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ABSTRACT

In limited dependent variable models the estimators obtained by
maximising the normal likelihood function are generally inconsistent
when the assumption of normality is false. Arabmazar and Schmidt (1982)
have shown that the bias from non-normality can be substantial when the
degree of censoring (6r truncation) in the populatioﬁ, is relatively
large. The issue is relevant because usually we do not have any a
priori reason to believe that our disturbances are normally distributed.

While extensive research has recently been carried out on
non-normality tests, little has been done on ways of relaxing the
normality assumption itself. The view is usually taken that evidence of
non-normality is a signal of structural misspecification. Although this
will often be the case, it may also be indicating dgenuine non-normal
features in the distribution of the errors. In the latter situation
more general distributional assumptions are called for.

In cross section or panel data a common source of non-normality is
due to the existence of extreme values in the samples which determine
thick tails. We propose to use nixtures of normal distributions when
the objective 1is to allow for Jleptokurtosis. Essentially, the
advantages of this approach are that the normal model is nested as a
special case and also the computational simplicity of the normal model
is maintained. This track also allows us to construct simple tests for
non-normality. Both estimation and testing issues are discussed in the

paper and illustrations are provided.



1. INTRODUCTION

In limited dependent wvariable models +the estimators obtained by
maximising the normal likelihood function are generally inconsistent
when the assumption of normality is false. Arabmazar and Schmidt (1982)
have shown that the bias from non-normality can be substantial when the
degree of censoring (or truncation) in the population 1is relatively
large. The issue is relevant because usually we do not have any a
priori reason to believe that our disturbances are normally distributed.
However, the same is true with respect to any other specific
distributional assumption. Therefore it is potentially appealing to
investigate ways of relaxing the normality assumption in order to be
able to obtain consistent estimates under a broader family of
distributions.

Under the assumption of normality, the third order moment vanishes
and also the fourth order moment is forced to be three times the sguare
of the variance, thus constraining the amount of probability mass which
is allowed in the tails of the distribution. In cross section or panel
data a common source of non-normality is due to the existence of extreme
values in the samples which determine thick tails. Thus, it is of
interest to find ways of relaxing the constraints on fourth order
moments. While there are available distributions which produce thicker
tails than the normal (eg a t5 produces a fourth order moment which is
nine times the sguared of the variance and a Laplace distribution six
times), we propose to use nmixtures of normal distributions when the
objective is to allow for leptokurtosis. Essentially, the advantages of
this approach are that the normal model is nested as a special case and

also the computational simplicity of the normal model is maintained.



This track also allows us to construct simple tests for non-normality.

The consequences of distributional misspecification in the Tobit
model have bheen considered in a number of papers. Goldberger (1983) and
Arabmazar and Schmidt (1982) have investigated the asymptotic biases
that result in estimating the mean of a population under sample
selection. Robinson (1982) showed that in general normal-ML estimators
are inconsistent under non-normality. Bera, Jargue and Lee (1984) have
proposed a Lagrange Multiplier test of normality within the Pearson
family of distributions. Saeveral methods for detecting the failure of
distributional assumptions are also examined in Chesher, Lancaster and
Irish (1985).

Section 2 sets up the model and discusses its properties, In
Section 3 the contaminated normal-ML estimation of censored, truncated
and binary models is considered; estimation is performed conditional on
a fisxed variance ratio. Non-normality tests are discussed in Section 4.
Section 5 presents numerical calculations of asymptotic biases of the
normal-~-MLE when the errors are contaminated normal in a model containing
only a constant term. In Section 6 an empirical application illustrates
the performance of our suggested methods. Finally, Section 7 states the

conclusions.

2. A TOBIT MODEL WITH CONTAMINATED NORMAL ERRORS

A probability distribution which is the mixture of two or more
normal distributions is designed as a compound or contaminated normal
distribution. In the simplest case, a random variable X is said to be

distributed as a contaminated normal if its cdf is given by



(1) F(x) = (1-p) & () + p&(

where ¢ is the N(0,1) cdf. F depends on five parameters: My Hor G4 o,

and p.l

The mean and variance of X are given by

E(X) = (1-p) My + pPUgy,
Var(X) = (1-p) 02 + po? + p(i-p) (., = u.)°
; p) oy PO, P o My Mo) o
In econometrics, this distribution has been applied to the
switching regression problem (see Kiefer(1978), Quandt and Ramsey (1978)

and Schmidt (1982)) but given the robustness of O0LS estimators little
attention has been paid to regression models with contaminated normal
errors. However, this is of Interest in sample selection contexts as a

way of relaxing the normality assumption allowing for leptokurtosis.

