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In 1imi ted dependent variable models the estimators obtained by

maximising the normal likelihood function are generally inconsistent

when the assumption of normality ls falseo Arabmazar and Schmidt (1982)

have shown that the bias trom non-normality can be substantial when the

degree of censoring (or truncation) in the populatlon is relative1y

large. The issue is relevant because usua1ly we do not have any a

priori reason to believe that our disturbances are normal1y distributed.

While extensive research has recent1y been carried out on

non-normality tests, 1ittle has been done on ways of relaxing the

normality assumption itself. The view is usually taken that evidence of

non-normallty is a signal of structural misspecification. Although this

will often be the case, i t may also be indicating genuine non-normal

features in the distribution of the errors. In the latter situation

more general distributional assumptions are called foro

In cross section or panel data a common source of non-normality ls

due to the existence of extreme values in the samples which determine

thick tails. We propose to use mixtures of normal distributions when

the objective is to allow for leptokurtosis. Essential1y, the

advantages of this approach are that the normal model ls nested as a

special case and also the computational simplicity of the normal model

ls maintained. This track also allows us to construct simple tests for

non-normality. Both estimation and testing issues are discussed in the

paper and illustrations are provided.
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1. INTRODUCTION
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In 1imi ted dependent variable models the estimators obtained by

maximising the normal 1ikelihood function are generally inconsistent

when the assumption of normality ls false. Arabmazar and Schmidt (1982)

have shown that the bias from non-normality can be substantial when the

degree of censoring (or truncation) in the population is relatively

large. The issue is relevant because usually we do not have any a

priori reason to believe that our disturbances are normal1y distributed.

However, the same is true with respect to any other specific

distributional assumption. Therefore i t ls potentially appealing to

investigate ways of relaxing the normali ty assumption in order to be

able to obtain consistent estimates under a

distributions.

broader family of

Under the assumption of normality, the third order moment vanishes

and also the fourth arder moment is torced to be three times the square

of the variance, thus constraining the amount of probability mass which

is allowed in the tails of the distribution. In cross section or panel

data a common source of non-normality is due to the existence of extreme

values in the samples which determine thick tai ls . Thus, it is of

interest to find ways of relaxing the constraints on fourth order

moments. While there are available distributions which produce thicker

tails than the normal (eg a t 5 produces a fourth order moment which is

nine times the squared of the variance and a Laplace distribution six

times), we propose to use mixtures of normal distributions when the

objective ls to allow for leptokurtosis. Essentially, the advantages of

this approach are that the normal model is nested as a special case and

also the computational simplici ty of the normal model is maintained.
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This track also allows us to construct simple tests for non-normality.

The consequences of distributional misspecification in the Tobit

model have been considered in a number of papers. Goldberger (1983) and

Arabmazar and Schmidt (1982) have investigated the asymptotic biases

that result in estimating the mean of a population under sample

selection. Robinson (1982) showed that in general normal-ML estimators

are inconsistent under non-normality. Bera, Jarque and Lee (1984) have

proposed a Lagrange Mul tiplier test of normali ty wi thin the Pearson

family of distributions. Several methods tor detecting the tal1ure of

distributional assumptions are also examined in Chesher, Lancaster and

Irish (1985).

Section 2 sets up the model and discusses i ts properties. In

Section 3 the contaminated normal-ML estimation of censored, truncated

and binary models is considered; estimatlon ls performed conditionaJ. on

a fixed variance ratio. Non-normality tests are discussed in Section 4.

Section 5 presents numerical calculations of asymptotic biases of the

normal-MLE when the errors are contaminated normal in a model containing

only a constant termo In Section 6 an empirical application illustrates

the performance of our suggested methods. Finally, Section 7 states the

conclusions.

g.~.J:LJ:-º!?J.::r_.M-º12~~j:J.!J:·H~GONT~MJ._N8J:.ED RORMkYk.. ER,RºR$__

A probabili ty distribution which is the mixture of two or more

normal distributions is designed as a compound or contaminated normal

distribution. In the simplest case, a random variable X is said to be

distributed as a contaminated normal if its cdf ls given by



( 1 ) F{x)

4

X-/1 X-/1
== (l-p) ~( 1_) + p~{ ~)

°1 °2

where ~ ie the N{O,l) cdf. F depende on five parametere: /11' /12' 01' 02

1and p.

The mean and variance of X are given by

E (X) ==

Var{X)

(l-p) /1 1 +

2
== (l-p) ° 1

P/12 '

2 2+ po 2 + P ( l-p) (/1 1 - /1 2 ) .

