2i t (θ, α̂i (θ ))

2
∑T

t=1 v
αi
i t (θ, α̂i (θ ))

, (15)
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and

Ûit ≡ Ûit (θ, α̂i (θ )) = uit (θ, α̂i (θ )) − ÊT [̂uit v̂i t ]

ÊT
[̂
v2

i t

] vi t (θ, α̂i (θ )) ,

(16)

so that an alternative bias correction can be formed with B̃ = B̃
(
θ̂T

)
.

3.3 Infinitely Iterated Analytic Bias Correction

If θ̂ is heavily biased and it is used in the construction of B̂, it may adversely
affect the properties of θ̂

1
. One way to deal with this problem is to use θ̂

1
in the

construction of another B̂, and then form a new bias corrected estimator as in
equation (4). One could even iterate this procedure, updating B̂ several times
using the previous estimator of θ̂ . To be precise, let B(θ ) denote an estimator
of B depending on θ , and suppose that B̂ = B (̂θ ). Then θ̂

1 = θ̂ − B( θ̂ )/T .
Iterating gives θ̂

k = θ̂ − B (̂θ
k−1

)/T , (k = 2, 3, . . . ). If this estimator were
iterated to convergence, it would give θ̂

∞
solving

θ̂
∞ = θ̂ − B

(̂
θ

∞)
/T . (17)

In general this estimator will not have improved asymptotic properties, but may
have lower bias for small T . In Example 1 with θ0 = σ 2

0, we can see that

θ̂
k = T k + T k−1 + . . . + 1

T k
θ̂ = T k+1 − 1

T k (T − 1)
θ̂ → T

T − 1
θ̂ = θ̂

∞

as k → ∞, and the limit θ̂
∞

has zero bias.

4 BIAS CORRECTION OF THE MOMENT
EQUATION

Another approach to bias correction for fixed effects is to construct the estimator
as the solution to a bias-corrected version of the first-order conditions. Recall
that the expected fixed effects score has the 1/T bias equal to bi (θ0) at the true
value, as noted in (2). Let us consider Ŝ(θ ) = ∑n

i=1

∑T
t=1 uit (θ, α̂i (θ ))/ (nT ),

so that the fixed effects estimator solves Ŝ( θ̂T ) = 0, and let b̂i (θ ) /T be an
estimator of the 1/T bias of the expected score at the true value. A score-
corrected estimator is obtained by solving the modified moment equation

Ŝ (θ ) − 1

nT

n∑
i=1

b̂i (θ ) = 0. (18)
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To understand the idea of correcting the moment equation and its connection
to estimating B, it is convenient to note that the MLE θ̂ is a solution to

n∑
i=1

T∑
t=1

uit
(
θ̂ , α̂i

) = 0.

Consider an infeasible estimator θ based on α̂i (θ0) rather than α̂i , where θ solves
the first-order condition 0 = ∑n

i=1

∑T
t=1 Uit

(
θ, α̂i (θ0)

)
. Standard arguments

suggest that

√
nT

(
θ − θ0

) ≈
(

1

n

n∑
i=1

Ii

)−1
1√
nT

n∑
i=1

T∑
t=1

Uit (θ0, α̂i (θ0)) .

Because E [Uit (θ0, α̂i (θ0))] �= 0, we cannot apply the central limit theorem to
the numerator on the right side. We use a second-order Taylor series expansion
to approximate Uit (θ0, α̂i (θ0)) around αi0:

1√
nT

n∑
i=1

T∑
t=1

Uit (θ0, α̂i (θ0)) ≈ 1√
nT

n∑
i=1

T∑
t=1

Uit

+ 1√
nT

n∑
i=1

T∑
t=1

Uαi
i t (̂αi (θ0) − αi0)

+ 1

2
√

nT

n∑
i=1

T∑
t=1

Uαi αi
i t (̂αi (θ0) − αi0)2 .

The first term on the right will follow a central limit theorem because E[Uit ] =
0. As for the second and third terms, we note that α̂i (θ0) − αi0 ≈ −T −1 ∑T

t=1
vi t (E[vαi

i t ])−1, and substituting for α̂i (θ0) − αi0 in the approximation for
Uit (θ0, α̂i (θ0)) leads to

n∑
i=1

T∑
t=1

Uit (θ0, α̂i (θ0)) ≈
n∑

i=1

T∑
t=1

Uit

−
n∑

i=1

[ ∑T
t=1 vi t√

T E
[
v

αi
i t

]] [
1√
T

T∑
t=1

(
Uαi

i t − E
[
Uαi αi

i t

]
2E

[
v

αi
i t

] vi t

)]
. (19)

Taking an expectation of the second term on the right and subtracting it from
the LHS, we expect that

n∑
i=1

T∑
t=1

Uit (θ0, α̂i (θ0)) +
n∑

i=1

(
E

[
vi tU

αi
i t

]
E

[
v

αi
i t

] − E
[
Uαi αi

i t

]
E

[
v2

i t

]
2

(
E

[
v

αi
i t

])2

)

=
n∑

i=1

T∑
t=1

Uit (θ0, α̂i (θ0)) −
n∑

i=1

bi (θ0)

is more centered at zero than
∑n

i=1

∑T
t=1 Uit (θ0, α̂i (θ0)).
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An estimator of the 1/T bias of the moment equation is given by b̂i (θ ) /T
in (12). We then expect the solution to

n∑
i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − b̂i (θ )

]
= 0 (20)

to be less biased than the MLE θ̂T . Alternatively, the bias can be estimated
using the estimator of the bias in (15) that exploits Bartlett identities, leading
to the moment equation

n∑
i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − b̃i (θ )

]
= 0. (21)

The first expression would be valid for any fixed effects m-estimator, whereas
the second is appropriate in a likelihood setting. These two versions of bias-
corrected moment equation are discussed in Hahn and Newey (2004).

In a likelihood setting it is also possible to form an estimate of bi (θ )
that uses expected rather than observed quantities, giving rise to alternative
score-corrected estimators, such as those considered by Carro (2004) and
Fernández-Val (2005) for binary choice models. To see a connection between
bias correction of the moment equation and iterated bias correction of the es-
timator, it is useful to note that θ̂

∞
solves the equation θ̂ − θ = B (θ ) /T or

n∑
i=1

[
I i (θ )

(
θ̂ − θ

) − 1

T
bi (θ )

]
= 0 (22)

where B (θ ) is as in (10) or (13). This equation can be regarded as an approx-
imation to the previous corrected moment equations as long as I i (θ ) is an
estimator of ∂ ÊT [uit (θ, α̂i (θ ))] /∂θ and bi (θ ) /T is an estimator of the 1/T
bias for ÊT [uit (θ, α̂i (θ ))]. Thus, the bias correction of the moment equation
can be loosely understood to be an infinitely iterated bias correction of the
estimator.