We assume the model

where g is a vector of unknown coefficients and xi is a vector of known

constants. The ui are random i.i.d.(o,oz) variables with cdf

1A
[y

(3) F(z) = (1-p) #(z/0,) + p&(z/0,) 0 <p

ES
Xi is always observed but Y is not, instead we observe Vs such that



ES
(4) V., = V. if 8'x. + u, > 0

and we assume that the observations have been ordered so that the first

n yv's are the positive observations. If p = 1 the model reduces to the

normal Tobit. But in general, defining k = % E(u4)/o4 as our kurtosis

measure, we have

2 2
(5) k= (1-p) r~ + pg
2 2 2 2 . .
where v = ol/o and g = az/a , and since (l-p) v + pg = 1 we can write k
as
(5a) k= (g+1r) -—qgr = 1 + (g-1)(1~r).
Direct inspection reveals that k =z 1 (the normal value is k = 1) in view

of r > 0, g > 0 and 0 < p £ 1 (what requires r < 1 if g > 1 and
vice-versa), thus defining a wider family of distributions which is able
to accommodate thicker tails than the normal ones.

Now we turn to consider the truncated first and second order
moments of the (zero-mean) contaminated normal distribution. Let the
density of uy be
1

(6) £(z) = (1-p) 22— 0 (GZ) + o=t 0 (5

1 1 2 2



where ¢ 1is the N(0,1) density. The density of u; given our selection
rule is
(7) £(z) _ __ f(z)

Pr(p'xi + Uy > 0) F(ﬁ'xi)

which 1s the required density in order +to calculate the truncated

moments. These are given by2

(1~~p)o1 qb(ﬁ‘xi/cl) + po, ¢(ﬁ‘xi/02)

(8) E(ujlu; > - p'x,) =
(1-p) ¢(p'x;/0,) + pe(B'x;/0,)

Blxs plx; Blxg BlE,
— — 1 - 1
(1-p) oyfo; e(—=2) = pxy o] + po,fo e (T - plxy 0 (5]
1 1 2 2
plxy BlE,
(1-p) & (=) + p&(~s—)
1 2
Note that if p = 1, (8) and (9) reduce to ozm(p‘xi/oz) and
G: - 5'xiozm(ﬁ'xi/62), respectively, as it should be under normality.
Here m(.) = o(.)/®(.).

3. MAXIMUM LIKELIHOOD ESTIMATION

The 1likelihood function of a mixture of normal distributions is
well-known to be unbounded if the ratio of the mixing wvariances 1is left
unrestricted, However, as shown by Kiefer (1978), the likelihood
eguations for the switching regression model have a consistent root.

This irregularity has led to the investigation of alternative



estimators, usually based on the method of moments (eg Cohen (1967)).
Particularly relevant is the Quandt and Ramsey method based on the
moment generating function for the switching regression case,

However, given that our purpose is to relax the constraint k = 1,
fixing the ratio of wvariances does not seem to be an unreasonable
restriction. We are not interested in the components of the mixture per
se but in the significant departures from normality that can be achieved
using mixtures. In this context, as we have a common mean, it is of
little help to be able to estimate a mixture for any value of the mixing

2 2 2

parameter p if o= O, (or o, = Var(w)). Letting 01/02 to be

unconstrained would allow us to leave unrestricted just one more higher

order moment. At a second stage, a grid search can be conducted over
cl/aza We distinguish three cases:
a) Censored (Tobit) model. The log likelihood function apart from a

constant term is

n T
(10) L =2 log f(y, - 8'x.,) + = log F(~8'x,)

. i i . 3

i=1 J=n-+1
where f£(.) and F{(.) are given in (6) and (3), respectively. Enforcing
the constraint oi = g og, L can be maximised as a function of g, oy and
p with the restriction 0 < p = 1.3 Let

— 1
¢ z¢(yi 'Gxi) (k = 1,2; i = 1 T)
ki ""'"""6"'“'"""""“" [ r 4



p—1 o t = ==
¢ki (- g xi/ok) (k 1,2;: i n+l, , T
u -3l o
Fi F(~-8 xi) (i n+l, ;T
_ -k/2 -~
gki = (1-p) s ¢11 + p¢21 (i = 1, ;T

Then the first derivatives are4

(13)