In econometrice, thie distribution has been applied to the

switching regression problem (see Kiefer(1978), Quandt and Ramsey (1978)

and Schmidt (1982)) but given the robustnese of OLS eetimators little

attention has been paid to regreeeion modele wi th contaminated normal

errors. However, this is of interest in sample selection contexts as a

way of relaxing the normality assumption allowing for leptokurtosis.

We assume the model

( 2 ) f3'X. + u.
]. J.

(i::::l, ... ,T)

where f3 is a vector of unknown coefficients and x. is a vector of known
].

constants. The u. are random i.i.d.{O,( 2 ) variables with cdf
1

( 3 ) O<p::51.

*Xi is always observed but Yi is not, instead we observe Yi such that



( 4 ) if

5

{3'X. + u. > O
~ ~

:::: O otherwise,

and we a8SUme that the observations have been ordered so that the first

n y's are the positive observations. If p :::: 1 the model reduces to the

normal Tobit. But in general, defining k :::: ~ E(u4 )/0 4 as our kurtosis

measure, we have

( 5 )
2 2k :::: (l-p) r + pq

2 2where r :::: olla and q

as

2 2
:::: 0 2 / 0 , and since (l-p) r + pq = 1 we can write k

(5a) k :::: (q + r) - qr :::: 1 + (q-l)(l-r).

Direct inspection reveals that k ~ 1 (the normal value is k :::: 1) in view

of r > O, q > O and O < P :.:; 1 (what requires r < 1 if q > 1 and

vice-versa), thus defining a wider family of distributions which i8 able

to accommodate thicker tails than the normal ones.

Now we turn to consider the truncated f irst and second order

moments of the (zero-mean) contaminated normal distribution.

density of u. be
l

Let the

( 6) f(z) :::: (l-p) 1
al



where ~ is the N(O,l} density.

rule is

6

The densi ty of u i given our selection

( 7 )
f(z} =

Pr(~'x. + u. > O)
J. J.

f(z)

which is the required density in order to calculate the truncated

moments. These are given by2

( 8 )

(9 )

E(u.lu. > - ~'x.) =
J. J. J.

E(u~lu. > - ~'x.) :::
J. J. J.

(l-p)ol ~(~'xilol) + p02 ~(~'xiI02)

(l-p) ~(~'xilol) + P~(~'xiI02)

fi'X. ~'x. ~lX. ~lX.

(l-p) 0
1

[°1 ~(__J.) _ ~'x. ~(__J.)] + p02[024'>(--J.} _ ~'x. ~(__J.)]
0 1 l 0 1 O 2 l 02

Note that if p = 1, (8) and (9) reduce to 02m(~lxiI02) and

2
o ­

2
respectively, as i t should be under normali ty.

Here m( .) ::: ~ ( . ) I~ ( . ) .

The likelihood function of a mixture of normal distributions 1s

well-known to be unbounded if the ratio of the mixing variances is left

unrestricted. However, as shown by Kiefer (1978), the likelihood

equations for the swi tching regression model have a consistent root.

This irregulari ty has led to the investigation of al ternative
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estimators, usually based on the method of moments (eg Cohen (1967)).

Particularly relevant is the Quandt and Ramsey method based on the

moment generating function for the switching regression case,

However, given that our purpose is to relax the constraint k == 1,

fixing the ratio of variances does not seem to be an unreasonable

restriction. We are not interested in the components of the mixture per

se but in the significant departures from normality that can be achieved

using mixtures. In this context, as we have a common mean, i t is of

little help to be able to estimate a mixture for any value of the mixing

parameter p if (or ::::: Var (u) ) . to be

unconstrained would allow us to leave unrestricted just one more higher

order moment . At a second stage, a grid search can be conducted over

°
1
/°

2
, We distinguish three cases:

a) Censored (Tobit) modelo

constant term is

The log likelihood function apart from a

( 10)
n

L == ¿;

i==l

T
log f(y. - p'x.) + ¿;

l l j==n+1
log F ( - P , x . )

J

where f(.) and F(.) are given in (6) and (3), respectively. Enforcing

the constraint o~ == s o~, L can be maximised as a function of p, 02 and

p with the restriction O < p ~ 1. 3 Let

(k == 1 ,2; i == 1, ... , T)

(i == 1, ... , T)
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(k == 1,2; i ::: n+1, ... , T)

(i ::: n+ 1, ... , T)

-k/2= (l-p) s ~li + P~2i

Then the first derivatives are4 :

(i ::: 1, oo., T)

aL 1
n T

( 11) a{J = --2 Z (g3i/g li) (Y i
- {J 'x. ) x. - Z (fj/F j ) x.

i=l
J. J. j==n+l J

°2

aL 1 [- 1
n

{J'X.}2( 1 2 ) == -- n + --2 Z (g3i/g li) (Y i
- +a0 2 °2 i==l

1
O 2

T
{J'X j ]z (f . /F . )

j=n+1 J J

1

n <1>2.-<1>1'/s
2"