5 BIAS CORRECTION OF THE CONCENTRATED
LIKELIHOOD

Because of the noise of estimating α̂i (θ ), the expectation of the concen-
trated likelihood is not maximized at the true value of the parameter [see (3)].
In this section, we discuss how such problem can be avoided by correcting the
concentrated likelihood.

Let 	i (θ, α) = ∑T
t=1 	i t (θ, α) /T where 	i t (θ, α) = log f (yit | θ, α) de-

notes the log likelihood of one observation. Moreover, let αi (θ ) =
argmaxα plimT →∞ 	i (θ, α), so that under regularity conditions αi (θ0) = αi0.
Following Severini (2000) and Pace and Salvan (2006), the concentrated log
likelihood for unit i

	̂i (θ ) = 	i (θ, α̂i (θ )) (23)
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can be regarded as an estimate of the unfeasible concentrated log likelihood

	i (θ ) = 	i (θ, αi (θ )) . (24)

The function 	i (θ ) is a proper log likelihood which assigns data a density
of occurrence according to values of θ and values of the effects along the
curve αi (θ ). It is a least-favorable target log likelihood in the sense that the
expected information for θ calculated from 	i (θ ) coincides with the partial
expected information for θ (c.f. Stein, 1956; Severini and Wong, 1992; and
Newey, 1990, for related discussion on semiparametric bounds). 	i (θ ) has the
usual log likelihood properties: it has zero mean expected score, it satisfies the
information matrix identity, and is maximized at θ0.

Now, define

Hi (θ ) = −E
[
∂vi t (θ, αi (θ ))

∂α

]
, ϒi (θ ) = E

{
[vi t (θ, αi (θ ))]2} .

A stochastic expansion for an arbitrary fixed θ gives

α̂i (θ ) − αi (θ ) ≈ H−1
i (θ ) vi (θ, αi (θ )) (25)

where vi (θ, α) = ∑T
t=1 vi t (θ, α) /T . Next, expanding 	i (θ, α̂i (θ )) around

αi (θ ) for fixed θ , we get

	i (θ, α̂i (θ )) − 	i (θ, αi (θ )) ≈ vi (θ, αi (θ )) [̂αi (θ ) − αi (θ )]

− 1

2
Hi (θ ) [̂αi (θ ) − αi (θ )]2 . (26)

Substituting (25) we get

	i (θ, α̂i (θ )) − 	i (θ, αi (θ )) ≈ 1

2
Hi (θ ) [̂αi (θ ) − αi (θ )]2 . (27)

Taking expectations, we obtain

E [	i (θ, α̂i (θ )) − 	i (θ, αi (θ ))] ≈ 1

2
Hi (θ ) V ar [̂αi (θ )] ≈ β i (θ )

T

where

β i (θ ) = 1

2
Hi (θ ) V ar

(√
T [̂αi (θ ) − αi (θ )]

)
= 1

2
H−1

i (θ ) ϒi (θ ) .

(28)

Thus, we expect that

n∑
i=1

T∑
t=1

	i t (θ, α̂i (θ )) −
n∑

i=1

β i (θ )
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is a closer approximation to the target log likelihood than
∑n

i=1

∑T
t=1

	i t (θ, α̂i (θ )). Letting β̂ i (θ ) be an estimated bias,we then expect an estima-
tor θ̃ that solves

θ̃ = arg max
θ

n∑
i=1

[
T∑

t=1

	i t (θ, α̂i (θ )) − β̂ i (θ )

]
(29)

to be less biased than the MLE θ̂T .
We can consistently estimate β i (θ ) by

β̂ i (θ ) = 1

2

(
− 1

T

T∑
t=1

∂vi t (θ, α̂i (θ ))

∂α

)−1
1

T

T∑
t=1

[vi t (θ, α̂i (θ ))]2 .

(30)

Using this form of β̂ i (θ ) in (29), θ̃ solves the first-order conditions

n∑
i=1

T∑
t=1

uit (θ, α̂i (θ )) −
n∑

i=1

∂β̂ i (θ )

∂θ
= 0. (31)

Because α̂i (θ ) satisfies

0 =
T∑

t=1

vi t (θ, α̂i (θ )) , (32)

we can obtain

∂α̂i (θ )

∂θ
= −

∑T
t=1 vθ

i t (θ, α̂i (θ ))∑T
t=1 v

αi
i t (θ, α̂i (θ ))

. (33)

Using this equation and the fact vθ
i t = uαi

i t , it follows that

∂β̂ i (θ )

∂θ
= b̂i (θ ) (34)

where b̂i (θ ) corresponds to the estimated score bias in (12). Therefore, the first-
order conditions from (29) and the bias corrected moment (20) are identical.

Moreover, in the likelihood context, we can consider a local version of the
estimated bias constructed as an expansion of β̂ i (θ ) at θ0 using that at the truth
H−1

i (θ0) ϒi (θ0) = 1 (Pace and Salvan, 2006):

β̂ i (θ ) = β̃ i (θ ) + O
(

1

T

)
(35)

Cambridge Collections Online © Cambridge University Press, 2007



P1: JZP/

0521871549c12 CUNY812/Blundell 0 521 87154 9 April 9, 2007 14:48 Char Count= 0

392 Advances in Economics and Econometrics

where

β̃ i (θ ) = −1

2
log

(
− 1

T

T∑
t=1

∂vi t (θ, α̂i (θ ))

∂α

)

+ 1

2
log

{
1

T

T∑
t=1

[vi t (θ, α̂i (θ ))]2

}
. (36)

This form of the estimated bias leads to the modified concentrated likelihood

	i (θ, α̂i (θ )) + 1

2
log

{
− 1

T

T∑
t=1

[
∂vi t (θ, α̂i (θ ))

∂α

]}

− 1

2
log

{
1

T

T∑
t=1

[vi t (θ, α̂i (θ ))]2

}
. (37)

This adjustment was considered by DiCiccio and Stern (1993) and DiCiccio
et al. (1996). They showed that (37) reduces the bias of the concentrated score to
O(1/T ) in the likelihood setting. In fact, it can be shown that (37) is maximized
at 1

n(T −1)

∑n
i=1

∑T
t=1(yit − yi )

2 in Example 1.
It can be easily shown that

∂β̃ i (θ )

∂θ
= ÊT

[̂
v

αi
i t

](−ÊT
[̂
v2

i t

]) b̂i (θ ) . (38)

Therefore, the DiCiccio–Stern first-order condition is using a valid estimate of
the concentrated score 1/T bias as long as the information identity holds, so
that in general it will be appropriate in likelihood settings. Note that ∂β̃ i (θ ) /∂θ

differs from b̃i (θ ) in (15), which exploits Bartlett identities as well as the
information equality.