Var(u) and

follows

(14)

alL 1 B T
— = ol T (Gas/G.:) (¥, ~ B'R.) R, - X (E./¥.) %,
LY O; i=1 3i’¥11 i i j=n+1 J J
n
2L _ 1 _ 1 B 2
55. © oo Dot =y 2 {gg3/94;) (¥ plEy)
2 2 62 j=1
T
z (£./F.) 8'x,
j=n+l J J]
1
n ¢é,.-¢ /sﬁ T S, .~Pd
aL _ 1 2i "11 27 13
35 - 5 2 | 7 )y + | i )
2 i=1 i j=n+1 j

k can be obtained from o, and p for a given value of s as

2

02 = Var(u) = 02[8 + (1~s)p]

and from (5) and (14)



sz + (1—sz)p

[s + (1-8)p1°

(15) k =

Let us consider the matrix

3o 602 202[5 + (1-s)p] 02 (1-s)
(16) D = 802 ap =
ok ok (1-8)%[s~(1+s8)p]
30 ap © 3
2 [s + (1-8)p]
then
o _ - o, =
(17) Asy Var = D Asy Var 2| D
k P

where D indicates D evaluated at the true values of the parameters,

- 2
Thus in particular Asy var(k) =[ak

35] Asy var(p)

b) Truncated model. The log likelihood function is

log F(5'x;)
1

™Mz

n
(18) L =2 log f(y.-8'x.) -
=1 * SR

The first derivatives are

H™mg
M3

(19)

Q] &
‘blﬁ

(g31/gli) (Yimp'xi) xi -

1
2 . .
02 i=1 i=1

[fi/(l—Fi)] X,

1
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n
aL _ 1 _ 1 et 2
(20) - T 600 not—— Z (dg379,4) (vy;-8'%,)
2 2 02 i=1
o \
— 1
+ 2 [fi/(l Fi)]ﬁ x|
i=1
1
n &, . =d /sﬁ n B, D
aL _ 1 2i 11 2i T1i
(21) 5 =5 | - )+ E ()
2 i=1 i i=1 i
c) Binary model. The log likelihood function is
n T
(22) L =2 log F(ﬁ'xi) +  Z log F(~-8'x.)
i=1 j=n+1 J

A normalisation is required in this case since the g's are only

identified up to a scalar factor. Taking 02 = 1 amounts to set

Gg = [g + (1~$)p]"1, but in this context it is simpler to take og = 1,
£

thus considering the estimation of ,6/02 = B8 , say, ie

F(-p'%;) = (1-p) ©(~ﬁ*'xj/0) + p®(—ﬁ*'xj) = F

J
1
where ¢ = 82 (if B/0o is required, it can be calculated as
1
%* 2 . - . * .
B8 /s + (1-8)pl]”). L is maximised as a function of g8 and p. The first

derivatives are

(23) 22 =



i1

where now

P — 1 — *l - *I
oL M o7 Py T ®057%13
i=1 i j=n+1l j

*l *!

where éli = $(~8 xi/c) and ¢2i = (-8 Xi)°
£
Note that if the only regressor is a constant term, i.e. g 'xi = 1,

the contaminated binary model is not identified. In this case,

Prob (y, = 1) = (1-p) &(u/c) + pd(u)

1

A particular value of Prob (yiﬂl) defines an observable structure. For

any given value of u, we can find a corresponding value of p given by

¢(u/c) - Prob (y,;=1)

e(u/c) — #(u)

which produces an observationally eguivalent structure. On the other
hand, non-existence Qf the nmaximum likelihood estimator only seems to
occur in the case of complete sample separation, which is common to
probit and logit specifications.

If 01/02 is pnot constrained, the censored and truncated likelihood

functions are unbounded. The censored likelihood is
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n T
L(B, o,, o.,, p) = o £. =n F.
1h2 i=1 T j=n+1 I
s 3 Kk |- [ t !
considering the partitions g (ﬁl ﬁz) and xi (x1i xzi) where 52 and
ES % £
. - ; = —_ !
xzi are scalars, if for example we set g B8 with 32 (yl ﬁl xl)/x21
*
so that Yy equals 8 ‘xl, then
1 1
£, = (1=p) ——— + P
¢2ﬂ01 J2ﬂ02
Now, as o4 0, fle w, and since for i # 1
1 * 2
f. - p exp - e (VL8 'X.) # 0
Y VZme 262 1 1
. 2 2
and
%
...ﬁ ‘X
F.b (1-p) + po Jl% 0
(]
2
"
we have that L((s , O, Oy p) = o, The same is true for the unrestricted
truncated likelihood function. However, the unrestricted binary
likelihood which is given by
n T
L(B8,p,c) = @ (1~Fi) b4 F.
i=1 j=n+1 7
is not unbounded since the Fi‘s are bounded themselves. This suggests

the possibility of obtaining consistent estimates of ¢ from binary
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analysis, which can be used as conditioning values at the Tobit stage or
as initial values if unrestricted Tobit estimation is attempted. Notice
that we would have an observationally eqguivalent model by assuming that
8 changes over regimes by a proportional factor and the variances are
the same over regimes.