T 4> 2 . -4> 1 .aL 1
( 13) == -- Z ( J. 1 + z ( J J )

ap °2 í==l f i j==n+1 F.
J

Var(u) and k can be obtained from 02 and p for a given va.lue of s as

follows

(14 ) 0
2

:::: Var(u) == o~[s + (l-S}P]

and from (5) and (14)



(15 )

9

k = s
2

+ (l-s
2

)P

[s + (1-S)p]2

Let us consider the matrix

ao 2 ao 2
20

2
[s + (l-s)p] 2 (l-s)O 2(16) D = a0 2 ap- =

ak ak
O

(1-s)2[s-(1+S)P]
a0 2 ap 3[s + (l-s)p]

then

(17)

where D indicates D evaluated at the true values of the parameters.

Thus in particular Asy var(k) =(:~]2 Asy var(p)

b) Truncated modelo The log likelihood function is

(18 )
n n

L = ¿ log f(y.-p'x.) - ¿ log F(P'x
1
.)

i=l 1 1 i=l

The first derivatives are

(19)



(20)
aL =a0

2

10

¡ 1 n
l-n+--2 L:

O 2 1=1
(g Ig ) (Y. -fJ'x.)2

31 li J. l

+ ~ [f./(l-F')]13'X. l¡
1=1 l l l

( 21 )
aL

=ap
1 n

L:
O 2 i=1

1
'2

<[> 2i -<[> 1i18
r.

l

n
+ L:

1=1

c) Binary modelo The log likelihood function i8

(22 )
n

L :::: 1:

i=1
log F (13 IX. )

l

T
+ L:

j=n+l
log F ( .-13 ' x . )

J

A normalisat1on is requ1red 1n this case since the fJ's are only

identified up to a scalar factor. 2Taking o :::: 1 amounts to set

o; = [s + (1-s)p]-1, but in this context it is simpler to take o; :::: 1,

*thus considering the estimation of 13102 :::: 13 , say, ie

1
'2where c = s (if 1310 i8 required, it can be calculated as

1

* '2 *13 I[s + (1-s)p] ). L is maximised as a function of 13 and p. The first

derivatives are

(23)
n T
L: [f i /(1-F i )]x i - 1: (fJ./F

J
.) x

J
'

i=1 j=n+l
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where now

1 * *f . = (l-p) - <t> ( -f3 Ix./c) + p<t>(-f3 'X. )
~ C J. ~

aL n <Z>2i- <Z>li T <Z> 2 j -4> 1 j
(24) = :z ( 1-F. ) + :zap F.

i=l ~ J=n+1 J

Note that if the only regressor is a constant term, i.e. *13 IX. = M,
1

the contaminated binary model is not identified. In this case,

Prob (Yi = 1) = (l-p) <Z>(M/c) + P<Z>(M)

A particular value of Prob (y.=l) defines an observable structure. For
J.

any given value of M, we can find a corresponding value of P given by

<Z>(M/c) - Prob (y.=l)
~

P =
<Z>(M/c) - <Z>(M)

which produces an observationally equivalent structure. On the other

hand, non-existence of the maximum likelihood estimator only seems to

occur in the case of complete sample separat ion, which is common to

probit and logit specifications.

If °1/°2 is not constrained, the censored and truncated likelihood

functions are unbounded. The censored likelihood is
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n T
II ti Il

i=l j=n+l
F.

J

eonsidering the partitions ~I = {~l ~2} and xl = {xli x 2i } where ~2 and

* * *x 2i are sealars, if for example we set ~ = ~ with ~2 =:: {Yl-~1Ixl}/x21

*so that Yl equals ~ 'xl' then

f
1

=:: {l-p} 1

J2ncr
1

1
+p---

J2ncr 2

Now, as crl~ O, f1~ 00, and sinee for i ~ 1

and

*we have that L{~ , O, °
2

, p} =:: oo. The same is true for the unrestrieted

truneated likelihood funetion.

likelihood whieh is given by

However, the unrestrieted binary

L(,(3,/':>,C) ==
n
II {l-F.}

i=l 1.

T
Il

j=n+l
F.

J

ls not unbounded sinee the F.'s are bounded themselves.
1.

This suggests

the possibility of obtaining eonsistent estimates of e from binary
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analysis, which can be used as conditioning values at the Tobit stage or

as initia1 values if unrestricted Tobit estimation is attempted. Notice

that we would have an observationally equivalent model by assum1ng that

13 changes over reg1mes by a proportiona1 factor and the variances are

the same over regimes.