In the likelihood setting it is also possible to form estimates of Hi (θ ) and
ϒi (θ ) that use expected rather than observed quantities. An estimator of the
bias of the form of (36) that uses the observed Hessian but an expectation-based
estimate of the outer product term ϒi (θ ) is closely related to Severini’s (1998)
approximation to the modified profile likelihood. Severini (2002) extends his
earlier results to pseudo-ML estimation problems, and Sartori (2003) considers
double asymptotic properties of modified concentrated likelihoods in the con-
text of independent panel or stratified data with fixed effects.

6 OTHER APPROACHES LEADING TO BIAS
CORRECTION

The incidental parameters problem in panel data models can be broadly viewed
as a problem of inference in the presence of many nuisance parameters. The
leading statistical approach under this circumstance has been to search for suit-
able modification of conditional or marginal likelihoods. The modified profile
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likelihood of Barndorff-Nielsen (1983) and the approximate conditional like-
lihood of Cox and Reid (1987) belong to this category [see Reid (1995) for
an overview]. However, the Barndorff-Nielsen formula is not generally opera-
tional, and the one in Cox and Reid requires the availability of an orthogonal
effect.

We begin with discussion of Cox and Reid’s (1987) adjustment to the con-
centrated likelihood followed by Lancaster’s (2002) proposal.

6.1 Approaches Based on Orthogonality

6.1.1 Cox and Reid’s Adjusted Profile Likelihood Approach

Cox and Reid (1987) considered the general problem of inference for a parame-
ter of interest in the presence of nuisance parameters. They proposed a first-order
adjustment to the concentrated likelihood to take account of the estimation of
the nuisance parameters.

Their formulation required information orthogonality between the two types
of parameters. That is, that the information matrix be block diagonal between
the parameters of interest and the nuisance parameters. Suppose that the indi-
vidual likelihood is given by

∏T
t=1 f (yit | θ, αi ). In general, the information

matrix for (θ, αi ) will not be block-diagonal, although it may be possible to
reparameterize αi as a function of θ and some ηi such that the information
matrix for (θ, ηi ) is block-diagonal (Cox and Reid explained how to construct
orthogonal parameters).

The discussion of orthogonality in the context of panel data models is due
to Lancaster (2000, 2002), together with a Bayesian proposal that we consider
below. The nature of the adjustment in a fixed effects model and some examples
were also discussed in Cox and Reid (1992).

In the panel context, the Cox–Reid (1987) approach maximizes

n∑
i=1

T∑
t=1

	i t (yit ; θ, α̂i (θ )) − 1

2

n∑
i=1

log

(
−

T∑
t=1

∂2	i t (yit ; θ, α̂i (θ ))

∂α2
i

)
.

(39)

The adjusted profile likelihood function (39) was derived by Cox and Reid as
an approximation to the conditional likelihood given α̂i (θ ). Their approach
was motivated by the fact that in an exponential family model, it is optimal to
condition on sufficient statistics for the nuisance parameters, and these can be
regarded as the MLE of nuisance parameters chosen in a form to be orthogonal
to the parameters of interest. For more general problems the idea was to derive
a concentrated likelihood for θ conditioned on the MLE α̂i (θ ), having ensured
via orthogonality that α̂i (θ ) changes slowly with θ .
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6.1.1.1 Relation to Bias Correction of the Moment Equation. It is useful
to spell out the first-order condition corresponding to the adjusted profile
likelihood:

0 =
n∑

i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − 1

2

∑T
t=1 uαi αi

i t (θ, α̂i (θ ))∑T
t=1 v

αi
i t (θ, α̂i (θ ))

− 1

2

∑T
t=1 v

αi αi
i t (θ, α̂i (θ ))

∂α̂i (θ )

∂θ∑T
t=1 v

αi
i t (θ, α̂i (θ ))

⎤⎥⎦ (40)

where we used the fact vθ
i t = uαi

i t . Moreover, using equations (32) and (33), we
obtain that the moment equation of the adjusted profile likelihood is equal to

n∑
i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − b̃C R
i (θ )

]
= 0 (41)

where

b̃C R
i (θ ) = 1

2

ÊT [̂uαi αi ]

ÊT
[̂
v

αi
i t

] − 1

2

ÊT
[̂
v

αi αi
i t

]
ÊT

[̂
uαi

i t

](
ÊT

[̂
v

αi
i t

])2 . (42)

Ferguson, Reid, and Cox (1991) showed that under orthogonality the ex-
pected moment equation has a bias of a smaller order of magnitude than the
standard expected ML score.

Under information orthogonality E
[
uαi

i t

] = 0 and E
[
vi t u

αi
i t

] = −E
[
uαi αi

i t

]
.

Using these facts and the information identity, the bias formula (7) becomes

bi (θ0) = 1

2

E
[
uαi αi

i t

]
E

[
v

αi
i t

] . (43)

Comparison with the Cox–Reid moment equation adjustment b̃C R
i (θ ) reveals

that the latter has an extra term whose population counterpart is equal to zero
under orthogonality. It can in fact be shown that this term does not contribute
anything to the asymptotic distribution of the resultant estimator under the large
n large T asymptotics.