Thus, it is of some interest to investigate the amount of
information about c contained in the binary likelihood function. S0 we
turn to consider the information matrix for this problem.

The log~likelihood for one observation is

o= 1 - 2 ¥
L, y; log F(p'x;) + (1-y.) log F(-g'x,)
Now, letting 6' = (B8' p ¢) we have
1

(25) aLi -, £(8 xi)xi

EY:] ile(Bix,) - #(p8'x./C) = ¢ .b,

i iy i7i
— - 1 1
(1-p) ¢(p'x;/c) —p B'E,
C

where

] - T

i F(ﬁ'xi) 1-F(8 xi)

. 2 1
with E(ﬁi) = 0 and E(gi) =
I |
F(xip) F(-xip)
Hence E(aLi/ae) = 0 and
1 T aLi aLi 1 T 5
(26) lim F i E 35 35T lim T z E(gi) bi bi = @ say
T.s 00 f==1 Ts o i=1

where
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2 ' (1-p) Tyt
By 2y %3 (9pym®y)E %y 2 1t FiFP
- 2 ~(1-p) '
(2557%q5) 5 %15 %3P
c ~
b.b! =
1 1
5 o
(1“9) 1 '
A Py BOEE

Assuming that %4 is bounded and that its empirical distribution
function converges to a distribution function, Jenrich (1969)'s theorems
can be applied to establish the convergence of (26) (see also Amemiya
(1973)).

Furthermore, under mild assumptions it can be shown that

(27) v T (8 - 9)

Thus, it was felt convenient to compute @"4' for wvarious single
models in order to obtain some qualitative information about the
unconditional M.L. estimator. In the specification we consider g is a

scalar parameter which is specified to be the same for all cases,

8 = .8, The series of {xi} was generated as normal with mean zero and
unit variance and the infinite sum in (26) was truncated at T = 10,000.
Two alternative values of ¢ were used: ¢ = .05 or .15 and five
alternative values of p were used for each c:p = .1, .25, .5, .75, .9.
Table IV reports the results. In view of (27) we can use the

approximation AVAR(e) = (1/T)@_1 in order to compute the asymptotic

standard errors (ASE) in samples of a given size T. In this way, we may
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for esample determine which T is required for the ASE of a particular
coefficient to be one half of the corresponding true value. Thus, in
relation to ¢ we have that for p = .5, the required sample sizes are
4,450 and 1,680, respectively for ¢ = .05 and .15, and when p = .75
these are 17,800 and 6,700, Not surprisingly, as p Iincreases so does
the AVAR of é, and the less well determined is ¢, since when p=1l, ¢ is
not identified. Of course, these results are no more than suggestive
since they are model specific.

Notice that Heckman's two stage procedure can be extended to this
case to provide consistent initial estimates for the maximum likelihood
estimation of the Tobit nmodel. Arguing as Heckman (1979), the

regression function for the subsample of selected data is
— 1 e H — 1
(28) E(yi|ui > -8 xi) B8 xi+E(ui]ui> B xi)
but in view of (8), the second term of the right hand side equals

(1-p) co (s 'z /c) + pe(p 'm,) |
., > wﬁ’xi) = 02 : - J

F,
1

Ay can be estimated from binarv analysis using the full sample, and then
the estimated series can be used as a regressor in eqgquation (28) to

provide consistent estimators of g and Oge
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4. TESTING NON-NORMALITY

A test of the constraint p = 1 is a test of non-normality.
However, in the unconstrained model this is not an admissible wvalue
since when p = 1 ¢ is not identified. Therefore, a standard test based
on the more general model is not possible. On the other hand, under the
null hypothesis of normality, maximum likelihood estimators conditional
to an arbitrary value of ¢ such that 0 < ¢ < 1, are consistent and
asymptotically normal. This suggests the possibility of constructing
specification tests for all three cases censored, truncated and binary.
In fact, what we have is an example of the situation discussed by Davies
(1977) where a parameter is identified only under the alternative.5

It is perhaps useful to develop our results In a slightly more
general case in which the symmetry assumption is relaxed by introducing
a further parameter a. Namely, we replace (3) by

1

Z-a z - (1-p “)a
(1-p0) @("""“5"“"“) + pd( p

1 2

(30) F(z)

il

)

By allowing a to be non-zero, we may have a non-vanishing third order
moment while maintaining the zero mean property. The first fourth

moments are given by

E(ui) = Q
E(u?) = o° = oils+ (1-s)p] -a(1-p )

a(l-p)[(a/p)? (20-1) - 3(1-s) o2]

(93]