Thus, it 1s of some interest to investigate the amount of

information about c contained in the binary likelihood function.

turn to consider the 1nformation matrix tor this problem.

The 10g-11kelihood for one observation is

L].. = y. 10g F(I3'x.) + (1-y.) log F(-I3'x.)
]. ]. ]. ].

Now, 1etting e' == (13' p c) we have

So we

(25)

where

aL.
].

ae

l3'x.
].

s· ==J.

with E(s.)
].

F(I3'X.)
].

== o and E(s~) ==
].

(l-Yi)

l-F(l3l x .)
J.

1

Rence E(aL./ae) == o and
].

( 26)

where

11m 1; (aL i aL i ) 1im
T E ae ae'

T~ ro 1=1 T~ 00

1 T 2
-T ¿ E(s.) b].. b! == e say

i=1 .1 J.
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b.b! ==
~ J.

Xl
i

x.
l

Assuming that x.
J.

i s bounded and that its empirical distribution

function converges to a distribution function, Jenrich (1969)'s theorems

can be applied to establish the convergence of (26) (see also Amemiya

(1973).

Furthermore, under mild assumptions it can be shown that

(27)

Thus, i t was fel t convenient
-1to compute e for various single

models in order to obtain some qualitative information about the

unconditional M.L. estimator. In the specification we consider ~ is a

scalar parameter which is specified to be the same for all cases,

fJ == .8. The series of {x.} was generated as normal with mean zero and
l

unit variance and the infinite sum in (26) was truncated at T == 10,000.

Two alternative values of c were used: c == .05 or .15 and five

alternative values of p were used for each c:p == .1, .25, .5, .75, .9.

Table IV reports the results. In view of (27) we can use the

approximation AVAR(e) ~ (1/T)e- 1 in order to compute the asymptotic

standard errors (ASE) in samples of a given size T. In this way, we may
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for example determine which T is required for the ASE of a partieular

coeffieient to be one half of the eorresponding true value. Thus, in

relation to e we have that for p :::: .5, the required sample sizes are

4,450 and 1,680, respectively for c :::: .05 and .15, and when p ::::: .75

these are 17,800 and 6,700. Not surprisingly, as p inereases so does

the AVAR of e, and the less well determined is e, since when p=1, e is

not identified. Of course, these results are no more than suggestive

since they are model speeifie.

Notiee that Heckman's two stage proeedure can be extended to this

ease to provide consistent initial estimates for the maximum likelihood

estimation of the Tobit modelo Arguing as Heckman (1979), the

regression function for the subsample of seleeted data is

( 28)

but in view of (8), the second term of the right hand side equals

(29)

== 02 i\i' say.

*e4> (f3 IX. / e )
J.

F.
1.

+ p4> ( f3 * ,x .) 1
1. J

A. can be estimated from binary analysis using the full sample, and then
J.

the estimated series ean be used as a regressor in equation (28) to

provide eonsistent estimators af f3 and °2 ,
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A test of the constraint p = 1 is a test of non-normality.

However, in the unconstrained model this is not an admissible value

since when p = 1 c is not identified. Therefore, a standard test based

on the more general model is not possible. On the other hand, under the

null hypothesis of normality, maximum likelihood estimators conditional

to an arbi trary val1.1e of c s1.1ch that O < c < 1, are consistent and

asymptotically normal. This suggests the posslbility of constr1.1cting

speciflcation tests for all three cases censored, truncated and binary.

In fact, what we have is an example of the situation disc1.1ssed by Davles

(1977) where a parameter is identified only under the alternative. 5

It ls perhaps useful to develop o1.1r resul ts in a slightly more

general case in which the symmetry assumption is relaxed by introducing

a further parameter a. Namely, we replace (3) by

(30) F(z)
-1

= (l-p) ~( z-a ) + p~( z - (1-p )a)
°1 °2

By allowing a to be non-zero, we may have a non-vanishing third order

moment whi le maintaining the zero mean property.

moments are given by

The first fourth

E (u. ) := O
l

E(U~) 2 2 (1-s)p]
-:)

::: ° - °2[s+ -a (1-p -)

(31 ) E(U~) 2
( 2p -1 ) 3(1-s) 2

:= a(l-p)[(ajp) - ° 2 ]l
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422
02[S + (l-s )p]

_ a 4 (1_p-1) ( 2 1)/ 2p - p + 3" p .

Note that in general when s :.::: 1 and a # O, k # 1 (actually, k :.::: 1

only for the values of p that solve 6p2 - 6p + 1 :.::: O). It does not seem

to be much point in testing for normal kurtosis if symmetry has been

previously rejected. A test of skewness seems to be a more use fuI

specification diagnostic, which in our framework amounts to a test of

the constraint a :.::: O, provided p < 1. It could also be of interest to

test for heterokurtosis if it is found that for a symmetric distribution

4 4
E (u.) # 30 , as a further diagnostic which in some cases can aid to

.1

distinguish between structural misspecification and germine non-normal

tails.