6.1.1.2 Relation to Bias Correction of the Concentrated Likelihood. To see
the connection between the Cox–Reid’s adjustment, which requires orthogonal-
ization, and the one derived from the bias-reduction perspective in the previous
section, which does not, note that (37) can be written as

	i (θ, α̂i (θ )) − 1

2
log

{
− 1

T

T∑
t=1

[
∂vi t (θ, α̂i (θ ))

∂α

]}

− 1

2
log V̂ar

(√
T (̂αi (θ ) − αi (θ ))

)
(44)
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where

V̂ar
(√

T (̂αi (θ ) − αi (θ ))
)

= T
∑T

t=1 [vi t (θ, α̂i (θ ))]2(∑T
t=1

[
v

αi
i t (θ, α̂i (θ ))

])2 . (45)

Thus, a criterion of the form (44) can be regarded as a generalized Cox–Reid
adjusted likelihood with an extra term given by an estimate of the variance of√

T (̂αi (θ ) − αi (θ )), which accounts for nonorthogonality (the discussion of
this link is due to Pace and Salvan, 2006). Under orthogonality the extra term
is irrelevant because the variance of α̂i (θ ) does not change much with θ .

6.1.1.3 Other Features of Adjusted Likelihood Approach. We note that Cox
and Reid’s (1987) proposal and other methods in the same literature, were not
developed to explicitly address the incidental parameter problem in the panel
data context. Rather, they were concerned with inference in models with many
nuisance parameters.

We also note that this class of approaches was not developed for the sole
purpose of correcting for the bias of the resultant estimator. It was developed
with the ambitious goal of making the modified concentrated likelihood behave
like a proper likelihood, including the goal of stabilizing the behavior of the
likelihood ratio statistic. We can see that it achieves some of these other goals
at least in the context of Example 1, where it can be shown that

θ̂ = 1

n (T − 1)

n∑
i=1

T∑
t=1

(
yit − yi

)2

maximizes (39), and the second derivative of (39) delivers 2θ2

n(T −1) as the esti-
mated variance of θ̂ . Because the actual variance of θ̂ is equal to 2θ2

n(T −1) , we can
note that the Cox–Reid approach even takes care of the problem of correctly
estimating the variance of the estimator. It is not clear whether such success is
specific to the particular example, or not. More complete analysis of other as-
pects of inference such as variance estimation is beyond the scope of this survey.

6.1.2 Lancaster’s (2002) Bayesian Inference

Lancaster (2002) proposed a method of Bayesian inference that is robust to the
incidental parameters problem, which like Cox and Reid’s method critically
hinges on the availability of parameter orthogonality, which may not be feasible
in many applications. Sweeting (1987) pointed out that such procedure is in
fact approximately Bayesian. These approaches have been later generalized by
Woutersen (2002) and Arellano (2003) to situations where orthogonality may
not be available. Their generalizations are based on correcting the first-order
condition of the adjusted profile likelihood estimator, and will be discussed in
the next section.

In a Bayesian setting, fixed effects are integrated out of the likelihood with
respect to the prior distribution conditional on the common parameters (and
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covariates, if present) π (α | θ ). In this way, we get an integrated (or random
effects) log likelihood of the form

	I
i (θ ) = log

∫
eT 	i (θ,α)π (α | θ ) dα.

As is well known, the problem with inferences from 	I
i (θ ) is that they depend on

the choice of prior for the effects and are not in general consistent with T fixed.
It can be shown that under regularity conditions the maximizer of

∑
i 	I

i (θ )
has a bias of order O (1/T ) regardless of π (α | θ ). However, if α and θ are
information orthogonal, the bias can be reduced to O

(
1/T 2

)
.

Lancaster (2002) proposes to integrate out the fixed effects ηi by using a
noninformative prior, say a uniform prior, and use the posterior mode as an
estimate of θ . The idea is to rely on prior independence between fixed effects
and θ , having chosen an orthogonal reparameterization, say αi = α

(
θ, ηi

)
, that

separates the common parameter θ from the fixed effects ηi in the information
matrix sense. In other words, his estimator θ̂ L takes the form

θ̂ L = argmax
θ

∫
· · ·

∫ n∏
i=1

T∏
t=1

f
(

yit | θ, α
(
θ, ηi

))
dη1 · · · dηn. (46)

In Example 1 with θ = σ 2, we have E [uitvi t ] = 0 so the reparameterization
is unnecessary. Lancaster’s estimator would therefore maximize∫

· · ·
∫ n∏

i=1

T∏
t=1

1√
θ

exp

(
− (yit − αi )2

2θ

)
dα1 · · · dαn

∝ 1(√
θ
)T −1 exp

(
−

∑n
i=1

∑T
t=1

(
yit − yi

)2

2θ

)
,

and

θ̂ L = 1

n (T − 1)

n∑
i=1

T∑
t=1

(
yit − yi

)2
.

Note that θ̂ L has a zero bias.
Asymptotic properties of θ̂ L are not yet fully worked out except in a small

number of specific examples. It is in general expected θ̂ L removes bias only up
to O(T −1), although we can find examples where θ̂ L eliminates bias of even
higher order.

6.2 Overcoming Infeasibility of Orthogonalization

The Cox–Reid and Lancaster approaches are successful only when the param-
eter of interest can be orthogonalized with respect to the nuisance parameters.
In general, such reparameterization requires solving some partial differential
equations, and the solution may not exist. Because parameter orthogonalization
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is not feasible in general, such approach cannot be implemented for arbitrary
models. This problem can be overcome by adjusting the moment equation in-
stead of the concentrated likelihood. We discuss two approaches in this regard,
one introduced by Woutersen (2002) and the other by Arellano (2003). We will
note that these two approaches result in identical estimators.

6.2.1 Woutersen’s (2002) Approximation

Woutersen (2002) provided an insight on the role of Lancaster’s posterior cal-
culation in reducing the bias of the fixed effects. Assume for simplicity that
the common parameter θ is orthogonal to αi in the information sense, and no
reparameterization is necessary to implement Lancaster’s proposal. Given the
posterior

n∏
i=1

(∫ T∏
t=1

f ( yit | θ, αi ) dαi

)
,

the first-order condition that characterize the posterior mode can be written as

0 =
n∑

i=1

∫ (∑T
t=1 uit (θ, αi )

) ∏T
t=1 f ( yit | θ, αi ) dαi∫ ∏T

t=1 f ( yit | θ, αi ) dαi
. (47)

Woutersen (2002) pointed out that the i th summand on the right can be approx-
imated by

T∑
t=1

uit (θ, α̂i (θ )) − 1

2

∑T
t=1 uαi αi

i t (θ, α̂i (θ ))∑T
t=1 v

αi
i t (θ, α̂i (θ ))

+ 1

2

(∑T
t=1 v

αi αi
i t (θ, α̂i (θ ))

) (∑T
t=1 uαi

i t (θ, α̂i (θ ))
)

(∑T
t=1 v

αi
i t (θ, α̂i (θ ))

)2 ,

where α̂i (θ ) is a solution to
∑T

t=1 vi t (θ, α̂i (θ )) = 0. Therefore, Woutersen’s
estimator under parameter orthogonality is the solution to

0 =
n∑

i=1

[
T∑

t=1

uit (θ, α̂i (θ ))− 1

2

ÊT [̂u αi αi ]

ÊT
[̂
v

αi
i t

] + 1

2

ÊT
[̂
v

αi αi
i t

]
ÊT

[̂
u αi

i t

](
ÊT

[̂
v

αi
i t

])2

]
.