-

=3

o
e 00
il
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% E(ui) = oé[sz + (1-82)p]
- 22%2 (1-p7Y) [1 - (1-s)p]
- a* (150" (0% - b+ 3)/0°

Note that in general when s = 1 and a # 0, k # 1 (actually, k = 1
only for the values of p that solve 6p2 - Bp + 1 = 0). It does not seem
to be much point in testing for normal kurtosis if symmetry has been
previcusly rejected. A test of skewness seems to be a more useful
specification diagnostic, which in our framework amounts to a test of
the constraint a = 0, provided p < 1. It could also be of interest to
test for heterokurtosis if it is found that for a symmetric distribution
E(u?) % 304, as a further diagnostic which in some cases can aid to
distinguish between structural misspecification and genuine non-~normal
tails.

In any event, both ¢ and a are Iirrvelevant under the null hypothesis
o = 1, and in principle a generalisation of Davies test to two
parameters present only under the alternative can be use. Davies
solution consists in obtaining the LM statistic for each pair (a,c) and
then base the test on the supremum of these. Any arbitrary value of a
and ¢ will produce asymptotically a chi-sguare with one degree of
freedom, but this is not generally the case for their maximum since
these chi-sqguares are not independent. Davies suggested a nmethod +to
calculate upper bounds on the asymptotic size of the test for any

critical value. To be more specific, let s(a,c) be the normalised score
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for a = a and ¢ = ¢. That is, letting 6' = (' 9,) .
62L 62L
- H
{VQQ Ve‘O - 89269 89289
tvép vpp 3 L a
1 -~ .
9pas AP 8=g, p=1l: a=a, Cc=C
and
alL

-~

where ¢ is the gaussian masximum likelihood estimator of ¢ and L is the

relevant log likelihood function conditional on a and ¢, we have

g
(32) s{a,c) =
=1 1772
— 1
Voo Vap'eo Vep!

Then under standard assumptions 8(5,5) is asymptotically a N{O0,1)

variable under the null. Davies statistic is
(33) D = sup s(a,c)
0<c<l, a

As discussed by Watson (1982), D can be approximated by the maximum
of s(a,c) over an arbitrary number of values of a and c, ?1, e ?n’
say, Where »' = (a c). Now since [s(?l), ooy s(?n)] is asymptotically

distributed as a multivariate normal, one can calculate rejection

probabilities associated to this approximation if n is not too large,
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and in any event several upper bounds are avallable (see Watson (1982)
for the details).

In the remainder of this section we consider explicit expressions
of g for different models to gain some insight into the interpretation
of this procedure. First, we consider a standard regression model; in

this case, the log likelihood function is simply

I

L(s, Gz,p[c,a) =Xy log fi

with
-1
1 ui - a 1 u,~{(1l-p "a
£, = (1-p) = (=) + p = & - )
1 1 2 2
u;-a
= w32 1 E =
where u, yi xiﬁ and 9y CO e Let éli & { ) ) and
u,~(1-p"H)a
6,. = & )
21 62
Under the null, 051 ¢21 is the true pdf and in this case g and o, are
the OLS estimates of g and Og- We have
o log f u,~ (1- Wl)a
gty 1 1 i P a
3 N TR TY {1+ o ) 0o )
P 2t 2 2
Thus
T cm1¢1i aeg T - T ¢! 11
(34) g = 2z (1- ~= )y o+ ao, z i = 2 (1~ - )
i=1 & i=1 i=1 é
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-~

where ui =y

. ! .
i xiﬁ and ¢1i and ¢2i are ¢1i and ¢21 evaluated at ui, 02

and p=1. Clearly

cTle {C“1¢11 £, d
(35) E(l- 7y, ) =1 - ®53 i
which vanishes if fi = 051 ¢21, Our test statistic is simply replacing
this expectation by its sample counterpart. Under this interpretation,
011 ¢1i is playving the role of a pivotal density and, since in principle

it could be replaced by any density g; with mean a, say, other than

051 ¢21, this suggests considering a wider class of distributions of the
form
(36) £. = (1-p)g, + p~ @
i PGy ”32 21
Next, we consider a binary model. In this case, the log likelihood

function is
_ T
LiB.ple, &) = 2, ,[y; log(1-F,) + (1-y;)log F. 1]
(Note that since fi is not necessarily symmetric, we cannot replace 1~-Fj

by F(x:8).)