In any event, both c and a are irrelevant under the null hypothesis

p 1 , and in principIe a generalisation of Davies test to two

parameters present only under the alternative can be use. Davies

solution consists in obtaining the LM statistic for each pair (a,c) and

then base the test on the supremum of these. Any arbitrary value of a

and c will produce asymptotically a chi-square with one degree of

freedom, but this is not generally the case for their maximum since

these chi-squares are not independent. Davies suggested a method to

calculate upper bounds on the asymptotic size of the test for any

critical value. To be more specific, let s(a,c) be the normalised score
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tor a == a anO. e = e. That ls, letting e' ::::: (/.3 I (
2

) ,

fVee

a 2
L a 2

L

:op] ae ae ' C)fJ ap
::::

lv' a 2
L a 2

Lep pp apao' 2ap e==e, p=l; a=a, e=e

anO.

aL
q = ap le:::::;, p=l; a=a, e=e

where 9 is the gaussian maximum likelihooo. estimator of 9 anO. L ls the

relevant log likelihood funetlon eono.itlonal on a anO. e, we have

(32)
( V -v' V- 1 )1/2

pp ep ee V ep

Then under standard assumptions s(a,e) ls asymptotieally a N(O,l)

variable under the null. Davies statistie is

(33) D ::::: sup s(a,e)

O<e<l, a

As diseussed by Watson (1982), D can be approximated by the maximum

of s(a,e) over an arbitrary number of values of a anO. e, ~1' ... , ~ ,
n

say, where ~' ::::: (a e). ... , s(~ )] is asymptotieally
n

distributed as a multlvariate normal, one can ealeulate rejeetion

probabili ties assoeiated to this approximatlon if n ls not too large,
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and in any event several upper bounds are available (see Watson (1982)

for the details).

In the remainder of this section we consider explicit expressions

of q for different models to gain some insight into the interpretation

of this procedure. First, we consider a standard regression model; in

this case, the log likelihood function is simply

T= ¿i=l lag f i

with

-1
1 u. - a 1 u.-(l-p)a

f. ::: (l-p) ~(-~----) + p ~(--~------
~ 01 01 °2 °2

Let ~ li
u.. -a

::: ~(~ ) and
°1

tl>2i

u . - ( l-p -1 ) a
::: ti> (-~-------).

°2

-1
Under the null, O 2 tf>2i is the true pdf and in this case ~ and 02 are

the OLS estimates of ~ and 02' We have

a log f.
~

ap
::::

1
u.­
~

Thus

T
-1-

T T
-1-

c ti> li ~ -2 e ti> li
(34) q ::: ¿; (1- ........,......-) + a0 2

¿; u. ::: ¿; (1-
1

i=l <l> 2i i=1 i=l ti> 2i
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where u 1 = Y1 - xlP and .11 and .21 are .11 and .21 evaluated at

and p=l. Clearly

u. ,
J.

(35)

-1

fc ·11
1 f. d~

== - ti> 2í ~

wh1ch vanishes if f i = 0;1 .21' Our test statistic is simply replacing

this expectation by its sample counterpart. Under this interpretation,

-1al .1i 1s playing the role of a pivotal density'and, since in principIe

it could be replaced by any density g. with mean a, say, other than
J.

-1
O 2 .21' this suggests considering a wider class oi distr1butions of the

form

(36)

Next, we consider a binary model.

function 1s

In this case, the 10g 1ikel ihood

(No'te that since

by F (x! p) • )
1

We have

T
L(p,plc, a) = ¿i=l[Yi 10g(1-F i ) + (l-Yi)log F i ]

T
== L: i =l L i

f. 1s not necessarily symmetric, we cannot replace l-F.
1 1



with

aL.
1

ap

21

[

(l-·y. ) y. ] aF.
111

::::: -=--F. - (1-F.) ap
.1 1

aF.
1

ap

z.-a
::::: ~(Zi - (l-p-l)a) - ~(--~--) - (a/p) ~(Zi - (l-p-l)a)

where Zi ::::: - xlP and we have set 02 ::::: 1. Thus

(37)

with

( y . -4> ( x ! P) )
1 1

(38)
z.-a

wi(a,c) ::::: 4>( lC ) + ~(Zi) + a~(zi)

where z. ::::: -x!p and p is the probit estímate of p. Agaín,
l 1

(39)

which vanishes in the absence of misspecíf ication, thus providing a

simple interpretation for our statistic.