(48)

Note that this estimator solves the same moment equation as Cox and Reid’s
moment equation (41).

Woutersen pointed out that the moment function

uit (θ, α) ≡ uit (θ, α) − ρi (θ, α) vi t (θ, α) (49)
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where

ρi (θ, α) ≡
∫

uα
i (y; θ, α) fi (y; θ, α) dy∫

vα
i (y; θ, α) fi (y; θ, α) dy

(50)

would satisfy the orthogonality requirement in the sense that at true values

E
[
uα

i t (θ0, αi0)
] = 0.

Recall that Uit (θ, αi ) ≡ uit − vi t E[v2
i t ]

−1 E[vi t uit ] defined in Section 3 can-
not be used as a basis of estimation because the ratio E[v2

i t ]
−1 E[vi t uit ] is

not known in general. It was used only as a theoretical device to understand
the asymptotic property of various estimators. On the other hand, ρ(θ0, αi0) =
E[vα

i t ]
−1 E[uα

i t ] = E[v2
i t ]

−1 E[vi t uit ], so we can consider uit (θ, αi ) as a feasible
version of Uit (θ, αi ). Woutersen’s moment equation when parameter orthogo-
nality is unavailable is therefore obtained by replacing uit (θ, α̂i (θ )) in (48) by
uit (θ, α̂i (θ )).

6.2.2 Arellano’s (2003) Proposal

An orthogonal transformation is a function ηi = ηi (θ, α) such that

ηθ i

ηαi
= ρi (θ, α)

where ηθ i = ∂ηi/∂θ , ηαi = ∂ηi/∂α, and ρi (θ, α) is given in (50). Such a func-
tion may or may not exist, and if it does it need not be unique.

Arellano (2003) considers a Cox and Reid’s (1987) objective function that
is written for some transformation of the effects ηi = ηi (θ, α) and he rewrites
it in terms of the original parameterization. The resulting criterion is given by
(39) with the addition of the Jacobian of the transformation:

T∑
t=1

	i t (yit ; θ, α̂i (θ )) − 1

2
log

(
−

T∑
t=1

∂2	i t (yit ; θ, α̂i (θ ))

∂α2
i

)
+ log

(̂
ηαi

)
where η̂αi = (

ηαi |α=α̂i (θ )
)
. The corresponding moment equation is

T∑
t=1

uit (θ, α̂i (θ )) − b̃C R
i (θ ) + mi (θ )

where b̃C R
i (θ ) is given in (42) and

mi (θ ) = ∂

∂θ
log

(̂
ηαi

) = η̂αθ i

η̂αi
+ η̂ααi

η̂αi

∂α̂i (θ )

∂θ

=
(

∂

∂α

ηθ i

ηαi

∣∣∣∣
α=α̂i (θ )

)
− η̂ααi

η̂ αi

(
ÊT

[̂
u αi

i t

]
ÊT

[̂
v

αi
i t

] − η̂θ i

η̂αi

)
.
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If ηi (θ, α) is an orthogonal transformation

mi (θ ) = ∂ρi (θ, α)

∂α

∣∣∣∣
α=α̂i (θ )

− η̂ααi

η̂αi

(
ÊT

[̂
u αi

i t

]
ÊT

[̂
v

αi
i t

] − ρi (θ, α̂i (θ ))

)
(51)

so that

mi (θ0) = ∂ρi (θ0, α)

∂α

∣∣∣∣
α=α̂i (θ0)

+ O
(

1

T

)
.

Thus, regardless of the existence of an orthogonal transformation, it is always
possible to obtain a locally orthogonal Cox and Reid moment equation. Arel-
lano’s moment equation is therefore obtained as

0 =
n∑

i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − b̃C R
i (θ ) +∂ρi (θ, α)

∂α

∣∣∣∣
α=α̂i (θ )

]
, (52)

after supressing the transformation-specific term in (51) that is irrelevant for
the purpose of bias reduction. Indeed, Carro (2004) has shown that Arellano’s
moment equation reduces the order of the score bias regardless of the existence
of an information orthogonal reparameterization.

It can be shown that this moment equation is identical to Woutersen’s (2002)
moment equation. This can be shown in the following way. Now note that
Woutersen’s (2002) moment equation is equal to

0 =
n∑

i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − 1

2

∑T
t=1 uαi αi

i t (θ, α̂i (θ ))∑T
t=1 v

αi
i t (θ, α̂i (θ ))

+ 1

2

(∑T
t=1 v

αi αi
i t (θ, α̂i (θ ))

) (∑T
t=1 uαi

i t (θ, α̂i (θ ))
)

(∑T
t=1 v

αi
i t (θ, α̂i (θ ))

)2

⎤⎥⎦ . (53)

Using (32), we can obtain:

T∑
t=1

uit (θ, α̂i (θ )) =
T∑

t=1

uit (θ, α̂i (θ )) ,

T∑
t=1

uαi
i t (θ, α̂i (θ )) =

T∑
t=1

uαi
i t (θ, α̂i (θ ))

−
(

T∑
t=1

v
αi
i t (θ, α̂i (θ ))

)
ρi (θ, α)

∣∣
α=α̂i (θ )
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and

T∑
t=1

uαi αi
i t (θ, α̂i (θ )) =

T∑
t=1

uαi αi
i t (θ, α̂i (θ ))

−
(

T∑
t=1

v
αi αi
i t (θ, α̂i (θ ))

)
ρi (θ, α)

∣∣
α=α̂i (θ )

−2

(
T∑

t=1

v
αi
i t (θ, α̂i (θ ))

)
∂ρi (θ, α)

∂α

∣∣∣∣
α=α̂i (θ )

.