We have
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aLi ) (1myi) ) \Y aFi
3p F] (lmFi) Ap
with
OF -1 z;a -1
55 =&(z; - (l-p ")a) - &({—¢ ) = (a/p) ¢(z; - (1l-p ")a)
where Zi = - xiﬁ and we have set O, = 1. Thus
(37) qa =20, w (a,c) (v,~#(x!p))
Ti=1 UiV i i
with
- z;-a - -
{38) wi(a,c) = = ) + @(zi) + a¢(zi)
where z, = »xiﬁ and g is the probit estimate of 8. Again,
— ! = = s i
(39) Elw, (a,c) (v, #(x;:8))1 w.(a,c) [Pr(y=1) ¢ (xip)]

which wvanishes in the absence of misspecification, thus providing a
simple interpretation for our statistic.

Finally, let us consider the Tobit model which combines the two

previous cases. Since the results are essentially the same, we present
the a=0 case to simplify the presentation. In view of (13) we have
-1 1
oL T 1192 %2171 %13 ®217%11
T > W, - (1-w,)
ap . £ i F.
i=1 i 1

*
where W, is observable and takes the values W, = 1 if Y > 0. w, = 0
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otherwise, so that E(Wi) N Fi' Thus
T ¢ s T (1-6..) - (1-2..)
1i 21 1i
(40) g=2 (1 - =) w, = Z ( = ) (1-w.)
i=1 & i=1 &, .
21 21
Again, note that
-1 -1
c e, . % © c e, . £,
E(1 - ——2 | vy, >0) =1 - f 2 ey
21 ~xiﬁ 21 i
which eqgquals
L. 1 I” ol ay = 1 %21) 7 (17244)
(1~¢2i5 -x}p 1 71i (1=%,.)

under null.

5, CALCULATIONS OF ASYMPTOTIC RIASES

In this Section we follow Arabmazar and Schmidt (1982) to calculate

the inconsistency of the normal MLE when the errors are actually

contaminated normal. As they do, we concentrate on the special case in
which the model contains only a constant term (i.e. p‘xi = u) but the
error variance is unknown. We solve numerically for the probability

-~ -~

limits of the normal MLE's u and o the eguations obtained as the
probability limits of the normal first order conditions. These are as

follows:
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Censored case

it
o

u + Bom(-u/c) - B

Truncated case

M+ o m(u/o) - B = 0

“2 - 02 + uom{u/c) = 2Bu + C = 0O
where u = plim u, o = plin o. For comparability with their results we
set Var(ui) = 02 = 1, Then A, B and C are given by (see Arabmazar and

Schmidt for the details):

w
H

+ Ju.> -
u E(u;fwu, M),

2 2
uoo+ E(ui]ui>~u) + 2uE(ui>—u).

Q
i

The expressions for the first and second order truncated moments under
the assumption that the cdf of u. is contaminated normal are given in
{(8) and (9).
We are interested Iin computing asymptotic biases for mixtures of
distributions giving rise to specified values of the kurtosis measure k.
2

In this regard, it turns out to be more convenient to set r = Gi/a to

some fixed value and parameterise p and 02 in terms of k and 02. Note
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that solving for ¢ in (5a) we have g = (k-1r)/(1-r) and that since
{(1-p)r + pg = 1, p = (1-v)/(g-r). Therefore, making replacements we
cbtain
62 = I'Oz
1 ¥
02 - (kwr)oz
2 1-r d
2
l-r
o = ( )

For all the distributions considered r = 1/3 with k equal to 2, 3 and 4.
In all cases o = 1, while y varies from -2.8 to 2.8, thus determining
the degree of censoring or truncation in the population.

The results are given in Tables I-III, each table corresponding to
a different value of k. For comparability with Arabmazar and Schmidt's
results it is convenient to remark that for the Laplace distribution
k = 2 and for a t5 this is k = 3. Our results are gualitatively very
similar to those found by Arabmazar and Schmidt, thus stressing their
main conclusions. If anything, we may notice that the biases found for
the contaminated normals tend to be more persistent for lower degrees of
censoring or truncation than those corresponding to the t distributions.
As it would be expected, the bias is worse for distributions with a
larger value of k(i.e. in which the kurtosis measure tends to be more

non-normal) .
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6. EMPIRICAL TILLUSTRATION

In order to illustrate the procedures developed above, it was
decided to estimate a female labour supply equation. This eguation is
identical to the one presented by Blundell and Smith (1985) in their
study of simultaneous edquations Tobit models. Female labour supply,
measured by weekly hours in paid work is described by a reduced form
egquation which includes as explanatory variables other household income,
three child dummy variables and linear and guadratic age and education
effects. The exogeneity of other income can be guestioned and actually
the test performed by Blundell and Smith rejects this hypothesis.
Therefore we may expect simultaneity bias from the application of
standard methods.