Finally, let us consider the Tobi t model which combines the two

previous cases. Since the results are essentially the same, we present

the a=O case to simplify the presentation. In view of (13) we have

W.
:1.

*where w. is observable and takes the values w. ::::: 1 if y. > O. w ::::: O
1. 1 .1 i
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otherwise, so that E(Wi ) = 1 - Fi . Thus

(40)

Again, note that

T
q = z

i=l
w. ­

J.

T ( 1-<1> 2 .) - (1-<1> 1 . )
Z ( J. . J.) (l-w.)

J.
i=l <l>2i

which equals

1 -

under null.

1 -
1 (1-<I>2i) - (l-<I>li)

(1-<I>2i)

In this Section we follow Arabmazar and Schmidt (1982) to calculate

the inconsistency of the normal MLE when the errors are actually

contaminated normal. As they do, we concentrate on the special case in

which the model contains only a constant term (i.e. ft'x. = ~) but the
l

error variance is unknown. We solve numerically for the probabili ty

limi ts of the normal MLE 1 s ~ and (J the equations obtained as the

probability limits of the normal first order conditions.

follows:

These are as
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Censored case

Truncated case

~ + o m(~/o) - B = O

~2 ~2

~ - o + ~am(~/o) - 2B~ + C = O

Then A, B and C are given by (see Arabmazar and

where ~ = plim ~, o =
2set Var(u.) = a = 1.

1

plim o. For comparability with their results we

Schmidt for the details):

A = F(-~)/F(p),

B = ~ + E(u.lu.> -~),
1 1

The expressions for the first and second order truncated moments under

the assumption that the cdf of

(8) and (9).

u.
1

is contaminated normal are given in

We are interested in computing asymptotic biases for mixtures of

distributions giving rise to specified values of the kurtosis measure k.

2 2In this regard, it turns out to be more convenient to set r = olio to

some fixed value and parameterise p and a~ in terms of k and 0
2 . Note



24

that solving for q in (5a) we have q :::: (k-r}/(l-r) and that since

(l-p) r + pq ::: 1,

obtain

p :::: (l-r ) I (q-r) .

2 2
al ::= ra ,

2 (k-r) 2a
2

::= l-r a ,

2
p _. (l-r)

2 .
k - 2r + r

Therefore, making replacements we

For all the distributions considered r :::: 1/3 with k equal to 2, 3 and 4.

In all cases a ::: 1, while p varies from -2.8 to 2.8, thus determinlng

the degree of censoring or truncation in the population.

The results are given in Tables 1-111, each table corresponding to

a different value of k. For comparability with Arabmazar and Schmidt's

results it ls convenient to remark that for the Laplace distribution

k ::: 2 and for a t 5 this is k :::: 3. Our results are qualitatively very

similar to those found by Arabmazar and Schmidt, thus stressing their

main conclusions. If anything, we may notice that the biases found for

the contaminated normals tend to be more persistent for lower degrees of

censoring or truncation than those corresponding to the t distributions.

As it would be expected, the bias is worse for distributions with a

larger value of k( i. e. in which the kurtosis measure tends' to be more

non-normal} .
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.§..~.~~P~F._~CAk_ILLU~1'RATI.oN_

In order to illustrate the procedures developed above, i t was

decided to estimate a female labour supply equation. This equation 1s

identical to the one presented by Blundell and Smi th (1985) in their

study of simul taneous equations Tobi t models. Female labour supply,

measured by weekly hours in paid work is described by a reduced form

equation which includes as explanatory variables other household income,

three child dummy variables and linear and quadratic age and education

effects. The exogeneity of other income can be questioned and actually

the test performed by Blundell and Smith rejects this hypothesis.

Therefore we may expect simultaneity bias from the application of

standard methods.

The data consists of 2539 married women of working age which are

not self employed, from the 1981 Family Expenditure Survey for the U.K.

Column 2 in Table V presents contaminated Tobit estimates conditional on

an optimal choice for the variance ratio obtained over a grid search.

Column 1 provides the normal Tobit estimates for comparisons. Table VI

gives (-L), p, k and (l-p)/SE(p) for different values of s. In all

cases the differences with respect to the normal estimates remained and

there were no noticeable departures in the estimated regression

coefficients from the results reported in Column 2, Table V. The normal

values were used as initials and in no occasion the likelihood function

fai led to converge. In fact, convergence was attained very quickly,

typically after four or five iterations.