Plugging these expressions to (53), we obtain after some simplification an
alternative characterization of Woutersen’s (2002) moment equation:

0 =
n∑

i=1

[
T∑

t=1

uit (θ, α̂i (θ ))− 1

2

∑T
t=1 uαi αi

i t (θ, α̂i (θ ))∑T
t=1 v

αi
i t (θ, α̂i (θ ))

+ 1

2

(∑T
t=1 v

αi αi
i t (θ, α̂i (θ ))

) (∑T
t=1 uαi

i t (θ, α̂i (θ ))
)

(∑T
t=1 v

αi
i t (θ, α̂i (θ ))

)2 + ∂ρi (θ, α)

∂α

∣∣∣∣
α=α̂i (θ )

⎤⎥⎦,

which can be seen to be identical to moment equation (52). We can therefore
conclude that Woutesen’s (2002) is identical to Arellano’s (2003).

6.2.3 Relation to Bias Correction of the Moment Equation

The moment equation used by Woutersen, Arellano, and Carro can be written
as

n∑
i=1

[
T∑

t=1

uit (θ, α̂i (θ )) − b̃W
i (θ )

]
= 0 (54)

where

b̃W
i (θ ) = b̃C R

i (θ ) − ∂ρi (θ, α)

∂α

∣∣∣∣
α=α̂i (θ )

, (55)

b̃C R
i (θ ) = 1

2ÊT
[̂
v

αi
i t

] (
ÊT

[̂
uαi αi

] − ÊT
[̂
v

αi αi
i t

] ÊT
[̂
uαi

i t

]
ÊT

[̂
v

αi
i t

])
,

and at true values

∂ρi (θ0, αi0)

∂α
= 1

E
[
vα

i t

] (
E

[
uαα

i t

] − E
[
vαα

i t

] E
[
uα

i t

]
E

[
vα

i t

])

+ 1

E
[
vα

i t

] (
E

[
uα

i tvi t
] − E

[
vα

i tvi t
] E

[
uα

i t

]
E

[
vα

i t

])
. (56)
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Comparing the resulting expression with the theoretical bias (7), we note that
moment condition (54) is using a valid estimate of the concentrated score 1/T
bias as long as the information identity holds, so that in general it will be
appropriate in likelihood settings. The estimated bias b̃W

i (θ ) uses a combination
of observed and expected terms. Note that, contrary to the situation under
orthogonality when the theoretical bias reduces to (43), there is no redundant
term here.

The term ∂ρi (θ, α̂i (θ )) /∂α in (52) can be interpreted as a measure of how
much the variance of α̂i (θ ) changes with θ . In this respect, note the equiva-
lence between the derivative of the log variance of α̂i (θ ) in (45) and a sample
counterpart of (56):

− ∂

∂θ

1

2
log V̂ar

(√
T (̂αi (θ ) − αi (θ ))

)
= 1

ÊT
[
v

αi
i t

] (
ÊT

[̂
u αi αi

i t

] − ÊT
[̂
v

αi αi
i t

] ÊT
[̂
u αi

i t

]
ÊT

[̂
v

αi
i t

])

+ 1(−ÊT
[̂
v2

i t

]) (
ÊT

[̂
u αi

i t v̂i t
] − ÊT

[̂
v

αi
i t v̂i t

] ÊT
[̂
u αi

i t

]
ÊT

[̂
v

αi
i t

])
. (57)

7 QMLE FOR DYNAMIC MODELS

The starting point of our discussion so far has been the assumption that the
fixed effects estimator actually maximizes the likelihood. When we defined θ̂T

to be a maximizer of

n∑
i=1

T∑
t=1

log f ( yit | θ, α̂i (θ )) ,

we assumed that (i) xs are strictly exogenous, (ii) ys are independent over
t given xs, and (iii) f is the correct (conditional) density of y given x . We
noted that some of the bias correction methods did not depend on the likelihood
setting, while others, that relied on the information or Bartlett identities, did.
However, in all cases assumptions (i) and (ii) were maintained. For example, if
the binary response model

yit = 1
(
x ′

i tθ + αi + eit > 0
)
, (58)

where the marginal distribution of eit is N (0, 1), is such that eit is independent
over t , and if it is estimated by nonlinear least squares, our first bias formula is
valid.

In the likelihood setting, assumption (ii) can be relaxed choosing estimates
of bias corrections that use expected rather than observed quantities. This is
possible because the likelihood fully specifies the dynamics, and it is simple if
the required expected quantities have closed form expressions, as in the dynamic
probit models in Carro (2004) and Fernández-Val (2005).
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In a nonlikelihood setting, our analysis can be generalized to the case when
the fixed effects estimator maximizes

n∑
i=1

T∑
t=1

ψ (zit ; θ, α̂i (θ ))

for an arbitrary ψ under some regularity conditions, thereby relaxing assump-
tions (i) and (ii). For example, the binary response model (58) can still be
analyzed by considering the fixed effects probit MLE even when eit has an
arbitrary unknown serial correlation.

The intuition for this more general model can still be obtained from the
approximation of the moment equation as in (19), which can be corrected by
calculating the approximate expectation of the correction term

n∑
i=1

[ ∑T
t=1 vi t√

T E
[
v

αi
i t

]] [
1√
T

T∑
t=1

(
Uαi

i t − E
[
Uαi αi

i t

]
2E

[
v

αi
i t

] vi t

)]
.

The analysis for this more general model gets to be more complicated because
calculation of the expectation should incorporate the serial correlation in vi t

and Uαi
i t , which was a non-issue in the simpler context. Hahn and Kuersteiner

(2004) provide an analysis that incorporate such complication.