The data consists of 2539 married women of working age which are
not self employed, from the 1981 Family Expenditure Survey for the U.K.
Column 2 in Table V presents contaminated Tobit estimates conditional on
an oﬁtimal choice for the wvariance ratio obtained over a grid search.
Column 1 provides the normal Tobit estimates for comparisons. Table VI
gives (—i), 5, ﬁ and (1~;)/SE(5) for different values of s. In all
cases the differences with respect to the normal estimates remained and
there were no noticeable departures 1in the estimated regression
coefficients from the results reported in Column 2, Table V. The normal
values were used as initials and in no occasion the likelihood function
failed to converge. In fact, convergence was attained very quickly,
typically after four or five iterations.

The estimated value of p in Column 2 (Table V) is consistent with a

kurtosis measure (v, = 3.7) not very far from the gaussian specification

2

and in fact the contaminated estimates are typically only between 10 and
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20 percent larger in absolute wvalue than the normal ones. However, a
completely different picture emerges once asymmetry is allowed into the
distribution of the errors by introducing a further parameter as
described in Section 4. The results, again conditional on an optimal
value of s, are reported in Column 3, Table V. The new parameter is
highly significant and so is our estimated skewness measure calculated
as E(ug)/c3 using the formulae given Iin (31). Accordingly i is
considerably improved. Our estimates imply a distribution skewed to the
right with a long left tail. Actually, the mode is 12.25! On the other
hand, with the exception of the child dummy variables, the slope
coefficients are much altered.

Although further Iinvestigation on more elaborate models would be
required, these results suggest that the observed non-normality is due
to structural misspecification and not to genuine non-normality in the
errors. In any event, the proposed estimators seem to be a useful

generalisation towards robustness in limited dependent variable models.

7. CONCLUSTIONS

While extensive research has recently been carried out on
non~normality tests, little has been done on ways of relaxing the
normality assumption itself. The view is usually taken that evidence of
non~normality is a signal of structural misspecification. Although this
will often be the case (particularly if the residuals are found to he
skewed as it happens in our illustration) it may also be indicating
genuine non-normal features in the distribution of the errors. When
this is the case, more general distributional assumptions are called

for.
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We have proposed a method of relaxing the normality assumption in
sample selection models when the suspected cause of non-normality is in
the form of longer tails leading to leptokurtosis. Normality is nested
as a particular case, thus providing the basis for simple tests of
“non-normality. These 1issues are of practical importance because the

asymptotic biases due to non-normal kurtosis can be substantial.
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FOOTNOTES

Note that

F(x|Myr Mys 010 04, p) = F(x|u,, My, 04, 07, 1-p)

thus some convention must be adopted in order to have a well
defined true parameter vector.

In the derivation of (8) and (9) we have used the results

o]

Ie % ¢ (v/k) dv = ko (6 /k)

and

e v2 2

IQ — o (v/k) dv = B8ke(e/k) + k"[1 - ¢(8/k)].
k

A very useful parameterisation to restrict p is

o = 40°/(1+6°)%,

In calculating the derivatives we make use of the result

3 _ Af(x)
5% LE(x)] = - £(x) eLE(x)] —mp—

Davies method has been applied to the problem of testing
coefficient stability in a regression model by Watson (1982).
See also Engle (1984).



P(y*>0)
.01
.02
.03
.08
.08
.15
.29
.50
.71
.85
.92
.95
.97
.98

.99

Asymptotic Bliases (k

7]

Censored

~1.35

~1.44

~1.54

~1.585

~-1.29

-0.75

~-0.30

~0.07

0.02

0.03

0.03

0.02

0.01

0.01

0.00
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TABLE

Truncated

0.

-11

-12.

~10.

I

00

.02

.13

.85

.18

.70

19

99

.34

.41

.04

.06

.05

.04

Censored

.83

.87

.91

.91

.18

.49

.20

.02

.06

.08

.08

.06

.04

.02

.01

Truncated

0.58

-0.03

-0.09

-0.10

-0.08

-0.06



P(y >0)
.01
.02
.03
.04
.07
.13
.28
.50
.12
.87
.93
.96
.97
.98

.99

Asymptotic Biases (k

Censored

.15

.92

.08

.03

.34

.18

41

.10

.01

.04

.04

.02

.01

.01

32

TABLE II

17}

Truncated

0.

~13.

~-16.

~14.

~13.

00

.02

.21

.14

87

18

60

28

.28

.65

.08

.05

07

.07

.05

Censored

1

1.