The estimated value of p in Column 2 (Table V) is consistent with a

kurtosis measure (~2 = 3.7) not very far from the gaussian specification

and in fact the contaminated estimates are typically only between 10 and
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20 percent larger in absolute value than the normal ones. However, a

completely different picture emerges once asymmetry is allowed into the

distribution of the errors by introducing a further parameter as

described in Section 4. The results, again conditional on an optimal

value of s, are reported in Column 3, Table v. The new parameter is

highly significant and so is our estimated skewness measure calculated

3 3as E(u.)jo using the formulae given in (31).
.1

Accordingly L is

considerably improved. Our estimates imply a distribution skewed to the

right with a long left tail. Actually, the mode is 12.25! On the other

hand, with the exception of the child dummy variables, the slope

coefficients are much altered.

Al though further investigation on more elaborate models would be

required, these results suggest that the observed non-normality is due

to structural misspecification and not to genuine non-normality in the

errors. In any event, the proposed estimators seem to be a useful

generalisation towards robustness in limited dependent variable models.

While extensive research has recently been carried out on

non-normality tests, little has been done on ways of relaxing the

normality assumption itself. The view is usually taken that evidence of

non-normality is a signal of structural misspecification. Although this

will often be the case (particularly if the residuals are found to be

skewed as it happens in our illustration) it may also be indicating

genuine non-normal features in the distribution of the errors. When

this is the case I more general distributional assumptions are called

foro
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We have proposed a method of relaxing the normality assumption in

sample selection models when the suspected cause of non-normality is in

the form of longer tails leading to leptokurtosis. Normality is nested

as a particular case, thus providing the basis tor simple tests of

non-normali ty. These issues are of practical importance because the

asymptotic biases due to non-normal kurtosis can be substantial.
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FOOTNO'l'ES

1. Note that

thus some convention must be adopted in order to have a well
defined true parameter vector.

2. In the derivation of (8) and (9) we have used the results

f: ~C' K 4> (v/k) dv :::

and

k4> (e /k)

00 2
fe v 2 4> (v/k) dv ::: ek4>(e/k) + k 2 [1 - ~(e/k)].

k

3. A very useful parameterisation to restrict p ls

p ::: 49 2 / ( 1 +9 2 ) 2 .

4. In calculating the derivatives we make use of the result

d
dX 4>[f(x)] ::: - f(x) 4>[f(x)]

d f (x)
dX

5. Davies method has been applied to the problem of testing
coefficient stability in a regression model by Watson (1982).
See also Engle (1984).
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TABLE I

Asymptotic Biases (k ::::= 2 )

f.J (J

*f.J P(y >0) Censored Truncated Censored Truncated

-2.8 .01 -1.35 0.00 0.83 0.58

-2.4 .02 -1.44 -0.02 0.87 0.58

-2.0 .03 -1.54 -0.13 0.91 0.61

-1. 6 .05 -1.55 -0.85 0.91 0.76

-1.2 .08 -1.29 -5.78 0.78 1. 60

-0.8 .15 -0.75 --11.70 0.49 2.19

-0.4 .29 -0.30 -12.19 0.20 2.07

0.0 .50 -0.07 -10.99 0.02 1. 96

0.4 .71 0.02 -2.34 -0.06 0.69

0.8 .85 0.03 -0.41 -0.08 0.15

1.2 .92 0.03 -0.04 -0.08 -0.03

1.6 .95 0.02 0.05 -0.06 -0.09

2.0 .97 0.01 0.06 -0.04 -O .10

2.4 .98 0.01 0.05 -0.02 -0.08

2.8 .99 0.00 0.04 -0.01 -0.06
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TABLE II

Asymptotic Biases (k - 3)

1-' (J

*1-' P(y >0) Censored Truncated Censored Truncated

-2.8 .01 -2.75 0.00 1. 55 1. 00

-2.4 .02 -2.92 -0.02 1. 62 1. 00

-2.0 .03 -3.08 -0.21 1. 68 1. 05

-1. 6 .04 -3.03 -1.74 1. 66 1. 38

-1. 2 .07 -2.34 -13.87 1. 33 3.11

-0.8 .13 -1.18 -16.18 0.74 2.83

-0.4 .28 -0.41 -14.60 0.27 2.29

0.0 .50 -0.10 -13.28 0.03 2.14

0.4 .72 0.01 -6.28 -0.07 1. 43

0.8 .87 0.04 -0.65 -0.11 0.23

1.2 .93 0.04 -0.08 -0.11 -0.02

1.6 .96 0.03 0.05 -0.09 -0.10

2.0 .97 0.02 0.07 -0.07 -0.13

2.4 .98 0.01 0.07 -0.05 -0.12

2.8 .99 0.01 0.05 -0.04 -O .10
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TABLE III