8 ESTIMATION OF MARGINAL EFFECTS

It is sometimes of interest to estimate quantities such as

1

nT

n∑
i=1

T∑
t=1

m (zit ; θ, αi ) (59)

where zit = (
yit , x ′

i t

)′
. For example, it may be of interest to estimate the mean

marginal effects

1

nT

n∑
i=1

T∑
t=1

φ
(
x ′

i tθ + αi
)
θ

for the binary response model (58), where φ denotes the density of N (0, 1). It
would be sensible to estimate such quantities by

1

nT

n∑
i=1

T∑
t=1

m
(
zit ; θ̃ , α̂i

(
θ̃

))
where θ̃ denotes a bias-corrected version of θ̂ computed by one of the methods
discussed before, and α̂i (̃θ ) denotes the estimate of αi at θ̃ . Hahn and Newey
(2004), Carro (2004), and Fernandez-Val (2005) discuss estimation and bias
correction of such quantity.
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To relate our discussion with the bias-correction formula developed there, it
is useful to think about the quantity (59) as a solution to the (infeasible) moment
equation

n∑
i=1

T∑
t=1

(m (zit ; α̂i (θ0)) − μ̂) = 0,

T∑
t=1

v (zit ; α̂i (θ0)) = 0 (60)

where, for simplicity of notation, we suppressed the dependence of m on θ . Let

M (zit ; αi ) = m (zit ; αi ) − v (zit ; αi )
E [mαi (zit ; αi )]

E [vαi (zit ; αi )]
and note that μ̂ in (60) solves

0 =
n∑

i=1

T∑
t=1

(M (zit ; α̂i (θ0)) − μ̂) . (61)

Assuming that serial correlation can be ignored, we can bias-correct this mo-
ment equation using the same intuition as in Section 4. We then obtain a bias-
corrected version of the moment equation

0 =
n∑

i=1

T∑
t=1

(
M (zit ; α̂i (θ0))−̂̂μ)

+
n∑

i=1

⎛⎝∑T
t=1 vi t Mαi

i t∑T
t=1 v

αi
i t

+
∑T

t=1 Mαi αi
i t

2
(∑T

t=1 v
αi
i t

)
⎞⎠ (62)

when the fixed effects estimator is based on a correctly specified likelihood, or

0 =
n∑

i=1

T∑
t=1

(
M (zit ; α̂i (θ0)) − ̂̂μ)

+
n∑

i=1

⎛⎜⎝∑T
t=1 vi t Mαi

i t∑T
t=1 v

αi
i t

−
(∑T

t=1 v2
i t

) (∑T
t=1 Mαi αi

i t

)
2

(∑T
t=1 v

αi
i t

)2

⎞⎟⎠ (63)

in general. Replacing M (zit ; θ0, α̂i (θ0)) in (62) by the feasible version

m
(
zit ; θ̃ , α̂i

(̃
θ
)) − v

(
zit ; θ̃ , α̂i

(̃
θ
)) ∑T

t=1 mαi
(
zit ; θ̃ , α̂i

(̃
θ
))∑T

t=1 vαi
(
zit ; θ̃ , α̂i

(̃
θ
)) ,

we obtain the same bias-corrected estimator ̂̂μ as in Hahn and Newey (2004),
and Fernandez-Val (2005).

9 AUTOMATIC METHODS

We have so far discussed methods of bias correction based on some analytic
formulae. Depending on applications, we may be able to by-pass such analysis,
and rely on numerical methods. We discuss two such procedures here.
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9.1 Panel Jackknife

The panel jackknife is an automatic method of bias correction. To describe
it, let θ̂ (t) be the fixed effects estimator based on the subsample excluding the
observations of the t th period. The jackknife estimator is

θ̃ ≡ T θ̂ − (T − 1)
T∑

t=1

θ̂ (t)/T (64)

or

θ̃ ≡ θ̂ − B̃
T

,
B̃
T

= (T − 1)

(
1

T

T∑
t=1

θ̂ (t) − θ̂

)
.

To explain the bias correction from this estimator it is helpful to consider a
further expansion

θT = θ0 + B
T

+ D
T 2

+ O
(

1

T 3

)
. (65)

The limit of θ̃ for fixed T and how it changes with T shows the effect of the
bias correction. The estimator θ̃ will converge in probability to

T θT − (T − 1) θT −1 = θ0 +
(

1

T
− 1

T − 1

)
D + O

(
1

T 2

)
= θ0 + O

(
1

T 2

)
(66)

or

(T − 1) (θT −1 − θT ) = B
T

+ O
(

1

T 2

)
.

Thus, we see that the asymptotic bias of the jackknife corrected estimator is of
order 1/T 2. Consequently, this estimator will have an asymptotic distribution
centered at 0 when n/T → ρ. Hahn and Newey (2004) formally established
that

√
nT

(̃
θ − θ0

)
has the same asymptotic variance as

√
nT

(̂
θ − θ0

)
when

n/T → ρ. This implies that the bias reduction is achieved without any increase
in the asymptotic variance. This suggests that, although there may be some small
increase in variance as a result of bias reduction, the increase is so small that it
is ignored when n/T → ρ.

In Example 1, it is straightforward to show that

θ̃ = 1

n (T − 1)

n∑
i=1

T∑
t=1

(
yit − yi

)2
, (67)

which is the estimator that takes care of the degrees of freedom problem. It is
interesting to note that the jackknife bias correction completely removed bias
in this example: E( θ̃ ) = θ . This happens only because the O(T −2) term is
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identically equal to zero in this particular example, which is not expected to
happen too often in practice.

It is natural to speculate that a higher-order version of the panel jackknife
may correct even higher-order bias. For this purpose, assume that an expansion
even higher than (65) is valid:

θT = θ0 + B
T

+ D
T 2

+ F
T 3

+ G
T 4

+ O
(

1

T 5

)
.

Because

1

2
T 2θT − (T − 1)2 θT −1 + 1

2
(T − 2)2 θT −2

= θ0 + F
T (T − 1) (T − 2)

+ 3T 2 − 6T + 2

T 2 (T − 1)2 (T − 2)2 G + O
(

1

T 3

)
= θ + O

(
1

T 3

)
,

we can conjecture that an estimator of the form

˜̃θ ≡ 1

2
T 2θ̂ − (T − 1)2

∑T
s=1 θ̂ (s)

T
+ 1

2
(T − 2)2

∑
s �=s ′ θ̂ (s,s ′)

T (T − 1)
,

where θ̂ (s,s ′) denotes the delete-2 estimator, will be centered at zero even at the
asymptotics where n = o

(
T 5

)
.