.55

62

.68

.66

.33

.14

.27

.03

.07

<11

<11

.09

.07

.05

.04

Truncated

1

1

.00

.00

.05

.38

.11

.83

.29

.14

.43

.23

.02

.10

.13

.12

.10



TABLE III

Asymptotic Biases (k = 4)

7] o]
P(y*>0) Censored Truncated Censored Truncated
.02 ~4.,15 0.00 2.20 1.35
.02 ~4 .37 -0.02 2.29 1.35
.03 -4.57 -0.29 2.37 1.41
.03 -4, 41 -2.84 2.30 1.98
.06 -3.18 -18.85 1.74 4.00
.12 -1.45 -18.61 0.88 3.15
.21 -0.48 -15.59 0.31 2.35
.50 -0.11 ~14.00 0.04 2.16
.13 0.01 -10.09 ~0.,08 1.95
.88 0.04 ~0.82 ~0.12 0.28
.94 0.04 -0.11 ~0.12 -0.02
.97 0.03 0.04 -0.11 -0.11
.97 0.02 0.07 -0,09 -0.14
.98 0.02 0.07 -0.07 -0, 14
.98 0.01 0.06 ~0.05 ~0.183



Asymptotic Variance Matrices for Contaminated

p o= .5, ¢ = ,058
B

8 6.131
o 0.224
c 0.395
fo) . 5 c = ,15
B8 5,380
o 0.214
c 1.310
o .78 c = ,05
B 4.053
o 0.298
o] 0.249
I .15 c = .15
B 3.915
[s} 0.315
C 1.315
o .9 c = .05
B 3.305
=) 0.324
c 0.1686
o .9 ¢ = ,15
o 3.282
o 0.356
c 1.986

Binary Models (c unrestricted)

. 668

293

. 289

.006

. 2495

. 805

.098

. 745

. BO8

L2717

. 492

196

34

TABLE IV

(9]

11.

37.

69.

236.

.184

466

126

714

669

201



15.5879

0.027

0.986

7.136

0.015

1.393

10.735

0.109

0.689

7.1566

0.081

1.494
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TABLE IV (continued)

0.400
-0.039 0.900
0.591
-0.149 2.983
0.926
-0.107 1.259

1.295%
~0.384 4.283



TABLE V

CONTAMINATED TOBIT ESTIMATES AND NORMAL TOBIT ESTIMATES

Dependent Variable:

Constant

Other Incomec

(Age~40)/10

(Aga~40)2/100
({Educ—8)

(Educ~8)2

D1
D2

D3

Skewness measure

s = (01/62)2

Normal Tobit

29

(1.

-33.
(1.

-11

(1.

(1

1i8.

7003.

.5830
2200)

.1935
.0113)

. 9967
.4484)

.9806
.4239)

.7690
.1808)

0118
L0175)

0579
2784)

.B723
2745)

L2573
.3681)

1020

212

Female Weekly hours in paid workf

1 2

. a
Asymmetrical
Contaminated Tob

Contaminated Tobita

33.5108 23.1534
(1.1689)b (2.8754)
-.2131 ~.1302
(.0132) (.0181)
~4,.5596 ~2.1306
(.4525) (.3592)
~2.3195 -1.1283
(.3888) (.3287)

.1329 .3136
(.2344) (.1425)
-.0415 .0006
(.0223) (.0140)

~35,9424 -33.8706
(1.2577) (1.1873)
-13.5010 ~11.7707
(1.1452) (1.0513)
~2.,9802 ~2.1849
(1.31686) (1.1708)
18.7995 23,3949

.7813 .4816
(.0321) (.0792)

- 12.5801

(2.2569)
- ~-1.4773
(.6324)

.0800 .0700

6978.7178 6909.716
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Table 5 notes

al

a2

Estimation conditional to variance ratio s = .08,
Egtimation conditional to s = .07
Standard errors in parentheses.

Other household income contains husbands income, unearned income
and dissaving.

‘Dl’ D, and D are dummy variables representing the presence of

2 3
preschool children, children of age 5-10 and children of age 11+
respectively.

Estimated standard deviation of the errors.
T = 2539,

No. of positive observations = 1460
Percentage of censoring in the sample = 42.5
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TABLE VI
s -L o K (1-p) /SE(p)
.05 6980.16 .828 1.184 6.68
.08 6078.78 . 781 1.227 6.81
.10 6979.11 .157 1.245 6.69
.15 6Q81.07 .701 1.272 6.22
.20 6983. 34 .650 1.281 5.75
.25 6985.58 . 604 1.272 5.36
.30 6987.78 CB567 1.248 5.06
.40 , 6992.00 .51¢Q 1.177 4.49
.50 6995.71 497 1.111 3.80
.60 6998.68 .488 1.063 3.02
.70 7000.84 . 487 1.031 2.21
.80 7002 .24 . 490 1.012 1.41
.90 7002.99 495 1.003 0.77

Normal 7003.21 - 1. -