Asymptotic Biases (k :::: 4)

f..l a

*f..l P(y >O} Censored Truncated Censored Truncated

-2.8 .02 -4.15 0.00 2.20 1. 35

-2.4 .02 -4.37 -0.02 2.29 1. 35

-2.0 .03 -4.57 -0.29 2.37 1. 41

-1.6 .03 '-4.41 -2.84 2.30 1.98

-1. 2 .06 -3.18 -18.85 1. 74 4.00

-0.8 .12 -1. 45 -18.61 0.88 3.15

-0.4 .27 -0.48 -15.59 0.31 2.35

0.0 .50 -0.11 --14.00 0.04 2.16

0.4 .73 0.01 -10.09 -0.08 1. 95

0.8 .88 0.04 -0.82 --0.12 0.28

1.2 .94 0.04 -0.11 -0.12 -0.02

1.6 .97 0.03 0.04 -0.11 -0.11

2.0 .97 0.02 0.07 -0.09 -O .14

2.4 .98 0.02 0.07 -0.07 -O .14

2.8 .98 0.01 0.06 -0.05 -0.13
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TABLE IV

Asymptotic Variance Matrices for Contaminated

Binary Modele (e unreetricted)

f3

p

e

f3

6.131

0.224

0.395

p

1.668

-0.293

e

2.784

5.380

p

e

0.214

1.310

2.289

-1.006 9.466

f3

p

e

4.053

0.298

0.249

2.245

-0.805 11.126

f3 3.915

p 0.315 3.098

e 1.315 -2.745 37.714

e. __-=-'__:._~L__~_~_~95_

f3 3.305

p 0.324 2.508

e 0.166 -2.277 69.669

p

p

e

3.282

0.356

1.986

3.492

-7.796 236.201
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TABLE IV (continued)

f3

p

e

15.579

0.027

0.986

0.400

-0.039 0.900

f3 7.136

p 0.015 0.591

e 1.393 -0.149 2.983

P__-=__~ª-Ls::-=-_~~L
f3 10.735

p 0.109 0.926

e 0.689 -0.107 1.259

f3

p

e

7.156

0.081

1.494

1.295

-0.384 4.283
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TABLE V

CONTAMINATED TOBIT ESTIMATES AND NORMAL TOBIT ESTIMATES

fDependent Variable: Female Weekly hours in paid work

Constant

Other Incomec

(Age-40)/10

2(Age-40) /100

(Educ-8)

2(Educ-8)

D2

D3

e
cr

p

a

Skewness measure

Normal Tobit

29.5830

(1.2200)

-.1935
( .0113)

-3.9967
( .4484)

-1.9806
(.4239)

.7690
(.1808)

-.0118
(.0175)

-33.0579
(1.2784)

-11.8723
(1.2745)

-2.2573
(1.3681)

18.1020

7003.212

Contaminated Tobita1

33.5103

(1.1689)b

-.2131
( .0132)

-4.5596
(.4525)

-2.3195
( .3888)

.7329
(.2344)

_.. 0415
( .0223)

-35.9424
(1.2577)

-13.5010
(1.1452)

--2.9802
(1.3166)

18.7995

.7813
(.0321)

.0800

6978.778

A t · ]a2symme rlca.
Contaminated Tob

23.1534

(2.8754)

-.1302
(.0181)

-2.1306
( .3592)

-1.1233
(.3287)

.3136
( .1425)

.0006
( .0140)

-33.8706
(1.1373)

-11.7707
(1.0513)

-2.1849
(1.1708)

23.3949

.4816
( .0792)

12.5801
(2.2569)

-1.4773
(.6324)

.0700

6909.716
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al Estimation conditional to variance ratio s = .08.

a2 Estimation conditional to s = .07

b Standard errors in parentheses.

e Other household income eontains husbands ineome, unearned income
and dissaving.

d D1 , D2 and D3 are

presehool ehi ldren,
respectively.

dummy variables representing the presenee of

children of age 5-10 and children of age 11+

e Estimated standard deviation of the errors.

f T = 2539.
No. of positive observations = 1460
Percentage of censoring in the sample = 42.5
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TABLE VI
---_.~~~,,-

s -L p k (1-p)/SE(p)

.05 6980.16 .828 1.184 6.68

.08 6978.78 .781 1.227 6.81

.10 6979.11 .757 1.245 6.69

.15 6981.07 .701 1.272 6.22

.20 6983.34 .650 1.281 5.75

.25 6985.58 .604 1.272 5.36

.30 6987.78 .567 1.248 5.06

.40 6992.00 .519 1.177 4.49

.50 6995.71 .497 1.111 3.80

.60 6998.68 .488 1.063 3.02

.70 7000.84 .487 1. 031 2.21

.80 7002.24 .490 1.012 1.41

.90 7002.99 .495 1.003 0.77

Normal 7003.21 1.