The panel jackknife is easiest to understand when yit is independent over
time. When it is serially correlated, which is to be expected in many applica-
tions, it is not yet clear how it should be modified. To understand the gist of the
problem, it is useful to investigate the role of

∑T
t=1 θ̂ (t)/T in (64). Note that

it is the sample analog of θT −1 in (66). When yit is serially correlated, what
should be used as the sample analog? One natural candidate is to use the same
formula as in (64), with the understanding that θ̂ (t) should be the MLE maxi-
mizing the likelihood of (yi1, . . . , yi,t−1, yi,t+1, . . . , yT ) i = 1, . . . , n. We are
not aware of any formal result that establishes the asymptotic properties of
the panel jackknife estimator, even in the simple dynamic panel model where
yit = αi + θ yi,t−1 + εi t with εi t ∼ N

(
0, σ 2

)
. Even if this approach is shown to

have a desirable asymptotic property, we should bear in mind that such approach
requires complete parametric specification of the distribution of (yi1, . . . , yiT ).
In many applications, we do not have a complete specification of the
likelihood.

Another possibility is to use θ̂ (T ) as the sample analog of θT −1. Note that θ̂ (T )

is the MLE based on the first T − 1 observations. It turns out that such procedure
will be accompanied by some large increase in variance. To understand this
problem, it is useful to examine Example 1 again. It can be shown that

θ̂ (T −1) = T
T − 1

θ̂ − T

n (T − 1)2

n∑
i=1

(
yi − yiT

)2
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and therefore,

T θ̂ − (T − 1)̂θ (T −1) = T
n (T − 1)

n∑
i=1

(
yi − yiT

)2
.

We can write with some abuse of notation that T θ̂ − (T − 1)̂θ (T −1) ∼ θ0
n χ2

n ,
whereas θ̃ in (67) is distributed as θ0

n(T −1)χ
2
n(T −1). This implies that (i) T θ̂ − (T −

1)̂θ (T −1) is indeed bias free; and (ii) the variance of T θ̂ − (T − 1)̂θ (T −1) is T − 1
times as large as that of as the jackknife estimator θ̃ . When T is sufficiently
large, this delete-last-observation approach will be unacceptable. We expect a
similar problem when yit is subject to serial correlation, and eliminate T θ̂ −
(T − 1)̂θ (T −1) from our consideration.

We argued that the panel jackknife may not be attractive when serial cor-
relation is suspected. The bootstrap is another way of reducing bias. A time
series version of the bootstrap is block-bootstrap, which has been shown in
many occasions to have desirable properties. We conjecture that some version
of a bootstrap bias correction would also remove the asymptotic bias (e.g., with
truncation as in Hahn, Kuersteiner, and Newey, 2002).

9.2 Bootstrap-Adjusted Concentrated Likelihood

Simulation methods can also be used for bias correction of moment equations
and objective functions. Pace and Salvan (2006) have suggested a bootstrap
approach to adjust the concentrated likelihood.

Consider generating parametric bootstrap samples {yi1(r ), . . . , yiT (r )}n
i=1

(r = 1, . . . , R) from the models {∏T
t=1 f (yt | θ̂ , α̂i )}n

i=1 to obtain α̂
[r ]
i (θ ) as

the solution to

α̂
[r ]
i (θ ) = argmax

α

T∑
t=1

log f (yit (r ) | θ, α) (r = 1, . . . , R) .

Pace and Salvan’s (2006) simulation adjusted log-likelihood for the i th unit is

	
S
i (θ ) = 1

R

R∑
r=1

T∑
t=1

	i t

(
θ, α̂

[r ]
i (θ )

)
. (68)

The criterion 	
S
i (θ ) is invariant under one-to-one reparameterizations of αi that

leave θ fixed (invariant under “interest respecting reparameterizations”).
Alternatively, Pace and Salvan consider the form in (30), using a bootstrap

estimate of Vi [̂αi (θ )] given by

Ṽi [̂αi (θ )] = 1

R

R∑
r=1

[
α̂

[r ]
i (θ ) − α̂i (θ )

]2
, (69)
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which leads to

	
S A
i (θ ) =

T∑
t=1

	i t (θ, α̂i (θ )) − 1

2

(
− 1

T

T∑
t=1

∂vi t (θ, α̂i (θ ))

∂α

)
Ṽi [̂αi (θ )] . (70)

10 CONCLUDING REMARKS

We discussed a variety of methods of estimation of nonlinear fixed effects panel
data models with reduced bias properties. Alternative approaches to bias cor-
rection based on adjusting the estimator, the moment equation, and the criterion
function have been considered. We have also discussed approaches relying on
orthogonalization and automatic methods, as well as the connections among
the various approaches.

All the approaches that we discuss in the paper are based on an asymptotic
approximation where n and T grow to infinity at the same rate. Therefore, they
are likely to be useful in applications in which the value of T is not negligible
relative to n. Examples of this kind include data sets constructed from country
or regional level macropanels, the balance-sheet-based company panels that are
available in many countries, or the household incomes panel in the US (PSID).
However, for n too large relative to T , the sampling distributions of the 1/T
bias-corrected estimators will not provide accurate confidence intervals because
their standard deviation will be small relative to bias. In those situations, an
asymptotic approximation where n/T 3 converges to a constant may be called
for, leading to 1/T 2 bias-corrected estimators. A more general issue is how good
are the n and T asymptotic approximations when the objective is to produce
confidence intervals, or to test a statistical hypothesis. This is a question beyond
the scope of this paper.

Next in the agenda, it is important to find out how well each of these bias
correction methods work for specific models and data sets of interest in applied
econometrics. In this regard, the Monte Carlo results and empirical estimates
obtained by Carro (2004) and Fernández-Val (2005) for binary choice models
are very encouraging. For a dynamic logit model, using the same simulation
design as in Honoré and Kyriazidou (2000), they find that a score-corrected
estimator and two one-step analytical bias-corrected estimators are broadly
comparable to the Honoré–Kyriazidou estimator (which is consistent for fixed
T ) when T = 8 and n = 250. However, the finite sample properties of the bias
correction seem to depend on how they are done. For dynamic logit, Carro’s
score-corrected estimator and Fernández-Val’s bias-corrected estimator, which
use expected quantities, are somewhat superior to a bias-corrected estimator
using observed quantities, but more results are needed for other models and
simulation designs.

We have focused on bias reduction, but other theoretical properties should
play a role in narrowing the choice of bias-reducing estimation methods. In
the likelihood context it is natural to seek an adjusted concentrated likelihood
that behaves like a proper likelihood. In this respect, information bias reduction
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and invariance to reparameterization are relevant properties in establishing the
relative merits of different bias-reducing estimators.
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